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Introduction

Just as the exchange of heat, moisture and momentum between the Earth’s surface and
the atmosphere are critical components of meteorological and climate models, the
surface-atmosphere exchange of many trace gases and aerosol particles is a vitally
important process in air quality (AQ) models. Current state-of-the-art AQ models treat
the emission and deposition of most gases and particles as separate model
parameterizations, even though evidence has accumulated over time that the emission and
deposition processes of many constituents are often two sides of the same coin, with the
upward (emission) or downward (deposition) flux over a landscape depending on a range
of environmental, seasonal and biological variables. In this note we argue that the time
has come to integrate the treatment of these processes in AQ models to provide
biological, physical and chemical consistency and improved predictions of trace gases
and particles.

Separate Processes or Integrated Whole?

The majority of current state-of-the-art AQ models are structured as shown in Figure 1,
although some variation exists. Data required by an AQ model include meteorological
variables, including wind, temperature, pressure, humidity and turbulent transport fields,
land use data and surface or elevated emissions of gases and particles. Common practice
over the last 30+ years has been to create meteorological data fields and emissions data
files independently of and prior to the use of the AQ model itself. Typically, a
meteorological (i.e., physics-only) model has been run for the simulation time period of
interest with the relevant data fields captured and saved for ingestion and use by a
subsequent AQ model simulation. In more recent years, this practice has begun to
change, with AQ models being developed from meteorological models (e.g., WRF-
Chem; Grell et al., 2005), or by directly linking (in either one-way or two-way modes of
operation) a meteorological model with an AQ model (e.g., WRF-CMAQ, Wong et al.,
2012).

Likewise, emissions data files are usually created separately from the AQ model,
although typically employing outputs of a meteorological simulation to modulate
emissions of some species that are influenced by environmental conditions. This too has



recently begun to change, in particular with emissions of biogenic species (e.g., isoprene,
mono- and sesqui-terpenes and others) being calculated from highly empirical
parameterizations (e.g., MEGAN, Guenther et al., 1995, 2006, 2012) online during the
AQ simulation as a function of ambient temperature and insolation data. However,
almost all modern AQ models treat emissions of all gases and particles (either
anthropogenic or biogenic in nature) as a completely independent process from the
removal of these substances through dry deposition pathways.

The exception to the separation between emissions and deposition in current AQ models
is the treatment of the bi-directional nature of ammonia (NH3). For some time it has been
recognized that the interaction and exchange of atmospheric NH3; with vegetation
canopies and soils can result in either net deposition or emission (Sutton et al., 2007;
Sutton et al., 2009) depending upon a complex and temporally varying set of
environmental, soil and vegetative conditions. Modules have been developed to account
for the bi-directional exchange of NHs, either as stand-alone analysis tools (Nemitz et al.,
2001; Bash et al., 2010) or as sub-modules of AQ models (Zhang et al., 2010; Pleim et
al., 2013). Although significant challenges remain to be resolved in modeling bi-
directional NH3 exchange in AQ models, improved simulation of NH3 and related species
has already been demonstrated using these approaches (Bash et al., 2013; Zhu et al.,
2015).

As techniques have advanced for measuring abundances and fluxes of organic
compounds, evidence has accumulated that many gaseous biogenic hydrocarbon species
also exhibit bi-directional exchange between vegetative canopies and the atmosphere. In
a recent review article, Niinemets et al. (2014) catalogue a variety of studies, from leaf-
scale laboratory experiments (Kesselmeier, 2001; Rottenberger et al., 2004, 2005; Karl et
al., 2005; Kuhn et al., 2002) to canopy-scale flux measurements (Karl et al., 2010;
Jardine et al., 2008, 2011) that demonstrate that bi-directional exchange of biogenic
volatile organic compounds (BVOCs) and their oxidation products between vegetation
and the atmosphere is “the rule rather than the exception.” Moreover, as Park et al.
(2013, 2014) demonstrated in measurements above an orange grove in California’s
Central Valley, the majority of measured BVOC compounds (484 out of 555) exhibited
bi-directional fluxes, most with pronounced diurnal cycles, suggesting a close linkage to
environmental conditions and biogeochemical processes. Likewise, Wohlfahrt et al.
(2015) synthesized ecosystem-scale methanol flux measurements from eight locations
with a variety of dominant plant functional types and concluded that bi-directional
exchange occurs routinely at all sites included in their analysis. Based on their
investigation, Wohlfahrt et al. (2015) call for a new generation of models in which
methanol emission and deposition are integrated into a unified framework.

At the same time that the bi-directional nature of gaseous BVOC fluxes is becoming
more accepted, it is also being recognized that above-canopy fluxes of atmospheric fine
particles can exhibit either net deposition or net emission. Recurrent upward fluxes of
atmospheric particles above vegetative canopies have been measured for many years
(e.g., Hicks et al., 1982 and Hicks et al., 1989). More recent studies, using several flux
measurement methods over a variety of surfaces, routinely find both upward and



downward particle fluxes, often with discernable diurnal variation (Nemitz et al., 2004;
Pryor et al., 2008; Vong et al., 2010; Gordon et al., 2011; Lavi et al., 2013; Pryor et al.,
2013; Farmer et al., 2013; Deventer et al., 2015; Rannik et al., 2015). Attempts have been
made to explain the upward fluxes (Lee and Wesely, 1989; Pryor et al., 2008; Pryor et al.,
2013), but no consensus has emerged that accounts for all observations and
environmental conditions. Time scales for aecrosol dynamics and BVOC chemistry
(Pryor and Binkowski, 2004; Saylor 2013) and within- and above-canopy turbulent
transport (Foken et al., 2012; Thomas et al., 2013) are similar enough that interpretation
of above canopy particle fluxes is challenging. In any case, the inherent separation of
emission and deposition, coupled with the coarse vertical grid resolution typical of
current AQ models makes adequate simulation of these complex bio-physio-chemical
systems practically impossible.
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Figure 1. Process Schematic of a Traditional Air Quality Model

Integrated Surface-Atmosphere Exchange

Given the emerging observational picture of the widespread bi-directional nature of
surface-atmosphere exchange for many gases and aerosols, it seems clear that the



programmatic practice of separating emissions and deposition in AQ model simulations
needs to change. We contend that the time has come to begin to incorporate surface-
atmosphere exchange modules into AQ models that integrate emissions and deposition of
all gases and particles into biologically, physically and chemically consistent systems as
conceptualized in Figure 2. By accounting for interactions of biology,
micrometeorology, chemistry, canopy/surface dynamics and multi-phase physics, AQ
models would be in a better position to more accurately simulate the effective bi-
directional fluxes of gases and particles and replicate observed surface-atmosphere
exchange fluxes. Moreover, such bio-physio-chemical modules would necessarily be
more responsive to changes in land use, surface conditions and meteorological variables,
resulting in AQ models that are more adept at simulating impacts of changing land use
patterns and climate change. Our discussion here addresses mostly the terrestrial
situation, which dominates regional- or continental-scale AQ simulations. However, for
global-scale simulations oceanic air-surface exchange becomes a dominant process and
likewise should be treated consistently as bi-directional exchange and not as separate
emission and deposition processes (e.g., O’Dowd and de Leeuw, 2007; Sinha et al.,
2007). Our intent with this note is not to offer a complete solution to this model
shortcoming, but only to call attention to it and thereby initiate a rigorous discussion
among modelers and field measurement researchers on the path forward.

In the past, when AQ models used horizontal grid resolutions of 12 km, 20 km or even 40
km, separate emissions and deposition modules gave adequate approximate results for
grid cells consisting of a patchwork of land use types and vegetative canopy structures.
As horizontal grid resolutions approach smaller and smaller scales (4 km being typical
currently to 1 km or less in the not so distant future), land use types and canopies become
more uniform across grid cells, allowing for (maybe requiring?) a more highly surface-
specific treatment of surface-atmosphere exchange. Of course, incorporating integrated
surface-atmosphere exchange modules into AQ models will likely increase the overall
computational burden of each simulation. However, recent supercomputer architectures
are increasingly taking advantage of the superior processing ability of graphics
processing unit (GPU) accelerators to provide fine grain parallelism in large-scale
simulations (Brock et al., 2015; Michalakes and Vachharajani, 2008). Techniques to
exploit GPUs may prove useful in ameliorating the added computational burden of
integrated surface-atmosphere exchange modules in AQ simulations.

The experience with implementation of ammonia bi-directional fluxes into AQ models
serves as a revealing lesson. Model developments were guided by a dedicated and
revealing experimental program (q.v. Sutton et al., 1993). Although a static
compensation point approach has been shown to be a good first-order modification to
what otherwise would be a straightforward application of the conventional deposition
velocity approach (e.g. Aneja et al. 2001), the simplicity of this methodology fails to lend
itself to the BVOCs of major interest here, since even in the case of ammonia there is
need to take biological factors into more detailed account (Schjoerring et al., 2000).
Doing so often leads to a need for a dynamic compensation point to effectively simulate
changing environmental and biological conditions. Specifying even a static



compensation point is fraught with uncertainty in an AQ model simulation over a
heterogeneous grid cell; however, this uncertainty may be of lesser magnitude than
completely ignoring the bi-directional nature of the exchange. Extending this approach to
the case of BVOCs will require substantial effort in both new model structures as well as
new field measurements. A concerted effort of modelers and field measurement scientists
will thus be required to advance our understanding of these processes for a broader suite
of species simulated in AQ models. Nevertheless, the effort required to design and
implement sub-grid-scale integrated surface-atmosphere exchange modules seems a
worthwhile investment to improve the way in which atmosphere-surface exchange is
described in AQ models. As a starting point, we propose that the appropriate modeling
and measurement communities convene a workshop to identify research needs and next
steps to initiate this effort.
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Figure 2. Potential Air Quality Model with Surface-Atmosphere Exchange Module
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