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Abstract 

The Pacific sleeper shark Somniosus pacificus is a large-bodied and broad-ranging squaliform 

shark that occupies diverse habitats throughout the Pacific Ocean. Despite its large size and 

occurrence as bycatch in various commercial fisheries, little is known about even the most basic 

aspects of its biology and ecology. Observed declines in certain parts of its range, coupled with 

life history characteristics associated with low productivity, have led to conservation concerns 

for this cryptic but charismatic species. Here, we provide a comprehensive review of the current 

state of knowledge regarding the distribution, diet, life history, and other aspects of the Pacific 

sleeper shark and present updated fisheries and survey data for the eastern North Pacific Ocean. 

The most pressing research gaps identified during the course of this review concern habitat use at 

different life stages and basic life history information. While work is currently in progress to 

expand our base of knowledge for this species, we recommend a precautionary approach to 

management until sufficient information becomes available to ensure its conservation. 

Keywords 
elasmobranch, bycatch, North Pacific Ocean, ecology, life history, deep-sea 
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Introduction 

The Pacific sleeper shark Somniosus pacificus ranges broadly throughout the Pacific Ocean, yet 

it has been poorly studied. Deficiencies in our understanding are due in part to its lack of 

commercial value, its occupancy in habitats that are difficult to sample with traditional survey 

methods, and logistical challenges associated with safely landing, handling, and sampling such a 

large-bodied animal. The lack of data makes it challenging to adequately monitor and assess the 

stock status of this species. In general, the life history traits of elasmobranchs (e.g., slow growth, 

late maturity, high longevity) make them susceptible to overfishing (Musick et al. 2000; 

Simpfendorfer and Kyne 2009), and there is reason to believe that the Pacific sleeper shark may 

be especially vulnerable (Ormseth and Spencer 2011). 

The first objective of this review was to collate the limited information that is known 

about the Pacific sleeper shark from the available published literature. The second objective was 

to identify and prioritize the most pressing knowledge gaps. The final objective was to outline 

potential directions of future research and describe the implications of that research for 

ultimately improving management of the species. This is particularly important as the 

International Union for Conservation of Nature and Natural Resources (IUCN) recently changed 

its Red List designation of the Pacific sleeper shark from Data Deficient to Near Threatened due 

to this species’ high vulnerability and apparent population declines in portions of its range 

(Rigby et al. 2021). Furthermore, a recent review of the stock structure of the Pacific sleeper 

shark in Alaska waters highlighted potential conservation concerns, and the North Pacific 

Fishery Management Council’s Scientific and Statistical Committee (SSC) acknowledged these 

concerns in recent stock assessment reviews for Alaska management areas (Matta et al. 2022; 

SSC 2022). 

Here, we summarize the existing body of literature on the Pacific sleeper shark. We also 

present new information from the waters of Alaska, British Columbia, and the US West Coast on 

survey and fishery distribution, catch, and size. Whenever possible, we describe publications and 

data that are specific to the Pacific sleeper shark. However, for some topics where studies are 

limited, we refer to publications on its congener, the Greenland shark Somniosus microcephalus, 

to make inferences regarding the biology of the Pacific sleeper shark. Compared to the Pacific 

sleeper shark, more information is available for the Greenland shark, with an explosion in 
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focused research studies in recent years. Literature was gathered from the Clarivate Web of 

Science (www.webofscience.com) using the search terms “sleeper shark”, “Greenland shark”, 

“Somniosus”, and “Somniosidae”, as well as from the citation sections of papers already in hand. 

We conclude with suggestions for new research on the Pacific sleeper shark to better understand 

how to more appropriately assess and manage this species. 

Taxonomy and Population Dynamics 

Species description and systematics 

The Pacific sleeper shark (Fig. 1), first described by Bigelow and Schroeder (1944), is a member 

of the Order Squaliformes, a diverse taxonomic grouping that includes bramble 

(Echinorhinidae), lantern (Etmopteridae), rough (Oxynotidae), kitefin (Dalatiidae), gulper 

(Centrophoridae), sleeper (Somniosidae), and dogfish sharks (Squalidae). Sharks in Squaliformes 

are characterized as having two dorsal fins (with or without fin spines), spiracles, no anal fin or 

nictitating membrane, and five pairs of gill slits (Compagno 1984). The Pacific sleeper shark is a 

large-bodied shark with gray to brown or black dorsal coloration and slightly lighter coloration 

ventrally (Fig. 1a; Ebert 2003; Stevenson et al. 2007). This species, frequently described using 

adjectives such as “flabby” and “sluggish” in the literature, possesses small eyes, mouth, and 

teeth relative to its size (Fig. 1b), and a broad heterocercal tail (Ebert 2003). 

Pacific sleeper sharks are members of the genus Somniosus (Family Somniosidae), found 

throughout the world from shallow polar waters to abyssal depths at temperate and tropical 

latitudes (Compagno 1984; Ebert 2003). Systematic classifications within this genus have varied 

over time, largely due to the rarity of encounters in many regions and similarities in appearance 

among Somniosus species. Studies on meristic and morphological characteristics have suggested 

that Somniosus comprises five species in two subgenera: subgenus Somniosus containing three 

large-bodied species (Greenland shark S. microcephalus, Pacific sleeper shark S. pacificus, and 

southern sleeper shark Somniosus antarcticus), and subgenus Rhinoscymnus containing two 

small-bodied species (frog shark Somniosus longus and little sleeper shark Somniosus rostratus) 

(Yano et al. 2004). Recently, a small-bodied shark collected from waters off Taiwan was 

proposed as a new species (the Taiwan sleeper shark, Somniosus (Rhinoscymnus) cheni sp. nov.) 

www.webofscience.com
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(Hsu et al. 2020). Besides adult size, the two subgenera also differ in the level of calcification of 

their vertebral column, spiral valve and vertebral counts, tooth shape and the number of tooth 

rows, and dermal denticle shape (Yano et al. 2004). 

Yano et al. (2004) proposed that morphological features including dorsal fin height and 

position, the number of spiral valves and vertebrae, and the distance from the tip of the snout to 

the first gill slit, could generally be used to distinguish among the three putative large-bodied 

Somniosus (Somniosus) species. Based on these findings, Yano et al. (2004) concluded that each 

of the species is largely confined to specific geographical regions, with S. microcephalus 

occupying the North Atlantic and Arctic oceans, S. pacificus occupying the North Pacific and 

Arctic oceans, and S. antarcticus occupying the Southern Hemisphere, despite some degree of 

overlap in the morphological characteristics measured. Additionally, ongoing, directed research 

suggests that the morphometric relationships identified in S. pacificus by Yano et al. (2004) are 

inconsistent with data collected in situ during optimal field conditions, further clouding the 

purported physical distinctions among the three species (Fuller et al. in prep.). 

Genetic analyses have called into question the morphologically and geographically based 

classifications of species within the Somniosus subgenus. Comparison of nuclear and 

mitochondrial DNA markers has provided strong support for considering S. microcephalus and 

S. pacificus as distinct but closely-related sister species (Murray et al. 2008; Santaquiteria et al. 

2017; Walter et al. 2017). However, there is genetic evidence to support possible hybridization 

between S. pacificus and S. microcephalus in the Canadian Arctic where their ranges may 

overlap (Hussey et al. 2015; Walter et al. 2017). A specimen collected from the Mid-Atlantic 

Ridge, near the Azores, had a genetic signature concordant with S. pacificus, and a S. 

microcephalus-S. pacificus hybrid was detected in the Gulf of Mexico (Walter et al. 2017), 

further complicating the simple distinction of species along geographical boundaries. Most 

strikingly, multiple investigators have concluded that there isn’t sufficient genetic variation in 

mitochondrial or nuclear DNA to distinguish between S. pacificus and S. antarcticus, suggesting 

that despite the morphometric differences noted by Yano et al. (2004), they comprise a single 

species ranging throughout the Pacific Ocean, warranting revision of the taxon (Murray et al. 

2008; Christensen 2022; Timm et al. 2022). There is also currently little evidence to support the 

existence of subpopulations of S. pacificus. Using population genomics, Timm et al. (2022) 

noted a high degree of similarity among individuals, suggesting persistent gene flow and a lack 
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of significant population genetic stock structure in either S. pacificus or S. microcephalus. 

However, Swintek and Walter (2021) found subtle, but significant, population genetic structure 

based on a suite of microsatellites for S. microcephalus. Such analyses may reveal similar 

distinctions that are slight within S. pacificus, and it is worthy of further investigation. 

Distribution and abundance 

The Pacific sleeper shark is broadly distributed over the continental shelves and slopes of the 

Pacific Ocean. Its range in the North Pacific Ocean extends from Palau to Taiwan, Korea, Japan, 

and Siberia, throughout the Bering Sea and Gulf of Alaska, and along the west coast of Canada 

and the USA to Baja California, Mexico (Tanaka et al. 1982; Applegate et al. 1993; Orlov and 

Moiseev 1999; Ebert 2003; Wang and Yang 2004; Grigorov and Orlov 2014; Kang et al. 2015; 

Becerril-Garcia et al. 2020; Tribuzio et al. 2022; Claassens et al. 2023). Its distribution north of 

the Arctic Circle (66º30' N) is uncertain, and due to a possible overlap in ranges between the two 

regional species, it may be confused with the Greenland shark in the Canadian Arctic (Ebert 

2003). One positively identified specimen washed up on the shore at Point Hope, Alaska, on the 

Chukchi Sea (Benz et al. 2004), although it is possible that this individual drifted northward from 

the Bering Sea (Love et al. 2005). The Pacific sleeper shark has also been reported in the Salish 

Sea, the inland waters of Washington State, USA, and British Columbia, Canada, though it is 

thought to be very rare in this area (Pietsch and Orr 2015). 

In the Southern Hemisphere, Pacific sleeper sharks have been reported in both the Pacific 

and Atlantic oceans (e.g., Francis et al. 1988; Crovetto et al. 1992; Cione 1998; de Astarloa et al. 

1999; Brito 2004). Based on the species descriptions of Yano et al. (2004), these observations 

had previously been considered likely misidentifications of S. antarcticus (Love et al. 2005; 

Ebert et al. 2017). However, recent next-generation sequencing has provided a lack of support 

for S. antarcticus as a separate species and suggests that identifications of S. pacificus in the 

South Pacific Ocean are legitimate (Christensen 2022; Timm et al. 2022). Broader genetic 

sampling is needed to confirm whether the range of S. pacificus extends outside the Pacific 

Ocean into regions such as the South Atlantic and Indian oceans (Timm et al. 2022). At tropical 

low latitudes, Pacific sleeper sharks have been recorded by submersibles, drop cameras, and 

remotely operated vehicles in deep (1,000-2,000 m) waters off Hawaii, Palau, the Solomon 

Islands, and Revillagigedo Archipelago National Park, Mexico (Lee 2015; Becerril-Garcia et al. 
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2020; Claassens et al. 2023; see also observations from the Hawai’i Undersea Research 

Laboratory: https://www.soest.hawaii.edu/HURL/). 

Fisheries-independent surveys differ in their presumed efficacy at catching Pacific 

sleeper sharks, and therefore it is difficult to accurately estimate population abundance for this 

species. Catchability is composed of availability (i.e., sharks occur in the same area and depth as 

the gear) and susceptibility to the gear. Based on available data, it is not possible to evaluate if 

low levels of catch in fishery-independent surveys, which operate differently from commercial 

fisheries, are due to Pacific sleeper sharks not being present in the survey area or differences in 

susceptibility to survey trawl or longline gears. (In this paper, the word “longline” refers to 

fishing gear that uses extended groundlines with hooks stretched across the seafloor, whereas 

three-dimensional pots, either fished singularly or strung together on a line, are referred to as 

“pots”.) Further complicating matters is the fact that mature individuals are rarely encountered, 

either due to occupation of unsurveyed habitats (i.e, not available to the gear) or to susceptibility 

to the gear (i.e., selectivity). Therefore, a potentially large portion of the population is currently 

unobserved. Indices of abundance based on trawl survey catches in Alaska waters are generally 

not considered reliable because they are frequently extrapolated from a relatively small number 

of hauls with catch (Tribuzio et al. 2022). In some years, particularly in the Bering Sea and 

Aleutian Islands regions, no specimens are captured during the trawl surveys, despite occurring 

in trawl fisheries (Tribuzio et al. 2022). Fishery-independent longline surveys, such as those 

operated by the International Pacific Halibut Commission (IPHC) and the Alaska Department of 

Fish and Game (ADFG), may therefore be better indicators of stock trends (Matta et al. 2022). 

Despite the limitations associated with certain gear types, the available survey indices 

from the waters off Alaska, British Columbia, and the US West Coast appear to indicate long-

term variation in the abundance of Pacific sleeper sharks (Fig. 2; Tribuzio et al. 2022). While it is 

important to note that none of the existing surveys were designed to explicitly target Pacific 

sleeper sharks, it may be possible to infer trends in relative abundance over time. Consistently 

across almost all areas and surveys, including the IPHC longline survey, which is considered to 

be the most reliable survey index (Matta et al. 2022), catches were highest in the late 1990s and 

early 2000s, and have since declined to lower levels (Fig. 2). These trends are reflected in 

fisheries catches as well (Tribuzio et al. 2022). Mueter and Norcross (2002) noted a significant 

increase in Pacific sleeper sharks between 1984 and 1996 in the waters off Chirikof and Kodiak 

https://www.soest.hawaii.edu/HURL
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Islands, and similarly, a small survey of fishers in Aleut communities provides anecdotal 

evidence for an increase in this and other shark species in the Bering Sea, eastern Aleutian 

Islands, and western Gulf of Alaska in the late 1990s and early 2000s (Okey et al. 2007). 

Subsequent surveys have indicated large reductions in abundance since the mid- to late 2000s to 

current low levels (Fig. 2). A reduction in the spatial extent of fisheries catches and IPHC survey 

catches has also been noted in Alaska waters, with fewer sharks observed in the Gulf of Alaska 

and around the Aleutian Islands in recent years than in the late 1990s to mid-2000s (Matta et al. 

2022). Similarly, the population off Taiwan, which was once large enough to support a fishery, 

has since declined (Rigby et al. 2021). However, trawl surveys indicate that Pacific sleeper shark 

abundance in Russian waters appears to have increased over the past 40 years (Rigby et al. 

2021). Even though many survey indices represent imperfect estimates of abundance of Pacific 

sleeper sharks due to issues with catchability and the short length of these time series relative to 

the potential generation time, they can still identify trends in local stock abundance that may 

inform stock status and conservation assessments. Technological advances, such as eDNA 

assays, may help to improve estimates of relative abundance of Pacific sleeper sharks in the 

future, particularly in environments that cannot be sampled using conventional means (Thomsen 

et al. 2016). 

Some older and anecdotal accounts of Pacific sleeper sharks have described them as 

“common” (e.g., Compagno 1984). This may be due to occasions where multiple, and in some 

cases, large numbers of sharks are caught in a set, such as reported both contemporarily and 

historically by fishers operating in certain areas of Southeast Alaska and Prince William Sound 

(K. R. Fuller, G. C. Dunne, and C. A. Tribuzio, personal communication). Scientific surveys 

have also occasionally encountered localized large numbers of Pacific sleeper sharks with 

relatively little fishing effort. For example, two recent charters targeting Pacific sleeper sharks 

for a research study succeeded in catching 63 sharks in under seven days at inshore locations in 

Southeast Alaska (K. R. Fuller and C. A. Tribuzio, unpublished data). Another instance occurred 

in 2002, when the Resource Assessment and Conservation Engineering (National Oceanic and 

Atmospheric Administration, NOAA) eastern Bering Sea bottom trawl survey of the continental 

slope caught over 5,000 kg of immature Pacific sleeper sharks in a single tow (Hoff and Britt 

2003). The temporal persistence of areas of high catch has been somewhat difficult to ascertain, 

due to the lower effectiveness of trawl gear as a surveying tool for this species relative to 
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longline gear, changes in fishery dynamics (e.g., vessels switching from longline to pot gear, 

which likely have different catchabilities), and because reporting requirements vary among 

fisheries sectors and between state and federal waters. However, there is some indication that 

Shelikof Trough, an extensive glacier-carved depression off Kodiak Island in the western Gulf of 

Alaska, could represent a persistent “hotspot” of Pacific sleeper sharks. High catches of Pacific 

sleeper sharks have been consistently reported here in IPHC surveys and NOAA longline 

surveys for sablefish Anoplopoma fimbria (Courtney and Sigler 2007; Matta et al. 2022) as well 

as in commercial fisheries (Fig. 3). Within the eastern Bering Sea, catches are high in some 

areas; however, this is more likely a function of fishing effort in the highly valuable walleye 

pollock Gadus chalcogrammus fishery, with catch spread across the eastern Bering Sea shelf and 

highest catches generally just north of Unimak Pass. In the western North Pacific Ocean, regular 

areas of high Pacific sleeper shark abundance have been reported off Sakhalin Island, south of 

the Kamchatka Peninsula, and between Cape Navarin and Karagin Island (Orlov and Baitalyuk 

2014; Dyldin and Orlov 2018). Due to the spatiotemporally patchy nature of Pacific sleeper 

shark catch, and given that this species is a large, slow-growing, and long-lived, high trophic 

level predator, it is possible that any appearance of high abundance may be due to situations that 

may cause sharks to aggregate, such as high concentrations of prey or habitats that support 

biologically important functions, such as nursery areas. 

Biology and Ecology 

Size, age, and growth 

Data on body size and age are highly important to understanding demographic rates and 

assessing health of fish populations. Unfortunately, infrequent encounter rates, handling 

difficulty, and low commercial value of Pacific sleeper sharks have limited the availability of age 

and growth data to support stock assessments. Biological data collection in the eastern North 

Pacific Ocean has mostly been opportunistic across a variety of platforms, including scientific 

surveys and commercial fishing operations. Due to their size, accurate length and weight 

measurements of Pacific sleeper sharks, especially of larger individuals, are difficult to obtain. 

Weight data in particular are scarce, as Pacific sleeper sharks caught as bycatch frequently are 
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not landed in commercial longline fisheries or are too large for at-sea observers to weigh, in 

which case a reference table is used to estimate weight from length. The best available data 

collected to date are presented here. 

Shark body length can be measured in several different ways (FAO 2016), and the length 

method presented for a given species isn’t always uniform among studies. We are only aware of 

a single study in which precaudal length (PCL), fork length (FL) and total length (TL, measured 

with the upper caudal fin lobe in a natural position) were all measured from the same individual 

Pacific sleeper sharks (Hulbert et al. 2006), although the data were not published in their 

resulting manuscript. Hulbert et al. (2006) have kindly shared their unpublished length data with 

us, permitting us to produce equations to allow conversions among length measurement types 

reported in published literature (Fig. 4). Unless otherwise noted, lengths hereafter in this review 

are presented as units of TL. 

Large Pacific sleeper sharks are rare in the catch records, and much of the length data 

available come from animals less than 220 cm TL (Fig. 5a). Due to the difficulty associated with 

obtaining reliable measurements of large individuals, there is some debate on the accuracy of 

maximum body size for Pacific sleeper shark. The largest confirmed Pacific sleeper shark landed 

to date was a 465 cm TL female caught in October 2021 in the eastern Aleutian Islands that was 

measured by a trained fisheries observer. The largest reliably measured Greenland shark was 510 

cm TL (Campana et al. 2015, as cited in Nielsen 2017), with most individuals caught ranging 

between 288 and 504 cm in length (MacNeil et al. 2012). Sleeper sharks estimated as exceeding 

700 cm in length have been photographed in very deep water, and though these length records 

are far less precise and difficult to confirm with certainty, they do appear to be significantly 

larger than sharks encountered during normal fishing or survey operations (Isaacs and 

Schwartzlose 1975; Compagno 1984; Clark et al. 1990; Stevenson et al. 2007). An individual 

observed during a submersible dive in Suruga Bay, Japan, at a depth of about 1,200 m was 

photographed next to an object of known size, and it was estimated to exceed 23 feet (700 cm) in 

length (Clark et al. 1990). We compared the photograph of this shark to measurements made 

from photographs of sharks caught during surveys and deemed their estimate reliable (our own 

estimates of length for the Suruga Bay individual ranged from 21.7 to 23.5 feet, or 660-720 cm 

TL). 
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Some authors have suggested that female sleeper sharks grow larger than males. Sexual 

dimorphism in size has been noted in Greenland sharks (MacNeil et al. 2012; Nielsen 2017) and 

Pacific sleeper sharks (Yano et al. 2007; Orlov and Baitalyuk 2014). Examination of data pooled 

coast-wide from Alaska to Baja California indicates no significant difference between overall 

length distributions of male and female Pacific sleeper sharks in the eastern North Pacific Ocean 

(Fig. 5a; two-sample Kolmogorov-Smirnov test: D = 0.069, p = 0.0504, n = 1,562). However, as 

noted earlier, large individuals are seldom encountered, and it is unknown whether female 

Pacific sleeper sharks are capable of attaining larger maximum sizes than males in unobserved 

parts of the ocean. 

Size distributions of Pacific sleeper sharks appear to differ regionally. Along the west 

coast of North America, sharks are on average smallest in the Bering Sea (mean = 150 cm TL) 

and along the US West Coast (mean = 143 cm TL) (Fig. 6). Average size is greatest in the Gulf 

of Alaska (mean = 210 cm TL), but a small number of relatively large (> 350 cm TL) individuals 

have also been caught off British Columbia and the US West Coast (Fig. 6). However, the largest 

individuals have been reported, both empirically and anecdotally, from the Aleutian Islands (Fig. 

6), despite the number of small individuals also present and limited number of observations 

where size was recorded (Tribuzio et al. 2022). Biological inferences are difficult to make due to 

the mostly opportunistic nature of Pacific sleeper shark length data collections, and it is possible 

that regional differences in fishing gear can at least partially explain these patterns. For example, 

targeted surveys in the Southeast Alaska region found no individuals under 260 cm TL; one 

proposed reason for this is the size of the hooks of the commercial Pacific halibut Hippoglossus 

stenolepis gear that was used (K. R. Fuller and C. A. Tribuzio, unpublished data). However, 

regional differences in size distributions have also been reported in the western North Pacific 

Ocean, with Pacific sleeper sharks in the western Bering Sea generally being larger than those 

caught off the Kuril Islands and Kamchatka Peninsula (Orlov and Moiseev 1999). Some regional 

variation in size may be expected given the differences among the ecosystems of the eastern and 

western North Pacific Ocean (Aydin et al. 2002, 2007). Spatial variation in size distribution has 

similarly been observed in Greenland sharks, indicating potential shifts in habitat usage among 

sharks at different life stages or by sex (Edwards et al. 2019). Indeed, segregation by sex and size 

has been observed in many shark species (Bres 1993); the extent to which Pacific sleeper sharks 

exhibit similar behavior is worthy of further investigation. 
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Length and weight data have been opportunistically collected in Alaska waters since the 

1980s by fisheries observers aboard commercial vessels and during scientific survey operations 

(n = 674). These fish were landed and measured to generate a dataset from which accurate 

length-weight parameters could be estimated, presented here for comparison with relationships 

previously published for this species. Sex was determined in most cases, but for some 

individuals, sex was not recorded (n = 77). There were also two obvious transcription errors in 

the dataset (a 40-cm shark weighing 27 kg and a 93-cm shark weighing 62 kg) that were omitted 

from further analysis. Based on these data, there was no detectable difference between males and 

females in the length-weight relationship (Fig. 7a). This contrasts with Orlov and Baitalyuk 

(2014), who found large differences in the length-weight parameters between the sexes, though 

their estimates were based on relatively few individuals. Our length-weight relationship for both 

sexes combined is fairly similar to those previously published for Pacific sleeper sharks (Fig. 

7b). The b parameter (exponent) in the exponential length-weight relationship is 3.043, 

indicating slightly positive allometric growth. 

The ages of elasmobranchs are most commonly estimated from counts of growth band 

pairs visible in hard structures including vertebrae, spines, and caudal thorns (Natanson et al. 

2019). Multiple researchers have attempted to use these structures to determine the age of Pacific 

sleeper sharks with no success (Wischniowski 2009; Matta et al. 2017). This is due in part to 

poor calcification of their hard structures, a phenomenon that has been noted in a variety of other 

deepwater sharks (Cailliet 1990, 2015). Despite testing various preparation methods, no 

discernable banding patterns have been detected, and Pacific sleeper sharks do not possess 

alternate structures such as spines or thorns. Moreover, the presumed annual periodicity of 

banding patterns visible in the vertebrae of other elasmobranch species has increasingly been 

called into question. There is evidence that these patterns may form due to increases in size 

(somatic growth) rather than as a function of time, or that they may be annual in juvenile stages 

but cease forming following maturity or upon approaching maximum size (Passerotti et al. 2014; 

Natanson et al. 2018; James 2020). Thus, even if banding patterns could be detected in the 

skeletal structures of Pacific sleeper sharks, there would be no assurance that band-pair counts 

would represent age. Lastly, even if age determination was possible for the Pacific sleeper shark, 

low encounter rates and difficulty in handling large sharks preclude the ability to generate 

traditional estimates of catch-at-age that could be used in stock assessments. 
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These limitations necessitate alternative methods of age determination to estimate growth 

rates and longevity of the Pacific sleeper shark. Such metrics are highly desirable as they can be 

used in conjunction with reproductive information to indirectly estimate natural mortality and 

intrinsic rates of population increase (Denney et al. 2002; Hamel and Cope 2022). These 

parameters are often the foundation in emerging methods to assess and protect marine resources 

for which data are limited or unavailable (e.g., Carruthers et al. 2014). 

Age determination results based on alternative methods suggest slow growth and high 

longevity of Greenland sharks. A recent study analyzed bomb-produced and naturally occurring 

radiocarbon (14C) in Greenland shark eye lenses to estimate age (Nielsen et al. 2016). Vertebrate 

eye lenses are composed of fiber cells that are continually deposited in concentric layers around 

a core area that is formed during pre-natal development and conserved throughout the life of the 

animal (Quaeck-Davies et al. 2018). Bomb-produced radiocarbon can act as a time-specific 

marker in hard or conserved tissues of marine organisms, allowing for accurate dating of 

individuals alive during the 1950s and 1960s, a period of intensive atmospheric testing of 

thermonuclear bombs (Kalish 1993). Based on radiocarbon analysis of eye lens cores, the 

Greenland shark study proposed an age at maturity of 156 years and a longevity of 392 years by 

restricting age probabilities with measures of fish length (Nielsen et al. 2016). Some authors 

have raised doubts regarding the accuracy of these ages, and suggest that while the Greenland 

shark could certainly be capable of a centenarian life span, the maximum age may be 

overestimated due to the assumptions made regarding age-at-length coupled with the 

interpretation of pre-bomb radiocarbon values (Alex 2016; Natanson et al. 2019). This 

observation is supported by recent adjustments to some of the assumptions and additional 14C 

measurements that have led to a revised lifespan of ~262 years (Olsen et al. 2022). However, 

others suggest that metabolic theory and our limited knowledge of Greenland shark life history 

characteristics indicate the estimated life span of 392 years may be too low (Augustine et al. 

2017). In support of this observation, an early tag-recapture study reported extremely slow 

growth, where an individual at liberty for 16 years grew only 8 cm (262 to 270 cm TL; Hansen 

1963), and based on its length, the individual would have been immature. 

In contrast to the recent findings for Greenland shark, a pilot study of radiocarbon in the 

cores of both eye lenses of a 3.1 m Pacific sleeper shark indicated that the growth rate, while still 

very slow compared to most fishes, is approximately two times faster than estimated for 
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Greenland sharks (Fig. 8). The limits placed on age-at-length by alignment of the measured 

values to the bomb-produced radiocarbon rise period (late 1950s to early 1960s) — similar in 

manner to the minimum age set for a small Greenland shark individual (Nielsen et al. 2016) — 

led to an age of no more than ~50 years, as opposed to an estimated 105 years based on the 

Greenland shark growth curve (Fig. 8). These radiocarbon values (Δ14C = 9.4 and –51.1‰) are 

considered diagnostic because it is very unlikely that measured radiocarbon levels of this 

magnitude were present in the marine environment prior to these estimated formation years of 

~1962-1965. In addition, it is likely that the lowest value (Δ14C =–51.1‰) was not much earlier 

than the early to mid-1960s, indicating the age of this individual was not much less than 50 

years, unless the signal is significantly phase-lagged, as is the case for porbeagle shark Lamna 

nasus (Campana et al. 2002). It should be noted when the pilot study was initiated, eye lens core 

extraction methods were still being developed, which may explain the difference in Δ14C values 

and consequently the three-year difference in the estimated birth year for the same fish. A small 

amount of material left on one of the cores could have increased its value (the rise period for 

bomb-produced radiocarbon shows a rapid increase within just a few years following the bomb 

testing period). Since the pilot study, core extraction methodology has been refined and a full 

investigation into the plausible age range and growth of Pacific sleeper sharks using radiocarbon 

analysis of eye lenses is underway (C. A. Tribuzio, personal communication). 

Reproduction 

Little is known about reproduction in Pacific sleeper sharks due to infrequent observations of 

large sharks and difficulty in assessing reproductive status of large animals. Most of what is 

currently understood is based on the Greenland shark, for which the number of observations is 

somewhat greater, allowing directed assessments of maturity (Nielsen et al. 2020). Adult Pacific 

sleeper sharks are rarely encountered in fisheries or during scientific surveys, and to date, no 

pregnant female has ever been retained. The only reported case of a pregnant female being 

landed occurred on a trawl vessel operating in waters off British Columbia in the mid-1990s. An 

at-sea observer reported that between 8 and 12 live pups were actively birthed by the female 

before she was released back into the water (C. Dykstra, IPHC, personal communication). 

Unfortunately, no scientific data or photographs of this event were recorded, and it is unknown 

whether the number of pups observed represented the full litter. 
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Sleeper sharks employ lecithotrophic viviparity (sometimes referred to as “ovoviviparity” 

or “aplacental viviparity”), wherein embryos are nourished primarily by yolk and females give 

birth to live young (Ebert et al. 2017; Carter and Soma 2020). Histotrophy (in which embryos are 

fed by maternal uterine secretions) is believed to be minimal (Carter and Soma 2020). The 

fecundity and gestation period of the Pacific sleeper shark are uncertain, with most inferences 

drawn from related species. Litter sizes of the few observed pregnant females of any Somniosus 

species have been somewhat variable but generally small. To date, a single pregnant 5-m female 

Greenland shark has been observed that had 10 near-term embryos of similar size in its right 

uterus (Koefoed 1957). A 134 cm TL pregnant female of the putative new species of small-

bodied sleeper shark off Taiwan, Somniosus (Rhinoscymnus) cheni sp. nov., contained 33 mid-

term embryos with a mean size of 14 cm TL (Hsu et al. 2020). There are several reports of 

pregnant individuals of the little sleeper shark from the Mediterranean Sea, in which litters have 

varied from 5 to 17 embryos per female (multiple sources in Capapé et al. 2020). Size at birth of 

Pacific sleeper sharks is thought to be near 40 cm (Francis et al. 1988; Yano et al. 2007), though 

there have been reports of larger free-swimming individuals bearing umbilical scars (Ebert et al. 

1987). Mature female Greenland and Pacific sleeper sharks have been observed with high 

numbers of yolked ovarian eggs (Gotshall and Jow 1965; Ebert et al. 1987; Nielsen et al. 2020), 

leading some to speculate that litter sizes may be quite large (>200 pups). However, this seems 

improbable due to the relatively large size at birth, oxygen limitations within the uterus during 

gestation, and small litter sizes observed in other members of Somniosidae (Carter and Soma 

2020). It may be more likely that the majority of these ovarian eggs constitute a reserve, or that 

these eggs are resorbed by the mother (Augustine et al. 2022). 

Estimates of the size at maturity of Pacific sleeper sharks are based on relatively few 

observations. While male maturity state can be inferred from external examination of the 

claspers, maturity state of females must be verified by internal examination of the reproductive 

organs, which presents logistical challenges associated with dissecting large animals at sea. 

Because verified mature or maturing individual Pacific sleeper sharks have not been captured in 

sufficient numbers, the estimate of the size of maturity should be considered more of a general 

approximation than a precise figure. Based on the smallest recorded mature female Pacific 

sleeper shark (Gotshall and Jow 1965) and examination of 15 additional individuals captured off 

California, Ebert et al. (1987) estimated that females mature at around 370 cm TL. However, 
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larger individuals that were believed to be immature have been observed (Bakes and Nichols 

1995; Tribuzio et al. 2022), including a 428 cm TL female captured during a bottom trawl survey 

in the Aleutian Islands in 2022 (J. R. Hoff, AFSC, personal communication). Maturity stage was 

not recorded for the largest landed Pacific sleeper shark (465 cm TL) mentioned in the previous 

section. Adult Greenland sharks have been more frequently encountered, and therefore, estimates 

of length at maturity in that species are more refined. Based on the available data, there appears 

to be sexual dimorphism in size at maturity of Greenland sharks, with males and females 

attaining 50% maturity at 284 and 419 cm TL, respectively (Nielsen et al. 2020). As there is a 

paucity of observations of mature Pacific sleeper sharks, more work is needed to determine 

whether maturity in that species is similarly disparate among males and females. 

The majority of Pacific sleeper sharks caught in the eastern Bering Sea and eastern North 

Pacific Ocean are likely immature (Fig. 6), suggesting that adults primarily inhabit waters not 

well-sampled by commercial fisheries or scientific surveys. Similarly, catches in Russian waters 

are predominantly immature fish (Orlov 1999; Orlov and Baitalyuk 2014). Adult males seem to 

be particularly rare (Ebert 2003); however, one of the authors of this review observed what 

appeared to be a mature male from visual external examination of the claspers (Fig. 9) during a 

fishery-independent longline survey in the Gulf of Alaska in 2019 (C. A. Tribuzio, unpublished 

data). As has been observed in many other elasmobranch species, habitat use may vary by sex 

and reproductive stage (Bres 1993). This appears to be the case for the Greenland shark, with 

adult females occupying different waters than juveniles (Edwards et al. 2019). Of Pacific sleeper 

sharks caught from Alaska to California, sex ratios are nearly even in the Bering Sea and are 

approximately 58% female in the Gulf of Alaska (Fig. 5b). While the other regions have 

relatively few observations, it is interesting to note that females have been caught nearly 2.6 

times more often than males off British Columbia (Fig. 5b). Additional measurements may help 

ascertain the degree to which the sex ratio varies across their range in the eastern North Pacific 

Ocean. 

Nothing is known of the mating or pupping habits of Pacific sleeper sharks, or whether 

these aspects are seasonal in nature. Bjerken (1957) speculated that the reason so few pregnant 

Greenland sharks have been detected is that they may move to deep waters during the gestation 

period. An alternative hypothesis is that they may migrate through the deep scattering layer of 

the open ocean, a region of the water column associated with a high abundance of marine 
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organisms (Campana et al. 2015). Female Greenland sharks that appeared to be gravid have also 

been observed in relatively shallow waters of the St. Lawrence Estuary (Harvey-Clark et al. 

2005; Gallant et al. 2016). Based on capture locations of pregnant females in the Mediterranean 

Sea, Capapé et al. (2020) theorized that the little sleeper shark uses shallow coastal areas as 

nursery grounds. Nursery habitat utilization has also been posited as an explanation for observed 

large aggregations of juvenile Pacific sleeper sharks in Alaska waters. For example, there are 

reports of large catches of small Pacific sleeper sharks in Prince William Sound around the late 

1990s, suggesting that this area could represent a nursery area, though due to a lack of formal 

reporting requirements, these catches are largely anecdotal (G. C. Dunne, personal 

communication). Numerous anecdotal reports exist from local fishers (usually longlining) of 

capturing many, even hundreds, of small Pacific sleeper sharks of similar size in glacial fjords in 

Alaska (C. A. Tribuzio, personal communication), suggesting that they may function as 

important habitats during the juvenile life stage. Another possible nursery area has been 

identified in the southeastern Bering Sea near Unalaska Island, due the detection of a sibling pair 

of small (96 cm and 111 cm) sharks 10 days apart and repeated captures of other immature 

sharks in the vicinity (Matta et al. 2022; Timm et al. 2022). Repeated captures of juvenile 

Greenland sharks have also been observed at specific sites in the eastern Canadian Arctic, with 

smaller animals generally having longer residency times, suggesting that these areas may serve 

as nursery or juvenile habitats (Hussey et al. 2015; Edwards et al. 2022a). The largest 

aggregation of Pacific sleeper sharks on record occurred during a trawl survey along the upper 

continental slope of the eastern Bering Sea (Hoff and Britt 2003). During the 2002 survey, 119 

individuals were caught in a single tow at a depth of approximately 700 m at the northern end of 

Zhemchug Canyon, a massive underwater canyon located about 300 km northwest of the Pribilof 

Islands. These fish were all immature and ranged in length from 104 to 237 cm. Due to the fact 

that all of the sharks captured were immature, there was some speculation that Zhemchug 

Canyon could represent an important nursery or juvenile habitat for Pacific sleeper sharks. 

However, even despite resampling in the same area in the years since, the 2002 occasion remains 

the only time when more than a few individuals were caught at that location. Further work, such 

as tagging studies, could help determine whether Pacific sleeper sharks utilize certain habitats 

with fidelity. 
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Trophic ecology 

The Pacific sleeper shark fulfills an ecologically important role as a top predator, occupying a 

relatively high trophic position (Courtney and Foy 2012; Bizzarro et al. 2017). The species was 

long characterized primarily as a benthic-oriented scavenger, and indeed, its keen sense of smell 

(Yopak et al. 2019) likely allows it to detect food oases such as whale falls in the deep ocean 

(Smith et al. 2002; Smith and Baco 2003). However, diet analysis and tagging studies have 

indicated that Pacific sleeper sharks are opportunistic and, in addition to scavenging, are capable 

of consuming live prey, such as salmon or other pelagic species, throughout the water column 

(Orlov and Moiseev 1999; Hulbert et al. 2006; Sigler et al. 2006). Sleeper sharks are very slow-

swimming compared to other fishes and are not believed to be capable of fast bursts of speed 

(Watanabe et al. 2012; Shadwick et al. 2018; Fujiwara et al. 2021). Instead, it is believed that 

sleeper sharks hunt using stealth, taking advantage of their slow movements and cryptic 

coloration to ambush fast-swimming fish and sleeping seals (Ebert et al. 1987; Watanabe et al. 

2012; Lydersen et al. 2016). The Pacific sleeper shark has teeth that differ in shape between the 

upper and lower jaws, with the upper teeth being longer and lance-like and the lower teeth 

having short oblique cusps and high narrow roots (Compagno 1984; Yano et al. 2004; Stevenson 

et al. 2007). This specialization of upper teeth for grabbing and lower teeth for tearing, along 

with the ability to suction feed (Bizzarro et al. 2017; Grant et al. 2018), may afford Pacific 

sleeper sharks greater flexibility in the types of prey they can consume. 

The Pacific sleeper shark has a varied diet, consuming teleost fishes, cephalopods, 

pinnipeds, cetaceans, crustaceans, and offal (Gotshall and Jow 1965; Ebert et al. 1987; Orlov and 

Moiseev 1999; Yang and Page 1999; Schaufler et al. 2005; Sigler et al. 2006; Yano et al. 2007). 

Most direct studies on the diet of Pacific sleeper sharks are based on only a few individuals. 

Comparison across the patchwork of existing regional studies appears to suggest that the diet of 

Pacific sleeper sharks is both spatially and temporally heterogeneous, perhaps owing to their 

opportunistic nature (Sigler et al. 2006; Courtney and Foy 2012). One of the more 

comprehensive studies noted a seasonal shift in the diet of sharks caught in the Gulf of Alaska 

from teleosts to cephalopods, likely due to changes in relative prey availability, though marine 

mammals remained important throughout the study period (Sigler et al. 2006). An ontogenetic 

shift in the diet has also been noted, whereby smaller sharks generally consume prey of lower 

trophic levels (e.g., cephalopods) and increasingly consume higher trophic level prey (e.g., fish 
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and marine mammals) as they grow (Sigler et al. 2006; Yano et al. 2007; Courtney and Foy 

2012; Orlov and Baitalyuk 2014). Sex and depth may also contribute to differences in diet (Orlov 

and Moiseev 1999; Orlov and Baitalyuk 2014). 

Somewhat surprisingly, fast-swimming midwater and epipelagic fishes such as salmon 

Oncorhynchus sp., mahi mahi Coryphaena hippurus, wahoo Acanthocybium solandri, and 

albacore Thunnus alalunga have been found in the stomachs of Pacific sleeper sharks (Ebert et 

al. 1987; Wang and Yang 2004; Sigler et al. 2006). While it is possible they could have been 

consumed as carrion on the seafloor, some prey items in these stomach content studies were 

fresh and intact, suggesting that they were captured through ambush attacks (Ebert et al. 1987; 

Wang and Yang 2004; Sigler et al. 2006). In addition to pelagic species, groundfish species, 

including rockfishes (Sebastidae), flatfishes (Pleuronectiformes), cods (Gadidae), eelpouts 

(Zoarcidae), and sculpins (Cottidae) have also been reported in Pacific sleeper shark stomachs, 

indicating that they feed throughout the water column (Gotshall and Jow 1965; Ebert et al. 1987; 

Orlov and Moiseev 1999; Yang and Page 1999; Sigler et al. 2006; Gorbatenko et al. 2009). 

Marine mammals are an important component of the Pacific sleeper shark diet, 

particularly of larger sharks (Sigler et al. 2006; Yano et al. 2007). A 393 cm female caught in 

very shallow water in Kachemak Bay, Cook Inlet, Alaska, was found to have at least three 

harbor seals Phoca vitulina in its stomach (Bright 1959). Numerous bite marks attributed to 

scavenging Pacific sleeper sharks have been observed on carcasses of gray whales Eschrichtius 

robustus that were killed by killer whales Orcinus orca in shallow waters near Unimak Island; 

annual killer whale predation events may attract the sharks to the area every spring (Barrett-

Lennard et al. 2011). Pacific sleeper sharks of varying size (estimated 150-350 cm TL) have also 

been photographed voraciously feeding on whale falls in deep water off California (Smith et al. 

2002; Smith and Baco 2003). Consistent with these observations was the landing of 

approximately 50 small individuals (all near a meter in length) that were caught together by a 

bottom trawler off Carmel Canyon, south of Monterey Bay, California, of which the stomach 

contents of some individuals contained bite-sized and -shaped pieces of red meat (A. H. 

Andrews, personal observation at Moss Landing Marine Laboratories in the mid-1990s). The 

presence of an intact fetus, along with adult female genital tissue, of southern right whale 

dolphins Lissodelphis peronii, in the stomach of a 360 cm Pacific sleeper shark led Crovetto et 

al. (1992) to conclude that the shark attacked a pregnant female. Fatty acid analysis has indicated 
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the relative importance of cetaceans, as well as fish, in the Pacific sleeper shark diet (Schaufler et 

al. 2005). The Pacific sleeper shark has also been implicated as a predator of juvenile Steller sea 

lions Eumetopias jubatus based on a small study that surgically implanted sea lions with 

temperature-recording satellite tags (Horning and Mellish 2014). However, direct evidence of 

Steller sea predation has never been established (Schaufler et al. 2005; Sigler et al. 2006), and 

any predation that may occur is thought to be low (Loughlin and York 2000). Still, there is 

opportunity for overlap between the two species in the winter months, when juvenile Steller sea 

lions dive to deeper depths (Bishop et al. 2019). Modeling exercises suggest that sea lions, as 

well as harbor seals (a known prey item), may alter their foraging behavior to avoid areas where 

predation risk by Pacific sleeper sharks is greater (Frid et al. 2006, 2008, 2009). 

In Alaska waters, the majority of Pacific sleeper shark mortality is due to fisheries 

bycatch (Aydin et al. 2007). However, an offshore killer whale population has been documented 

feeding on Pacific sleeper sharks (Ford et al. 2011). This killer whale ecotype may be specialist 

consumers of Pacific sleeper sharks and other elasmobranchs, which may comprise an important 

component of their diet (Ford et al. 2011). A necropsy on a recently dead 304 cm TL Pacific 

sleeper shark that washed ashore at Sunshine Cove in March 2022 near Juneau, Alaska, provides 

further evidence of predation by killer whales. Bruising and puncture marks consistent with the 

size and shape of killer whale teeth were visible on the body, and the throat, tongue, liver, and 

heart were ripped out (Fig. 10; Tribuzio et al. in prep). The removal of only the relatively 

nutritionally dense organs could indicate selective feeding by the killer whales. 

Behavior, habitat use, and movement 

Sleeper sharks are often regarded as slow-moving and sluggish. The genus name Somniosus is 

apropos for describing the behavior of these species upon capture. As Hansen (1963) noted, it is 

often difficult to tell whether they are alive or dead, as most individuals move little on longlines 

at the surface or once on deck. Whether their on-deck behavior represents that in situ has been 

somewhat debated, as they are capable of catching fast-moving prey (see Trophic Ecology). 

However, they have been noted to be among the slowest swimming of the fishes (Watanabe et al. 

2012; Fujiwara et al. 2021) and likely rely on the power of ambush to capture prey. 

Pacific sleeper sharks occupy a variety of habitats, ranging from very shallow water in 

the intertidal zone to oceanic depths of at least 2,000 m (Bright 1959; Compagno 1984; 
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Stevenson et al. 2007). It is unknown whether or to what extent Pacific sleeper sharks utilize 

habitats of the abyssal plain. While Pacific sleeper sharks can be found in shallow water at high 

latitudes, they occur deeper in subtropical and tropical waters (Ebert 2003; Walter et al. 2017). 

Different studies have reported conflicting results on the relationship between latitude and depth 

for the Greenland shark. Yano et al. (2007) observed a negative relationship off western 

Greenland, whereas Nielsen et al. (2014) did not detect any discernable trend over a wider 

geographic and latitudinal range around Greenland. However, Campana et al. (2015) found that 

Greenland sharks in the Arctic Ocean were in significantly shallower and colder waters than 

those in the northwest Atlantic Ocean, suggesting that the latitude-depth relationship may be 

more relevant at greater spatial scales. The majority of Greenland shark catches occur in waters 

below 5ºC (MacNeil et al. 2012), though archival tagging work in the northwest Atlantic Ocean 

has demonstrated that they are capable of tolerating temperatures up to 17.2ºC (Campana et al. 

2015). In a study of tagged Pacific sleeper sharks in the Gulf of Alaska, ambient temperatures 

ranged from 4.4 to 11.8ºC but were mostly between 5.5 and 8.2ºC (Hulbert et al. 2006). 

Little is known about the life cycle of Pacific sleeper sharks, quite possibly due to a 

mismatch between their distribution or catchability during certain life stages and fisheries and 

survey data. Because mature individuals are encountered so rarely, it is possible they typically 

occupy abyssal habitats that are inaccessible to standard fishing gear. Very large sleeper sharks, 

putatively identified as S. pacificus based on geographic locations, have been observed near the 

seafloor in deep water by submersibles and remote cameras (Isaacs and Schwartzlose 1975; 

Clark et al. 1990). While juveniles typically are captured in the bottom waters of the continental 

shelf and slope, they have also been caught in midwater trawls over very deep water (Ebert 

2003). It is possible that Pacific sleeper sharks actively seek out certain habitats, such as 

deepwater canyons and troughs, as refugia. There is some indication that, at least in Alaska 

waters, they may also prefer relatively inshore habitats that are poorly sampled by federal bottom 

trawl surveys. In particular, glacial fjords have also been identified as potentially important 

nursery areas due to large catches of small sharks in these areas (see Reproduction). Glacial 

fjords share many of the same conditions of deepwater offshore environments, thereby providing 

refugia to cold-adapted organisms despite their proximity to shore (Häussermann et al. 2021; 

Smith et al. 2022). Clearly, more work is needed to elucidate the distribution, preferred habitats, 

life history, and behavior patterns of Pacific sleeper sharks across life stages. 
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A tagging study in the western Gulf of Alaska indicated that Pacific sleeper sharks are 

capable of making long-distance horizontal movements of at least several hundred kilometers 

over the course of a year, but in general they appear to stay relatively localized, with most 

recoveries occurring within 100 km of tagging locations (Hulbert et al. 2006). Stable isotope 

studies, which provide a long-term snapshot of diet, have found distinct differences between the 

Bering Sea and Gulf of Alaska, suggesting that there is little exchange between the two regions 

(Courtney and Foy 2012), in contrast with a recent genetics study that reported that Pacific 

sleeper sharks are genetically homogenous throughout the Pacific Ocean, suggesting mixing 

among regions (Timm et al. 2022). Hulbert et al. (2006) noted that tagged individuals made 

“extensive, nearly continuous vertical movements”, spending the majority of their time at depths 

between 150 and 450 m, but frequently rising to depths shallower than 100 m, including one 

individual that regularly rose to the surface (0-2 m) (Hulbert et al. 2006). However, despite these 

frequent ascents, they spent relatively little time at the shallower depths, remaining below the 

photic zone during the day and moving shallower at night, which the authors speculated may be 

related to foraging (Hulbert et al. 2006). The high levels of alkyldiacylglycerols in the very large 

liver (20-30% of body mass) of Pacific sleeper sharks may facilitate these regular vertical 

migrations through buoyancy regulation (Phleger 1998). Additional tagging studies are currently 

in progress to gain a better understanding of Pacific sleeper shark movements and behavior. 

Movements and habitat preferences of the Greenland shark are more well-known. 

Greenland sharks make large horizontal and vertical movements across a range of temperatures 

(Fisk et al. 2012; Campana et al. 2015). Similar to the Pacific sleeper shark, Greenland sharks 

have been observed making diel vertical migrations in certain areas including the Gulf of St. 

Lawrence and the Canadian Arctic, residing in deeper, colder waters during the day and 

shallower, warmer waters at night (Skomal and Benz 2004; Stokesbury et al. 2005; Gallant et al. 

2016), though they do not appear to exhibit this behavior consistently through their range (Fisk et 

al. 2012; Campana et al. 2015). Greenland sharks have also been observed making excursions 

into shallow waters, including nearshore and brackish habitats (Stokesbury et al. 2005; Gallant et 

al. 2016). Hussey et al. (2018) found evidence of migration routes between Canada and 

Greenland, including movements into deepwater fjords. Long-term acoustic telemetry has 

revealed migrations of Greenland sharks between coastal and offshore locations in Baffin Bay, 

Canada, with some individuals displaying site fidelity across multiple years (Edwards et al. 
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2022a, b). The inshore-offshore migrations observed in Baffin Bay appear to be related to 

seasonal ice cycles, with sharks residing in coastal fjords during the summer and fall ice-free 

period and in offshore waters during the period of ice formation and cover (Edwards et al. 

2022b). Juveniles have longer occupancy times in the coastal fjords than sub-adults (Edwards et 

al. 2022a), lending further support to these habitats as important refugia during more vulnerable 

life stages. 

Internal anatomy and physiology 

Sleeper sharks possess anatomical and physiological features that make them well-suited to their 

environment. Their slow swimming speeds likely allow them to conserve energy and reduce 

metabolic demands, important attributes for an opportunistic predator (Fujiwara et al. 2021; 

Smith et al. 2022). Furthermore, their large livers, composed primarily of diacylglyceryl ethers 

and triacylglycerols, play a key role in energy storage and likely allow them to regulate 

buoyancy during their extensive vertical migrations (Bakes and Nichols 1995; Phleger 1998). As 

a result of these adaptations, the energy budgets of sleeper sharks are estimated to be relatively 

low, despite having metabolic rates that are similar to those of other sharks when scaled for 

temperature (Ste-Marie et al. 2020; Smith et al. 2022). For instance, field and captive 

respirometry studies have demonstrated that an 84.5 kg Pacific sleeper shark would be expected 

to burn 153 kcal/day under average swimming conditions and that the maintenance ration of an 

average Greenland shark weighing 224 kg is only 61-193 g of fish or mammal tissue daily, 

suggesting that these sharks require relatively little energy (Ste-Marie et al. 2020, 2022; Smith et 

al. 2022). 

The immune functioning of sleeper sharks is not well-studied. The Greenland shark 

possesses Leydig’s organ, a lymphomyeloid tissue found only in certain elasmobranchs. Based 

on high lysozyme activity observed in Leydig’s organ, the pancreas, and the spleen, the 

Greenland shark may have a strong immune response to bacterial and viral infections (Fänge et 

al. 1980). It has not been noted in the scientific literature whether Leydig’s organ is also present 

in Pacific sleeper sharks. There is no macroscopically visible epigonal organ in male or female 

sleeper sharks (Yano et al. 2007). The epigonal organ, another lymphomyeloid tissue unique to 

chondrichthyans, is associated with the gonads and is part of the immune system, possibly 

involved with leukocyte production (Honma et al. 1984; Luer et al. 2004; Bircan-Yildirim et al. 
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2011). Whether the epigonal organ is greatly reduced or completely absent in sleeper sharks is 

unknown. 

Examination of the structures of the brains of sleeper sharks reveal some differences 

compared to other shark species. Unlike other large-bodied sharks, the cerebellum, the region 

that controls motor function, is small and smooth in both Greenland and Pacific sleeper sharks, 

suggesting lower activity levels in these species (Yopak et al. 2019). Additionally, the optic 

tectum, a part of the brain responsible for visual processing, is reduced while the olfactory 

regions are some of the largest of any shark species studied, indicating that sleeper sharks likely 

rely far more on their sense of smell than their visual acuity (Ferrando et al. 2015; Yopak et al. 

2019). Further supporting this hypothesis are their ability to detect carrion below the photic zone 

in deep oceanic waters and their seeming indifference to corneal infections of parasitic copepods 

(see Parasites). 

Parasites 

Individuals of the parasitic copepod species Ommatokoita elongata have long been observed 

attached to the corneas of Greenland sharks (Berland 1961; Beck and Mansfield 1969). The 

species was first documented on the eyes of Pacific sleeper sharks in Prince William Sound, 

Alaska, with infections appearing to be quite common (Benz et al. 1998, 2002). Parasitic 

copepod infections can cause lesions of the cornea, which likely lead to vision impairment or 

even blindness (Borucinska et al. 1998; Benz et al. 2002). It is questionable to what degree this 

adversely affects the sharks since they appear to rely more on their olfactory senses than their 

visual acuity for detecting prey, and infected sharks appear to be otherwise healthy (Borucinska 

et al. 1998; Benz et al. 2002). Greenland sharks in the St. Lawrence Estuary have been reported 

to be largely copepod-free; it has been postulated that the sharks enter brackish waters in an 

attempt to rid themselves of the copepods and other parasites (Harvey-Clark et al. 2005; Gallant 

et al. 2016). The St. Lawrence Estuary sharks appear to be highly visual and display different 

behaviors than Greenland sharks in the Arctic Ocean, where parasitic copepod infections are 

endemic (Harvey-Clark et al. 2005). 

Other parasites of sleeper sharks appear to be far rarer in occurrence and may vary 

geographically. Ho et al. (2003) observed the ectoparasitic copepod Dinemoura ferox on the 

heads or fins of four of 27 Pacific sleeper sharks caught off eastern Taiwan. Interestingly, while 
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Ho et al. (2003) also noted infections of O. elongata attached to the corneas of eight of the sharks 

they examined, none of those same sharks had concurrent D. ferox infections. An unidentified 

species of copepod, possibly D. ferox, was observed on the pelvic fin of a juvenile male Pacific 

sleeper shark in 2022 on a survey out of Petersburg, Alaska (K. R. Fuller, personal 

communication). The same parasite was found on a number of Pacific sleeper sharks near 

Juneau, Alaska, indicating a fairly high rate of occurrence at a local level (K. R. Fuller, personal 

communication). Wang and Yang (2004) observed D. ferox on the skin and monogeneans 

(Polyopisthocotylea), a type of flatworm, on the gills of Pacific sleeper sharks caught off eastern 

Taiwan, as well as apparent wounds caused by cookie-cutter sharks Isistius sp. Causey (1926) 

noted flukes (Trematoda) on the gills of sleeper sharks in Excursion Inlet, Alaska. Tapeworms 

(Cestoda) and nematodes (Nematoda) have been periodically reported from the stomachs of 

Pacific sleeper sharks (Gotshall and Jow 1965; Wang and Yang 2004; Taggart et al. 2005). A sea 

lamprey Petromyzon marinus was observed attached to a 3-m male Greenland shark in the St. 

Lawrence Estuary, although this doesn’t appear to be a common occurrence as this is the only 

known report of a lamprey on a sleeper shark (Gallant et al. 2006). Finally, there is a single 

record of the parasitic barnacle (Anelasma squalicola) inside the cloaca of a 275 cm TL female 

Greenland shark collected from Tremblay Sound in the eastern Canadian Arctic (Ste-Marie et al. 

2023). 

Contaminants 

Naturally occurring and anthropogenic toxins, such as heavy metals and persistent organic 

pollutants (POPs), tend to be higher in long-lived, upper trophic level organisms due to the 

process of bioaccumulation. Toxic contaminants including mercury, cadmium, lead, selenium, 

and various POPs have been detected in the muscle, liver, pancreas, and other organs of 

Greenland sharks, with loads varying among tissues (Strid et al. 2007; Corsolini et al. 2014). 

Dichlorodiphenyltrichloroethane (DDT), an insecticide that was widely used from the 1940s to 

1970s, has been detected in liver and muscle tissue of Greenland sharks with concentrations 

varying geographically, which could be due to differences in contamination levels or in feeding 

ecology among regions (Fisk et al. 2002; Corsolini et al. 2014; Cotronei et al. 2018). 

Polychlorinated biphenyls (PCBs), another group of organic chemicals that persist in the 

environment despite widespread bans enacted in the mid-1970s, have also been found to vary 
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spatiotemporally in Greenland sharks (Lu et al. 2014). Similarly, endocrine-disrupting 

compounds including bisphenol A vary regionally and among tissue types in Greenland sharks 

(Ademollo et al. 2018). 

We know of only one study that has examined contaminants (non-essential elements) in 

Pacific sleeper sharks, and concentrations were generally higher than those in Greenland sharks, 

likely due to geographic differences in levels of exposure or to differences in diet (McMeans et 

al. 2007). In the studies to date, concentrations of various contaminants do not appear to be 

related to shark size, with most observed differences attributed to diet variation (McMeans et al. 

2007, 2015; Strid et al. 2010; Cotronei et al. 2018). It has been suggested that the high levels of 

POPs in blood plasma of Greenland sharks off Norway may interfere with vitamin A and vitamin 

E homeostasis, though more work is needed to confirm any adverse effects on physiological and 

developmental processes (Molde et al. 2013). 

Toxicity 

The fresh flesh of sleeper sharks has long been believed to be toxic due to a case in which sled 

dogs exhibited symptoms consistent with trimethylamine poisoning after consuming large 

quantities of raw Greenland shark meat (Boje 1939; Anthoni et al. 1991; MacNeil et al. 2012). 

These symptoms mimic acute alcohol intoxication, and have anecdotally been noted in dogs as 

well as people (Jensen 1914; Clark 1915). Greenland sharks, like many other elasmobranchs, 

possess high levels of trimethylamine oxide, which is converted to trimethylamine during 

digestion (Anthoni et al. 1991). However, the amount of shark flesh that would be necessary to 

induce an adverse response is likely larger than a person could reasonably consume in one sitting 

(MacNeil et al. 2012; Nielsen 2017). Adequate preparation is also thought to reduce any 

potential effects of trimethylamine toxicity (Jensen 1914; Clark 1915; Anthoni et al. 1991; Orlov 

2017), though Wang and Yang (2004) write that Pacific sleeper shark meat is consumed fresh in 

Taiwan as a substitute for whale shark Rhincodon typus, despite being “rather bland and 

tasteless”. Fermented Greenland shark, known as the national delicacy kæstur hákarl in Iceland, 

is typically only eaten in small amounts due to its pungent taste. Microbes, such as Pseudomonas 

aeruginosa, introduced by the fermentation process are hypothesized to detoxify trimethylamine 

and trimethylamine oxide in hákarl (Osimani et al. 2019). 
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Fishing Pressure and Management 

Catch and fishery interactions 

While the Greenland shark has been fished for its liver oil and meat at times throughout history 

(Jensen 1914; Compagno 1990; MacNeil et al. 2012; Davis et al. 2013), the Pacific sleeper shark 

has, to the best of our knowledge, never been targeted on a commercial scale except for a 

localized fishery in the waters off Hualien, Taiwan (Wang and Yang 2004). There are also a few 

anecdotal reports of fishers in Southeast Alaska targeting Pacific sleeper sharks to sell the livers 

during the brief shark liver fishery that also existed for the Pacific spiny dogfish Squalus suckleyi 

in that region (C. A. Tribuzio, personal communication). However, no official records of this 

activity exist. 

There are relatively little reliable historic data available on incidental catches of Pacific 

sleeper sharks, as any sharks caught are not typically retained. Increased interest in shark 

conservation and awareness of their relative vulnerability has resulted in improved catch 

reporting over the past two decades. Prior to 2003, shark catches in Alaska waters were reported 

in aggregate, requiring estimation of species-specific removals, but since have much improved 

thanks to the introduction of the NOAA Fisheries Catch Accounting System (Cahalan et al. 

2015a, b). Similarly, improved species identification and reporting of shark catches were 

initiated in 2001 in Canadian waters, which resulted in an increase in reporting of discards of 

Pacific sleeper sharks (King et al. 2017). However, given the data-limited nature of the stock 

assessment and lack of exploitable biomass estimates, exploitation rates cannot be determined 

and are likely highly uncertain (Courtney et al. 2016). 

Somniosus species are generally regarded as a nuisance when they are caught incidentally 

in other target fisheries (Nielsen 2017; Orlov 2017). They frequently become entangled in 

longlines and are cumbersome on deck when caught in bottom trawls, both requiring long 

handling times to discard (Orlov 2017; Grant et al. 2018). An ongoing study aimed at developing 

tools that can more accurately identify and size-grade large shark species from video taken on 

vessels participating in an electronic monitoring program for fixed-gear fisheries in Alaska (i.e., 

vessels carrying cameras in lieu of at-sea observers) found that out of 57 Pacific sleeper sharks 

captured across 11 fishing vessels since 2015, 15 (26.3%) were entangled with the line in some 
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fashion, and six sharks (10.5%) required more than three minutes to extricate (K. R. Fuller, 

unpublished data). Over 60% of these sharks were removed from the line by cutting one or more 

gangions (K. R. Fuller, unpublished data). Greenland and Pacific sleeper sharks have also been 

implicated in longline depredation of valuable target species, such as Greenland halibut 

Reinhardtius hippoglossoides and Pacific halibut (Wright and Hulbert 2000; Grant et al. 2018; 

Madigan et al. 2022). Research efforts on modifications of fishing gear have shown promise for 

reducing bycatch of Greenland sharks in target fisheries (Munden 2013; Folkins 2019; Grant et 

al. 2020). 

Catches of Pacific sleeper sharks off British Columbia are variable year-to-year but are 

generally low (Fig. 11; Anderson et al. 2019). Bottom-trawl and longline fisheries for more 

valuable target groundfish species comprise the majority of the Pacific sleeper shark catch (Fig. 

11). Estimates of discards in trawl fisheries prior to 1996 and in non-trawl fisheries prior to 2006 

are considered less reliable, as this is when at-sea observer coverage was implemented in each 

sector, respectively. Nearly all of the catch of Pacific sleeper sharks in British Columbia waters 

is discarded. 

In federal waters off Alaska, Pacific sleeper sharks are most frequently taken in the 

commercial walleye pollock, Pacific halibut, mixed flatfish, and Pacific cod Gadus 

macrocephalus fisheries (Fig. 12a). They are also caught incidentally in state recreational 

fisheries for Pacific halibut and other bottomfish (Baumer et al. 2019; Tribuzio et al. 2022). 

Increases in bycatch were observed from the early to late 1990s in the Prince William Sound 

longline fishery (Wright and Hulbert 2000), which coincided with trends in abundance 

throughout the Gulf of Alaska at that time (Mueter and Norcross 2002). Fishery catches of 

Pacific sleeper sharks have decreased since the mid-2000s, with shifts in the proportion taken by 

each target fishery (Fig. 12b). The exception to this trend is from federal fisheries operating 

within the inside waters of the Gulf of Alaska (e.g., the Individual Fishing Quota Pacific halibut 

fishery); however, this trend is more likely driven by changes to data collection procedures in 

2013 that expanded observer coverage to inside waters. Very little (1% in the Gulf of Alaska and 

10% in the Bering Sea, on average) of these incidental catches is retained due to low commercial 

value (Tribuzio et al. 2022). Similarly, nearly all catches of Pacific sleeper sharks off the US 

West Coast are discarded (Jannot et al. 2021). The survival rate of discarded Pacific sleeper 

sharks is unknown, but likely varies according to fishing gear and behavior (Morgan and Burgess 
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2007; Braccini et al. 2012). Preliminary tagging data suggest that trawl-caught Pacific sleeper 

sharks are all deceased when released (C. A. Tribuzio, unpublished data). The degree of stress 

associated with capture and handling, indicated by blood glucose and lactate levels, is variable in 

Greenland sharks but has been found to be correlated with body size and depth of capture 

(Barkley et al. 2016). 

Catches of Somniosus species tend to occur in spatially clustered hotspots that may be 

temporally variable (Menon 2004; Cosandey-Godin et al. 2015). In Alaska waters, fisheries 

catches are broadly distributed but have been historically highest in Shelikof Strait and the heads 

of submarine canyons along the continental slope of the Bering Sea, particularly Bering Canyon 

north of Unimak Pass (Fig. 3). Menon (2004) demonstrated that bycatch of Pacific sleeper sharks 

had a weak, positive relationship with depth and a negative relationship with abundance of 

Pacific spiny dogfish. The spatial distribution of Pacific sleeper shark catch in Alaska waters has 

reduced since the late 1990s and 2000s, mirroring patterns observed in fisheries-independent 

indices (Matta et al. 2022). 

Management and conservation 

Management of the catch of Pacific sleeper sharks is limited to a few regions within their 

distribution. In federal waters of Alaska, the overfishing status of Pacific sleeper sharks is 

assessed and the catch is managed as part of multi-species shark stock complexes within each of 

the two main management areas: the Bering Sea/Aleutian Islands and the Gulf of Alaska. 

Harvest control rules for Alaska groundfish are set using a descending six-tier system 

corresponding to the amount of data available for a given stock (NPFMC 2020). Little 

information exists to support single-species stock assessments for Pacific sleeper shark or most 

of the other component species within the shark stock complexes, placing them in the lowest 

tiers, in which the status of the stock cannot be determined. For example, the Gulf of Alaska 

Pacific spiny dogfish stock falls into Tier-5 of the North Pacific Fishery Management Council’s 

harvest control rule structure because their biomass estimate from trawl surveys is considered 

reliable. Harvest limits of Tier-5 species are partially estimated based on fishery-independent 

trawl survey biomass estimates (NPFMC 2020). In contrast, fishery-independent surveys are 

inadequate to generate estimates of abundance for the remaining species of the shark complexes 

(including Pacific sleeper sharks), due to either their distribution or catchability, and they are 
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therefore considered Tier-6, the most data-limited tier category. Harvest limits for these Tier-6 

species are estimated based on historical catch. The current management strategy is to set the 

maximum harvest limits for the shark complexes in each management area based on the 

aggregate of the individual species’ harvest limits or as a single harvest limit estimated for the 

complex as a whole; thus, there is no species-specific management for any of the shark species in 

Alaska waters. This approach assumes that maintaining historical catch levels is sustainable, will 

not result in overfishing, and that all species within the complex are equally vulnerable. 

Generally, shark catches in Alaska waters have stayed well under the maximum amount allowed 

(Tribuzio et al. 2022). However, this method for setting harvest limits ignores any biological 

information and is associated with a high risk of overfishing (Carruthers et al. 2014). 

Furthermore, it is important to note that Pacific sleeper sharks appear to have declined in 

abundance during the period when Tier-6 assessment methods have been used (Fig. 2). 

Assessment methods applicable to data-limited stocks are currently being explored to better 

manage Pacific sleeper sharks in Alaska (Tribuzio et al. 2022), including incorporating accessory 

information into harvest specifications, demographic-based population models that incorporate 

movement analysis, and plausible estimates of life history parameters (Tribuzio and Kruse 2011; 

Free et al. 2017; Pantazi et al. 2020; Dureuil et al. 2021). As Pacific sleeper sharks have been 

identified as among the most vulnerable to overfishing of all managed stocks in Alaska waters 

due to their likely low productivity (Ormseth and Spencer 2011), such research into alternative 

management methods is timely. 

Research into the use of electronic monitoring (EM) video data to improve Pacific 

sleeper shark catch estimates in Alaska waters is ongoing (C. A. Tribuzio and K. R. Fuller, 

personal communication). These projects aim to develop machine learning tools to identify and 

size-grade Pacific sleeper sharks in recorded video, thereby making the video review process 

more efficient while providing previously unavailable size data to refine estimates of total catch. 

This information will be especially useful to improve catch estimates in longline fisheries, where 

sharks are incidentally caught but not necessarily landed. 

Pacific sleeper sharks do not appear to be formally assessed elsewhere, though biological 

and demographic data are collected through various scientific survey and fisheries research 

platforms in other parts of their range. In British Columbia, their conservation status has not been 

assessed and is currently unknown. Additionally, no stock assessment process has been 
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completed and there is little known about their population, distribution, and abundance. When 

possible, data on Pacific sleeper shark encounters are collected during fisheries-independent 

surveys; however, individuals are not generally sampled or sexed. In 2011, the US West Coast 

management region made a change requiring that the groundfish fishery monitor 100% of 

discards, resulting in improved data (Jannot et al. 2021). Still, Pacific sleeper sharks do not 

qualify as a managed species under any of the Pacific Fishery Management Council fishery 

management plans. 

Because they can be perceived as a nuisance due to their tendency towards longline 

depredation and entanglement in fishing gear, directing fishing on Pacific sleeper sharks has 

been proposed to reduce negative impacts on other groundfish fisheries (Orlov 2017). The 

majority of the catch throughout its range is immature, and due to its likely life history attributes 

of slow growth, long generation time, and low overall productivity, it is highly improbable that a 

sustainable fishery for this species could be established (Smith et al. 1998; Simpfendorfer and 

Kyne 2009; Tribuzio and Kruse 2011; Au et al. 2015; Matta et al. 2022). Furthermore, the IUCN 

status of the Pacific sleeper shark recently changed from Data Deficient to Near Threatened in 

large part due to possible population declines in portions of their range (Rigby et al. 2021), and 

the North Pacific Fishery Management Council’s Scientific and Statistical Committee noted 

conservation concerns in its most recent review of the stock assessment (SSC 2022). Given these 

concerns, a conservative management approach is warranted pending better understanding of this 

species. 

Future studies/conclusions 
This review demonstrates that there are many areas in which our understanding of Pacific sleeper 

shark biology and ecology could be improved, particularly regarding habitat use and life history. 

These knowledge deficits should be the focus of future research for improving the assessment 

and management of this potentially long-lived and vulnerable species. There are a number of 

ongoing studies to fill research gaps, including longevity estimation, bioenergetics, movement, 

reproduction, and advancing stock assessments of Pacific sleeper sharks in Alaska waters. Catch 

estimates, a main factor in determining harvest limits in stock assessments in the Bering 

Sea/Aleutian Islands and Gulf of Alaska federal management regions, have been much improved 

over the past decade thanks to the teamwork of scientists and fishery managers. Advanced 
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computing methods such as machine learning are being used to process electronic monitoring 

video data and to further improve estimates of catch, particularly in fisheries sectors that have 

not been historically well-observed. Researchers are currently working towards refining 

estimates of maturity and estimating movements from a blend of survey data, tag information, 

and baited cameras. The pilot project described herein to determine estimates of age from eye 

lens radiocarbon has been fully funded, with the objective of providing estimates of life history 

parameters including growth and natural mortality that are critical for improving stock 

assessment. Until more information becomes available, a precautionary approach to its 

management is warranted throughout its range. 
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Figures 

Fig. 1 The Pacific sleeper shark Somniosus pacificus. All individuals pictured are immature and 

under 200 cm total length. a) Two individuals showing variation in coloration. b) Pacific sleeper 

sharks have relatively small mouths and teeth. 
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Fig. 2 Indices of abundance of Pacific sleeper shark Somniosus pacificus abundance. Fisheries-

independent trawl (T), longline (LL), and pot (P) surveys operated by federal and state agencies 

(NOAA: National Oceanic and Atmospheric Administration Fisheries; IPHC: International 

Pacific Halibut Commission; ADFG: Alaska Department of Fish and Game; DFO: Department 

of Fisheries and Oceans, Canada) within large management areas in the eastern North Pacific 

Ocean (color-coded by region; BS: Bering Sea; AI: Aleutian Islands; GOA: Gulf of Alaska; 

SEAK: Southeast Alaska; BC: British Columbia; WC: United States West Coast). Units of 

measurement differ across surveys (NOAA T: biomass; NOAA LL: relative population numbers; 

IPHC LL, ADFG LL, and DFO P: catch per unit effort) 
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Fig. 3 Total weight of Pacific sleeper sharks Somniosus pacificus caught in commercial fisheries 

in Alaska waters from 1997-2021. Data are aggregated within 400 km2 grid cells to preserve 

confidentiality of fisheries participants (retrieved from 

https://www.fisheries.noaa.gov/resource/map/alaska-groundfish-fishery-observer-data-map on 

August 8, 2022) 

https://www.fisheries.noaa.gov/resource/map/alaska-groundfish-fishery-observer-data-map
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Fig. 4 Length-length relationships of Pacific sleeper sharks Somniosus pacificus. Linear 

regressions between total length (TL) and a) precaudal length (PCL, n=24) and b) fork length 

(FL, n=21). Blue shading indicates 95% confidence regions. Data collected by Hulbert et al. 

(2006) 
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Fig. 5 Size and sex information for Pacific sleeper sharks Somniosus pacificus caught along the 

west coast of North America (Bering Sea to Baja California). a) Length distributions of landed 

and measured males and females. b) Sex ratios of lengthed Pacific sleeper sharks caught within 

management regions (BS: Bering Sea, AI: Aleutian Islands, GOA: Gulf of Alaska, BC: British 

Columbia, WC: US West Coast). Sample sizes indicated by n 
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Fig. 6 Length distributions of landed and measured Pacific sleeper sharks Somniosus pacificus 

along the west coast of North America. Dotted lines indicate mean size in each region (BS: 

Bering Sea, n=584; AI: Aleutian Islands, n=25; GOA: Gulf of Alaska, n=982; BC: British 

Columbia, n=109; WC: US West Coast, n=117). Dashed line is the length at maturity of 370 cm 

total length estimated by Ebert et al. (1987) 
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Fig. 7 Length-weight relationships of Pacific sleeper sharks Somniosus pacificus. a) Relationship 

between natural log-transformed length and weight for males (n=230) and females (n=367) 

collected from Alaska waters. An analysis of covariance determined no significant effect of sex 

on weight. b) Fitted length-weight relationship from the present paper (both sexes combined, 

back-transformed to original scale) in comparison with published relationships for Pacific 

sleeper sharks from Yano et al. (2007), Orlov and Baitalyuk (2014), and www.fishbase.se 

www.fishbase.se
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Fig. 8 Eye lens core radiocarbon (Δ14C) values (yellow diamonds) from a pilot study on a 3.1 m 

Pacific sleeper shark Somniosus pacificus that are aligned with regional chronologies to estimate 

a birth year. The specimen was collected in 2011 and each eye lens core (formed during pre-natal 

development) provided a diagnostic radiocarbon value (Δ14C = 9.4 and -51.1‰) that can be 

attributed to a formation date (birth year) between 1962 and 1965. Note that while the Δ14C 

values from cores of the same individual differ, likely due to imprecision in the lens core 

extraction method, they still indicate a small range of potential birth years. Hence, this specimen 

was at most ~50 years of age and had a consequent growth rate (k) two times greater than 

Greenland shark Somniosus microcephalus (k ~0.018 cf. 0.009; see inset hypothetical growth 

curves). The bomb radiocarbon chronologies used as temporal references were from yelloweye 
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rockfish Sebastes ruberrimus (open circles) and Pacific halibut Hippoglossus stenolepis (solid 

circles) from the northeast Pacific Ocean (Kerr et al. 2004; Piner and Wischniowski 2004) 
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Fig. 9 Male Pacific sleeper sharks Somniosus pacificus thought to be mature (left) and immature 

(right) based on examination of the claspers (indicated by yellow arrows) 
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Fig. 10  A necropsy of  a Pacific sleeper shark  Somniosus pacificus  that washed ashore after an  

apparent predation event  by killer whales  Orcinus orca  off the coast of southeast Alaska in 

March 2022. Tooth marks are evident on the flank and the throat was  ripped out, resulting in the  

removal of the heart, tongue, and liver. Images from Tribuzio et al. (in prep).  
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Fig. 11  Commercial  catches (discards  and landings) of Pacific sleeper sharks  Somniosus  

pacificus  in target groundfish fisheries in British Columbia waters. Catch in trawl fisheries is  

reported as total weight; catch in non-trawl fisheries is reported in numbers of sharks  
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Fig. 12 Incidental catches of Pacific sleeper sharks  Somniosus pacificus  in targeted commercial  

fisheries in Alaska.  a) Percentage of Pacific sleeper shark  catch  by  weight in each target fishery  

(walleye pollock (“pollock”)  Gadus chalcogrammus, Pacific cod  Gadus macrocephalus, mixed 

flatfish species Pleuronectidae, Pacific halibut  Hippoglossus stenolepis, sablefish Anoplopoma 
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fimbria, mixed rockfish species Sebastidae, Atka mackerel Pleurogrammus monopterygius, and 

miscellaneous “other” groundfish species). b) Time series of sharks caught in target fisheries by 

area and management region (BSAI: Bering Sea/Aleutian Islands; GOA: Gulf of Alaska; Inside: 

waters 0-3 nautical miles from shore in Southeast Alaska and Prince William Sound) from 2003-

2021. Note that the North Pacific Groundfish Observer Program restructured in 2013, resulting 

in increased coverage of inside waters. Data provided by the Alaska Regional Office Catch 

Accounting System 
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