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ABSTRACT 

Uncertain quantities are often described through statistical samples. Can samples for numerical 

weather forecasts be generated dynamically? At a great expense, they can. With statistically 

constrained perturbations, a cloud of initial states are created and then integrated forward in time. 

By now, this technique has become ubiquitous in weather and climate research and operations. 

Ensembles are widely used, with demonstrated value. 

The atmosphere evolves in a multidimensional phase space. Does a cloud of ensemble solutions 

encompass the evolution of the real atmosphere? Theoretically, random perturbations in high 

dimensional spaces have negligible projection in any direction, including the error in the best 

estimate, therefore consistently degrading that. As the bulk of the perturbation variance lies in the 

null-space of error, samples in multidimensional space do not contain reality. 

An evaluation suggests that initial and short-range forecast error and ensemble perturbations are 

random draws from a high dimensional domain we call the subspace of possible error. Error in 

any initial condition is partly a result of stochastic observational and assimilation noise, while 

perturbations explore other, mostly independent directions from the subspace of possible error 

that may have resulted from other configurations of stochastic noise. What benefits may arise 

from the deterministic projection of such noise? 

Consistent with theoretical expectations, ensemble members consistently degrade the skill of the 

unperturbed forecast until medium range. The mean and all other products derived from 

ensembles suffer an 18-hour loss in forecast Information. Since Information is a sufficient statistic, 

any rational user can benefit more from the unperturbed, than from an ensemble of weather 

forecasts. Furthermore, case dependent variations in the distribution or spread of ensembles have 

no impact on commonly used metrics. Can alternative, statistical applications provide 

comparable, or even higher quality probabilistic and other products, at the fraction of the cost of 

running an ensemble? 
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1. INTRODUCTION 

Weather forecasting is one of the greatest success stories of natural sciences 

(Richardson, 1922; Bauer et al., 2015). Drawing on the theory of dynamics and thermodynamics, 

in an abstract setting, numerical models replicate the larger, resolved-scale dynamics of the 

atmosphere (Charney, 1949; Kalnay, 2003). In numerical weather prediction (NWP), observations 

of the atmosphere are collected and fused into an estimate of the initial state, called an analysis. 

Numerical forecasts initialized from such analyses then attempt to capture the temporal evolution 

of the atmosphere by exploiting deterministic relationships in nature. Useful forecast skill now 

extends to 10 days lead time and beyond (Bauer et al., 2015; Zhang et al., 2019) - a feat 

unimaginable just decades ago. 

Despite continual reductions in initial error over the decades, error still amplifies in the 

forecasts. Eventually errors reach a level comparable with that in states randomly chosen from 

the climatic distribution, at which point forecasts become useless (Lorenz, 1982). By now it is well 

understood that the loss of forecast skill is intrinsic to a large class of aperiodic deterministic 

systems called chaotic dynamical systems (Thompson, 1957; Lorenz, 1963; Li and Chou, 1997; 

Mu et al., 2004). As it is not due to methodological problems, this loss of skill is unavoidable 

(Lorenz, 1963). Weather is predictable - but only for a finite period. 

Nature unfolds along a unique path in time and 3-dimensional space. NWP forecasts 

attempt to predict this evolution in a similar form, as a unique sequence of events. Especially at 

longer lead times a single-value forecast in itself, however, can be rather deceptive. Such 

forecasts do not indicate how large their error may be, and which part of their variance will match 

reality. This is a major challenge for weather forecasters and users alike as for optimal decision 

making the level, and possibly the nature of uncertainty must be known in advance (Leutbecher 

and Palmer, 2008). 

After a brief review of statistical alternatives (Section 2), we introduce the concept of 

ensemble forecasting, a dynamical approach to assessing forecast uncertainty, along with its 

current status and presumed benefits (Section 3). Specific methodologies considered in this 

study, such as forecast system attributes, some metrics of forecast performance, including an 

analysis of perturbations in multidimensional space, and the sources of forecast error are 

discussed in Section 4. Long-held assumptions about ensembles are revisited in Section 5, while 
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some theoretical explanation of the experimental results are offered in Section 6. The paper ends 

with some conclusions and a discussion (Sections 7 and 8, respectively). 

2. STATISTICAL METHODS 

2.1 Sampling 

Statistical tools are available to describe uncertain quantities like weather analyses or 

forecasts. A sample or a distribution representing the expected error in the best estimate can 

readily show the range of values a quantity might take. Assuming, as an example, that the error 

in an analysis follows a normal distribution with known parameters, the black curve centered 

around reality, whose exact value is unknown indicates the possible position of an analysis. While 

the blue curve offers an example for a distributional estimate of reality, which if the distribution is 

statistically reliable (i.e., perturbation variance equals error variance), is identical to the distribution 

of possible analyses, except translated to center on an arbitrarily selected realization of the 

analysis (Fig. 1a). 

Figure 1. Reality (red dashed vertical line, unknown in practice), the distribution of its best estimate 
assuming error in it is known and normally distributed (black curve), an example for a best 
estimate (selected at a distance of the standard deviation from Reality, black dashed vertical line), 
and the estimated distribution of reality around the best estimate (blue curve) in a 1- (panel a, 
directional distance) and 150-dimensional space (panel b, absolute distance). For further details, 
see text here and in Section 6.2. 

Error, by definition, is unknown at the time a forecast is made. Error variance, however, 

may be statistically assessed and used as an indicator of forecast uncertainty, as long as a 

representative joint forecast-validation sample is available. Error variance in real time NWP 

guidance (i.e., analysis or forecast) fields at lead time � (�!), for example, can be estimated based 
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on error  variance in a sample of  past  guidance fields (�! ) similar to  �!  in  lead  time,  location,  

seasonality,  regime,  etc.  (van den Dool,  1989;  Zorita and von Storch,  1999;  Hamill  and Whitaker,  

2006;  Li  and Ding,  2011):  

 �# = '�# 
�  �  ! E ! ( ,                                            (1)  

where  E(∙)  represents the expected value, and  �# and �#�!    � as:  ! 
 are defined 

�# 
� =	| ! �! − �|# 	,		� # =	 |�! − �|# 

� 	,																																																				 ! (2)  

and �  is  the  corresponding  truth  or  its  proxy  (e.g.,  a  verifying  analysis,  see  Appendix  A).  

 

2.2  Products  

As  an  example,  a  set  of  surrogate  or  perturbed  analysis  or  forecast  fields  (�!) can  be  

created by the addition of  perturbation fields (�!) to  the  best, unperturbed  single-value reference 

analysis or  forecast  field (sometimes also called “deterministic”,  that  from  here on we call  control,  

�!):  

�! = 	 �! +	�!  ,                      (3)  

Conveniently,  past  error  patterns,  if  available,  can  serve  as  perturbations  to  create  a  sample  of  

surrogate forecasts (e.g.,  Delle Monache et  al.,  2013).  If  a large enough archive of  past  error  

fields  are  not available, alternative  sample  generation  methods include the addition of  random  

noise (Leith,  1974;  Palmer  et  al.,  1990), spatiotemporal  shifts  of a  single  forecast (neighborhood  

methods, e.g., Atger, 2001), or the collection of earlier initialized forecasts valid at the same time  

(lagged forecasts, Hoffman and Kalnay, 1983).   

 

The  mean  of  a  sample  is  an  often  used  central  tendency  indicating  the  expected  weather:  

� = % &
 ∑ "
!  ()% �!,( 						.																																																												(4 )  

&" 

where  �  is  the  index  for  perturbations,  and  �*  is  the  sample  size.  If  perturbations  are  centralized  

before they are added to a reference state:  

∑&"()% �+,( = 0	  ,                                 (5)  

the  mean  will  equal  the  best estimate. In  general, the  mean  captures  the  common  component 

shared by all  members.  Typically,  by filtering out  presumably unpredictable noise,  the mean of  

representative samples  lowers  forecast  error.   

 

To  ensure  statistical  representativeness,  the  variance  or  spread  of  perturbation  fields  �  is  

set  equal  to the estimated error  variance in the best  estimate:  
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% &"�! = ∑()% |�!,( − �!|# .																																																										 (6) 
&" 

While the mean attempts to capture the predictable forecast signal, the spread (i.e., the standard 

deviation) measures the residual variability of sample points around their mean. Importantly, 

statistical sampling of forecast error involves the repeated, mechanistic insertion of perturbations 

around a single reference (control) forecast at every lead time (Fig. 2a). 

Figure 2. Schematic of statistical (a) vs. dynamical (b) generation of forecast perturbations. In 
either case, initial perturbations (bottom ellipsoids) are centered on a reference initial condition 
(R, typically a control analysis and forecast, vertical black line). Forecast perturbations (top 
ellipsoids) are either statistically added and centered on R (a, blue arrows), or generated via the 
numerical integration of a dynamical model from perturbed initial conditions (b, red arrows). P-, P+ 

(red solid), and E (red dashed) represent two perturbations initially symmetric around, but later 
off-center of R, and the mean of the ensemble, respectively. For further explanation, see text. 

Using representative samples created around the best (control) single value forecast, a 

variety of probabilistic and other products can be easily constructed in distributional or categorical 

(for semi-closed or closed intervals, Anderson, 1996; Ebert, 2001) forms. For decades, statistical 

post-processing methods have been used to estimate and reduce forecast error, and generate 

well calibrated forecasts in a variety of probabilistic and other formats (Wilks, 2009; Scheuerer, 

2014, Chen et al. 2022). Due to limitations in methodology and the size of forecast archives, 

statistically generated surrogate forecasts, however, generally lack dynamical balance. Past 

forecast cases that best match the current forecast at a selected region and lead time, for 

example, lose such similarity at other locales and lead times. This is due to the high dimensionality 

of the atmospheric circulation (e.g., van den Dool, 1994). Hence to ensure representativeness, 

the selection of past forecast cases is often location and lead time dependent (e.g., van den Dool, 

1998). Which results in perturbations that lack spatiotemporal and across variable coherence or 

dynamical balance. 
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3. DYNAMICAL ALTERNATIVE 

3.1 Ensemble Forecasting 
Considering the limitations of statistical sampling algorithms and the success of the 

numerical approach to weather forecasting, a desire for the dynamical sampling of forecast 

uncertainty arose early on. Instead of the repetitive sampling of individual forecast variables (e.g., 

weather parameters at selected locations and lead times), why don’t we sample the dynamical 

evolution of the entire atmosphere? In the 1960s an idea about a “glob of points, each of which 

would follow its own deterministic path” emerged (Edward Epstein, quoted by Lewis, 2005). The 

basic concept of ensemble forecasting is rather simple. Insert perturbations around the analysis 

of the atmosphere only once, at the initial time. To represent uncertainty in the analysis (Eq. 1, 

see also Section 4.3.3), the magnitude of initial perturbations is set equal to that estimated in the 

analysis. And to retain skill in the mean, the initial sample is typically centered on the best, control 

estimate of the state (Eq. 5). To create an ensemble, forecast perturbations are then dynamically 

generated by numerical integrations of the same (or to simulate model related errors, a different, 

e.g., Houtekamer et al., 2009) numerical model used to make the unperturbed control forecast 

(Fig. 2b). A collection of such perturbed initial and forecast conditions are hence called an 

ensemble. 

In the late 1980s and early 1990s, following experiments with models only about half the 

resolution of operational forecasts at the time, the idea gained momentum. In 1992, related efforts 

led to the operational implementation of the Global Ensemble Forecast System (GEFS) at the 

National Centers for Environmental Prediction (NCEP, Toth and Kalnay, 1993). The routine 

weekend production of ensemble forecasts at the European Center for Medium Range Weather 

Forecasts (ECMWF) commenced shortly afterward (Molteni et al., 1996). The rest is history 

(Lewis, 2005). 

The dynamical generation of an ensemble, of course, comes at a significant cost. 

Depending on membership and resolution, in comparison with a single forecast, an order or two 

more computational resources may be required. Still, today dynamically generated ensembles 

constitute the main or sole mode of operation at most or all numerical weather and climate 

prediction centers (Palmer, 2019; Zhou et al., 2019; Chen and Li, 2020). After decades of 

resistance, operational forecasters and other practitioners from a wide range of application areas 
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(from hydrology, e.g., Schaake et al., 2007, to agriculture, energy, and other sectors, e.g., Alemu 

et al., 2011; Calanca et al., 2011; Su et al., 2014) and across many timescales (from nowcasting, 

e.g., Liguori et al., 2012, to multi-seasonal and decadal forecasts, e.g., Krishnamurti et al., 1999; 

Hou et al., 2018; Liu et al., 2023) have also embraced the practice (e.g., Bougeault et al., 2010). 

Ensembles and products derived from them, whether they represent the best possible guidance 

or not, are widely used, with proven value. 

3.2 Perceived Benefits 
Over the past decades, the potential benefits of ensemble forecasting have been 

discussed extensively. In this section we offer a brief overview of the perceived benefits. A more 

detailed analysis follows in Section 5. 

3.2.1 Alternative Scenarios 
An attractive feature of ensembles is that they offer dynamically consistent alternative 

scenarios for future weather. Talagrand or Analysis Rank Histograms (Fig. 3, Candille and 

Talagrand, 2005) demonstrate that the proxy for reality falls with about the same frequency in all 

intervals defined by an ordered set of ensemble members, an indication that ensemble scenarios 

are equally likely. A trivial but potentially powerful application is the direct feed of individual 

ensemble members into decision making algorithms. A cost-benefit analysis in the context of the 

alternative forecast scenarios allows sophisticated users to optimize their weather dependent 

course of actions (e.g., Alemu et al., 2011; Khan et al., 2021). A wide variety of probabilistic and 

other products can also be derived from such samples (Vannitsem et al., 2021) just as easily as 

from statistical samples generated around single value forecasts. 
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Figure 3. Talagrand (or analysis rank) diagram indicating the frequency of the verifying analysis 
falling into the intervals defined by the 20 ranked values of 500 hPa geopotential height ensemble 
member forecasts at individual grid-points, aggregated over the NH extratropics (30º -65ºN) over 
the 3-month experimental period at 0.5 (a) and 14.5 days lead times (b). A flat distribution (dashed 
horizontal lines) indicates a perfectly reliable ensemble (where forecast probabilities of events 
exactly match their observed frequencies). 

3.2.2 Error Reduction 
Ensembles are well known for the low error in their mean (Eq. 4). As shown in an example 

from the NCEP ensemble (Appendix A), the error in the mean (red line in Fig. 4) is typically much 

below that in the control forecast run at the same resolution as the perturbed members (black). 

This is despite a noticeably higher error in the perturbed forecasts (blue line in Fig. 4). The error 

reduction in the mean is considered a major benefit of ensembles. A series of studies have 

suggested that the reduction in forecast error is dynamically conditioned, primarily due to a large 

projection of initial ensemble perturbations onto the “case-dependent” error in the control analysis 

(e.g., Toth and Kalnay, 1997, TK97, Ebert, 2001; Wei and Toth, 2003; Buizza et al., 2008; Feng 

et al., 2019). This presumed effect, often referred to as “nonlinear filtering”, is thought to “result in 

a superior ensemble mean forecast [compared] to a single or even higher-resolution control 

forecast” (Du, 2007). At the same time, it is maintained that a purely statistical “smoothing effect 

of [ensemble] averaging partially contributes to this superiority but… in a much less degree… 

compar[ed] to the nonlinear filtering” (Du, 2007). 
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Figure 4. Perceived rms error for the control (black), perturbed (blue), ensemble mean (red), and 
median (green) NH extratropical 500 hPa height forecasts averaged over the 3-month 
experimental period. 

3.2.3 Spread - Error Relationship 
Case-to-case variations in ensemble spread (Eq. 6) are considered an important 

dynamical indicator of variations in expected forecast error variance (e.g., Murphy, 1988; Buizza, 

1997; Goerss, 2000). Many link spatiotemporal variations in spread to fluctuations in atmospheric 

instabilities, presumably affecting forecast error variance (e.g., Palmer, 2000; Ferranti et al., 

2015). For further discussion, see Section 5.4. 

3.2.4 Probabilistic Forecasts 
A series of related papers (Roulston and Smith 2003, Hagedorn and Smith 2009, 

Flowerdew et al. 2013, and Christensen et al. 2015) compare verification scores for probabilistic 

products derived from an ensemble vs. a higher resolution control forecast. Roulston and Smith 

(2003), for example, find that after applying very similar statistical post-processing methods, 3-10 

day lead time ensemble-derived probabilistic forecasts have a much lower Ranked Probability 

Score (RPS, Murphy, 1969) compared to products derived from a higher resolution unperturbed 

forecast. Roulston and Smith (2003) and others attribute the favorable score for ensembles to 

their case-to-case varying distribution that provides “quantitative estimates of the likely forecast 
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accuracy”, concluding that ensemble-based “prediction… is inherently superior to a single “best 

guess” forecast”. 

3.2.5 Bracketing reality 
From the beginning, a main objective of ensemble forecasting has been the dynamical 

sampling of uncertainty in the forecast evolution of the atmosphere. An ensemble brackets or 

encompasses truth if reality is contained in its range. As is well known, a statistically reliable �*-

member ensemble brackets any single indicator of reality or its proxy in the majority (i.e., (�*-1)/( 

�*+1) fraction) of the cases (Descamps and Talagrand, 2007). As observed for commonly used 

variables, most of the time the proxy for truth (Appendix A) falls in the range of even somewhat 

unreliable ensemble forecasts (Fig. 3a). Based on such experience in 1D, the community has 

assumed that bracketing holds for the multidimensional space of atmospheric dynamics, too. This 

assumption is reflected in schematics like Fig. 5 (reproduced from Kalnay, 2017), where the 

evolution of the real atmosphere is contained in, or dynamically bracketed by the cloud (i.e., the 

collection) of ensemble forecast trajectories. This assumption will be evaluated in Section 5.5. 

Figure 5. Schematic diagram of ensemble forecast trajectories: the control (green line), perturbed 
(black), and ensemble mean (long dashed brown) forecasts, and reality (dashed red). Courtesy 
of E. Kalnay, see text for details. 

The introduction of ensembles was partly motivated by the applications, results, and 

expectations reviewed above. As ensembles proliferated in the weather forecast and user 

communities, some of the expectations solidified as presumptions. Many of these notions have 

never been critically examined. Motivated by, and building on the pioneering study of Leith (1974), 

the rest of this paper revisits some long-held assumptions about ensembles. 
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4. CONCEPTS AND METHODOLOGY 

The assessment of their quality is critical to the optimal use and further development of 

forecast systems. In this section we review key concepts and tools we consider in the evaluation 

of ensemble forecasts. 

4.1 Forecast Performance Attributes 
Reliability. Based on a review of related literature, Toth et al. (2003, 2005) identified two 

forecast performance attributes: statistical reliability and statistical resolution (e.g., Murphy 1972). 

Weather forecasts are in the form of abstract “signals”, each of which correspond to a preferably 

unique weather event or condition in nature. Forecast symbols, as messengers in any 

communication, are arbitrary. Statistical reliability (e.g., Murphy, 1972) or calibration is one of two 

main attributes of forecast performance, assessing how truthful the forecast language is to its 

implied or expressly stated meaning. Specifically, reliability is not concerned about the sequence 

of forecast and observed events, just about their time average statistics. For example, is the mean 

of a sample of forecasts equivalent to the mean of corresponding observations? Naturally, metrics 

of reliability depend on the form of forecasts (i.e., symbols used, e.g., single value or probabilistic, 

see Toth et al, 2003). Therefore the reliability of forecasts expressed in different forms is 

quantitatively not comparable. Statistical reliability is key in the practical use of weather forecasts 

(Taillardat et al., 2016). Fortunately, just as a text can be corrected for spelling errors without 

affecting its meaning, forecast bias can be statistically corrected based on past performance (i.e., 

calibration, e.g., Krzysztofowicz and Kelly, 2000). 

Resolution. Weather forecasts attempt to capture the temporal evolution of reality. As 

such, in contrast to their form, the sequence of events foreseen is the content of forecasts. 

Statistical resolution (e.g., Murphy, 1972) concerns how well the dynamical sequence of events 

in nature is captured by forecast signals indicating such events. In other words, resolution is a 

system’s ability to foresee the sequence of future weather events, which in a loose sense can 

also be called the skill of forecast systems. Resolution is independent of the particular form or 

signals used and is arguably the inherent value, and the most critical attribute of forecast systems. 

Note that resolution reflects only the similarity in the sequence but not in the long-term statistics 

of observed and forecast signals. As reliability is the other way around, the two main attributes of 

forecast systems are completely independent (Toth et al., 2005). 
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Importantly, reliability and resolution are the only two attributes of forecast performance 

based on a comparison of forecasts and observations; other, diagnostic metrics concern only 

forecasts or observations alone. Therefore, our evaluation will focus on these two attributes since 

they provide a complete assessment of forecast system performance. Furthermore, as 

Krzysztofowicz (1992) noted, metrics of resolution are sufficient statistics in a sense that if their 

output can be calibrated, a forecast system with superior resolution will provide more economic 

benefit to any user compared to any other forecast system. So in terms of potential benefits, it is 

enough to compare the statistical resolution of forecast systems. 

It follows that reliability and resolution of ensemble forecasts and products derived from 

them can (and preferably should) be evaluated separately. Most commonly used metrics of 

forecast performance, however, compound the two attributes with undetermined weights (and 

possibly include other elements, too). Since our focus is on forecast value, for a comparative 

evaluation of different forecast systems (such as single value control, and multi-value ensemble 

forecasts), and for ease of interpretation, we will use a metric of resolution as a primary verification 

statistic. 

4.2 Forecast Information and Noise 
As noted above, since they depend on the form of forecasts, reliability scores are 

quantitatively not comparable across different forecast systems. On the other hand, irrespective 

of their form, all forecast systems attempt to predict the sequence of future events; they differ only 

in what signals they use for communicating this. Unlike reliability, resolution therefore can be 

measured by common metrics, each assessing correlation between forecast and observed 

anomalies (Krzysztofowicz 1992, Krzysztofowicz and Evans 2008). 

Information. In verification, we compare forecast quantities with the observed state, 

described here with its case-dependent anomaly from the climatic mean1. Let us consider forecast 

anomalies from the climatic mean of a model with realistic variability2, standardized by the climatic 

1 Differences between points in phase space are independent of the choice of the reference point (or origin) 
used in defining possible coordinate systems. Here we adopt a convenient and often used representation 
of atmospheric states through their anomalies from the climatic mean (e.g., Chen and Li, 2021).
2 We note that forecasts from operational prediction systems have a realistic level of variability, i.e., the 
overall variance in forecast (F–C) and verifying proxy for truth (i.e., analysis) anomaly fields (T–C) are near 
equal (see, e.g., less than 10% deviation between the solid and dashed black curves in Fig. 8a, introduced 
later). 
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variance (Fig. 6). Further, we consider an orthogonal decomposition of forecast anomalies along, 

and orthogonal to the observed anomaly. Predictive capability or statistical resolution is measured 

here by the variance of the projection of forecast anomaly onto the observed anomaly, defined 

with respect to the climatic mean of nature: 

�! = |�!, − �|#/ |� − �|# , (7) 

which we call forecast Information (�). �! and �are an � lead time forecast and the corresponding 
,truth or its proxy (e.g., a verifying analysis), respectively, � is the climatic mean, �! is the 

orthogonal projection of �! on the observed anomaly � − �,	 and |⦁| is the Euclidean norm. In the 

rest of the manuscript, Information refers to � defined above. Information is the variance of the 

observed anomaly explained by a forecast, a direct measure of predictive capability. In other 

words, Information is the anomaly variance shared between reality and a forecast. 

Figure 6. Schematic representing the phase space position of the seasonally and diurnally varying 
climatic mean (C), an unperturbed (F), perturbed (P), and ensemble mean forecast (E), and the 
corresponding truth or its proxy (T) on the information (along the verifying analysis anomaly, 
vertical axis) and noise (orthogonal to the verifying analysis anomaly, horizontal axis) plane. P 
and E are rotated into the C-T-F plane. Key performance metrics used in this study include the 
rms error (F-T, or its square, the variance error, black dashed line); variances of forecast 
Information (Fo-C, solid green) and Noise (F- Fo, dashed cyan); the analysis anomaly missed by 
the forecast (T-Fo, solid pink); and pattern anomaly correlation (cosine of the angle at C). The 
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position of the points indicates the performance of twice-daily 8-day lead time NCEP GEFS NH 
extratropical (30º -65ºN) 500 hPa height forecasts averaged over the Dec 1, 2017 - Feb 28, 2018 
experimental period. For further details, see text. 

Noise. In contrast, next we define variance in a forecast’s anomaly that is orthogonal to 

the observed anomaly as Noise: 

�! = |�! − �!,|#/ |� − �|# . (8) 

Noise is an indicator for the level of divergence between a forecast and reality. Since Information 

that is identical to, and Noise that is unrelated to the observed anomaly constitute an orthogonal 

decomposition, for forecast systems with a realistic level of variance they are not independent 

quantities: 

�! +�! = 1. (9) 

Information and Noise are therefore positively and negatively oriented, alternative and 

interchangeable metrics of forecast performance, respectively. Information / Noise variances 

standardized by the climatic variance range between 1 / 0 (perfect knowledge about nature) and 

0 / 1 (no knowledge), respectively. Though related, Information and Noise defined above are 

different from “Information entropy” (Shannon 1948) or noise used in signal processing (e.g., 

Tuzlukov 2010, see Appendix B). 

Error. Error variance (Eq. 1) is one of the most often used metrics of forecast performance. 

Error measures the difference between a model forecast and reality. Theoretically, the initially 

quasi-exponential, then saturating growth of forecast error can be described by a logistic curve 

(Lorenz, 1984, see Appendix C). As seen from Fig. 6 (dashed black line), error can be 

decomposed into Noise contained in (dashed cyan line, Eq. 8), and Information missed by a 

forecast (continuous pink line, Eq. C2). 

Information Density. Pattern anomaly correlation (PAC or �! , Jolliffe and Stephenson, 

2003) is another commonly used performance metric, an inverse measure of the angle between 

forecast and verifying analysis anomalies taken from the climatic mean ( �! − � and � − � , 

respectively in Fig. 6). The square of PAC is interpreted here as Information Density (�!-, see Fig. 

8d): 
- # .!�! = �! = . (10) 

.!/0! 
Note that for forecasts with the same, and only with the same anomaly variance, Information and 

Information Density are interchangeable. 
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4.3 Divergence of Trajectory Segments 
At initial time, data assimilation systems capture partial Information about the state of 

nature, which numerical models then project into the future. Forecast error can be interpreted as 

the difference between segments of trajectories of dynamical systems. The difference between 

the evolution of two initially close segments on the trajectory of one, or two similar dynamical 

systems may be due to a number of factors. 

4.3.1 Difference in Model Dynamics 
An important difference between the real atmosphere and its numerical models, beyond 

the latter being an abstract representation of reality, is that models explicitly consider only the 

larger-scale circulation. Following Leith (1974) and Zhou and Toth (2020), we assume that on 

larger scales well resolved, numerical models replicate atmospheric dynamics in the extratropics 

near perfectly. Hence our study uses Northern Hemisphere extratropical 500 hPa height as a 

primary dataset. 

4.3.2 Difference between Equilibria 
Though numerical models capture the dynamics of large-scale extratropical circulation 

well, their equilibrium (i.e., climatic mean) state differs from that of the real atmosphere. In other 

words, the attractor of numerical models is displaced from that of reality. When a model is 

initialized with a state close to that observed, it gradually drifts toward the model’s own 

climatology. By definition, this process is governed by the stable dynamics of the model. As 

climatic drift in Northern Hemisphere extratropical 500 hPa height is negligible, differences 

between the climatic mean of forecast and reanalysis fields are not considered in the definition of 

anomalies (Eqs. 7 and 8). Considering also Section 4.3.1, in the rest of this study we disregard 

the effect of model imperfections on forecast performance. 

4.3.3 Off-Trajectory States 
Though ideally the best (i.e., the control) and perturbed analyses of the atmosphere should 

all be in dynamical balance, in reality, both lie off the model trajectory (which approximates the 

trajectory of the large-scale motions of reality). Analysis fields contain random noise originating 

from both observational error and assimilation methods, while perturbations reflect intentionally 

imposed constraints (e.g., Tribbia and Baumhefner, 2004; Molteni et al., 1996; TK97; Houtekamer 

and Mitchell, 1998). When a numerical model is applied to such imbalanced atmospheric states, 

16 



 
 

        

     

           

        

       

      

  

 
        

                

   

       

             

  

      

    

   

               

       

    

 

       

             

              

       

  

          

             

  

    

          

       

       

over a relatively short (i.e., shorter than two-day) period, the stable part of dynamics pulls the 

evolving states close to the model trajectory. Once a forecast asymptotes the trajectory, the initial 

imbalance has no further effect on the divergence of trajectory segments. This is consistent with 

the findings that initial perturbations alter forecast performance just over a relatively short time 

period, after which only perturbation amplitude matters (Buizza et al., 2005, Magnusson et al., 

2009, Raynaud and Bouttier, 2016). Therefore, imbalances in the evolution of error and 

perturbations are not considered explicitly in this study. 

4.3.4 Difference in the Position on the Trajectory 
The divergence in the evolution of two points on the trajectory of a system that are 

originally close in phase space (but distant in time) is primarily driven by unstable dynamics 

(Lorenz E. N, 1982; Buizza et al., 1993; Mu et al., 2003; Feng et al., 2018). In the absence of 

model error, forecast uncertainty and the loss of predictability that ensembles aim to quantify 

arises due to such divergence. Assuming the variance distance between trajectory segments (i.e., 

error variance) follows a logistic evolution (see Error under Section 4.2), both the growth of Noise 

and the loss of Information can be described analytically. As seen in Appendix C, due to the effect 

of unstable dynamics, with increasing lead time, Information is gradually converted into Noise 

variance, until all skill is lost. As the effects due to imbalances, or differences in the dynamics and 

equilibrium of systems are all negligible, error and perturbation behavior studied in this paper are 

ascribed to the effect of unstable dynamics alone. 

4.4 Perfect Model - Perfect Ensemble Setup 
Common verification practice also followed in this study involves the evaluation of 

forecasts such as the 20-member NCEP ensemble used in this study against verifying analysis 

fields. To eliminate the possible effect of specific data assimilation, modeling, and ensemble 

generation methods on evaluation results, in this study verification statistics will also be 

recalculated for 19 remaining members of the NCEP ensemble, replacing the verifying analysis 

with a randomly chosen ensemble member as truth. Reality and error in this simulated 

environment are generated by the same techniques as forecasts and perturbations, thus 

eliminating any influence from imperfect NWP methodologies. Following a long tradition 

established with the use of the term “perfect model” in observing system and other simulated 

experiments, we refer to this as a “perfect ensemble” setup. Note that the word “perfect” here 

does not imply an ultimate or ideal ensemble, but rather, a simulated environment where the 
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ensemble forecast system uses a numerical model and perturbation generation method that are 

identical to those used in simulating reality and the error in its best estimate. 

5 EXPERIMENTAL RESULTS 

Though ensembles are of multi-value form, just like a single control forecast, their 

members cover zero in probability space. Hence probabilistic and related products, just as from 

a single forecast, must be derived via statistical inter- and extrapolation (Vannitsem et al., 

2021). And whether single value- (e.g., van den Dool, 1989; Hamill and Whitaker, 2006; Delle 

Monache et al., 2013) or ensemble-derived (e.g.,Taillardat et al., 2016), the reliability of 

probabilistic and other products can only be assessed and enforced by statistical methods, using 

a sample of past cases (Krzysztofowicz and Kelly, 2000). 

Unfortunately, approximations in complex numerical models introduce biases into both 

single value and ensemble forecasts. Difficulties in the estimation of the magnitude of initial, and 

in the representation of model related errors also render the spread and distribution of ensemble 

forecasts unreliable (Vannitsem et al, 2021). Hence in terms of one of the two major forecast 

performance attributes, statistical reliability, ensembles offer no benefit compared to single value 

NWP forecasts. Products from both need to be statistically formulated, assessed and calibrated 

before their use. Next we evaluate what benefits ensembles may bring in terms of the second 

major forecast performance attribute, statistical resolution or forecast skill, or other unique aspects 

listed in Sections 3.2.1-3.2.5. 

5.1 Forecast Quality 
Diagrams like Fig. 3b (Section 3.2.1) attest that members of ensembles offer equally likely 

scenarios. But are those scenarios also equally likely with the forecast started from the best, 

unperturbed control analysis3? An abundance of evidence indicates that they are not. Assuming 

perturbations are random draws from the distribution of initial error (Sections 2.1 and 3.1), based 

on simple statistical considerations the addition of perturbations to the best control analysis 

3 Whether a control analysis (and forecast) is produced by a data assimilation system in practice or not is 
immaterial. Whether the primary estimate of the state of nature is in single value form around which an 
ensemble is introduced a posteriori, or an ensemble, the mean of which necessarily has a smaller error 
(Leith 1974, first full par. in the left column of p. 411), a state with a superior estimate either exists, or can 
be identified, from which deviations of other estimates can be considered “perturbations”. 
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doubles their error variance compared to the control (Palmer et al., 2006). This is born out in 

results from operational systems like the NCEP GEFS, where initial and short range perturbed 

forecast error variance is about double that in the control forecast, negatively affecting 

performance at all ranges (cf. rms error for the perturbed (blue) and control forecasts (black) in 

Fig. 4). Moreover, we find that during the first few days, error variance in perturbed forecasts is 

higher not only in an expected sense, but also for each individual member. Shown in Fig. 7a and 

7b is the distribution of error in operational and perfect ensemble (see Section 4.4) perturbed 

forecasts, standardized separately in each case and for each lead time by the error in the control 

forecast. Apparently, shifts in phase space location introduced by ensembles induce a 

degradation in forecast quality similar to that due to spatiotemporal or other shifts made in 

statistical sample generation. 

Figure 7. NH (30º -65ºN) 500 hPa height perturbed forecast rms error evaluated against the 
verifying analysis (a) and a randomly selected member (b), standardized by the error in 0.5 - 15.5 
(panel a) and 0 - 16 day (panel b) control forecasts, ranked from lowest to highest, and averaged 
over all 180 cases. The top and bottom of whiskers and boxes represent the average of the 
extreme sample point and 25 / 75% quantile values of the 20 and 19 ranked perturbed forecast 
error values in panels (a) and (b), respectively. 

Likewise, perturbed forecasts (blue line in Fig. 8b) have lower Information compared to 

the control forecast (black line), reflecting an 18-hour loss in skill, equivalent to about an 8-year 

setback in NWP developments (Zhou and Toth, 2020). Significantly, the mean of the ensemble 

(red) shows a similar loss of Information4. The addition of random initial perturbations, like noise 

4 A degradation in performance was first pointed out by Leith (1974) in the case of an ideal ensemble 
formed around reality, in comparison with a perfect control forecast. 
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acquired in signal propagation, reduces Information in all members (not shown). One may argue 

then that unless other sources of Information are also considered, all products derived from 

ensemble forecasts will have Information lower than that in the control forecast, which is a key 

conclusion of this study. This is because new Information about nature cannot be created by 

taking a function of constituent members all characterized by lower quality. This situation is 

exemplified by the lower level of Information in the median of the ensemble (green curve in Fig. 

8b). We recall that Information is a measure of statistical resolution, or the inherent value in 

forecasts. Since Information is a sufficient statistic (Section 4.1), the results here indicate that any 

user may derive more benefit from a control forecast than from an ensemble. For optimal decision 

making, one must use the control forecast, possibly with an added, statistically derived estimate 

of uncertainty. Is there some other value present in ensembles that may be missed by either of 

the two main forecast performance attributes, reliability or resolution? 
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Figure. 8. Sample mean non-standardized (a) total variance, (b) Information variance, (c) Noise 
variance, and (d) Information Density (or pattern anomaly correlation) of 500-hPa geopotential 
height forecasts in the NH extratropics (30º - 65ºN) over the 90-day experimental period 
(Appendix A). The dashed line in panel (a) indicates the climatic variance present in the analysis. 

5.2 Error Reduction 
The lower error in the mean of an ensemble (cf. red and black lines in Fig. 4) suggests 

yes, ensembles may have other benefits (Section 3.2.2). But how do we reconcile the reduction 

of error in the mean (Fig. 4), a negatively oriented performance metric, with a concurrent decrease 

in Information (Fig. 8b), a positively oriented metric? According to Eq. C3 (Appendix C), error can 

be reduced either by increasing Information, or decreasing Noise. As revealed by Fig. 8c, the 

moderate reduction in Information is more than compensated with the large reduction of Noise in 

the mean. This is also apparent in the evaluation of 8-day forecasts in Fig. 6. Apparently, the 
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mean of an ensemble is a very efficient Noise filter. This is also reflected in the well-known, much 

smoother character of the mean as compared to single value forecasts (Ancell 2013), which is 

reflected in a significant reduction of overall variance in the mean (Fig. 8a). Therefore, contrary to 

commonly-held expectations (Section 3.2.2), error in the mean is reduced not because of a gain, 

but despite a loss of forecast Information, due to an effective reduction of unpredictable Noise. 

5.3 Probabilistic Forecasts 
Here we revisit the reason behind the lower error metrics found for ensemble- vs. control-

based probabilistic forecasts (Section 3.2.4). It turns out that unlike assumed by many, commonly 

used probabilistic scores like Continuous Ranked Probability Score (CRPS, and its categorical 

equivalent, RPS) are not affected by variations in the shape or spread of forecast distributions 

(Hersbach 2000). They depend only on the average of the spread of forecast distributions over 

the verification period. If not “case-dependent” variations in the shape of distributions, as 

suggested in the literature, then what explains the lower RPS error for ensemble-derived 

probabilistic forecasts? As Hersbach (2000) points out, CRPS (and hence RPS) is analogous to 

mean absolute error (MAE, which itself is closely related to error defined by Eq. C1). The 

significantly lower RPS and other scores reported in Roulston and Smith (2003) and other studies 

for probabilistic forecasts derived from an ensemble vs a single control forecast is then a result 

of, just as in case of the error in the mean (Section 5.2), the reduced level of Noise in the position 

of ensemble distributions (i.e., their median) as compared to single value forecasts (cf. green and 

black curves in Fig. 8c). 

5.4 Spread - Error Relationship 
An indication of the magnitude of forecast error (or error variance, Eq. C1) by 

spatiotemporal fluctuations in ensemble standard deviation (or spread, Eq. 6) is another perceived 

benefit of ensembles (Section 3.2.3). The correlation between the two quantities, however, is 

rather low, explaining only about 10% in the day-to-day variability of the error magnitude (see, 

e.g., Fig. 5 of Hopson 2014). Perhaps not surprisingly, we found no anecdotal or documented 

evidence for the practical use of this relationship. As we saw in Section 5.3, fluctuations in spread 

certainly do not enhance forecast Information. What may then explain the correlation between 

spread and error? By-and-large, the realizations of the atmosphere follow a multinormal 

distribution (Toth, 1995). In such a space, distances between states, just as in a univariate normal 

distribution, depend on a state’s anomaly from the climatic mean (Li et al., 2018). As forecast 

error measures the distance between trajectory segments of dynamical systems in 
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multidimensional space (Section 4.3), it must also depend on the anomalies of the forecast and 

observed states. Evidence of this relationship for different forecast systems is presented by Toth 

(1991a, 1991b) and Kleeman (2011). We hypothesize that the weak relationship between spread 

and error may at least partially be explained by the dependence of both quantities on the climatic 

anomaly of the control forecast. 

5.5 Bracketing in Multidimensional Space 
In one dimension, all perturbed states necessarily lie in the direction defined by reality and 

its forecast. The concept of bracketing, or encompassing truth is straightforward: reality must fall 

within the range of perturbed states (Section 3.2.5). Assuming a well-behaved unimodal 

distribution, this is possible only if some perturbed members have an error lower than the 

unperturbed estimate of reality, which is what we observe for all variables in today’s ensembles. 

Does bracketing in any selected single direction guarantee bracketing in the multidimensional 

space of dynamics? 

First we generalize the intuitive concept of bracketing into multidimensional spaces like 

that occupied by the dynamics of the atmosphere. There, just as in 1D, bracketing is considered 

satisfied if reality falls in the range of perturbed states in the direction defined by reality and its 

forecast. This is the case dependent direction of error in the unperturbed control, out of many 

independent degrees of freedom. Reduced error hence is still a necessary (but not sufficient) 

condition for bracketing in multiple dimensions. For bracketing to work in this space, perturbations 

must have a strong projection on, or be congruent with the case specific direction of error in the 

control. Bracketing case specific error patterns in a multidimensional space is a much harder 

challenge than bracketing single 1D variables. 

Experimental results in Fig. 7 show that even for a subset of the atmosphere (500 hPa 

height variable over the NH extratropics) the necessary condition for bracketing of reduced error 

in the perturbed states is violated. Until day 3.5 and 5 days, all members of the operational and 

perfect ensembles, respectively, have an error larger than that in the control forecast. An 

alternative interpretation of Fig. 7 is that the time evolution of reality (or its proxy), the control 

forecast, and the range of perturbed forecasts are shown by the Y=0 line, the Y=1 line, and the 

boxplots, respectively. Fig. 7 thus can be considered as a factual alternative to popular 

schematics like Fig. 5 circulating in the community about ensemble forecasting. Clearly, in the 

case-dependent direction of error in the control forecast (and also in the control analysis in Fig. 
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7b), reality or its proxy is far removed from the range of initial and short-range ensemble members. 

The widely-held assumption that the evolution of the atmosphere is contained in dynamically 

generated ensembles (Section 3.2.5) is untenable. 

6. THEORETICAL CONSIDERATIONS 

6.1 Simulation 
In search of an explanation for the universal loss of skill, and the failure of dynamical 

bracketing demonstrated in Fig. 7, we now turn our attention to the nature of high dimensional 

spaces. For a quantitative assessment, we hypothesize that (i) unstable atmospheric dynamics 

responsible for the divergence of forecast and observed trajectory segments (cf. Section 4.3.4), 

as suggested by Toth (1991b, 1993) and Palmer et al. (2006), evolve in a multinormal space with 

a large number of independent and identically distributed (iid) variables5 (�-), and that (ii) error 

and ensemble perturbations, after a short period of transitionary behavior (see Section 4.3.3) are 

random draws from this domain we call the subspace of possible error. If these assumptions are 

valid, some basic features of forecast error and ensemble perturbation behavior should be 

statistically reproducible. 

Our aim here is to compare the error in the initial unperturbed and perturbed states. While 

this can be accomplished for the perfect ensemble described in Section 4.4, we will use 12-hour 

forecasts instead as an indicator for error in the operational system. Plotted in Fig. 9 are 12-hour 

lead time operational (20 dots, panel a) and perfect initial ensemble members (19 dots, panel b) 

for 180 cases along with the proxy for reality (vertical bar), as a function of distance from the 

control 12-hour forecast (panel a) or control analysis (panel b, both plotted at point 0,0) in the 

direction of error in the control (X axis, directional distance) and in the subspace orthogonal to it 

(Y axis, absolute distance in the null-space of error in the control), on a scale standardized by the 

sample mean error in the control. Note that the distance of the bars and points from the control 

point (0,0) measures the size of error in, and perturbation around the control. 

To validate the hypotheses above, we proceed with the generation of 20 random points 

from a distribution with a varying number of iid standardized normal variables (i.e., dof). Just like 

5 Whether an orthogonal basis describing such a space can be determined in practice or not is irrelevant 
for our study; we are concerned only about the number of independent normal iid variates (dof) of this 
space. 
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in the perfect ensemble experiment reported in Fig. 9b, one randomly chosen point is considered 

reality, while the remaining 19 the perturbed states. And just as is the case with the perfect 

ensemble, the simulation experiment is repeated 180 times. We find that the distribution of the 

error from the perfect and simulated ensembles are statistically indistinguishable at the 5% 

significance level for samples with a dof in the range of 28-38, with dof=33 yielding the best fit 

(Appendix D), for which the results are plotted in Fig. 9c. 

Figure. 9. Perturbed NH 500 hPa height (a) operational 12-hr forecasts, and (b) perfect initial 
ensemble members (3,600 and 3420 individual blue dots from 20 and 19 members from each of 
180 cases for panels a and b, respectively), plotted along (horizontal axis) and orthogonal (vertical 
axis) to the error in the unperturbed control 12-hour forecast (panel a, open circle at 0,0) or control 
analysis field (panel b) on a scale standardized by the sample mean error in the control, and the 
corresponding proxy for truth (black bars). Panel (c) is a statistical simulation of panel (b) with a 
33 dof standardized multi-normal distribution. For further details, see text. 

Notable on all panels in Fig. 9 is the small projection of perturbations introduced around 

the control forecast or analysis (0,0) onto the realization of error in the control (i.e., absolute value 

of X of perturbed points). This is in contrast with the magnitude of perturbations in the null-space 

of error (i.e., Y value of perturbed points), which is comparable to the magnitude of error (i.e., 

distance of black bars from the control at 0,0). Consequently, error variance for most members is 

almost doubled compared to the control (cf. the distance between reality and the control vs. the 

perturbed states, consistent with rms error at 12-hour lead time in Fig. 4). As error in all members 

is increased compared to the control, their cloud forms further away from reality. Consistent with 

Fig. 7, reality or its proxy is not encompassed by either the operational or perfect ensembles. In 

all cases, the simulated ensemble also fails to bracket truth. Unlike in 1D, statistical reliability (i.e., 

perturbation variance matching error variance) apparently does not imply bracketing in 

multidimensional space. 
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The remarkable visual and statistical similarity of the simulated (Fig. 9c) to the perfect 

ensemble (Fig. 9b), and a lesser, but still strong similarity to the operational ensemble data (Fig. 

9a) indicate that the experimental results are consistent with the hypotheses that (i) perturbation 

and error dynamics captured by NWP analyses and forecasts evolve in a multinormal space with 

a large number of iid variables, and that (ii) ensemble perturbations and error are indeed random 

samples from such a space. The space of resolved-scale error and perturbation dynamics is 

contingent on Information captured in an analysis or forecast. The similarity of panels a and b in 

both Figs. 7 and 9 also indicates that the problematic behavior observed in the operational 

ensemble, including their low skill and failure in bracketing cannot be addressed by perfecting 

data assimilation, modeling, or perturbation methodologies used. 

6.2 Interpretation 
For an interpretation of error and perturbation results in Fig. 9, we consider the orthogonal 

decomposition of anomaly variance into Information and Noise (Section 4.2). Depending on 

available observations and data assimilation techniques, NWP analyses and forecasts capture a 

certain amount of Information about the evolution of the larger scale condition of the atmosphere, 

often considered deterministic. According to our hypotheses (Section 6.1), two states of the 

atmosphere given at the resolution of today’s operational systems can differ in �- independent 

ways, which for the NH extratropical height is estimated at 33. Given stochastic observational and 

methodological noise, error in any analysis is then just one random realization from this finer scale 

“subspace of possible error”. And perturbations which we assume are random draws from the 

same space simulate alternative realizations of analysis error that could have happened under 

different realizations of stochastic observational and methodological errors. Importantly, both 

Information about nature, and Noise contaminating a forecast are carried forward by the same 

model dynamics, albeit at different scales, used in numerical models. 

In 1D, reality and its best and perturbed estimates all occupy a single, common direction. 

Statistically reliable perturbations along this single direction bracket reality (Fig. 1a). In 1D space, 

statistical reliability is analogous with bracketing (Fig. 3a). The dynamical evolution of the 

atmosphere, on the other hand, manifests in high dimensional space. As the independent degrees 

of freedom (dof, �- ) increases, random draws from such a space spread out across more 

directions, lowering their expected projection on any single direction to 1/�-, including that of the 

error in unperturbed (control) estimates. Such behavior is often referred to as the “curse of 

dimensionality” (e.g., Bellman, 1961), which appears to be the fundamental cause of the failure 
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of any sample, whether statistically or dynamically generated, in matching the level of Information 

in unperturbed estimates, or encompassing reality. As the bulk of perturbation variance projects 

into the null-space of control error, error in each perturbed member is necessarily increased, 

failing to meet a necessary condition for bracketing. 

A contributing factor to the loss of Information in, and the lack of bracketing by the 

perturbed members is the reduction of variability in the magnitude of both error and perturbations, 

which results in an even sharper separation of reality and its samples. Fluctuations in the 

magnitude of error (about 0.12 standardized units along X of the black bars in Figs. 9b and 9c) 

and perturbations (0.12 along Y and 0.18 along X of the blue points) are greatly reduced 

compared to the standard deviation of 1 in 1D. This behavior is due to the Law of Large Numbers 

(e.g., Rose and Smith, 2002). If error in the best estimate (or control analysis) of a state is 

assumed to follow an iid normal distribution then theoretically, the distance of such guesses from 

reality follows a chi-square distribution (black curve in Fig. 1b), and the distance of perturbed 

states around any analysis from reality a non-central chi-square distribution (blue curve in Fig. 

1b). The higher the dof, the narrower both of these distributions become. The demonstration in 

Fig. 1b is for �-=150 dof. Unlike in 1D (Fig. 1a), all perturbed states in high dimensional spaces 

are further displaced from reality. Fig. 1b hence indicates that the failure of operational, perfect, 

and simulated ensemble members to match the skill of unperturbed estimates, or to bracket reality 

is due to the peculiar geometry of high dimensional spaces. 

Finally, we contrast the time evolution of perturbations that are aligned, or congruent with, 

vs. orthogonal to the error in the control. Initial perturbations congruent with the control error 

uniformly reduce or increase error in the perturbed state over the entire domain. Resulting 

perturbed states lie on a line defined by reality and the control initial condition. If error in each 

initial condition is assumed to grow logistically, the relative differences between smaller and larger 

initial errors will be retained in the forecast phase. Consequently, trajectories started with initial 

perturbations congruent with the control error will remain dynamically congruent in the forecast 

phase. Such forecast trajectories necessarily lie on a 2D surface defined by the trajectories of 

reality and the control forecast, ever diverging from, and never crossing each other (as suggested 

in Fig. 5). 

Such orderly error behavior is never observed with real life ensembles. On the opposite, 

error curves for perturbed members evaluated over any subdomain display an incongruent, 
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crisscrossing nature. This is evident in Fig. 10, where the member that is best / worst over the NH 

extratropics in the 12-24 hour range (solid blue / red lines), for example, performs the worst / best 

a few days later (60-120 hour lead time range), respectively (or at other locales, not shown). This 

behavior can be explained by the random nature of initial perturbations in a high dimensional 

space. With negligible projection on the actual error in the control, such perturbations improve / 

degrade the control initial condition in a random fashion over different parts of the domain. Model 

dynamics transposes the random initial spatial variations in skill into the time domain. The random 

fluctuations in forecast skill seen in Fig. 10 hence arise as the influence of improvements and 

degradations in initial condition from different parts of the domain reach the verification area. 

Clearly, ensemble perturbations behave like random (albeit spatiotemorally correlated) noise. And 

paradoxically, these random fluctuations provide statistical bracketing for single observed 

variables (Fig. 3), while fail to dynamically bracket the full state or its evolution (Figs. 7 and 9). 

Figure 10. Same as Fig. 7a, except error variance of individual forecasts against the verifying 
analysis for the single case initialized at 12 UTC, 30 Dec 2017. The three dashed curves represent 
the error in the best (bottom, blue), median (middle, black), and worst member (top, red) at each 
lead time separately. The blue and red solid curves show the error variance in the members best 
and worst at the 12-hr lead time, respectively. Light gray curves show the error variance of 
individual members. 

6.3 Nonlinear Effects 
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To avoid the introduction of sampling error, initial perturbations are symmetrically arranged 

around the control analysis (Eq. 5), setting the mean of operational ensembles equal to the control 

analysis. What explains the moderate and large reduction of Information and Noise in the 

ensemble mean compared to the control forecast, respectively? As noted by Gilmour et al. (2001), 

perturbations with amplitudes small relative to their saturation value develop quasi-linearly, 

leaving the mean mostly unaffected. This is reflected in the overlap of the black (control) and red 

(ensemble mean) curves in Fig. 8b (Information), and especially in Fig. 8c (Noise) in the 0-1 day 

lead time range). 

Noticeable nonlinearities first emerge on the smallest scales due to the asymmetric 

evolution of the amplitude and position of affected features (Ancell 2013). This results in a 

deviation of the mean from the control forecast. As nonlinear mixing in the 1-2 days lead time 

range is low, Noise removal is minimal; the difference between the mean and the control forecasts 

is dominated by the loss of Information. This is evidenced by the noticeably larger difference 

between the black (control) and red (ensemble mean) curves for forecast Information (Fig. 8b) n, 

compared to Noise Fig. 8c). 

With increasing lead time, the phase and amplitude of perturbations on the smallest scales 

become fully randomized. At this stage of full nonlinear mixing, the mean of a typically sized 

ensemble removes a significant part of Noise present in the control forecast on scales with such 

fully saturated perturbation amplitudes. Simultaneously, error first in the control, then in the 

perturbed members also saturates, at which point all forecast Information on these small scales 

is lost. Due to the upscale propagation of energy, the same perturbation dynamics is repeated on 

successively larger scales. On scales with newly randomized perturbations, Information in the 

mean compared to the control forecast is temporarily reduced, after which a large part of Noise 

on such scales is removed. This succession of temporary reduction of Information and the additive 

removal of Noise on ever larger scales explains the increasing - steady - decreasing reduction of 

Information in the mean (compare black and red curves in Fig. 8b), and the cumulative removal 

of Noise compared to the control forecast (compare black and red curves in Fig. 8c), as a function 

of increasing lead time. 

As perturbation energy moves upscale, the growth, as well as the overall variance of 

perturbations shifts to ever larger scales (cf. Fig. 1 of Prive and Errico, 2015). This results in a 

general reduction of the independent degrees of freedom in perturbation dynamics. Which 
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7 

explains the increase in the likelihood that the skill in some members over a limited domain rises 

above that of the control forecast, as noted earlier in Fig. 7 for longer leads times. Ensembles, 

however, fail to bracket reality or its proxy at initial and short lead times even over a subdomain 

of the 500 hPa height over the extratropical NH (with an estimated dof of 33). So bracketing 

observed at later lead times is only statistical, not dynamical in nature. 

The dof of the full dynamics of short-range perturbations resolved by today’s NWP 

systems is estimated to be in the range of 150-200 (see Appendix D). Bracketing in that space, 

as demonstrated for dof=150 in Fig. 1b, is even more challenging. Could the addition of more 

members help? The ratio of bracketing, more formally defined in Appendix E is a function of dof 

and ensemble membership. In 1D, the bracketing ratio with typical membership is sufficiently 

close to 1 ((�*-1)/( �*+1)), ensuring that most of the time statistically reliable samples encompass 

a proxy of reality. In the high dimensional space of the full resolved-scale dynamics of atmospheric 

circulation the chance of even large size randomly generated ensembles encompassing reality, 

however, is astronomically low (see Fig. E1). 

CONCLUSIONS 

We exploit an orthogonal decomposition of forecast anomaly from the climatic mean into 

Information identical, and Noise orthogonal to the observed anomaly. Generally, Information 

about the state of natural systems is limited. Information is further reduced as forecast variance 

in chaotic systems like the atmosphere is gradually converted into Noise (Fig. 6). For decades, 

statistical sampling has been successfully applied to assess uncertainty in weather forecasts (Fig. 

2a). Could forecast samples be generated dynamically, asked forerunners of ensemble 

forecasting. The practice of ensemble forecasting matured in the 1990s. Initial perturbations are 

added to the best estimate of the state, from which alternative scenarios are dynamically projected 

into the future (Fig. 2b). After statistical calibration, probabilistic and other products derived from 

ensembles are widely used today, with demonstrated value. 

Ensembles are assumed to (i) encompass the evolution of the real atmosphere (Fig. 5), 

(ii) capture case-dependent variations in forecast error, and (iii) provide higher quality single value 

(ensemble mean, Fig. 4) and (iv) probabilistic guidance. With a combination of theoretical and 

experimental approaches, these assumptions have been revisited. Using a statistical analysis, 

first we found that the divergence of segments of observed and/or forecast trajectory segments, 

and hence error and perturbation dynamics reside in a high dimensional (150-200 independent 

30 



 
 

      

              

         

    

             

     

 

           

       

          

            

    

           

           

         

    

 

             

     

       

         

       

     

         

    

  

 
         

     

      

 

         

    

      

degrees of freedom, Appendix D) domain we call the subspace of possible error. This subspace 

is contingent on the larger scale condition of the deterministically evolving atmosphere, which one 

may associate with a “case”. Theoretically, sample points from high dimensional spaces have 

negligible projection in any preselected direction, including the error in any initial state. 

Consequently, unlike in 1D (Fig. 1a), sample points in high dimensions consistently degrade the 

quality of the best estimate, and also miss to encompass reality (Fig. 1b). 

Information captured by an analysis is determined by the sophistication of the observing, 

data assimilation, and modeling systems. Experimental results suggest that error and 

perturbations are random draws from the high-dimensional subspace of possible error (Fig. D1). 

Error in initial conditions results from specific realizations of stochastic noise in observations and 

data assimilation procedures, while perturbations represent alternative realizations of possible 

error that may have realized under different configurations of stochastic noise. As in real time 

Information and Noise are inseparable, numerical forecasts project their sum, the total initial 

variance into the future. What value may the dynamical generation of forecast samples (i.e., 

ensembles) via the deterministic projection of alternative Noise realizations may bring? 

An analysis of an operational and a perfect ensemble reveals that as theoretically 

expected, but contrary to assumption (i) above, initial perturbations and ensemble forecasts do 

not contain the state and evolution of the atmosphere (Figs. 9 and 7, respectively). Also as 

expected, out to medium range, all members of the operational and perfect ensembles have larger 

error and less Information than that in the unperturbed control forecast. Unlike in 1D (Fig. 1a), 

ensemble members do not provide any scenario that is closer to reality than the control; ironically, 

they explore instead different ways that the control can be degraded (Fig. 1b). And importantly, 

contrary to assumption (iii), the mean and arguably (iv) all probabilistic and other products derived 

from ensembles have less Information than that in the control forecast (Fig. 8b). 

Incidentally, an analysis by Hersbach (2000) shows that variations in the distribution of 

ensembles do not even have an effect on commonly used verification metrics. While other studies, 

as an alternative to assumption (ii), suggest that the low-level correlation found between case-to-

case variations in spread and error may be explained by each being influenced by the amplitude 

of forecast anomalies. In any case, how could random draws from the subspace of possible error 

have any predictive information about the specific realization of error that is driven by stochastic 

observational and data assimilation processes? After all, it is only the subspace of possible error 
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from which perturbations are also drawn, but not any specific, stochastically driven realization 

from it that is “case” dependent (on the well-known large-scale conditions). 

Our diagnosis indicates that the smaller error in the mean, a well-known benefit of 

ensembles, is due to an efficient filtering of Noise (Fig. 8c) compared to individual forecasts. The 

smoother nature of the median of ensemble distributions is also what explains the lower scores 

found in probabilistic forecasts derived from an ensemble vs. a control. Unfortunately, nonlinear 

filtering removes not only Noise, but some forecast Information as well (Fig. 8b). Interestingly, 

Information is preserved in the mean only during the early, linear phase of the evolution of 

perturbations where their initial symmetry is still preserved and where ensembles are generally 

considered useless. Later, the loss of Information in the mean and other products amounts to an 

about 18-hour loss of lead time in warning about future weather events, or an 8-year setback in 

international NWP developments. The significance of this is that since Information is a sufficient 

verification statistic, any rationally acting user benefits more from an unperturbed control than 

from an ensemble of forecasts. 

Importantly, all behavior observed in operational ensembles is reproduced with a perfect 

ensemble. This confirms that their failure to meet expectations is not due to methodological 

shortcomings but lies rather in the multidimensional and nonlinear nature of atmospheric 

dynamics. At a great computational expense, ensembles recreate the same Information present 

in the control forecast �* times, albeit at a lower level, while with painstaking accuracy generate 

�* alternative realizations of dynamically balanced error of a somewhat larger magnitude. 

Ensembles lack statistical reliability or any discernible benefit from case-dependent variations, 

and have demonstrably less Information. Should the use of statistical alternatives be 

reconsidered? Filtering applications may reduce Noise in the best estimate while preventing or 

flexibly controlling the loss of forecast Information. With developing machine learning applications 

like recent data-driven weather modeling (Bi et al., 2023; Chen et al., 2023), spatiotemporal and 

cross-variable covariances may also be induced into statistically generated perturbations. All the 

while calibrated probabilistic and other products of interest can be derived from statistical samples 

of error in past control forecasts, instead of dynamically generated ensembles. 

DISCUSSION 

Applicability. Though real-life results in this work are presented only with a single 

configuration, the NCEP GEFS, they arise out of general system characteristics. Specifically, (a) 
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the phase space of all complex systems is high dimensional, in which (b) nonlinear saturation 

randomizes perturbations on increasingly larger scales, reducing Information in the entire 

distribution. Therefore, the main conclusions of this study may in general be applicable to 

numerically created ensembles of high dimensional multiscale dynamical systems. As an 

example, finer scale processes resolved by increased resolution models are accompanied by 

higher degrees of freedom where compared to synoptic scales, saturation of error happens faster, 

resulting in an even earlier onset of nonlinear perturbation behavior compared to what is found 

with the NCEP ensemble. 

Continuous Approach. Whether forecast samples are represented in a quantized form of 

a finite sample (i.e., ensembles), or by a continuous function (e.g., the Liouville Equations – 

Ehrendorfer, 2006), the underlying problems highlighted above remain the same. The loss of 

Information and the lack of bracketing therefore may equally affect continuous or quantized 

dynamical estimates of forecast uncertainty. In light of the availability of viable statistical 

alternatives, Leith’s (1974) early assessment about ensembles may be applicable to continuous 

dynamical approaches as well: “sample sizes �*>1 will have to be justified on the basis of the 

detailed knowledge obtained…”. 

Stochastic Perturbations. Traditionally, the effect of finer scale processes on motions 

explicitly resolved in numerical models is parameterized deterministically, conditioned on the 

resolved scales. More recently, with the intent of producing stochastic perturbations, random 

processes are inserted into some parameterization schemes. When such perturbations are added 

to forecast states during model integration, ensembles may become more reliable (e.g., Buizza 

et al., 1999; Berner et al., 2009), with reduced error in their mean (e.g., Sardeshmukh et al. 2023). 

Just like initial perturbations, these random perturbations, however, also increase forecast Noise 

in individual members, and reduce Information both in the members and their mean. From a 

forecast Information perspective, one might consider stochastic Noise as adding insult to injury 

sustained from the introduction of initial perturbations first. 

Data Assimilation. Ensemble-derived products used in data assimilation describe 

covariances in the behavior of short-range forecast error. These products are based on ensemble 

forecasts issued at an earlier time and valid at the time of the analysis. As such, covariances have 

no forecast Information about the future state of the atmosphere; rather, they help find the best 

estimate of reality, given available observational data. Key limitations of ensembles such as the 
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loss of Information or the lack of bracketing therefore do not affect data assimilation applications. 

Interestingly, the high dimensionality of the space of error discussed in Sections 5.5 and 6 has 

long been recognized in the context of ensemble-based data assimilation (e.g., “localization” 

algorithm of Szunyogh et al, 2008). 

New Elements. The degraded performance of all short-range perturbed forecasts 

compared to the control forecast evaluated over large areas is not a new finding (Palmer et al. 

2006). Important implications such as the loss of Information in all derived products, and the failure 

of dynamically generated ensemble forecasts to encompass reality, however, have not been 

previously recognized. Neither have the lower error in the mean or in probabilistic forecasts 

derived from ensembles been attributed exclusively to Noise filtering, nor has the random nature 

of ensemble perturbations in the high-dimensional subspace of possible error, or the significance 

of the stochastic nature of error been recognized. Correspondingly, some basic characteristics of 

ensembles and the potential viability of alternative statistical sampling methods have for many 

remained elusive. 
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APPENDIX A: Experimental Data 

Experimental results in this study are based on operational analysis and forecast data 

from the NCEP Global Ensemble Forecast System (GEFS), initialized twice a day (00Z and 12Z) 

from the period Dec 1, 2017 - Feb 28, 2018, for a total of 180 cases on a 1º x 1º latitude-longitude 

grid, out to 16 days lead time at 12-hour output frequency (Zhou et al., 2017). Note that the 

unperturbed control forecast is run at the same resolution as the perturbed forecasts. Most 

statistics are computed over the Northern Hemisphere extratropics in the 30º-65º latitude band. 

The perturbation methods and numerical model used to generate the NCEP ensemble are typical 

of those used at many other centers. 

As reality (or truth) is unknown, true error cannot be measured in practice. In this study, 

we use NWP analysis fields as a proxy for truth. The difference between a forecast and this proxy 

can be called “perceived” error. With some assumptions, true error can be estimated based on 

perceived error measurements (Pena and Toth, 2014). Despite quantitative differences at short 

lead times, the qualitative behavior of true and perceived error are similar (Feng et al., 2020). 

Beyond 2 days lead time, the bias in perceived forecast error induced by error in the verifying 

analysis field used as a proxy for truth is relatively small. 
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APPENDIX B: Information and Noise in Signal Processing vs. Weather Forecasting 

Here we discuss what is common in and different between Information (�) as defined by 

Eq 7 and “Information entropy” or Shannon entropy (SE, Shannon 1948) as used in information 

theory, and Noise as defined in Eq. 8 compared with its use in signal processing. Both Information 

and SE provide a measure of uncertainty in our knowledge of a particular event out of all of its 

possible outcomes. While SE was introduced in the context of communication, Information is 

designed to quantify knowledge captured in analyzed or forecast states of a natural system like 

the atmosphere. Conveniently, � in its standardized form captures the fraction of forecast variance 

identical to the real state. 

Noise, either defined by Eq. 8 (�) or as used in signal processing, refers to impediments 

to accessing information. “In signal processing, noise is a general term for unwanted (and, in 

general, unknown) modifications that a signal may suffer during capture, storage, transmission, 

processing, or conversion” (Tuzlukov, 2010). Meanwhile, Noise in the context of forecast states 

of dynamical systems refers to dynamically constrained forecast variance that is unrelated to 

reality (see Section 4.3.4). 
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APPENDIX C: Error, Noise, and Information 

Following Lorenz (1984), we assume that the divergence of initially nearby segments of a 

chaotic dynamical system’s trajectory, and in the absence of model error, true forecast error (i.e., 

the difference between a forecast and reality) follows a logistic curve: 
# ∙!∙�! = � ∙ �/(�12 45 + �), (C1) 

where � = �+#/(� − �+#), �+# is the variance of initial error, � is the range between the lower and 

upper saturation values (that is double the climatic variance, Leith, 1974), is the exponential 

growth rate, and � is the time increment. 

Figure C1. Schematic depicting the growth of noise (blue line, left axis) and the decrease of 
information variance (blue line, right axis) in a forecast characterized by logistically growing 
standardized error (black line). For further details, see text. 

Error variance (�!#) can also be expressed as a function of Information �!, i.e., the variance 

of truth missed by, and noise variance (�!) that is included in a forecast (see the top right-angled 

triangle in Fig. 6): 

�!# = |�! − �|#/ |� − �|# = �! + (1 − G�!)# . (C2) 

For forecast systems with realistic variability, exploiting Eq. 9, error variance can be written 

as a function of either Noise (not shown) or Information variance only: 

�!# = 2(1 − G�!) . (C3) 
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Considering also Eqs. C1 and 9, a rearrangement of Eq. C3 defines the time evolution of 

Noise (not shown) and Information (see blue line in Fig. C1) as: 

�! = (2 − �!#)#/4 . (C4) 
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APPENDIX D: Degrees of Freedom 

The experiment reported in Fig. 9c is repeated with different values for dof and the 

frequency distribution of error amplitudes in perturbed states in the perfect (Fig. 9b) and simulated 

ensembles are compared using the Kolmogorov-Smirnov 2-sample test (Chakravart et al., 1967). 

Error amplitudes in both the perfect and simulated ensembles are standardized by the sample-

mean rms error of the control analysis. The best fit is found at �- = 33 (used in the construction 

of Fig. 9c, see Fig. D1a), with a range of values between 28 and 38 still acceptable at the 5% 

statistical significance level. To reduce noise, the test statistic is processed with a 5-point 

triangular filter before it is plotted as a function of dof (Fig. D1b). The results indicate that the 

experimental data in Fig. 9b are consistent with the hypothesis that the global ensemble 

perturbations form a random sample in a high dimensional phase space. 

Figure D1. (a) The frequency of error in perturbed initial conditions from the NCEP (perfect setup, 
blue) and simulated (dof=33, red) ensembles. (b) Test statistic for the two-sample Kolmogorov-
Smirnov test showing the maximum absolute difference (black open circles) between the 
empirical perturbed state error distribution functions from the perfect and simulated ensembles 
like those in panel (a). Values below the red dashed line indicate dof values where the actual and 
simulated distributions are statistically indistinguishable at the 0.05 significance level. 

�- = 33 degrees of freedom (dof) estimated for the NH 500 hPa extratropical height, of 

course, assess only a small part of the full space of atmospheric dynamics at the resolution of 

today’s models. Using the statistical evaluation described above, the best estimate for the dof of 

global 500 hPa height variability is found to be 50. Though global extratropical 500 hPa height 

covers a large subspace of atmospheric dynamics, it does not reflect independent variations 

across the entire planetary circulation (Palmer et al., 2006, see their Appendix). Due to strong 

dynamical connections across variables, conservatively we expect a factor of less than 2 increase 

49 



 
 

                

      

             

         

          

      	 	   

  

in dof if all independent model variables are considered. And due to the low aspect ratio of the 

atmospheric fluid at today’s resolution of global models (e.g., Held, 2015), we anticipate a similarly 

low, less than a factor of 2 increase in dof were all levels included. Such considerations suggest 

that the dof of the subspace of Noise (i.e., initial error and short-range perturbation dynamics 

resolved by today’s operational forecast systems) may be 3-4 times higher than that of the global 

500 hPa height field, in the range of �-
67*89::= 150-200. 
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APPENDIX E: Bracketing Ratio in Multiple Dimensions 

Bracketing  ratio 	�&#,&" 
	is  a  positively  oriented  metric,  defined  here  for  multidimensional 

applications as the relative frequency of  reality (or  its proxy)  falling within (or  bracketed by)  the 

ensemble cloud in the direction congruent  with the error  in the control  (see  Appendix  D). The  

bracketing ratio is a function of  the degrees of  freedom  (�- ) and  the  number of ensemble  

members  (�* ). Note  that bracketing  ratio 	�&#,&" 
	(Section  6.3) is  an  inverse  measure  of the  

ensemble outlier  statistic (e.g.,  Buizza and Palmer,  1998),  generalized for  multidimensional  

applications,  as well  as a generalization of  the probability of  an ensemble member  having an error  

lower  than  that  in  the control,  shown in the table of  the Appendix in Palmer  et  al  (2006).  

 

For  the  illustration  below,  �&#,&" 
 is  calculated  as  follows.  Missed  Information  in  the  control 

and initial  ensemble perturbation vectors 	 	�!  and �! 	are given by  ( �+,%, �+,#, … , �+,&# 
)  and 

( �+,%, �+,#, . . . , �+,&# 
), respectively. Since  �+,!  is  a  random  sample  of  �+,! , and  following  the  

standardization introduced in Section 5.5,  we assume the elements �+,! 	and  �+,!  both follow  

independent  and  identical standard  Gaussian  distributions  N(0,1).  Therefore,  the  distribution  of  

projection of  the ensemble perturbation �! 	on the analysis error  �!  has an expected value of  zero 

and a variance of  1,  also conforming to a Gaussian distribution N(0,1).    

 

We  consider  an  ensemble  with  �* 	members.  The  projection  of  the  members  onto  the  

direction congruent  with the Missed Information 	divide the probability space of  N(0,1)  into  �*+1	 

intervals.  We  mark  the threshold designating the upper  percentile of  1/(�*+1) as  S. The  truth  is  

bracketed if  the Euclidean norm  of  �! 	is  smaller  than  S.	Th e  Euclidean  norm  of  �! 	is  calculated  as 	

$∑� � $  #%& �!,# ,	where 	∑� � $
#%& �!,# 	follows  the  chi-square distribution 	�(��).	Th erefore, t he g eneral  form  

of  the formula for  the bracketing ratio illustrated in Fig.  E1 is:  

�&#,&" 
= �(� < �2)	 ,	 	 																																							(E1) 	

where 		� � = � $ ∑#%& �!,# ~ 	�(��)	 	and 	�(∙) 	stands for  the probability of  �  being smaller  than �$.	 For  

a single variable (�-=1), 	Eq.  E1 recovers the inverse of  the formula for  the often used ensemble 

outlier  statistic:  

�%,&" 
 = 1 - 2 / (�*  +1)  .                 (E2)  

As  an  illustration,  Fig.  E1b  displays  the  expected  value  of  �&#,&" 
 as a function of  the 

degrees of  freedom  (�-) and  the  number of ensemble  members  (�*). Highlighted  are  marginal  
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values for �- = 33, the estimated dof of the NH extratropical 500 hPa height field (E1a), and �* 

= 20, the membership of the NCEP ensemble over the experimental period (E1c). In sharp 

contrast with realistic-size ensembles in low dimensions (�&#,#+ ~	 1, Fig. E1c), even for large 

ensembles (e.g., �* = 200) and for a limited domain like the NH extratropical 500 hPa height (�-

= 33), truth is bracketed only in 1 out of about 500 million cases (Fig. E1a). This answers a 

question Gilmuor and Smith’s (1997) posed in a broader context: ensembles can capture reality 

“only in”, but not “even in” low dimensional systems. In the full space of resolved atmospheric 
67*89:: dynamics (�- ~ 175), truth would be encompassed at an astronomical rate so low that is 

computationally directly inaccessible. 

Figure E1. Ratio of cases a simulated ensemble of varying size brackets reality, as a function of 
the independent degrees of freedom (panel b). Bracketing ratio for dof = 33 and a 20-member 
ensemble is highlighted in panels (a) and (c), respectively. 
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