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Running title: Reproductive resilience in marine fish  

  

  

Abstract   

 

A close relationship between adult abundance and stock productivity may not exist for many 

marine fish stocks, resulting in concern that the management goal of maximum sustainable 

yield is either inefficient or risky.  Although reproductive success is tightly coupled with adult 

abundance and fecundity in many terrestrial animals, in exploited marine fish where and when 

fish spawn and consequent dispersal dynamics may have a greater impact.  Here, we propose 

an eco-evolutionary perspective, reproductive resilience, to understand connectivity and 

productivity in marine fish.  Reproductive resilience is the capacity of a population to maintain 

the reproductive success needed to result in long-term population stability despite 

disturbances.  A stock’s reproductive resilience is driven by the underlying traits in its spawner-

recruit system, selected for over evolutionary time scales, and the ecological context within 

which it is operating.  Spawner-recruit systems are species-specific, have both density-

dependent and fitness feedback loops, and are made up of fixed, behavioral, and ecologically-

variable traits.  They operate over multiple temporal, spatial, and biological scales, with trait 

diversity affecting reproductive resilience at both the population and individual (i.e., portfolio) 

scale.  Models of spawner-recruit systems fall within three categories: (1) two-dimensional 

models (i.e., spawner and recruit); (2) process-based biophysical dispersal models which 

integrate physical and environmental processes into understanding recruitment; and (3) 

complex spatially-explicit integrated life cycle models.  We review these models and their 
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underlying assumptions about reproductive success versus our emerging mechanistic 

understanding.  We conclude with practical guidelines for integrating reproductive resilience 

into assessments of population connectivity and stock productivity. 
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Introduction 1 

The spawning stock-recruitment relationship is a fundamental and challenging problem in 2 

fisheries science and at the center of a current debate on drivers of stock productivity and 3 

productivity regime shifts (Vert-pre et al. 2013; Szuwalski et al. 2015; Klaer et al. 2015; Porch 4 

and Lauretta 2016).  Although there is increased emphasis on complex ecological processes and 5 

environmental forcing (Rice 2011), a growing body of literature demonstrating non-linear 6 

relationships and tipping points (Glaser et al. 2014; Vasilakopoulos and Marshall 2015; 7 

Hunsicker et al. 2016), and increased recognition of the importance of resilience to natural 8 

resource management (Polasky et al. 2011; Brown and Williams 2015), we lack an eco-9 

evolutionary framework to understand drivers of adult abundance in marine fish.   As noted by 10 

Phil Levin in his 1989 Robert H. MacArthur award lecture, (Levin 1992), “the chasm between 11 

evolutionary biology and ecosystems science is a wide one…yet neither discipline can afford to 12 

ignore the other: evolutionary changes take place within the context of ecosystems, and an 13 

evolutionary perspective is critical for understanding organisms’ behavioral and physiological 14 

responses to environmental change.”   The concept of reproductive resilience, can help fill this 15 

chasm. 16 

 17 

In many animals, reproductive success (see definition in Table 1) is tightly coupled with adult 18 

abundance and fecundity (Stearns 1992).  However, most exploited marine fish have evolved  19 

reproductive strategies which differ from terrestrial animals, with effective breeding 20 

populations often orders of magnitude smaller than the mature census population (Hedgecock 21 

1994; Christie et al. 2010), suggesting adult abundance is a poor predictor of recruitment and 22 

that we need to better understand the traits resulting in effective breeding.  Recent meta-23 

analyses of the RAM Legacy Stock Assessment Database also support the lack of a close 24 

relationship between adult abundance and stock productivity (Vert-pre et al. 2013; Szuwalski et 25 

al. 2015).  Less than 20% of the stocks evaluated in those papers showed a pattern of 26 

productivity consistently driven by adult abundance (Vert-pre et al. 2013) and only 39% showed 27 

a positive relationship between recruitment and spawning biomass (Szuwalski et al. 2015).  28 
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However, fisheries management remains predicated on the concept that mature biomass drives 29 

long-term population productivity and yield (Vert-pre et al. 2013).   30 

 31 

Efforts to improve our ability to predict marine fish stock productivity (i.e., future abundance) 32 

have fallen primarily within two approaches.  The first uses the conceptual model of current 33 

stock-recruit relationships (SRRs) but replaces spawning stock biomass (SSB) with estimates of 34 

total egg production (TEP) based on age-based fecundity vectors (Marshall 2009; Saborido-Rey 35 

and Trippel 2013; Brodziak et al. 2015).  The second approach draws from life history theory, 36 

either through the familiar r- and K- selection theory (Musick 1999) or by expanding this 37 

concept to categorize life history strategies based on the intrinsic rate of population growth 38 

(Winemiller 2005), as well as life tables and the Euler-Lotka equation (Kindsvater et al., 2016).  39 

Both approaches have improved our understanding of productivity in marine fish.  However, 40 

these approaches remain heavily based on the assumption that fecundity drives reproductive 41 

success and do not include spatio-temporal reproductive behavior, which is an important driver 42 

of offspring survival (Maunder and Deriso 2013; Donahue et al. 2015).  The importance of 43 

where and when fish spawn and the conditions encountered at the time of first feeding was 44 

first proposed by Hjort (1914), extended to the member-vagrant hypothesis (Iles and Sinclair, 45 

1982), later integrated into the match/mismatch hypothesis (Cushing 1990) and more recently 46 

linked to oceanographic concentration mechanisms by Lasker (1978) and Bakun (1996).  47 

However, only through relatively new technological advances can we now test these 48 

hypotheses at the appropriate scales.  For example, we can now track where and when 49 

individuals are spawning, as well as track eggs and larvae from a given spawning site.  We can 50 

also assess offspring fate (i.e., survivorship and settlement location) through transgenerational 51 

tagging, otolith microchemistry, and genetic parentage analysis (Fig. 1).  In addition, we now 52 

have the computing speed to develop spatially-explicit individual based models (IBMs) to 53 

evaluate factors affecting reproductive success (Mullon et al., 2002; Fiksen et al., 2007; Peck 54 

and Hufnagl 2012). 55 

 56 
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In this paper, we bring together expertise in fisheries ecology, early life history, and stock 57 

assessment to synthesize new understanding of reproductive potential in marine fish and its 58 

importance to fisheries management.  We present an eco-evolutionary framework, 59 

reproductive resilience, to understand multi-dimensional “spawner-recruit systems” and the 60 

role they play in stock productivity.  To build the concept of multi-dimensional spawner-recruit 61 

systems we review the commonality and diversity of traits addressed in fish reproductive 62 

strategies.  We then show how additional traits associated with energetics, spatio-temporal 63 

behavior and sensitivity to environmental forcing affect reproductive success.  Reproductive 64 

resilience, is defined as “the capacity of a population to maintain the reproductive success 65 

needed to result in long-term population stability despite disturbances such as environmental 66 

perturbations and fishing” (Lowerre-Barbieri et al. 2015).  Species-specific spawner-recruit 67 

system traits (and within-population diversity in these traits) and the ecological context within 68 

which a system is operating determine reproductive resilience.  We review how spawner-69 

recruit systems are modeled in traditional stock assessments as well as in recently-developed 70 

dispersal and spatially-explicit full life cycle models, comparing underlying assumptions about 71 

reproductive success with recent developments in mechanistic understanding.   We conclude 72 

with guidelines for applying emerging understanding of reproductive resilience into marine 73 

fisheries management.     74 

 75 

Reproductive success and stock productivity 76 

Productivity and scale 77 

 78 

In fisheries science, the term productivity is used to refer to factors affecting adult biomass and 79 

our ability to harvest wild fish populations sustainably.  The processes evaluated to understand 80 

stock productivity are commonly those occurring at the population scale as well as the lifetime, 81 

annual or seasonal temporal scales (Table 2).  Recently, there has been increased interest in 82 

understanding ecological and evolutionary factors affecting fish stock productivity (Kindsvater 83 

et al., 2016) and the concept of reproductive success can help move this effort forward (Fig. 2)   84 

Reproductive success is the ability of an individual to produce offspring which survive to 85 
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reproductive age (Stearns 1992) and it drives population growth, allows species to persist, and 86 

varies amongst individuals with important consequences for population dynamics (Clutton-87 

Brock and Sheldon, 2010) and fisheries induced evolution (Dunlop et al., 2015).  Reproductive 88 

success is also the ecological process that defines the factors affecting reproductive potential, 89 

although we commonly associate this phrase with SSB or TEP.  The temporal scale associated 90 

with reproductive success is transgenerational, i.e. adults must successfully reproduce within 91 

their reproductive lifespan and offspring must survive to reproductive age.  It is this component 92 

of stock productivity which we focus on in this paper, using the terms “transgenerational 93 

productivity” and “productivity” interchangeably.   94 

 95 

Recent debate about productivity drivers has coalesced around the importance of adult 96 

abundance (Vert-Pre et al. 2013) versus environmental impacts on recruitment (Szuwalski et al. 97 

2015).   Here we use a reproductive resilience framework to integrate both of these factors into 98 

our understanding of spawner-recruit systems.  Spawner-recruit system traits fall into three 99 

groups with differing phenotypic plasticity (Fig. 3, specific traits addressed in the next section).  100 

Fixed traits are constant amongst individuals within a species and invariant over ecological 101 

time.  At the other end of the plasticity spectrum are ecologically-variable traits.  These traits 102 

are individually variable and affected by inter- and intra-species (i.e., density dependent) 103 

interactions and environmental forcing.  Behavioral traits exhibit phenotypic plasticity but often 104 

form a common pattern, or contingents, within a population.   105 

 106 

The processes associated with spawner-recruit systems operate over multiple time scales 107 

(Table 2).  Fixed and behavioral traits are critical biological determinants of reproductive 108 

success.  These traits were selected for over evolutionary time scales to ensure population 109 

persistence in a given spatial context.  Environmental forcing, operating at ecological time 110 

scales, inserts stochasticity into this system, functioning either as an on-off switch or as a 111 

modulator of the degree to which biological attributes can function.  For example, recruitment 112 

occurs at the annual and population scales (Table 2) and strong year classes occur in years 113 

when either seasonal or episodic conditions result in physical processes favorable for larval and 114 
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juvenile survival.  These processes affect recruitment in many species and can include Ekman 115 

transport, storm induced upwelling events, and the occurrence of mesoscale eddies (Boehlert 116 

and Mundy 1987; Checkley et al. 1988; Rice et al. 1999; Sponaugle et al. 2005).   Recently, 117 

Stachura et al. (2014) evaluated the potential for these physical processes to cause 118 

synchronized recruitment patterns across species within an ecosystem, with moderate 119 

coherence in exceptionally strong and weak year classes across 52 stocks in the Northeast 120 

Pacific.   121 

 122 

However, at transgenerational time scales, weather and its effect on physical processes cannot 123 

be the sole driver of reproductive success, as natural selection acts on adult traits affecting 124 

offspring survival, resulting in species-specific reproductive resilience based on the selection 125 

pressures under which the species evolved (Garrod and Horwood 1984; Winemiller and Rose 126 

1992; Lowerre-Barbieri 2009; Mangel et al. 2013).  Mortality regimes (both intensity and 127 

variability of mortality) are spatially-explicit and can vary over time.  At the ecosystem scale, the 128 

marine environment differs in its selection pressures from terrestrial and freshwater systems 129 

due to size, oceanographic processes, and trophic dynamics.  The prevalence of high fecundity, 130 

pelagic larval stages, and high offspring mortality in marine fish indicates a need to ensure 131 

adequate survival in a variable and unpredictable environment.  The closest terrestrial 132 

comparison would be to plants which produce large numbers of seeds, dispersed with the wind.  133 

However, larval fish dispersal is often not passive, as a result of directed larval behavior (Paris 134 

and Cowen 2004; Fiksen et al., 2007; Staaterman and Paris 2013) and fish are not sessile, having 135 

the ability to select and move to their spawning sites (Leis 2015).  Thus, drivers of reproductive 136 

success and resilience in the marine realm are expected to differ from terrestrial systems.   137 

 138 

Commonality and diversity of reproductive strategies 139 

Three drivers of transgenerational productivity, other than SSB, have been suggested for 140 

marine fish: increased reproductive value with age or the big old fat fecund female fish 141 

(BOFFFF) effect (Berkeley et al. 2004; Hixon et al. 2014), population structure (Frank and 142 

Brickman 2001; Fromentin et al. 2014), and diversity of spatio-temporal reproductive behavior 143 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

(Berkeley et al. 2004; Lowerre-Barbieri et al. 2015).  Like natural mortality, the relative 144 

importance of these drivers can vary among species.   Traits commonly considered in fish 145 

reproductive strategies are primarily fixed traits, including: (1) the number of breeding 146 

opportunities (iteroparous or semelparous); (2) type of spawning (total versus batch); (3) 147 

mating system (promiscuous, polygamous, or pair spawners); (4) gender system (gonochoristic 148 

or hermaphroditic); (5) secondary sex characteristics; (6) spawning site preparation; (7) place of 149 

fertilization; (8) embryonic development; and (9) degree of parental care (Murua and Saborido-150 

Rey 2003; Wootton 2012).  Most exploited marine fish (i.e. those which can sustain large 151 

increases in mortality and continue to have viable populations) exhibit either promiscuous or 152 

polygamous mating strategies with external fertilization, no parental care, and no spawning site 153 

preparation.  Of course, there are exceptions including the rockfishes (Sebastes spp.), which 154 

have internal fertilization and development but release pelagic larvae (Mangel et al. 2007), and 155 

grey triggerfish (Balistes capriscus, Balistidae) and lingcod (Ophiodon elongates, 156 

Hexagrammidae), which build nests and guard their eggs.  Exploited species are somewhat 157 

more diverse in terms of the number of breeding opportunities, spawning type, and gender 158 

system.  Most species are iteroparous, but several semelparous species support extremely 159 

important fisheries, including the European and American eels (Anguilla Anguilla and Anguilla 160 

rostrate, Anguillidae), capelin (Mallotus villosus, Osmeridae), American shad (Alosa sapidissima, 161 

Clupeidae), and Pacific salmon (genus Oncorhynchus, Salmonidae).  Similarly, at the annual 162 

scale, most species are batch spawners, spawning multiple times in a spawning season.  Total 163 

spawners, those fish which spawn either in one event or over a short time period (Pavlov et al. 164 

2009), occur less frequently and are typically diadromous, undertaking long spawning 165 

migrations (Jager et al. 2008).  Total spawners, such as Atlantic salmon (Salmo salmar, 166 

Salmonidae), striped bass (Morone saxatilis, Moronidae), and grey and striped mullet (Mugil 167 

liza, Mugil cephalus, Mugilidae), support important fisheries.  Similarly, the vast majority of 168 

exploited marine fish have a gonochoristic gender system.  However, hermaphroditism is 169 

common in groupers (Epinephelidae), seabasses and combers (Serranidae) parrotfishes and 170 

wrasses (Labridae), and seabreams (Sparidae) and plays an important role in understanding 171 

transgenerational productivity in these fished species (Erisman et al. 2013).    Sex 172 
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determination, not to be confused with gender system, is an individual “decision” to be one sex 173 

or the other and is an ecologically-variable trait affected by temperature in some gonochorists 174 

and social cues in hermaphrodites (Mank et al. 2009). 175 

 176 

Spawner-recruit systems 177 

To understand spawner-recruit systems we need to expand beyond traditional reproductive 178 

strategy traits to include energetics, spatio-temporal behavior, sensitivity to environmental 179 

forcing, and demographic trends in traits affecting reproductive success (4a).  There is growing 180 

awareness that energetics and spatio-temporal reproductive behavior affect productivity.  181 

Reproductive effort is an ecological variable trait and refers to the proportion of the total 182 

energy budget an individual devotes to reproductive processes.  It will be affected by both 183 

ecological context (food availability) and internal state and affects spawning migrations, egg 184 

quality, skip spawning, and annual fecundity (McBride et al. 2013).  Reproductive timing, or the 185 

temporal pattern of reproduction over a fish’s lifetime can act as both a behavioral trait (i.e., 186 

spawning seasonality) and an ecologically-variable trait (i.e., individual spawn times) and plays 187 

an important role in reproductive success, determining the first environment offspring 188 

encounter (Ims 1990; Yamahira 2004; Lowerre-Barbieri et al. 2011) and the number of breeding 189 

events and thus the probability of releasing offspring during the window associated with 190 

favorable survival conditions.  Reproductive timing also determines reproductive lifespan and 191 

generation time and thus expected recovery times following over-exploitation.  Spawning site 192 

selection is also both a behavioral (spawning habitat) and ecologically-variable trait (individual 193 

site choice).  Spawning site selection determines the starting point of larval dispersal, affects 194 

fisheries selectivity, and potentially all spatial components later in the life cycle (Bailey et al. 195 

2008; Maunder and Piner 2014; Ciannelli et al. 2015).   Availability of spawning habitat affects 196 

population viability (Valavanis et al. 2008) and consistent spawning site selection over time, or 197 

spawning site fidelity, affects population structure.  If spawning site selection is driven by 198 

returning to an individual’s birthplace this is considered natal homing or philopatry.   199 

 200 
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For offspring to survive and recruit to a fishery, larvae must find food, avoid predation, and 201 

reach suitable nursery habitat, which often differs from spawning habitat.  In addition, juveniles 202 

need to avoid predation, eat, grow, and in many species, move to adult habitat.  Drivers of 203 

larval survivorship are also species-specific, because each species has evolved unique behaviors 204 

and physiological characteristics to survive in a given habitat.  For example, late-stage larvae of 205 

coral reef fish typically need a suitable reef habitat on which to settle at the end of their pelagic 206 

larval phase. Many of these species therefore have physiological traits which aid in their 207 

abilities to locate this habitat, such as strong swimming abilities, advanced sensory perception, 208 

and navigation capabilities (Kingsford et al. 2002; Leis 2007).  In contrast, many pelagic species 209 

do not rely on a particular benthic habitat for settlement, completing their life cycle in the 210 

pelagic environment.  For example, most species of tuna spawn in oligotrophic subtropical 211 

environments (Reglero et al. 2014).  These environments may be food-limited and these species 212 

have evolved specialized feeding behaviors, including piscivory and cannibalism from very small 213 

sizes (Llopiz and Hobday 2015).  Like adult survivorship, there is no universal process or 214 

temporal predictor of offspring survival.  For pelagic species, it may be determined more in the 215 

egg (Richardson et al. 2011) or larval stages (Sætre et al. 2002; Bergenius et al. 2002; 216 

Beaugrand et al. 2003; Castonguay et al. 2008).  In demersal and reef species, juvenile mortality 217 

may play a more important role (Shulman 1985; Gibson 1994; Carr and Hixon 1995), although it 218 

often simply dampens year-class variability, rather than driving year-class strength (Myers and 219 

Cadigan 1993; Leggett and DeBlois 1994).  Similarly, processes affecting offspring survivorship 220 

will differ with latitude.  For example, the close relationship between high chlorophyll events 221 

and larval feeding success observed in temperate species (Platt et al. 2003), may not be an 222 

appropriate model for species adapted to tropical environments (see Leis et al. 2013).   223 

 224 

Spawner-recruit systems differ in their sensitivity to environmental effects and the temporal 225 

pattern of strong year classes over the expected reproductive lifespan.  Both have important 226 

implications to management as they will affect recovery potential and vulnerability to climate 227 

change.  For example, wind has a strong effect on the retention or dispersal of the eggs of 228 

spring-spawning cod (Hinrichsen et al. 2003; Pacariz et al. 2014), whereas for menhaden, 229 
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spawning in the winter offshore, it is the large scale atmospheric drivers that have the greatest 230 

effect on across-shelf transport and reproductive success (Rice et al. 1999).  Short-term, 231 

episodic events also affect survival as seen in increased survivorship of striped bass eggs in 232 

estuaries when spawning follows a pulse of freshwater discharge (North et al. 2005), but 233 

decreased survival associated with storm events that affect water temperature (Rutherford and 234 

Houde 1985; Secor and Houde 1995).   The temporal patterns of strong year-classes are also 235 

species-specific (Pineda et al. 2007; Morgan 2014).  Assessing the data reported by Pepin 236 

(2015), we show that commercially exploited stocks from primarily temperate habitats had  237 

recruitment variability patterns that differed among families (Fig.  5). Forage fish and two 238 

families of Pleuronectiformes had greater recruitment variability relative to variability in 239 

spawner biomass, whereas tunas (Scombridae), sablefish (Anoplopomatidae), sea basses 240 

(Serranidae) and roughies (Trachichthyidae)  had lower relative levels of recruitment variability.  241 

However, spawner-recruit systems are species-specific, vary considerably within a family, and 242 

the limited differences in median relative recruitment variability amongst many of the families 243 

(from Pleuronectidae to Carangidae) may point to a need for finer taxonomic resolution and/or 244 

greater consideration of the ecological context (i.e., expected environmental variability) 245 

associated with a species’ home range.   246 

 247 

A species’ reproductive resilience depends on its fixed, behavioral, and ecologically-variable 248 

traits and the within-population diversity in these traits.  At the population scale, spawner-249 

recruit systems differ amongst species in their trait diversity (Fig. 4).  For example, reproductive 250 

lifespan in semelparous species is one year, whereas it is more than seventy years for Pacific 251 

ocean perch (Sebastes alutus, Sebastidae).  Similarly, the number of annual breeding events can 252 

vary from one in striped bass to 54 in the bay anchovy (Anchoa mitchilli, Engraulidae).  High 253 

spawning site density and low diversity is seen in species like Nassau grouper (Epinephelus 254 

striatus, Serranidae), (Erisman et al., 2015) and the reverse is seen in the red snapper (Lutjanus 255 

campechanus, Lutjanidae) (Lowerre-Barbieri et al. 2015).  Larval dispersal and recruitment 256 

variability also differ, presumably associated with the distance between spawning and nursery 257 

sites, which can be widely separated in species such as in gag grouper (Mycteroperca 258 
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microlepis, Serranidae) (Fitzhugh et al., 2005) or overlapping in estuarine fish such as the 259 

spotted seatrout (Cynoscion nebulosus, Sciaenidae) (Walters et al., 2009).   260 

 261 

Reproductive resilience is also driven by individual diversity in behavioral and ecologically- 262 

variable traits, often called the ‘the portfolio effect’ (Figge 2004).  The underlying concept is to 263 

maximize population fitness through spreading the risk (Garcia-Gonzalez et al. 2015), resulting 264 

in increased population reproductive success in an unpredictable environment (Secor 1999).  265 

For example Bristol Bay salmon stock exhibit spatio-temporal spawning diversity, which 266 

increases the resilience of the regional stock, and reduces variability in fishery yields (Hilborn et 267 

al. 2003; Schindler et al. 2010), with similar patterns observed in a range of species (Secor 268 

2007).   The portfolio effect has been studied primarily in terms of the spatio-temporal behavior 269 

of diadromous species.  But portfolio theory can be used to estimate components of a stock’s 270 

reproductive resilience by assessing spawner-recruit traits along axes of conservation risk and 271 

return (Anderson et al. 2015)  272 

 273 

Modeling spawner-recruit systems 274 

Given increased awareness that adult abundance and TEP are poor predictors of future 275 

productivity in many marine fish (Kell et al. 2015), we need to develop alternative ways to 276 

assess spawner-recruit systems and their productivity.  Conventional fisheries management 277 

attempts to control fishing mortality on a given stock in a way that produces near-maximum 278 

sustainable yields (O’Farrell and Botsford 2006) and prevents recruitment overfishing, even if a 279 

direct link between spawning stock size and subsequent recruitment cannot be established 280 

statistically, which is commonly the case (Rosenberg and Restrepo 1994).  By necessity, all stock 281 

assessment models simplify ecological processes (Cadrin and Dickey-Collas 2015) but they differ 282 

in their complexity and their assumptions regarding reproductive success and productivity 283 

(Table 3).  The simplest stock assessment models assume constant recruitment and that 284 

productivity is driven by density dependence and the mature census population (i.e. SSB).  285 

Traditional self-regenerating models (Beverton et al. 1984) combine yield and SSB-per-recruit 286 

with a stock-recruitment relationship (SRR) which relates the abundance of spawners with 287 
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subsequent recruitment (Ricker 1954; Beverton and Holt 1957; Cushing 1975; Shepherd 1982).  288 

Two SRR models are the most commonly used: the Beverton-Holt model, where recruitment 289 

increases asymptotically, and the Ricker model, where recruitment declines at high spawning 290 

stock abundance.  However, both predict recruitment produced by a given spawning biomass 291 

based on the product of maximum productivity per unit spawning biomass and the degree of 292 

density dependence (Mangel et al. 2013).  A parameter used in conjunction with SRRs is 293 

steepness or the fraction of recruitment from an unfished population when the spawning stock 294 

biomass declines to 20% of its unfished level (Hilborn and Walters 1992).  Brodziak et al. (2015) 295 

state that, “steepness determines the expected resilience of a fish stock to harvest and is 296 

fundamentally important for the estimation of biological reference points such as maximum 297 

sustainable yield.”   298 

 299 

However, population growth rates and equilibrium abundance are affected by multiple complex 300 

processes not integrated into stock assessments (Watson et al. 2012; Snyder et al. 2014).  Stock 301 

assessment models are predicated on the concept that population growth can be explained by 302 

birth and death rates and density dependence, independent of how behavior impacts 303 

reproductive success (i.e., behavioral ecology).  Similar to models used to estimate maximum 304 

sustainable yield for hunted wildlife, such as deer (Fortin et al., 2015) these models assume all 305 

births are created equal and that birthrate is the main driver of reproductive success.  However, 306 

most exploited marine fish are pelagic spawners with high fecundity and high offspring 307 

mortality.  In these spawner-recruit systems the dispersal pathways of propagules (eggs and 308 

larvae) will determine source-sink dynamics (Iwasa and Roughgarden 1986; Leibold et al. 2004; 309 

Kough et al. 2013), population persistence (Hastings and Botsford 2006; Aiken and Navarrete 310 

2011), rates of population replenishment (Hastings and Botsford 1999; Botsford et al. 2001; 311 

Cowen et al. 2006), and spatial overlap with competitors, predators, and prey (Salomon et al. 312 

2010; White and Samhouri 2011).  This suggests that where and when “birth” occurs may be as, 313 

or more important, than birth rates (Hamilton et al. 2008).   314 

 315 
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Over the past decade, our understanding of spawner-recruit systems has been greatly 316 

improved by modeling efforts linking reproductive and dispersal processes (Rose et al. 1999; 317 

Werner et al. 2001; Cowen et al. 2006; Peck and Hufnagl 2012).  The spatial scale of traditional 318 

stock assessments is that of the unit stock, with the biological definition based on reproductive 319 

isolation.  Marine fish populations are typically assumed to be relatively open, with high levels 320 

of gene flow and stocks are consequently defined based on geographical features and managed 321 

at large spatial scales.  In addition, it is assumed that within a stock there is complete mixing of 322 

individuals and that the population exhibits homogeneous vital rates (Cadrin and Secor 2009).   323 

However, recent studies suggest spatial structuring occurs at much smaller scales and that this 324 

population structure can play an important role in productivity (Levin 2006; Teacher et al. 2013; 325 

Stanley et al. 2013; D’Aloia et al. 2015).  Dispersal models are allowing us to test hypotheses 326 

about connectivity processes at these more realistic time-space scales (Paris et al. 2002; Paris et 327 

al. 2005; Werner et al. 2007; Miller 2007; Peck and Hufnagl 2012; Karnauskas et al. 2013; 328 

Ospina-Alvarez et al. 2015), resulting in dynamics and stability properties unsuspected from 329 

models which assume homogeneous spawning populations (Hastings and Botsford 1999; 330 

Botsford et al. 2009; Alós et al. 2014; Ospina-Alvarez et al. 2015).   331 

 332 

Coupled bio-physical individual-based models (IBMs), used to simulate egg and larval dispersal 333 

and survivorship, combine a stochastic biological model with ocean circulation models (Cowen 334 

et al. 2000). Typically, they use a Lagrangian particle-tracking framework to address individual 335 

variability, and information on currents and environmental conditions from ocean circulation 336 

models to track large number of individuals through space and time (Paris et al. 2007).  An 337 

example is the Connectivity Modeling System (CMS) which is a probabilistic, multi-scale model 338 

(Paris et al. 2013) with open-source code (https://github.com/beatrixparis/connectivity-339 

modeling-system).  The CMS couples an offline nested-grid technique to a stochastic Lagrangian 340 

framework where individual variability is introduced by drawing the biological attributes of 341 

individual larvae at random from a specified probability distribution of traits.  The model 342 

generates an ensemble forecast or hindcast of the larvae’s three dimensional trajectories, 343 

dispersal kernels, and transition probability matrices used for connectivity estimates.  344 
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 345 

One of the greatest remaining challenges for biophysical models is the need for data at the 346 

appropriate spatial and temporal scales.  These data include: spatio-temporal distributions of 347 

spawning activity, egg and larval buoyancy, larval behavior, stage durations, validated 348 

hydrodynamic models at biologically-meaningful resolutions (Munguia-Vega et al. 2014), and 349 

better data on ecological context (e.g., prey and predator abundance).  High resolution data on 350 

spatio-temporal reproductive behavior and how it may vary over time is often unavailable 351 

(Kough and Paris 2015), necessitating the assumption that reproductive behavior is static.  This 352 

can lead to spurious results, given that circulation patterns and current regimes can differ on 353 

relatively short time scales (Vikebø et al. 2005).  However, the need for this data is increasingly 354 

recognized (Erisman et al. 2012).  Emerging methods to collect data on spawning include: 355 

passive acoustic surveys to map spawning sites of soniferous species (Walters et al. 2009) and 356 

acoustic telemetry to track fine scale reproductive behavior (DeCelles and Zemeckis 2013; 357 

Lowerre-Barbieri et al. 2016).  High resolution data on spawning activity can also be gleaned 358 

from species for which the Daily Egg Production Method has been applied, predominantly small 359 

pelagics (Ospina-Alvarez et al. 2013).  It is also increasingly available from fisheries independent 360 

surveys (Lowerre-Barbieri et al. 2014) and can be augmented by examining available fisheries 361 

dependent data (i.e., looking at peaks in CPUE with spawning season for aggregating species) or 362 

drawing on the local ecological knowledge of fishermen (Ames 2004; Murray et al. 2008).   363 

 364 

Spatially-explicit integrated life cycle models  365 

Although dispersal and settlement drive the fitness landscape in sedentary marine species, fish 366 

have the ability to select and move to a given spawning site (Paris et al. 2005; Fiksen et al. 367 

2007) leading to the need to integrate spatial components over the full life cycle (Cianelli et al. 368 

2015).  Key spatial elements of an individual’s life cycle (Fig. 2) include where an individual is 369 

spawned (i.e., the spawning site used by its parents), larval retention area, juvenile nursery 370 

habitat, adult feeding habitat, and where that individual spawns, which closes the life cycle and 371 

results in either philopatry or allopatry (Smedbol and Stephenson 2001).  To assess population 372 

connectivity and its effect on reproductive resilience, it is necessary to assess dispersal 373 
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throughout the life cycle (Frisk et al. 2014).  To do so necessitates combining sub-models into a 374 

single modeling framework (Plagányi and Butterworth 2004) to address environmental effects 375 

on larval drift, development and mortality rates, density-dependent effects in juveniles, and the 376 

population dynamics of the fished portion of the stock (Rochette et al. 2013).  Such spatially-377 

explicit end-to-end modeling frameworks have focused primarily on trophic dynamics (e.g., 378 

Atlantis, OSMOSE, and Ecospace).  However, there is growing awareness that linkages between 379 

energetics and reproductive success at the individual and population scales affect stock 380 

productivity (Giacomini et al. 2013; Politikos et al. 2015; Rose et al. 2015).  For example, full life 381 

cycle models have been developed to assess spatial and environmental drivers of productivity 382 

but applied primarily to small pelagics (Bernal et al. 2011).  This is because these species often 383 

have the needed data, as the daily egg production method is used to estimate SSB.  However, 384 

the differing spawning site selection processes in small pelagics with many other exploited 385 

marine species, highlight the need to build these models for a wider range of species.   386 

 387 

As with biophysical models, the greatest bottleneck is often data collected at the necessary 388 

spatial and temporal scales and the need to ground-truth model predictions and develop 389 

outputs applicable to management decision rules (White et al. 2011).  An additional challenge is 390 

field-testing results through individual-based studies of spatial ecology and fitness.  To test the 391 

efficacy of marine protected areas (MPAs) there is the added need to evaluate larval 392 

connectivity amongst MPAs (White et al. 2014).  However, with recent empirical gains in 393 

molecular assays and statistical analytics for parentage and other first-order (i.e., full- and half-394 

sibling) genetic assignments, there has been great improvement to our ability to ground-truth 395 

dispersal models (Baums et al. 2006).  These genetic techniques provide a direct means to 396 

quantify individual reproductive success, identify sources of recruits, and ground truth larval 397 

dispersal trajectories and dynamics (Manel et al. 2005; Harrison et al. 2012; Iacchei et al. 2013; 398 

Crossin et al. 2014). 399 

 400 

Fisheries management and reproductive resilience 401 
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Fisheries management uses harvest control rules and measures (e.g., minimum size limits, 402 

closed seasons, closed areas, catch limits, etc.) based on biological reference points associated 403 

with the level of fishing at which there would be negative consequences (Marshall et al. 2003).  404 

Stock assessment models typically assume adult abundance drives recruitment, with density-405 

dependent feedback loops driving productivity.  However, our understanding is rapidly 406 

changing with the recognition that productivity is affected by more than density dependent 407 

compensation (Walters and Martell 2004; Francis et al. 2007), SSB and total egg production are 408 

relatively insensitive measures of stock reproductive potential (Kell et al. 2015), and effective 409 

breeding populations are significantly smaller than adult populations (Christie et al. 2010; 410 

Hogan et al. 2012).   At the same time there is increased awareness of the role environment 411 

plays in annual recruitment (Szuwalski et al. 2015).   If there is not a close relationship between 412 

adult abundance and recruitment for a given species, then the assumption that larger SSB 413 

results in greater sustainable yield is invalid and consequently, the single management target of 414 

maximum sustainable yield, predicated on this concept, is either inefficient or risky (Vert-pre et 415 

al. 2013).  416 

 417 

In this review we develop the concept of multi-dimensional spawner-recruit systems to better 418 

understand productivity and reproductive resilience in marine fish.  Resilience refers to a 419 

system’s ability to withstand disturbance while maintaining its essential functionality, structure, 420 

and feedback loops (Walker et al. 2004).  Here, we propose the term reproductive resilience to 421 

refer to the capacity of a spawner-recruit system to adapt to changing conditions while 422 

maintaining long-term stability in abundance but not changing its key traits, such as 423 

reproductive timing or spawning site selection.  Reproductive resilience is not limited to 424 

reproductive processes but rather encompasses all processes affecting offspring survival to 425 

reproductive age.  As such, it is an expansion on the concept of compensatory reserve, the suite 426 

of density-dependent processes resulting in slowed population growth at high population 427 

densities and faster population growth at low densities (Rose et al., 2001).   Reproductive 428 

resilience is driven by a stock’s spawner-recruit system and is the capacity of a population to 429 

maintain the level of reproductive success needed to result in long-term population stability 430 
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despite disturbances.  In this system, reproductive success is affected by both density-431 

dependent and fitness feedback loops, and ecological context (Fig. 3).  Evolutionary processes 432 

determine a stock’s inherent reproductive resilience, but ecological conditions determine the 433 

reproductive success of an individual.  When the mortality environment of a stock significantly 434 

changes from that under which the species evolved, outcomes range along a continuum from 435 

easily reversed density-dependent adaptation to extinction of population components, or 436 

whole species.  In the middle of this continuum are adaptations to alternate states (productivity 437 

regime shifts), resulting from either the fitness feedback loop (e.g., selection for earlier 438 

maturation), or changes in the ecological context affecting reproductive success.  Depensation 439 

occurs when density dependent effects (in this case low density) cause changes in the 440 

ecological context, decreasing reproductive success.  This negative feedback can be due to a 441 

number of processes, such as increased predation or decreased food availability, potentially 442 

associated with complex multi-level trophic dynamics dependent on large egg boons (Fuiman et 443 

al., 2015), loss of population connectivity, or decreased fertilization  (Courchamp et al. 2008).  444 

Thus reproductive resilience of a stock will be dependent on the stock’s sensitivity to 445 

disturbance and its adaptive capacity within a given ecological context. 446 

  447 

In the U.S., the Magnuson-Stevens Fishery Conservation and Management Act and the 448 

associated National Standard Guidelines require fishery management councils to avoid 449 

overfishing by specifying “acceptable biological catch” (ABC), which is typically based on an 450 

estimated over-fishing limit from the stock assessment (usually maximum sustainable yield or 451 

its proxy) and a “buffer” adjustment to decrease the probability of over-fishing given scientific 452 

uncertainty (Prager and Shertzer 2010).  Spawner-recruit systems consist of multiple interacting 453 

traits which occur over varying demographic, spatial and temporal scales, with greater 454 

resilience associated with greater diversity or redundancies within traits.  Because spawner-455 

recruit systems evolved to ensure population persistence in an environment with variable 456 

mortality, unfished populations possess inherent buffers to disturbance. However, because 457 

they are fundamentally based on the concept of compensatory capacity, SRRs have traditionally 458 

only looked at one element of a spawner-recruit system, i.e. adult abundance, and thus may 459 
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not capture the system’s built-in buffers nor how fishing may erode them or affect the fitness 460 

feedback loop.  This conceptual model of spawner-recruit systems brings us closer to 461 

representing ecological processes than what has commonly been used in fisheries science and 462 

we believe can be used to better inform the development of reference points, as well as 463 

highlight the need for protection of non-traditional reproductive potential components.    464 

 465 

Integrating spawner-recruit systems into the management framework 466 

So what are the steps needed to take this conceptual model and apply it to the assessment and 467 

management of marine fish stocks?  First, we need greater scientific dialogue amongst fisheries 468 

ecologists, geneticists, early life history scientists, and stock assessment scientists.  Each of 469 

these sub-groups work somewhat independently from the others and often speak a different 470 

language, or at least a different dialect.  We also need to address the differing scales associated 471 

with ecological and management processes.  For reproductive resilience, the generational time 472 

scale (i.e., reproductive lifespan) is what is important but operational management advice is 473 

usually provided at a shorter time scale, typically within a one to three-year time horizon.   474 

Fluctuations in year-class strength (i.e., the production of strong or weak year classes) take on 475 

differing importance at these temporal scales.  Ecologically, they may simply be part of a 476 

spawner-recruit system’s ability to maintain a stable population over the species’ reproductive 477 

lifespan, but from a management perspective they affect short-term yield and stakeholder’s 478 

perception of abundance.  Similarly, protection of key traits affecting reproductive resilience 479 

may not be possible with the use of only traditional fisheries management measures such as 480 

annual catch limits.  Spawner-recruit systems are species-specific with traits occurring over 481 

spatial, temporal, and demographic scales.  Fortunately, there is growing awareness of this 482 

(SEDAR, 2015) and the need for incorporating non-traditional measures of reproductive 483 

potential in the stock assessment and fisheries management processes (Fig. 6).    484 

 485 

Although aligning fishery management systems to better protect reproductive resilience seems 486 

daunting, it is already occurring.  There is growing awareness that fishing is a selective force, 487 

stocks are not in equilibrium, and both longevity and maturity schedules may be impacted, 488 
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potentially changing a spawner-recruit system’s structure and feedback loops.  Because data 489 

poor stocks do not have estimates of SSB, methods developed to assess them, such as the 490 

productivity and susceptibility analysis (PSA) and evaluation of life history traits (ICES WKLIFE 491 

working group, ICES 2015), are paving the way for better integrating reproductive resilience 492 

into assessments.  The PSA approach evaluates how stocks will be impacted by fishing with the 493 

assumption that the risk to a species depends on two characteristics: (1) the productivity of the 494 

unit, which will determine the rate at which the unit can sustain fishing pressure or recover 495 

from depletion or other impacts due to the fishery; and (2) the susceptibility of the unit to 496 

fishing activities (Patrick et al. 2010).  This approach can easily be extended to include traits 497 

important to reproductive resilience which will affect both productivity and susceptibility as 498 

well as to develop a reproductive resilience index which can be used as a post-assessment 499 

scaler to help inform ABC harvest control rules. Such consideration of reproductive resilience in 500 

ABC determination broadens the current practice of considering PSA vulnerability scores 501 

(Carmichael and Fenske 2011).  At the mechanistic level, technological advances are allowing us 502 

to assess reproductive resilience in ways which were not previously possible.  However, our 503 

modeling and simulation capability is greatly out-pacing our available data, leading to a need 504 

for increased research on spawner-recruit systems and especially how they will function in this 505 

time of multiple disturbances, including climate change. 506 

 507 

Measures of reproductive resilience with management applications 508 

There is growing evidence that long-term high exploitation rates truncate age distributions, 509 

with feedback loops affecting other life history traits, especially maturation schedules 510 

(Jørgensen et al. 2007; Heino et al. 2013).  The long-term effect of these changes is a potential 511 

decrease in a stock’s resilience to other disturbances (Hsieh et al. 2008).  Reproductive value is 512 

hypothesized to increase with size and age in exploited marine fish (Hixon et al. 2014) due to 513 

increased annual fecundity, increased spawning events in multiple batch spawners (Fitzhugh et 514 

al. 2012; Cooper et al. 2013), differing spatio-temporal reproductive behavior (Scott et al. 2006; 515 

Anderson et al. 2008; Wright and Trippel 2009), and differing energy reserves (Jørgensen et al. 516 

2006; Rideout and Tomkiewicz 2011), which impact egg and larval quality (Kamler 2005).  The 517 
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result is that a stock’s age distribution plays an important role in sustainability and recovery, 518 

with  “fishing down of age classes’ and loss of spawning potential due to excess fleet capacity 519 

probably the main cause of many stock collapses” (Caddy and Agnew, 2004). 520 

 521 

Fisheries selection often contradicts natural selection, with the prevalence of length-based 522 

fisheries management creating trade-offs between conservation and maximizing yield (Gwinn 523 

et al., 2015).  This could be improved by integrating into our stock assessment process a way to 524 

quantify erosion of reproductive lifespan to better inform the development of limit and target 525 

reference points needed for setting short- and long-term management goals (i.e., evaluating 526 

the trade-offs between the long-term goal of protecting generations versus maximizing short-527 

term yield from strong year classes).  Reproductive lifespan is an important component of 528 

reproductive resilience, as it determines the time frame over which an individual fish can 529 

potentially spawn.  It is calculated based on age at maturity and maximum observed age, and 530 

point estimates can be used to assess reproductive resilience erosion based on parameters 531 

already collected for stock assessments (Secor et al. 2015; Lowerre-Barbieri et al. 2015).  For 532 

example, by calculating the ratio of current to potential reproductive lifespan, as well as the 533 

effective reproductive lifespan based on the 90th percentile of the sampled age distribution 534 

(Lowerre-Barbieri et al. 2015).  This ratio reflects the proportion of a species’ reproductive 535 

lifespan lost due to fishing and can be used to identify the age distribution supporting a given 536 

SPR.  This is especially important for both short-lived opportunistic fish and long-lived episodic 537 

species (Kindsvater et al., 2016), as they are the most vulnerable to reproductive lifespan 538 

erosion, although for different reasons.  In short-lived species, fishing has the potential to 539 

virtually wipe out the reproductive lifespan, while long-lived species evolved to have many 540 

years to reproduce successfully.   541 

 542 

Changes in reproductive lifespan will affect other traits in a spawner-recruit system, the most-543 

documented of these being maturity.   However, for many exploited species we do not yet track 544 

changes in maturity schedules to assess if overfishing is causing earlier maturation (Fig. 7), as 545 

documented for some species (Jørgensen et al. 2007; Audzijonyte et al. 2013; Marty et al. 546 
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2014).  Traditionally, maturity has been assumed to be invariant, and stocks with earlier 547 

maturation assumed to be more resilient to fishing.  However, earlier maturation due to 548 

adaptive change rather than as an inherent spawner-recruit trait, is expected to in turn affect 549 

other life history traits, especially growth.  Decreased growth with earlier maturation can be 550 

due to individual physiological tradeoffs, i.e., energy allocated earlier to reproduction would 551 

mean less energy left over for growth (Stearns 1992, see also the Dynamic Energy Budget 552 

framework, Koojiman 2010).  Or decreased growth could be selected for due to the fitness 553 

feedback loop (Alós et al. 2014).  If slower growth is selected for, this change in productivity 554 

would not be easily reversed (Law and Grey 1989; Kraak 2007; Thorpe 2007). 555 

 556 

By developing a reproductive resilience index we can begin to move from two-dimensional to 557 

multi-dimensional spawner-recruit systems and more fully assess a stock’s sensitivity and 558 

adaptive capacity to a given disturbance.   A first simplistic step is to build on the PSA approach 559 

and categorize a stock’s spawner-recruit system traits in terms of diversity and/or relationship 560 

to resilience.  For highly fecund species with no parental care, we can identify key demographic, 561 

spatial and temporal spawner-recruit traits such as: potential reproductive lifespan, annual 562 

breeding events, spawning density and diversity, larval dispersal distance, and recruitment 563 

variability.  Radar graphs can be used to map the system’s resilience based on its traits, with 564 

larger areas conveying greater resilience (Fig. 4).  In this example greater resilience (10 being 565 

the highest score) is associated with greater diversity in the system and intermediate 566 

reproductive lifespans are considered the most resilient (Winemiller and Rose 1992).  Although 567 

fully operationalizing how to integrate reproductive resilience into stock assessments is beyond 568 

the scope of this paper, we present this simplistic example to: (1) demonstrate the variability in 569 

species’ reproductive resilience; (2) highlight non-traditional components of reproductive 570 

potential; and (3) identify data gaps which will need to be filled before we can fully assess a 571 

species’ reproductive resilience and how it drives susceptibility to fishing and other 572 

disturbances.       573 

 574 

Reproductive resilience and climate change 575 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Many may say that consideration of broader spawner-recruit systems is unnecessary, because 576 

the traditional system has worked relatively well for the past fifty years.  But the next fifty years 577 

are expected to be quite different, as climate change profoundly affects marine ecosystems 578 

(Sydeman et al. 2015) and stock productivity (Hare et al. 2016).  Coastal oceanography is 579 

predicted to change in the coming decades in terms of sea level rise, storm regimes, 580 

temperature and pH (Meehl et al. 2005),  which may impact productivity and reproductive 581 

resilience.  Life cycle habitat connectivity will also be impacted by these changes and 582 

consequently affect the ability of individuals to mature at the appropriate time and return to 583 

spawning grounds to reproduce successfully (Sinclair and Iles 1988; Rijnsdorp et al. 2009).  The  584 

projected increase in both equator-ward transport and coastal upwelling along the coast of 585 

South America from Peru to Chile (Aiken et al. 2011), and an increase in the frequency of 586 

extreme Eastern Pacific ENSO events (Cai et al. 2014) are expected to modify dispersal 587 

pathways and resulting survivorship (Aiken et al. 2011).  Similarly, increases in water 588 

temperature will impact dispersal and connectivity via changes in reproductive phenology (Fig. 589 

8), faster developmental rates, changes in larval swimming speeds and changes in predator and 590 

prey encounter rates (Asch 2015; Pörtner and Peck 2010; Lett et al. 2010).  For example 591 

O’Connor et al. (2007) demonstrated a negative relationship between temperature and PLDs 592 

across 69 marine species, with the expectation this will lead to changes in population spatial 593 

connectivity (Munday et al. 2008; Gerber et al. 2014). 594 

 595 

It is unknown how climate change will affect species with high spawning site fidelity, where 596 

individuals return each year to spawn at the same sites.  Natal homing allows fish to release 597 

offspring in the same location and presumed set of environmental conditions as those of the 598 

parent, resulting in a spatial component of fitness (Ciannelli et al. 2015).  Spawning can persist 599 

at the same sites for many years, even decades (Colin 1996; Domeier and Colin 1997) and there 600 

is also good evidence in several species that social learning and tradition play a role in the 601 

repeated use of the same sites for spawning, with younger fish learning to use and find sites 602 

from older, experienced fish (e.g. bluehead wrasse (Thalassoma bifasciatum, Labridae) Warner 603 

1988; 1990; Atlantic cod (Gadus morhua, Gadidae) Rose 1993; European plaice (Pleuronectes 604 
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platessa, Pleuronectidae) Arnold et al. 1994; brown surgeonfish (Acanthurus nigrofuscus, 605 

Acanthuridae) Mazeroll and Montgomery 1998).  Although the fitness benefits in spawning site 606 

fidelity not connected with natal homing are less clear, birth site may still influence spawning 607 

site selection in less direct ways and thus confer increased fitness.  A disruption of factors 608 

associated with spawning site selection and fidelity will clearly affect future productivity.  609 

However, we do not yet have a mechanistic understanding of these processes, highlighting the 610 

need for additional research on spawning site selection and fidelity at both the population and 611 

individual scales (Lowerre-Barbieri et al. 2013; Donahue et al. 2015).  We also need greater 612 

application of genetic analyses, given that estimates of effective breeding population size show 613 

potential as proxies for delineating neighborhood sizes (i.e. mean single-generation dispersal 614 

distances) and spatially explicit breeding densities (Neel et al. 2013) and thus the ability to track 615 

effects of climate change on phenology and reproductive success over time.   616 

 617 

Conclusions and recommendations 618 

Factors affecting reproductive success and resilience in marine exploited fish are extremely 619 

complex, poorly understood, and not all can be managed.  Assessment practices based on SSB 620 

to recruitment relationships and steepness are strongly based on the assumption of density-621 

dependent population growth, i.e., compensatory capacity, and do not capture important traits 622 

impacting reproductive resilience.  But does this matter, i.e., do the benefits of a better 623 

understanding of reproductive resilience and its integration into the stock assessment process 624 

outweigh the costs and competition with other areas of emerging fisheries science?  We think 625 

so, particularly in light of the uncertainty in how climate change may affect productivity.  626 

Similar to the push to move beyond the von Bertalanffy growth equation to understand trophic 627 

dynamics, we need to move beyond the intrinsic population growth equation to understand 628 

drivers of transgenerational productivity.   629 

 630 

We recognize there are limited resources and many stock assessment demands and so organize 631 

our recommendations along a continuum from using existing data in new ways to improving 632 

our mechanistic understanding of reproductive resilience.  Because maturity and maximum age 633 
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are part of many highly developed stock assessment processes, estimating reproductive 634 

lifespan erosion and evaluating if maturity schedules change over time should be relatively 635 

easy.  In addition, many reproductive studies have the data needed to begin to quantify 636 

spawning site diversity and density (Lowerre-Barbieri et al. 2015), but these data often go 637 

unreported.  Comparative and meta-analytical studies of large databases (e.g., Ricard et al. 638 

2012) can be used to assess recruitment variability for a wide range of species, by calculating an 639 

index based on the variability seen in annual recruitment per unit of SSB over the potential 640 

reproductive lifespan.  Through this we can assess the similarities and differences in patterns of 641 

recruitment variability across species, highlighting those most sensitive to environmental 642 

conditions.  In addition, we can then evaluate if there are specific spawner-recruit traits which 643 

result in greater recruitment variability.  These combined analyses should help provide the data 644 

needed to calculate reproductive resilience indices.  To improve our mechanistic understanding 645 

of spawner-recruit systems and reproductive resilience, we need to fund field work applying 646 

novel approaches to track processes over multiple generations and to evaluate if early life 647 

history conditions can have transgenerational inheritance effects, as seen in other species 648 

(Naguib and Gil, 2005).  Lastly, simulation modeling or management strategy evaluations with 649 

operating models which integrated more ecologically realistic reproductive success processes 650 

could greatly improve our understanding of species-specific reproductive resilience in this time 651 

of climate change.   652 
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 1270 

 1271 

 1272 

 1273 

 1274 

Table 1. Definitions of common terms used with processes discussed in this paper, including: 1275 

reproductive success, productivity, and resilience. 1276 

Term Definition References 

Stock 

productivity 

Net population increase in abundance and/or weight affected by 

natural mortality, growth, sexual maturation, and recruitment. 

Vert-pre et al. 

2013 

Klaer et al. 2015 

Stock 

productivity 

shift 

Significant changes in any of the factors affecting stock 

productivity over time. 

Klaer et al. 2015 

Stock 

reproductive 

potential 

The annual variation in a stock’s ability to produce viable eggs and 

larvae that may eventually recruit to the adult population or 

fishery. 

Trippel 1999 

Reproductive 

success 

The probability that offspring will survive to reproductive age 

based on reproductive output and the survival of that output. 

Stearns 1992 

Ecological 

resilience 

The magnitude of disturbance that a system can tolerate before it 

shifts into a different state (stability basin) with different controls 

on structure and function. 

Folke 2006  

Scheffer 2009 

Reproductive 

resilience 

The capacity of a population to maintain the level of reproductive 

success needed to result in long-term population stability despite 

disturbances such as environmental perturbations and fishing. 

Lowerre-Barbieri 

et al. 2015 

Trans-

generational 

The ability of environmental factors to promote a phenotype not 

only in the exposed individual but in subsequent progeny, 

Salinas and 
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inheritance potentially over multiple generations. Munch, 2012 

Reproductive 

value 

Weights the contributions of individuals of different ages to 

population growth and compares the sensitivity of fitness to 

events at different ages.  

Stearns 1992 

Intrinsic rate 

of growth, r 

The intrinsic rate of natural increase often used in theoretical 

work, is the per capita instantaneous rate of increase of a 

population in a stable age distribution and calculated as 

 

Where lx=age-specific survivorship, mx

Stearns 1992 

=age-specific fecundity, and 

T=mean generation time (average age of mothers reproducing)   

Life History 

Theory 

Given a diversity of birth and death schedules and organismal 

designs, what kinds of life histories will evolution produce and why 

Stearns 1992 

 1277 

 1278 

Table 2.  Factors affecting population productivity/reproductive success over multiple temporal, 1279 

spatial, and biological scales. 1280 

 1281 

 1282 

Temporal Scale Spatial Context Biological Scale Relevant to Reproductive Success 

 

  Population Individual/group 

    

Evolutionary       

 

Long-term mortality 

environment (rate and 

variability) associated 

with home range        

Life history strategy  

Reproductive system 

Larval navigation 

Pelagic larval duration 

Fitness 

Transgenerational    
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Reproductive success Population structure Population persistence Reproductive performance 

 

Lifetime 

Maturity, growth, 

mortality, fecundity 

 

Nursery, foraging, 

spawning habitats, 

Larval retention 

 

Demographic trends in 

behavior 

 

 

Contingents 

 

Annual 

Year class strength 

 

Spawning site selection 

& fidelity 

Dispersal 

Environment 

 

Larval and juvenile 

survival 

 

Not yet clear if strong year 

classes are associated with 

greater genetic diversity. 

Seasonal 

Spawning season 

Critical period 

Match/mismatch 

Birth date dynamics 

 

Spawning site fidelity 

Predator hot spots 

Food and predator 

encounter rates 

 

Trophic dynamics 

Larval/hydrography 

interactions 

Phenology 

 

Egg quality 

Mating system 

Number of breeding events 

within the spawning period 

 1283 

 1284 

 1285 

 1286 

 1287 

Table 3. Models used to assess spawner-recruit systems and their productivity and recruitment 1288 

assumptions. 1289 

 1290 

Model type Productivity assumption Recruitment 

assumption 

References 

    

Biomass 

dynamics 

models 

Density dependent Implicitly assumes 

recruitment is a 

function of stock size 

(Schaefer 1957; Pella 

and Tomlinson 1969) 
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Yield-per-

recruit 

Density independent Constant (Thompson and Bell 

1934; Beverton and 

Holt 1957) 

Spawner-per-

recruit 

Dependent on spawning biomassl Constant (Gabriel et al. 1989; 

Clark 1993; Goodyear 

1993) 

Full life cycle 

models 

Dependent on spawning biomass A density dependent 

function of SSB or 

fecundity 

(Beverton et al. 1984) 

    Ricker : Over 

compensatory at high 

stock levels 

(Ricker 1954) 

    Beverton-Holt : 

asymptotic at high 

stock levels 

(Beverton and Holt 

1957) 

Biophysical 

dispersal 

models 

Dependent on resolved 

oceanographic processes and 

available spatio-temporal 

reproductive data.  

Affected by larval 

dispersal dynamics and 

settlement habitat and 

cues. 

(Paris et al. 2005; 

Cowen et al. 2006; 

Paris et al. 2013) 

 

Integrated life 

cycle models  

 

In addition to the factors above, 

dependent on juvenile habitat and 

survival, as well as adult survival and 

increasingly, adult population 

structure. 

The same as above (Drouineau et al. 

2010; Rochette et al. 

2013; Archambault et 

al. 2016) 

 1291 

Fig. 1.  Examples of emerging methods to assess spawner-recruit processes: (A) passive acoustic 1292 

surveys to map spawning sites based on species-specific courtship sounds (modified from 1293 

Walters et al. 2009); (B) acoustic telemetry to assess sex-specific habitat use (Alós et al. 2012); 1294 
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(C) genetics, used as a tag to assess spawning population size and parentage analysis (S. 1295 

Lowerre-Barbieri unpublished data); (D) pop up satellite tags used to understand spawning 1296 

behaviour  (Cermeño et al. 2015). (E) otolith microchemistry “records” to evaluate individual 1297 

habitat usage over time (I.A. Catalán, unpublished data); (F) the drifting in situ chamber (DISC) 1298 

providing in-situ evidence that pelagic reef fish larvae use reef odor as a navigational cue, 1299 

changing their swimming speed and direction (modified from Paris et al. 2013); (G) choice 1300 

chambers to provide empirical evidence of the use of odor cues in larval self-recruitment 1301 

(modified from Gerlach et al. 2007); (H) Bio-physical modeling to study connectivity in meta-1302 

populations (modified from Alós et al. 2014).  1303 

Fig. 2.  Reproductive potential is commonly based on spawning stock biomass, but in many 1304 

marine species, spatial components of the life cycle may be more important to reproductive 1305 

success. 1306 

 1307 

Fig. 3.  A stock’s reproductive resilience is driven by it’s spawner-recruit system and the 1308 

ecological context within which it is operating.  Spawner-recruit systems are made up of three 1309 

trait types with differeing within-population variability, that ranges from: none (fixed traits) to 1310 

extensive (varying traits), with behavioral traits exhibiting complex interactions between 1311 

genotype and phenotype but typically a common pattern within a population.  Inherent 1312 

reproductive resilience depends on spawner-recruit traits selected over evolutionary time to 1313 

overcome a given mortality regime.  Current reproductive success occurs at the individual scale 1314 

and results in both density dependent and fitness feedback loops, which act to maintain 1315 

population reproductive success over time and determine a stock’s reproductive resilience to 1316 

disturbance.   1317 

 1318 

Fig. 4. Important traits in spawner-recruit systems (a) and graphic representation of how these 1319 

traits are species’ specific, resulting in differing reproductive resilience (b).  Although the graphs 1320 

are hypothetical, they represent how known variability in the selected traits in exploited marine 1321 

fishes could be categorized from 1 (least resilient) to 10 (most resilient).  Categories are based 1322 

primarily on diversity, with greater diversity assumed to correlate with greater resilience. 1323 
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 1324 

Fig. 5. Box whisker plots of variability (SD) in recruitment relative to variability in spawner 1325 

biomass (SSB) in relation to taxonomic family, with families ordered from highest to lowest 1326 

median relative variability.  Numbers indicate the number of stocks/management units in each 1327 

family. Scombridae were separated into mackerels and tunas because of clear distinctions in 1328 

the patterns of relative variability. Grey bars represent the 25th, median and 75th percentiles; 1329 

error bars represent 5th and 95th

 1333 

 percentiles; closed circles represent outliers.  Data on fish 1330 

populations from analytical population assessments collated in the Ransom Myers Legacy 1331 

database. 1332 

Fig. 6.  Reproductive potential and spawner-recruit systems: assumptions, decision criterion, 1334 

and data needed for stock assessments. 1335 

 1336 

Fig. 7. Estimated age at 50% maturity and maximum observed age in a range of exploited 1337 

marine fishes. 1338 

 1339 

Fig. 8. Influence of climate variations on the distribution and phenology of spawning in the 1340 

Pacific Sardine (Sardinops sagax, Clupeidae) off the coast of Southern California, USA. Data 1341 

modified from Asch (2013) and Asch and Checkley (2013). (a) Long term changes in climatic 1342 

conditions in California waters, including the timing and magnitude of seasonal water 1343 

temperatures, are associated with marked shifts in the reproductive phenology of sardine, with 1344 

peaks in monthly larval abundance occuring two months earlier in the 2000s than in the 1950s.  1345 

(b) During El Niño years associated with warm sea surface temperatures,  sardine spawning 1346 

activity and egg production is low and restricted to a small range close to shore where thermal 1347 

refuges remain. (c) Conversely, during La Niña years associated with cooler sea surface 1348 

temperatures, spawning activity and egg production is high and widely distributed in both 1349 

nearshore and offshore waters.  1350 
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