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Abstract 

Historically, our understanding of bacterial ecology in the Indian Ocean has been limited 

to regional studies that place emphasis on community structure and function within oxygen 

minimum zones. Thus, bacterial community dynamics across the wider Indian Ocean are largely 

undescribed. As part of Bio-GO-SHIP, we sequenced the 16S rRNA gene from 465 samples 

collected on sections I07N and I09N. We found that (i) there were 23 distinct bioregions within 

the Indian Ocean, (ii) the southeastern gyre had the largest gradient in bacterial alpha-diversity, 

(iii) the Indian Ocean surface microbiome was primarily composed of a core set of taxa, and (iv) 

bioregions were characterized by transitions in physical and geochemical conditions. Overall, we 

showed that bacterial community structure spatially delineated the surface Indian Ocean and that 

these microbially-defined regions were reflective of subtle ocean physical and geochemical 

gradients. Therefore, incorporating metrics of in-situ microbial communities into marine 

ecological regions traditionally defined by remote sensing will improve our ability to delineate 

warm, oligotrophic regions. 
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Introduction 

The Indian Ocean represents an important region for understanding marine ecology 

because of its unique physical dynamics, global biogeochemical importance, and historic under-

sampling. The Indian Ocean is bounded to the north by the Eurasian land mass and experiences 

seasonal monsoon dynamics, which have important implications for the geochemistry and 

ecology of the basin (Hood et al. 2007; Vinayachandran et al. 2021). Monsoon forcing leads to 

the formation of the world’s thickest oxygen minimum zone in the Arabian Sea and thus 

substantial N-loss (McCreary et al. 2013; Al Azhar et al. 2017). The Indian Ocean also 

contributes ~15% to global ocean primary productivity (Behrenfeld and Falkowski 1997). Lastly, 

the region is warming faster than any other ocean basin (Roxy et al. 2014). However, we 

currently have a limited understanding of microbial biodiversity at large spatial scales across the 

Indian Ocean. 

Our current understanding of bacterial ecology within the Indian Ocean is primarily 

restricted to regional studies. Emphasis has been placed on microorganisms linked to N-cycling 

near oxygen minimum zones (Jayakumar et al. 2012). Few studies have examined the bacterial 

community outside these zones, and they are limited in scale (Jeffries et al. 2015; Zheng et al. 

2016; Raes et al. 2018b; Hörstmann et al. 2021). These studies suggest that there is 

biogeographic partitioning between communities in surface waters of the southwestern Indian 

Ocean, central Indian Ocean, and Bay of Bengal (Jeffries et al. 2015). There was also spatial 

heterogeneity within the central (Zheng et al. 2016), southeastern (Raes et al. 2018b), and 

southwestern Indian Ocean (Hörstmann et al. 2021), indicating fine-scale spatial separation of 

bacterial communities. The environmental drivers associated with diversity shifts varied between 

geographic regions. Within the southwestern region, alpha-diversity increased with temperature 
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(Hörstmann et al. 2021), while biodiversity in the southeastern region was more closely linked to 

productivity (Raes et al. 2018b). This may suggest that bacterial communities are influenced by 

different environmental factors within Indian Ocean regions. Additionally, there are distinct 

microbial “fingerprints” at frontal regions in the southwestern Indian Ocean (Hörstmann et al. 

2021), indicating that transitions between water masses represent either unique microbial habitats 

or a physical barrier to dispersal. Together, these observations suggest regionally distinct 

communities in the Indian Ocean, but the large-scale microbial biogeography is poorly 

understood. 

Identifying ecological regions in the Indian Ocean has been challenging, because most of 

the basin is warm and oligotrophic. The pelagic Indian Ocean has previously been divided into 

two broad biogeochemical provinces (Longhurst 2010), four ecological marine units (Sayre et al. 

2017), and ~10 unique seascapes (Kavanaugh et al. 2014) (Figure 1 and Supplemental Figure 1). 

These regions were primarily delineated using common geochemical and physical metrics 

derived from remote-sensing and/or in-situ hydrographic measurements, such as temperature, 

nutrient concentrations, and chlorophyll a concentration. However, such metrics have low 

variability across the surface Indian Ocean, and nutrients are often below the standard detection 

limit, resulting in low discriminatory resolution. In contrast, microbial communities are highly 

sensitive to local environments and can be used as “biosensors” for identifying ecological 

provinces not easily detected with chemical or physical measurements (Larkin et al. 2020). 

Microbial communities are impacted by a wide variety of biogeochemical factors or the presence 

of physical barriers (e.g., islands, currents, fronts, and eddies) (Sebastián et al. 2021). A shift in 

community structure will likely reflect environmental changes and associated ecological 

functions. For example, when using geochemical measurements, the eastern Indian Ocean was 
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partitioned into three distinct biomes (Garcia et al. 2018), but when this same region was 

partitioned using variation in Prochlorococcus haplotypes, eight new, distinct biogeochemical 

regimes were identified (Larkin et al. 2020). Therefore, changes in microbial biogeography can 

be used to delineate marine ecosystems (i.e., bioregions). Contrary to marine ecological regions, 

bioregions incorporate the inherent biodiversity of the region into their delineation, which may 

provide a more nuanced understanding of the Indian Ocean seascape. 

Using a high spatial resolution genomics dataset from the Indian Ocean, we ask the 

following questions: i) Are bacterial communities structured into distinct spatial regions (i.e., 

bioregions)? ii) Across these bioregions, where do the biggest gradients in bacterial alpha-

diversity occur and what environmental factors correspond with changes in alpha-diversity? iii) 

What lineages are endemic to these regions and what are the major ubiquitous lineages across the 

Indian Ocean? and iv) How do geochemical and physical dynamics vary across the bioregions? 

We addressed these questions using intensive DNA sampling from two large meridional Bio-

GO-SHIP sections to the eastern (I09N) and western (I07N) Indian Ocean. 

Methods 

Field sampling and environmental data 

Microbial DNA samples were collected on GO-SHIP cruise I09N (n = 215) which ran 

from Freemont, Australia to Phuket, Thailand in 2016 (March 22 – April 24) and on GO-SHIP 

cruise I07N (n = 250) which ran from Durban, South Africa to Mormugao, India in 2018 (April 

23 – June 6) (Figure 1a). Between 1 – 10 L of surface water were collected every 4 – 6 hours 

from the ship’s circulating seawater system at 7m depth (n = 414) or via Niskin rosette at 3m 

depth (n = 51) (Supplemental Table 1). Samples were collected using 0.22 𝜇m Sterivex filters 

5 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

107 and were preserved with 1620 𝜇L of lysis buffer  (23.4 mg mL-1  NaCl, 257 mg mL-1  sucrose, 50 

mmol L -1  Tris-HCl, 20 mmol L -1  EDTA). Samples were  frozen at  -20°C until further processing.  

 Underway temperature and salinity were measured using a  mounted near-surface 

thermosalinograph. At GO-SHIP stations, samples for inorganic nutrients were collected at 

approximately every latitudinal  degree (~11 km)  for the entire water column using a Niskin 

rosette. Nitrate and phosphate concentrations were measured following GO-SHIP protocols 

(https://cchdo.ucsd.edu/).  The detection limits for nitrate and phosphate are typically 0.02 μmol  

L-1  when using standard autoanalytical techniques. For underway sampling points between GO-

SHIP stations, nutrient concentrations were linearly interpolated from the nearest GO-SHIP 

stations. Additional biogeochemical data for these GO-SHIP cruises can be found at 

(https://cchdo.ucsd.edu/cruise/33RR20160321; https://cchdo.ucsd.edu/cruise/33RO20180423).  

Nutricline depth was defined as the depth at which nitrate was  ≥1  𝜇mol L-1 and was used 

as a proxy for nutrient supply to the mixed layer  (Cermeño et al. 2008). Nitrate profiles were 

interpolated at 1 m resolution at each GO-SHIP station. At underway sampling points between 

GO-SHIP stations, the nutricline depth was interpolated from the nearest GO-SHIP stations. For 

underway samples collected before the first GO-SHIP station, World Ocean Atlas climatological 

nitrate depth profiles were used to estimate the nutricline depth  (Garcia et al. 2018).  

Samples for  particulate organic matter (POM) were collected and measured as described by  

Garcia et al. (2018). Briefly, 4 –  8 L of seawater was  collected from the ship’s circulating 

seawater system  and  was filtered using  a 30 μm nylon mesh  to remove large particles.  Samples 

were then collected on a  25 mm pre-combusted (500 °C for 5 h) GF/F filter (nominal pore size = 

0.7 μm), stored in pre-combusted aluminum packets, and frozen at  -80°C.  Concentrations of 

POC/PON were  determined  using  a CN FlashEA 112 Elemental Analyzer, and  concentrations of 
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POP were determined according to a modified ash-hydrolysis protocol. The detection ranges for 

POC and PON were 0.43 – 43.13 μM and 0.037 – 7.39 μM, respectively. The detection limit for 

POP was 0.1 nmol L -1. POM values reported here are the mean of the replicates. Ratios of 

POC/PON, POC/POP, and PON/POP were calculated from the mean concentrations of POC, 

PON, and POP. POM data is publicly available on BCO-DMO (https://www.bco-dmo.org/). 

An iron (Fe)-stress parameter, 𝜙𝑠𝑎𝑡, was estimated from MODIS-Aqua satellite 

fluorescence data (Behrenfeld et al. 2009). 𝜙𝑠𝑎𝑡 across the Indian Ocean was calculated from a 

data set of 9 km resolution global distributions as an average of climatological means taken from 

2003 to 2015 (Larkin et al. 2020). 𝜙𝑠𝑎𝑡 for each sampling point was linearly interpolated from 

the nearest two 𝜙𝑠𝑎𝑡 data points. 

Daily mean sea surface height relative to the geoid was extracted from 0.25-degree 

gridded data obtained from Copernicus Marine Environment Monitoring Service. Sea surface 

height for each sampling point was interpolated from the nearest two gridded data points. To 

visualize surface current patterns, daily mean horizontal velocity (meridional and zonal 

component at 0 m depth) was also extracted from 0.25-degree gridded data obtained from 

Copernicus Marine Environment Monitoring Service. Sea surface height anomalies, geostrophic 

current direction, nutricline depth, and temperature were used to identify cold- and warm-core 

eddies. Cold-core eddies in the northern/southern hemisphere were defined by depressed sea 

height, anticlockwise/clockwise rotation, shoaling nutricline, and decreased temperatures. Warm-

core eddies in the northern/southern hemisphere were defined by increased sea height, 

clockwise/anticlockwise rotation, depressed nutricline, and increased temperatures. 

Transitions between water masses along the transects were identified by determining 

where changes in density occurred. Specifically, temperature and salinity data were fitted with a 
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polynomial regression using the loess function (span = 0.1) in R (R Core Team 2019). The first 

derivative of the fitted data was smoothed with a polynomial regression fit. The local minima 

and maxima of the smoothed first derivative were then used to define where the biggest changes 

in temperature and salinity occurred. Locations where a local minimum/maximum for both 

temperature and salinity occurred indicated a transition between water masses. Currents and 

fronts were identified by daily mean horizontal velocity direction and changes in density. 

Dynamic seascape analysis 

The number and distribution of seascape classes (Kavanaugh et al. 2014) across the 

Indian Ocean were extracted from monthly composite data obtained from NOAA CoastWatch. 

Data were obtained for April, a representative month from the intermonsoon season, for 2016 

and 2018. The relative abundance of each seascape class was calculated, and a 2% relative 

abundance threshold was used to define presence of a seascape class. The geographic 

distributions of seascape classes were plotted to compare spatial patterns between the two years. 

DNA extraction, 16S rRNA amplification, and sequencing 

Microbial DNA was extracted following methods previously described (Larkin et al. 

2020). Briefly, Sterivex filters were incubated with lysozyme (50 mg mL-1 final concentration) at 

37°C for 30 minutes. Proteinase K (1 mg mL -1) and 10% SDS buffer were added to the Sterivex 

filters, and samples were incubated at 55°C overnight. Sodium acetate (245 mg mL -1, pH 5.2) 

and ice-cold isopropanol (100%) were used to precipitate DNA. Samples were pelleted via 

centrifuge at 15,000×g at 4°C for 30 minutes and resuspended in TE buffer (10 mmol L -1 Tris-

HCl, 1 mmol L-1 EDTA) at 37°C for 1 hour. DNA was purified and concentrated (Zymo 
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genomic DNA Clean and Concentrator kit; Zymo Research Corp., Irvine, CA). DNA 

concentration was checked using a Qubit dsDNA HS Assay and a Qubit fluorometer 

(ThermoFisher, Waltham, MA). Samples were diluted to 2 ng μL-1. 

The V4-V5 region of the 16S rRNA bacterial gene was amplified using the 515F-C and 

926R primer set (Needham and Fuhrman 2016). A total of 4 μL of 2 ng μL-1 DNA was added to 

20 μL reactions (0.4 μM of each primer, 1X AccuStart II PCR Supermix; final concentration). 

Amplification occurred in a 2-step process. The first polymerase chain reaction (PCR) occurred 

as follows: 94°C for 3 min and 26 cycles of 94°C for 30 s, 55°C for 30 s, 68°C for 40 s. Free 

primers and primer dimers were removed using a magnetic bead cleanup (10 μL Milli-Q, 10 μL 

PCR product, 20 μL Sera-mag SpeedBeads). A total of 4 μL of bead-cleaned product was added 

to 20 μL reactions (0.3 μM each i5 and i7 Nextera v2 indices, 1X AccuStart II PCR Supermix; 

final concentration). Barcodes were annealed to the bead-cleaned products during the second 

PCR: 12 cycles of 94°C for 30 s, 55°C for 30 s, 68°C for 40 s, and a final extension of 68°C for 

10 min. Final PCR products were visualized with a 1% agarose gel and pooled. Unincorporated 

barcodes were removed from the pooled library with a final magnetic bead cleanup (60 μL 

pooled product, 60 μL Sera-mag SpeedBeads). Quality of the library was checked using a 

Bioanalyzer (Agilent, Santa Clara, CA). Amplicons were pair-end sequenced (2×300 bp) with 

the Illumina MiSeq platform (Illumina, San Diego, CA). Sequence files are available at NCBI 

Sequence Read Archive under BioProject ID PRJNA656268, and BioSample accession numbers 

are reported for each sample in Supplemental Table 2. 

Quality filtering and amplicon clustering 
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Initial library sizes ranged from 19,619 to 181,435 sequences (Mean ± SD = 55,796 ± 

17,552) (Supplemental Table 2). Primers were removed from reads using cutadapt (Martin 2011) 

in QIIME2 (Bolyen et al. 2019). Forward and reverse reads were quality filtered with fastq-mcf 

(Aronesty 2013). A window-size of 10 was used to calculate mean quality score. Reads were 

truncated when the mean quality score was less than 20. After trimming, reads that were shorter 

than the minimum length threshold (150 bp) and reads that contained N-calls were removed. 

Forward and reverse reads were merged based on a minimum overlap threshold (10 bp), 

minimum merge length threshold (350 bp), and number of maximum differences allowed in the 

overlapping region (5 bp) using usearch (Edgar 2010). Final trimming, quality filtering, 

clustering of amplicons, and removal of chimeras was performed using DADA2 (Callahan et al. 

2016) in QIIME2 (Bolyen et al. 2019). The merged reads were trimmed to a length threshold 

(304 bp) to maintain alignment. Reads that matched to the PhiX genome or that contained more 

than 3 expected errors were removed. The error model was trained using a minimum of 800,000 

reads. Samples were then dereplicated, reads were clustered into amplicon sequence variants 

(ASVs), and chimeric ASVs were removed using a consensus procedure. ASVs were clustered 

into de novo 99% operational taxonomic units (OTUs) using the VSEARCH plugin (Rognes et 

al. 2016) in QIIME2 (Bolyen et al. 2019) to minimize the effect that rare ASVs resulting from 

differences in sequencing runs may have on diversity metrics. After quality filtering, final library 

sizes ranged from 10,299 to 101,783 sequences (Mean ± SD = 26,893 ± 11,533) (Supplemental 

Table 2). 

Taxonomic assignments 
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Taxonomy was assigned to 99% OTUs using the SILVA138 reference database (Quast et 

al. 2012) with RDP’s Naïve Bayesian classifier implemented in the R package “dada2” (Callahan 

et al. 2016). Taxonomic assignments were based on a minimum bootstrap confidence of 80 out 

of 100 bootstraps. The taxonomic composition of the samples was dominated by bacterial OTUs 

(Mean ± SD = 96.21% ± 1.88%) (Supplemental Table 2), while eukaryotic and archaeal OTUs 

were low in most samples (Eukaryotes: Mean ± SD = 0.004% ± 0.010%; Archaea: Mean ± SD = 

3.78% ± 1.88%) (Supplemental Table 2). OTUs that matched to eukaryotes and archaea were 

removed from all subsequent diversity analyses. All bacterial taxonomic assignments for each 

sample are reported at the genus level in Supplemental Table 3. 

Diversity analyses and bioregion delineation 

To ensure that diversity patterns were not an artifact of sequencing depth, samples were 

rarefied to a depth of 10,000 sequences. Alpha-diversity was calculated using the Shannon Index. 

Richness was calculated as the number of OTUs in a sample, and evenness was calculated using 

Pielou’s Index. Prior to calculating these metrics, singletons were removed to discard a small 

number of very low-abundance sequences that may represent spurious sequences. Removing 

singletons did not have a large impact on overall diversity metrics. Removal of singletons caused 

a small reduction in the Shannon index (Mean ± SD = 0.011 ± 0.007) as well as richness (Mean 

± SD = 16 ± 10) and led to a small increase in Pielou’s Index (Mean ± SD = 0.006 ± 0.005). 

Correlations of alpha-diversity with ubiquitous and cosmopolitan genera were calculated using 

Pearson’s correlation coefficient, and p-values were adjusted for multiple comparisons using the 

Benjamini-Hochberg correction method. Beta-diversity was calculated using the Bray-Curtis 

dissimilarity index. Distinct biological regions (i.e., bioregions) across the Indian Ocean were 
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defined by partitioning samples into groups of similar bacterial communities through 

agglomerative hierarchical clustering using the unweighted pair group method with arithmetic 

mean (UPGMA) on the Bray-Curtis dissimilarity matrix of the GO-SHIP samples. A high degree 

of longitudinal separation was observed between the eastern and western transects (Supplemental 

Figure 2a). Additionally, the two transects exhibited different distributions of Bray-Curtis 

dissimilarities, where the eastern transect was right-skewed while the western transect was 

symmetric (Supplemental Figure 3). Therefore, the two transects were analyzed separately. 

Agglomerative hierarchical clustering using UPGMA was performed on the Bray-Curtis 

dissimilarity matrices of GO-SHIP I09N and I07N samples. The cophenetic correlation 

coefficient is the correlation between the Bray-Curtis dissimilarity matrix and the cophenetic 

matrix, which contains distances between clusters. The cophenetic correlation coefficient ranges 

from 0 – 1 with values close to 1 indicating that the dendrogram preserved the pairwise distances 

of the original data points. It was therefore calculated to confirm that the dendrograms were good 

visual representations of the dissimilarity matrices (I09N = 0.865, I07N = 0.744). The 

agglomerative coefficient describes the strength of the clustering patterns and ranges from 0 – 1 

with values close to 1 indicating a balanced clustering structure. The agglomerative coefficient 

was therefore calculated to confirm that strong clustering patterns existed within the data (I09N = 

0.874, I07N = 0.862). To define clusters, the dendrograms were cut using dissimilarity 

thresholds of 0.20 and 0.17 for I09N and I07N, respectively (Supplemental Figure 2b and 2c). 

Dissimilarity thresholds for each section were selected by calculating the -1 standard deviation 

from the upper half of the dissimilarity matrix. These dissimilarity thresholds resulted in 54 

clusters along the I09N transect and 44 clusters along the I07N transect. Clusters with fewer than 

5 samples were removed because changes in community structure at this spatial resolution likely 
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resulted from transient, submesoscale processes and not broader environmental gradients. After 

removing clusters with fewer than 5 samples from the analysis, a total of 26 clusters remained 

(I09N = 14 clusters, I07N = 12 clusters). Cluster stability was determined through bootstrapping 

(1000 iterations using “clusterboot” in the “fpc” package, R). Bootstrapped clusterwise means 

ranged from 0.524 – 0.960. Clusters with clusterwise means less than 0.60 were considered 

unstable and were discarded, resulting in a total of 23 remaining clusters that were designated as 

bioregions. Samples in the 23 bioregions were back-projected to their spatial coordinates to 

examine their geographic trends. Using higher dissimilarity thresholds (dissimilarity = 0.225, 

0.250, 0.275, and 0.300) resulted in cluster instability across large geographic regions or in poor 

separation of geographic regions (Supplemental Table 4 and Supplemental Figure 4), indicating 

that higher dissimilarity thresholds were not suitable for partitioning this dataset. The 23 

bioregions were plotted on maps along with Longhurst provinces (Longhurst 2010) and 

ecological marine units (Sayre et al. 2017) to compare the bioregions with previously defined 

marine ecological regions in the Indian Ocean. 

Taxonomic patterns 

Differential abundance of genera across the eastern Indian Ocean biomes (i.e., southern 

gyre, equatorial region, and Bay of Bengal) and the western Indian Ocean biomes (i.e., southern 

gyre, equatorial region, and Arabian Sea) was performed on taxa count tables (function “DESeq” 

in the “DESeq2” package, R) (Love et al. 2014). Additionally, heatmaps showing changes in 

genera abundance (>20 total counts) according to bioregion were generated using 

“plot_heatmap” in the “phyloseq” package (trans = log_trans(4)) (McMurdie and Holmes 2013). 

Heatmaps were constructed using count data so that they could be directly compared to the 
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results from differential abundance analysis. Ubiquitous, cosmopolitan, biome-associated, 

region-associated, and endemic taxa were also identified. Ubiquitous taxa were defined as genera 

that were found in all samples across the Indian Ocean. Microdiversity of the three most 

abundant, ubiquitous taxa was examined through stacked bar plots of 99% OTU relative 

abundance for each taxon and through heatmaps of 99% OTU counts according to bioregion. 

Cosmopolitan taxa were defined as genera that were found in the majority of samples (≥75% but 

<100% of samples). Region-associated taxa were defined as genera that were found in ≥75% of 

samples in one biological region (i.e., bioregion) and ≤25% of samples in all other bioregions. 

Lastly, endemic taxa were defined as genera that exist in ≥75% of samples within one bioregion 

and 0% of samples in all other bioregions. 

Flow cytometry and primary production 

Samples for flow cytometry and primary production were collected at 29 GO-SHIP 

stations along the I09N transect (Baer et al. 2019). For flow cytometry analysis, samples were 

collected directly from Niskin bottles and preserved with a 0.2 μm-filtered 10% 

paraformaldehyde solution (final concentration of 0.5% (v/v)). Prochlorococcus was enumerated 

using forward scatter and red fluorescence. Synechococcus was enumerated by emission in the 

orange wave lengths. Heterotrophic bacteria were stained with SYBR Green (Marie et al. 1997) 

and enumerated. All samples were counted using a BD FacsJazz flow cytometer. The total 

number of bacteria were calculated by summing the absolute abundances of Prochlorococcus, 

Synechococcus, and heterotrophic bacteria. Primary production was measured by 13C-

bicarbonate uptake as described in detail in (Baer et al. 2019). Briefly, carbon uptake rates were 

divided by the total phytoplankton biomass and were normalized by decomposition rates (34.2 ± 
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3.3%) and by the proportion of daylight during the incubation (nmol C L-1 daylight-1), which was 

calculated as the percentage of PAR during the incubation compared to the total daily PAR. 

Correlations of alpha-diversity with the total number of bacteria, absolute abundance of 

Prochlorococcus, absolute abundance of heterotrophic bacteria, and primary production were 

calculated using Pearson’s correlation coefficient. 

Statistical analysis of environmental data 

General additive models (GAMs) were constructed to determine the relationships 

between alpha-diversity and environmental factors. The GAMs were applied separately to the 

western and eastern transects using the “gam” function in the “mgcv” package. The GAMs were 

constructed using the restricted maximum likelihood method with thin plate regression spline 

smooths applied to each explanatory variable (temperature, nutricline depth, phosphate 

concentrations, and Fe-stress) using the “s” function. The ratio of the squared Euclidean norms 

of the vectors for each pair of explanatory variables was calculated using the “concurvity” 

function in “mgcv”. All variables had low concurvity (<0.90), indicating that they could not be 

approximated by one or more of the other variables in the model. Additionally, all variables had 

significant relationships (p < 0.05) with alpha-diversity. 

Boxplots were constructed for temperature, salinity, nutricline depth, Fe-stress, phosphate 

concentrations, nitrate concentrations, POC, PON, POP, C:N, C:P, and N:P to visualize how 

these factors varied across the bioregions along each transect. A one-way analysis of variance 

followed by a post hoc Tukey’s test was performed for each factor on each transect to determine 

if the means differed significantly (p < 0.05) among the bioregions. Results of the Tukey’s tests 

were displayed on the boxplots using compact letter display. 
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Results 

We quantified bacterial biogeography across the Indian Ocean by analyzing the 16S 

rRNA bacterial gene from 465 samples collected on Bio-GO-SHIP meridional sections. Samples 

were collected along a western section (I07N, n = 250) from Durban, South Africa to 

Mormugao, India (April 23 – June 6, 2018), and along an eastern section (I09N, n = 215) from 

Freemont, Australia to Phuket, Thailand (March 22 – April 24, 2016) – both during the spring 

intermonsoon season. We classified distinct bioregions based on bacterial community structure, 

analyzed similarities and differences in phylogenetic composition and alpha-diversity in each 

bioregion, and identified environmental drivers in order to understand the complex bacterial 

biogeography of the Indian Ocean. 

Geography of the bioregions 

Microbially defined bioregions partitioned latitudinally along both the western and 

eastern sections. We identified 23 bioregions with significantly different community 

assemblages, leading to 11 and 12 bioregions in the western and eastern sections, respectively 

(Figure 1a and 1b). There was clear geographic separation between bioregions in the southern 

Indian Ocean (30°S – 12°S), with four bioregions occurring off the coast of Madagascar and four 

bioregions occurring in the southeastern gyre. Additionally, there was one bioregion in the 

southeastern and southwestern gyre that overlapped with the equatorial region (12°S – 5°N). 

Within each section, there was some overlap between bioregions in both the equatorial and 

northern Indian Ocean (5°N – 18°N). On the western side of the basin, there were three 

bioregions distinct to the equatorial zone and two overlapping with the Arabian Sea. On the 
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358 eastern side of the basin, there were two bioregions that were distinct to the equatorial zone and 

two  that were spread throughout the equatorial zone and the Bay of Bengal. Different latitudinal 

trends were observed in the northern Indian Ocean for the Arabian Sea and Bay of Bengal. In the 

Arabian Sea, one large  bioregion exhibited minimal overlap  with the equatorial-Arabian Sea 

bioregions. In the Bay of Bengal, three  smaller  bioregions  had a high degree of variability and 

overlap between them. The Bay of Bengal overall  exhibited the most heterogeneity  in bioregion 

structure. Thus, we observed clear geographic separation of bioregions at southern latitudes and 

increasing overlap between bioregions occurring at mid- and northern-latitudes.  

359 

360 

361 

362 

363 

364 

365 

366 

367 Figure 1: Bioregion geography. (a and b) Clustering analysis revealed partitioning of surface 

368 bacterial communities across the Indian Ocean. Each color represents a distinct bioregion, and 
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grey dots represent samples that did not cluster into a bioregion. Ellipses show geographic extent 

of bioregions. (c) Comparison of bioregions with Longhurst provinces. (d) Comparison of 

bioregions with ecological marine units (EMUs). Each shade of purple represents a different 

EMU. SW = southwestern gyre, SW-EW = southwestern-equatorial western, EW = equatorial 

western, EW-AS = equatorial western-Arabian Sea, AS = Arabian Sea, SE = southeastern gyre, 

SE-EE = southeastern gyre-equatorial eastern, EE-BB = equatorial eastern-Bay of Bengal, EE = 

equatorial eastern, and BB = Bay of Bengal. 

Microbial ecology of the bioregions 

Taxonomic diversity 

Multiple ubiquitous and cosmopolitan taxa dominated the Indian Ocean, but only a few 

taxa were uniquely associated with each bioregion. The phyla Actinobacteria, Bacteroidetes, 

Cyanobacteria, Marinimicrobia (SAR406 clade), Proteobacteria, and Verrucomicrobia were 

ubiquitous (i.e., present in all samples) across the Indian Ocean, with Proteobacteria (35 - 61%) 

and Cyanobacteria (18 - 48%) being the most frequent (Supplemental Figure 5). At a finer 

phylogenetic level, seven genera were ubiquitous across the Indian Ocean, including Candidatus 

Actinomarina (Actinobacteria), Prochlorococcus (Cyanobacteria), SAR11 Clade 1a and Clade 

1b (Proteobacteria), and the NS2b, NS4, and NS5 marine groups (Bacteroidetes) (Figure 2c and 

2d). Of these ubiquitous genera, Prochlorococcus, SAR11 Clade 1a, and SAR11 Clade 1b were 

the most abundant. They had minimal variation across the bioregions (Figure 3) and were 

dominated by a single OTU (57.7% - 100% relative frequency), with the exception of SAR11 

Clade 1b on the eastern transect (Supplemental Figure 6). Beyond these dominant OTUs, the less 

common OTUs of Prochlorococcus, SAR11 Clade 1a, and SAR11 Clade 1b composed unique 
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microdiverse communities with no bioregions sharing the same community (Supplemental 

Figure 7). Thus, although these genera were ubiquitous across the Indian Ocean, microdiversity 

within these genera may have played an important role in structuring communities across the 

Indian Ocean. There were 13 cosmopolitan genera (i.e., present in ≥75% but <100% of samples), 

including several OM clades (Proteobacteria), SAR92 (Proteobacteria), and Synechococcus 

(Cyanobacteria) (Figure 2e and 2f). Combined, the ubiquitous and cosmopolitan genera 

composed a large fraction of the bacterial community (46% – 78%). There were no endemic 

genera (i.e., present in ≥75% of samples within a single bioregion and 0% of samples in all other 

bioregions). However, there was one genus that was uniquely associated with a particular 

bioregion (i.e., found in  ≥75% of samples in one bioregion and ≤25% of samples in all other 

bioregions). Aurantivirga was uniquely associated with a southeastern gyre bioregion (SE1) but 

was found in low relative frequency (<0.36%). Overall, we observed that a small number of 

ubiquitous and cosmopolitan genera dominated the Indian Ocean bioregions and that a single 

taxon was bioregion-specific. 

Bioregion shifts in taxa with important biogeochemical functions were also observed. 

Significant changes in the number of nitrogen-fixers were observed along the western section. 

UCYN-A was common in southwestern Indian Ocean gyre bioregions (Figure 3, Supplemental 

Table 5), while Trichodesmium was in higher abundances within the Arabian Sea bioregions 

(Figure 3, Supplemental Table 5). Significant differences in the number of sulfur-oxidizers were 

also observed along the western transect with Thiomicrorhabdus occurring in higher abundances 

within southwestern gyre bioregions compared to equatorial and Arabian Sea bioregions (Figure 

3, Supplemental Table 5). Sulfitobacter occurred in higher abundances within Arabian Sea 

bioregions compared to southwestern gyre bioregions (Supplemental Table 5). Significant 
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415 changes in the  number  of putative alkane degraders were observed along the eastern transect 

with Alcanivorax and Oleibacter occurring in lower abundances  in the southeastern gyre  

bioregions compared to the equatorial and Bay of Bengal bioregions (Figure 3, Supplemental 

Table  5). Thus, bioregions across the Indian Ocean contained  different abundances  of several 

genera with important nitrogen, sulfur, and carbon cycle potentials.  

416 

417 

418 

419 

420 

421 Figure 2: Diversity and taxonomic gradients.  (a  and b) Trends in alpha-diversity showed  low 

variability along the western transect and systematic latitudinal variation along the eastern  

transect. Black lines represent smoothing curves fit with a polynomial regression (span = 0.1), 

and grey area represents the 95% confidence intervals of  the smoothed curves. (c, d, e, and f) 

Relative abundances of ubiquitous and cosmopolitan genera showed  that there is  a primary 

community composition across the Indian Ocean. Solid lines  represent smoothed curves fit with 

a polynomial regression (span = 0.1)  for each genus.  
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429 Figure 3: Heatmap of genera according to bioregion. Bioregions contained  different numbers  

of genera with known biogeochemical functions.  (a) Taxa of interest are  denoted by *.  (b) 

Subset plot showing only taxa of  biogeochemical  interest.   
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Alpha-diversity 

Moderate changes in bacterial alpha-diversity were observed across bioregions. Low 

variability in alpha-diversity was observed along most of the western transect, as bioregions 

commonly had a Shannon Index near 3.5 (Figure 2a). The exception was the somewhat elevated 

alpha-diversity in a southwestern gyre bioregion (SW2) and an equatorial bioregion (EW2) 

(Supplemental Figure 8a). Alpha-diversity was more variable along the eastern transect (Figure 

2b). The southeastern Indian Ocean gyre had a similar Shannon Index as the western side but 

declined northwards through several bioregions (SE2, SE3, and SE4). There was a sharp increase 

in alpha-diversity near the equator, peaking in bioregions EE1 and EE2 (Supplemental Figure 

8b). Alpha-diversity was more variable north of the equator (Supplemental Figure 8b). To better 

understand how community dynamics contributed to variability in alpha-diversity, the Shannon 

Index was decomposed into richness and evenness components. On the western transect, the 

increase in alpha-diversity in bioregion SW2 corresponded with an increase in richness (i.e., the 

number of OTUs) (Supplemental Figure 9c), while the increase in bioregion EW2 was tied to 

evenness (Supplemental Figure 9e). On the eastern transect, the large decrease in alpha-diversity 

in the southeastern gyre from SE1 through SE4 corresponded with decreases in evenness 

(Supplemental Figure 9f). In contrast, the peak in alpha-diversity within bioregion EE1and EE2 

corresponded with an increase in richness (Supplemental Figure 9d). Thus, changes in alpha-

diversity across the bioregions were impacted by shifts in both composition and relative 

abundance. 

Alpha-diversity gradients significantly correlated with changes in the relative frequency 

of dominant genera. Along both transects, alpha-diversity negatively correlated with the relative 

abundance of Prochlorococcus (I07N: r = -0.638, adj. p < 0.001, df = 249; I09N: r = -0.800, adj. 
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p < 0.001, df = 213). This negative relationship was also seen when using absolute 

Prochlorococcus cell counts measured using flow cytometry (r = -0.63, p < 0.001, df = 29) 

(Supplemental Figure 10). In contrast, alpha-diversity positively correlated with the relative 

abundance of many of the heterotrophic ubiquitous and cosmopolitan genera (Supplemental 

Table 6) but did not have a significant relationship with absolute cell counts of HNA 

heterotrophs (r = -0.16, p = 0.405, df = 29). This suggests an important role of Prochlorococcus 

abundance for Indian Ocean bacterial alpha-diversity. 

Trends in alpha-diversity were weakly tied to environmental factors for both the western 

and eastern transect. A combination of temperature, nutricline depth, phosphate concentrations, 

and Fe-stress explained 32.6% and 32.8% of the deviance in alpha-diversity for I07N and I09N, 

respectively (Supplemental Figure 11 and Supplemental Figure 12). Of these variables, Fe-stress 

explained the most deviance. We observed a parallel decrease in alpha-diversity with Fe-stress 

on the eastern side. However, the correspondence between Fe-stress and alpha-diversity was 

non-monotonic on the western side. Temperature, nutricline depth, and surface nutrient 

concentrations each explained less than 10% of the deviance in alpha-diversity and had varying 

relationships with alpha-diversity on each transect. Additionally, primary production had a non-

significant relationship with alpha-diversity (p = 0.089, df = 19) (Supplemental Figure 13). 

Overall, our observations suggested that shifts in alpha-diversity were not tied to common 

environmental drivers. 

Environmental characteristics of the bioregions 

Bioregions were characterized by subtle transitions in physical and geochemical 

conditions. To link beta-diversity with environmental drivers, changes in environmental 
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conditions across the bioregions were identified using boxplots and ANOVAs. The southwestern 

gyre bioregions varied in temperature and nutricline depth (Figure 4a and 4c, Figure 5, 

Supplemental Figure 14, Supplemental Table 7). Further north, temperature and nutricline depth 

exhibited minimal variation within the western equatorial and Arabian Sea bioregions. However, 

these bioregions showed clear differences in Fe-stress with Fe-stress being high in western 

equatorial bioregions and low in Arabian Sea bioregions (Figure 4e, Figure 5, Supplemental 

Figure 14, Supplemental Table 7). The eastern transect showed parallel patterns, whereby the 

southeastern gyre bioregions varied in temperature and nutricline depth, while the equatorial and 

Bay of Bengal bioregions varied by the type of nutrient stress (Figure 4f, Figure 5, Supplemental 

Figure 15, Supplemental Table 7). Therefore, although clear drivers of beta-diversity (i.e., 

bioregions) could not be identified, perhaps because the communities are very similar, there were 

subtle gradients in temperature as well as nutrient stress type and severity within unique 

bioregions. 

Physical dynamics, such as eddies, fronts, and topographical barriers, also influenced the 

bioregion distribution. A large, persistent eddy led to the formation of a small bioregion on the 

eastern transect (BB3) (Supplemental Figure 16b). Smaller, more transient eddies led to intra-

bioregion variability within the southern Indian Ocean gyre and the Bay of Bengal 

(Supplemental Figure 16). Currents and fronts that intersected the transects also resulted in 

different community structures and bioregions. Along the western transect, the southwestern 

gyre bioregion, SW4, aligned with two currents formed by the westward flowing South 

Equatorial Current, namely the Southeast Madagascar Current and the Northeast Madagascar 

Current (Supplemental Figure 17a). Along the eastern transect, variability within the 

southeastern bioregion, SE3, at 22.5°S corresponded with a front formed by the eastward flowing 
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507

501 Eastern Gyral Current.  Within the southeastern bioregion, SE4, at 16.5°S, variability  

corresponded with a front formed by the westward flowing South Equatorial Current 

(Supplemental Figure 17b). Lastly, topographical barriers  led to transitions between bioregions. 

For example, Seychelles Island intersected the western transect resulting in different bioregions 

south (EW1) versus north (EW3) of  the island (Supplemental Figure 17a). Thus, physical  

dynamics  have a pronounced impact  on community structure  and result in interspersion of 

bioregions or in the formation of a new bioregion.  
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Figure 4: Environmental conditions of the bioregions. (a and b) Temperature (°C) measured 

using a mounted near-surface thermosalinograph. (c and d) Nutricline depth (m) which was 

defined as the depth at which nitrate was ≥1 𝜇mol L-1. (e and f) Fe-stress (%) parameter, 𝜙𝑠𝑎𝑡, 

estimated from MODIS-Aqua satellite fluorescence data. 
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Figure 5: Conceptual diagram of Indian Ocean bioregions. Southern Indian Ocean gyre 

bioregions were characterized by differences in temperature and nutrient supply, whereas the 

equatorial and northern Indian Ocean bioregions were influenced by physical mixing and were 

characterized by differences in nutrient availability on the western and eastern transects and by 

POM concentrations on the eastern transect. Arrows represent known currents in the Indian 

Ocean and are pointing in the direction that they flow: SICC = South Indian Countercurrent, 

SEMC = South East Madagascar Current, NEMC = North East Madagascar Current, SECC = 

South Equatorial Countercurrent, WJ = Wyrtki Jets, EGC = Eastern Gyral Current, and SEC = 

South Equatorial Current. 
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Discussion 

Here, we first asked if bacterial communities were structured spatially and identified 23 

distinct bioregions across the Indian Ocean seascape. In terrestrial systems, biomes are defined 

as areas with similar climate and plant communities, with the plant communities (i.e., 

phototrophs) functioning as a bottom-up control on animal communities (i.e., heterotrophs). In 

marine systems, similar relationships are observed between phototrophs and heterotrophs, where 

the composition of the heterotrophic community is shaped by the composition of the phototrophs 

and phototroph exudates (Mühlenbruch et al. 2018). At the genus level, the Indian Ocean is 

dominated by Prochlorococcus with Synechococcus and nitrogen-fixers appearing in low 

abundances within specific regions. Thus, based on phytoplankton community composition, the 

Indian Ocean would appear uniform, whereas we observed distinct communities based on 

bacterial diversity. A variety of metrics have previously delineated the pelagic Indian Ocean into 

broad ecological regions such as two broad provinces (Longhurst 2010) (Figure 1c), four 

ecological marine units (EMUs) (Sayre et al. 2017) (Figure 1d), and ~10 seascapes (Kavanaugh 

et al. 2014) (Supplemental Figure 1). There was strong longitudinal separation between the 

eastern and western microbially defined bioregions, which agrees with the longitudinal 

separation represented by EMUs (Sayre et al. 2017) and seascapes (Kavanaugh et al. 2014). 

Furthermore, microbially defined bioregions suggest that there are more regions than have been 

previously described and that these regions have subtle environmental drivers which could 

provide novel insights to finer-scale ecosystem changes. For example, there were clear bioregion 

transitions across the southwestern and southeastern Indian Ocean gyre that were masked with 

remote-sensing derived metrics. Regional analyses of Indian Ocean bacterial community 

structures have also detected finer ecosystem partitioning, supporting our findings (Jeffries et al. 
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2015; Zheng et al. 2016). Additionally, mesoscale processes, such as eddies, led to intra-

bioregion variability or the formation of a unique bioregion, indicating that bioregions capture 

transient, dynamic features and are not always permanent features of the seascape. Thus, 

partitioning bioregions using fine-scale sampling of bacterial communities across large 

geographic gradients generated a highly resolved Indian Ocean seascape that was shaped by 

dynamic features and subtle environmental changes. 

Second, we asked where the biggest gradients in bacterial alpha-diversity occurred and what 

environmental factors corresponded with changes in alpha-diversity? The more pronounced 

latitudinal alpha-diversity gradient on the eastern side followed trends previously observed off 

the western coast of Australia (34°S – 12°S), where bacterial richness peaked at 34°S and 

decreased towards the tropics (Raes et al. 2018b). Additionally, a diagonal transect taken from 

the southwestern Indian Ocean gyre to the western coast of Indonesia also showed that alpha-

diversity remained fairly constant throughout the southwestern gyre (Zheng et al. 2016), despite 

strong gradients in temperature and nutrient supply in this region. Alpha-diversity was expected 

to increase with temperature (Fuhrman et al. 2008) or primary productivity (Raes et al. 2018a). 

Within the Indian Ocean, temperature and nutrient supply are uniquely positively correlated with 

the warmest regions being the most nutrient replete (Garcia et al. 2018). Additionally, within the 

eastern Indian Ocean, primary production increases northwards from the gyre (Baer et al. 2019). 

However, we did not detect a clear positive northward trend in alpha-diversity on either the 

western or eastern side suggesting that temperature, nutrient supply, or productivity are not the 

primary drivers here. In our study, Fe-stress explained the most deviance in alpha-diversity, but 

the different relationships observed on the western versus eastern side makes the role of Fe-stress 

as a regulator of alpha-diversity difficult to decipher. Here, we observed a strong relationship 

29 



 
 

   

  

  

   

  

     

 

   

  

      

  

   

   

   

     

  

  

 

  

    

 

   

  

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

between alpha-diversity and the relative abundance of Prochlorococcus. Since the 99% OTU 

level was used to define alpha-diversity, relative abundance was a composite measurement of the 

microdiversity within the Prochlorococcus genus. In the eastern Indian Ocean, the abundance of 

four Prochlorococcus haplotypes varied latitudinally, and the variation within each haplotype 

was attributed to different combinations of environmental factors (Larkin et al. 2020). Therefore, 

the strong niche partitioning of microdiverse Prochlorococcus lineages may indicate why it was 

difficult to identify environmental drivers of alpha-diversity across larger geographic gradients. 

Overall, the Indian Ocean had moderate gradients in biodiversity, especially on the eastern side, 

but the environmental drivers could not be identified. 

Third, we asked what lineages were endemic to these bioregions and what were the major 

ubiquitous lineages across the Indian Ocean? We found that there were no endemic taxa and that 

the Indian Ocean microbiome was primarily composed of a core set of taxa including Candidatus 

Actinomarina, Prochlorococcus, SAR11 Clade 1a and Clade 1b, and the NS2b, NS4, and NS5 

marine groups. Here, Prochlorococcus was the most dominant genera along both transects 

matching previous estimates of cell counts (Baer et al. 2019). Estimates of nutrient limitation 

derived from Prochlorococcus genes, indicate that the Indian Ocean experiences a wide range of 

nutrient limitation types including N-, P-, and Fe-limitation as well as P/N- and N/Fe-

colimitation with particularly high variability in nutrient stress type occurring throughout the Bay 

of Bengal (Ustick et al. 2021). These variations in nutrient limitation type approximately align 

with several of our bioregions. Additionally, we see taxonomic groups with traits such as 

nitrogen fixation, sulfur oxidation, and alkane degradation in shifting abundances across 

bioregions, indicating variations in biogeochemical processes. Thus, these bioregions may also 

differ in ecological functions, but metagenomic analysis is required to confirm this. 
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Fourth, we asked how did geochemical and physical dynamics vary across the bioregions? 

We found that bioregions identified from bacterial biodiversity suggested a complex interplay 

between geochemistry and physical dynamics across the oligotrophic Indian Ocean. Regions of 

Fe-stress emerge in the western tropical region due to low dust deposition and mild upwelling 

(Wiggert et al. 2006; Behrenfeld et al. 2009), while dust deposition from Australia (McGowan 

and Clark 2008) may relieve Fe-stress in the eastern subtropical region. These shifts in Fe-stress 

mirror shifts in bioregions, particularly off the eastern coast of Madagascar, where four 

bioregions partitioned along a gradient of Fe-stress. A large portion of the Indian Ocean 

experiences N-stress (Twining et al. 2019; Ustick et al. 2021), which can be relieved by 

mesoscale physical processes (e.g., eddies). While eddies may be thought to provide short-term 

influxes of nutrients, their dominance throughout the Bay of Bengal (Cui et al. 2016) and the 

Arabian Sea (Sevsu and Al-Jufaili 2013), appear to have a larger scale impact. Indeed, we see 

changes in community structure and sometimes entire bioregions are associated with eddy-

impacted areas across the northern Indian Ocean (Supplemental Figure 16). We also detect 

different bioregions south versus north of Seychelles Island in the western Indian Ocean, 

suggesting that microbial communities respond to subtle changes in nutrient supply due to island 

proximity. During the intermonsoon season, there is a gradient of N-stress and co-limitation by P 

and Fe in the eastern basin (Twining et al. 2019) coupled with a positive latitudinal trend in POM 

concentrations (Garcia et al. 2018). We observed that changes in POM, and likely plankton 

biomass, corresponded with shifting bioregions along the eastern transect, and thus is an 

important factor to consider when delineating ecological regions across the Indian Ocean. 

Gradients of nutrient availability, POM concentrations, and multi-dimensional physical factors 
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were defining environmental features of our bioregions, suggesting that they should be included 

as factors for defining marine ecological regions. 

Results presented here have implications beyond addressing fundamental microbial ecology 

questions across large spatial scales. Many of the environmental variables that we identified as 

shaping bacterial communities (e.g., POC and physical drivers) are measurable from satellites. 

Thus, incorporating these additional factors into marine ecological regions that are defined by 

remote sensing may lead to improved delineation across warm, oligotrophic regions. 

Additionally, the Indian Ocean is historically under-sampled compared to other oceans, so the 

regional ecological consequences of warming on biodiversity are unknown. GO-SHIP sections 

are re-sampled approximately every ten years, enabling the re-evaluation of bioregions. While 

the analyses presented here are the first step towards defining operational bioregions, bioregion 

delineations are currently dependent on the collected sample set and thus are not stable. 

However, what the presented analyses successfully do is identify key genera and their 

distributions across these dynamic bioregions. Future definitions of bioregions can be anchored 

in such keystone lineages and their distributions to delineate regions independently of the exact 

sample set. Re-evaluation of bioregions under this framework can identify possible spatial shifts 

as well as long-term changes due to anthropogenic forcings. Thus, we propose that a 

combination of in-situ ‘omics analysis of microbial communities, detailed hydrography, and 

remote sensing can greatly aid in identifying regions that are most vulnerable to anthropogenic 

impacts. 
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1 

2 Supplemental Figure 1: Dynamic seascapes of the Indian Ocean. Monthly average 

3 distribution of seascape classes from (a) April 2016 and (b) April 2018. Monthly average 

4 relative abundance of seascape classes from (c) April 2016 and (d) April 2018. 
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9

10

Supplemental Figure 2: Bacterial community structure of the Indian Ocean. (a) Longitudinal separation of communities from the 

western and eastern transects. (b) Latitudinal separation of communities along the western transect. (c) Latitudinal separation of 

communities along the eastern transect. Hierarchical clustering was performed on the Bray-Curtis dissimilarity matrix using the 

average linkage method (UPGMA) and was visualized with dendrograms. The black lines represent the dissimilarity thresholds used 

to cut the dendrograms and define bioregions. Black labels indicate the clusterwise mean of each cluster. 
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11 

12 Supplemental Figure 3:  Distribution of Bray-Curtis dissimilarities. (a) Symmetric distribution  of dissimilarities  along the western  

transect.  (b) Right-skewed distribution  of dissimilarities  along the eastern transect. Histograms were constructed from the Bray-Curtis 

dissimilarities in  the upper-half of the dissimilarity matrices of each transect.   
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19

Supplemental Figure 4: Comparison of dissimilarity thresholds. Clustering analysis using different dissimilarity thresholds 

showed that higher dissimilarity thresholds resulted in unstable clusters or in poor geographic separation of regions. Each color 

represents a distinct cluster, and grey dots represent samples in unstable clusters or samples that did not cluster. WIO = Western 

Indian Ocean and EIO = Eastern Indian Ocean. 
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20 Supplemental Table 4: Comparison of clustering results using higher dissimilarity thresholds. 

Dissimilarity Threshold 

0.300 0.275 0.250 0.225 0.200 

I09N 

Initial Number of Clusters 

Number of Clusters with < 5 

Samples 

Number of Unstable Clusters 

Final Number of Clusters 

8 

3 

1 

4 

11 18 30 

8 13 22 

0 0 2 

4 5 6 

54 

40 

2 

12 

I07N 

Initial Number of Clusters 

Number of Clusters with < 5 

Samples 

Number of Unstable Clusters 

Final Number of Clusters 

3 

2 

0 

1 

6 9 16 

4 7 12 

0 0 2 

2 2 2 

25 

18 

0 

7 
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26

Supplemental Figure 5: Taxonomic trends. Relative abundances of phyla across the (a) western and (b) eastern Indian Ocean 

revealed that Actinobacteria, Bacteroidetes, Cyanobacteria, Marinimicrobia (SAR406 clade), Proteobacteria, and Verrucomicrobia are 

ubiquitous across the Indian Ocean. 
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27 
28 Supplemental Figure 6: Microdiversity trends. Relative  abundances of 99% OTUs from the genera (a  and d) Prochlorococcus, (b  

and e) SAR11 Clade 1a, and (c  and f) SAR11 Clade 1b  across samples assigned to bioregions  in the western and eastern Indian Ocean 

revealed that  these genera are primarily composed of a single OTU.  
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31 
32 Supplemental Figure 7: Heatmap of 99% OTUs  according to bioregion.  Counts of 99% 

OTUs from the genera Prochlorococcus, SAR11 Clade 1a, and SAR11 Clade 1b showed that 

bioregions had  different microdiverse communities.   
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35 Supplemental Table 5: Differential abundance analysis of genera with known geochemical 

36 importance. 

Southwestern Gyre vs. Equatorial Western 

Base adj. p-

Genus mean log2 fold change value 

UCYN-A 1.33 5.23 < 0.001 

Thiomicrorhabdus 3.04 6.52 0.001 

Southwestern Gyre vs. Arabian Sea 

Base adj. p-

Genus mean log2 fold change value 

UCYN-A 1.33 5.01 0.002 

Thiomicrorhabdus 3.04 6.47 0.002 

Sulfitobacter 0.82 -4.75 0.010 

Equatorial Western vs. Arabian Sea 

Base adj. p-

Genus mean log2 fold change value 

Trichodesmium 3.25 -2.99 0.005 

Southeastern Gyre vs. Equatorial Eastern 

Base adj. p-

Genus mean log2 fold change value 

Alcanivorax 1.60 -4.32 0.034 

Oleibacter 2.27 -4.79 0.010 

Southeastern Gyre vs. Bay of Bengal 

Base adj. p-

Genus mean log2 fold change value 

Alcanivorax 1.60 -4.75 0.027 

Oleibacter 2.27 -5.43 0.005 
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40
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42

43

Supplemental Figure 8: Alpha-diversity trends of the bioregions. Average Shannon Index 

according to bioregion for the (a) western and (b) eastern Indian Ocean showed minimal 

variation among the western bioregions and large variation among the eastern bioregions. Letters 

represent a post hoc Tukey test (p < 0.05), where means not sharing any letters are significantly 

different. 
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Supplemental Figure 9: Trends in richness and evenness across the bioregions. Trends in 

richness (c and d) and evenness (e and f) showed how these two components contributed to 

changes in alpha-diversity (a and b) along the transects. Black lines represent smoothing curves 

fit with a polynomial regression (span = 0.1), and grey area represents the 95% confidence 

intervals of the smoothed curves. 
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56

Supplemental Figure 10: Relationship between alpha-diversity and absolute bacterial 

abundance. Correlations of Shannon Index with absolute abundances of (a) total bacterial 

abundance (b) Prochlorococcus abundance and (c) HNA heterotroph abundance within the 

eastern Indian Ocean showed a significant, negative relationship with total bacterial abundance 

and Prochlorococcus abundance and a non-significant relationship with HNA heterotroph 

abundance. 
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57 

58 Supplemental Figure 11: Best fit general additive models  (GAMs) of alpha-diversity.  Total  

deviance explained for  I07N  was 32.6% (p  < 0.05, adj. R2  = 0.291, n  = 234) and for  I09N was 

32.8%  (p  < 0.05, adj. R2  = 0.298, n  = 199).  GAM-identified relationships between  (a  and b)  

59 

60 

13 



 
 

     

 

   

   

   

 

61

62

63

64

65

66

temperature, (c and d) nutricline depth, (e and f) phosphate concentrations, and (g and h) Fe-

stress for alpha-diversity along the western and eastern transects. Lines represent predicted GAM 

smooths with 95% confidence intervals in grey. (i and j) Depict the linear relationship between 

GAM-based predictions and observed alpha-diversity. Black lines represent linear regressions 

with 95% confidence intervals in grey. Purple lines represent the 1:1 line. 
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67 

68 

69 Supplemental Figure 12:  Deviance explained by GAMs. Total deviance explained by all 

environmental factors and deviance explained by each environmental factor from  GAM analysis 

of alpha-diversity for  the western and eastern transect.  
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72 

73 Supplemental Figure 13: Relationship between alpha-diversity and primary production.  (a) 

Primary production varied  latitudinally (b) Correlation of Shannon Index with primary 

production showed  a non-significant relationship.   
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  78 

76 Supplemental Table 6: Correlation of alpha-diversity with ubiquitous and cosmopolitan genera 

77 relative abundance. Phyla name is in parenthesis. *denotes statistical significance (adj. p < 0.05) 

Genus 

I07N - Western I09N - Eastern 

adj. p-

value 

correlation 

coefficient 

adj. p-

value 

correlation 

coefficient 

(Actinobacteriota) Candidatus Actinomarina 0.380 -0.069 0.066 -0.132 

(Actinobacteriota) Sva0996 marine group 0.008* 0.193 0.039* 0.148 

(Bacteroidota) Marinoscillum 0.772 -0.027 0.015* 0.173 

(Bacteroidota) NS2b marine group 0.063 0.141 < 0.001* 0.525 

(Bacteroidota) NS4 marine group 0.380 0.071 < 0.001* 0.288 

(Bacteroidota) NS5 marine group < 0.001* 0.358 < 0.001* 0.526 

(Bacteroidota) Tenacibaculum 0.823 -0.02 0.003* -0.206 

(Bdellovibrionota) OM27 clade 0.432 0.059 < 0.001* 0.262 

(Cyanobacteria) Prochlorococcus < 0.001* -0.638 < 0.001* -0.799 

(Cyanobacteria) Synechococcus 0.862 -0.011 0.480 0.055 

(Myxococcota) P3OB-42 0.102 0.126 0.002* 0.217 

(Planctomycetota) Pirellula 0.009* -0.188 0.480 -0.053 

(Planctomycetota) Urania-1B-19 marine sediment 

group 0.837 0.016 < 0.001* 0.265 

(Proteobacteria) OM60(NOR5) clade 0.297 -0.083 < 0.001* 0.464 

(Proteobacteria) OM75 clade 0.425 0.062 < 0.001* 0.386 

(Proteobacteria) Pseudohongiella 0.128 0.115 < 0.001* 0.281 

(Proteobacteria) SAR 11 Clade Ia 0.049* -0.149 0.807 -0.017 

(Proteobacteria) SAR11 Clade Ib 0.106 0.122 < 0.001* 0.380 

(Proteobacteria) SAR92 clade < 0.001* 0.345 < 0.001* 0.498 

(Proteobacteria) Vibrio 0.224 0.095 0.554 -0.043 

(Verrucomicrobiota) Lentimonas < 0.001* 0.304 < 0.001* 0.525 

(Verrucomicrobiota) MB11C04 marine group 0.008* 0.192 < 0.001* 0.648 
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79

80

81

82

83

Supplemental Figure 14: Environmental variability of western Indian Ocean bioregions. (a) Temperature (°C). (b) Salinity. (c) 

Nutricline depth (m). (d) Fe-stress (%). (e) Phosphate (μmol/kg) (f) Nitrate (μmol/kg). (g) Particulate organic carbon (μM). (h) 

Particulate organic nitrogen (μM). (i) Particulate organic phosphorus (μM). (j) C:N. (k) C:P. (l) N:P. Letters represent a post hoc 

Tukey test (p < 0.05), where means not sharing any letters are significantly different. 
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88

Supplemental Figure 15: Environmental variability of eastern Indian Ocean bioregions. (a) Temperature (°C). (b) Salinity. (c) 

Nutricline depth (m). (d) Fe-stress (%). (e) Phosphate (μmol/kg) (f) Nitrate (μmol/kg). (g) Particulate organic carbon (μM). (h) 

Particulate organic nitrogen (μM). (i) Particulate organic phosphorus (μM). (j) C:N. (k) C:P. (l) N:P. Letters represent a post hoc 

Tukey test (p < 0.05), where means not sharing any letters are significantly different. 
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89 

90 Supplemental Figure 16: Location of eddies.  Daily mean sea  surface  height for  the (a) western  

and (b) eastern Indian Ocean. Blue, red, and grey shaded areas indicate  locations  of cold-core 

eddies, warm-core eddies, and mixture of warm- and cold-core eddies, respectively.  
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Supplemental Figure 17: Location of fronts and currents. First derivative of temperature and 

salinity within the (a) western and (b) eastern Indian Ocean. Locations where a local 

minimum/maximum for both temperature and salinity occurred indicated a transition between 

water masses and are denoted with a vertical dashed line. Horizontal velocity within the (c) 

western and (d) eastern Indian Ocean. Positive values indicate eastward flowing currents and 

negative values indicate westward flowing currents. Known currents in the Indian Ocean are 

shaded grey and labeled: SICC = South Indian Countercurrent, SEMC = South East Madagascar 

Current, NEMC = North East Madagascar Current, SECC = South Equatorial Countercurrent, 

EGC = Eastern Gyral Current, SEC = South Equatorial Current. Dashed lines indicate changes in 

density derived from panels (a) and (b). 
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