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1.  INTRODUCTION

Sand lance and sand eels (Ammodytes spp.) are
small, planktivorous, semi-demersal forage fishes
that play a crucial role in the coastal pelagic ecosys-
tems of the Northern Hemisphere. These fishes are
important prey for more than 100 species of marine
birds, mammals, and fishes (Furness 1990, Willson et

al. 1999, Link & Garrison 2002, Haugland et al. 2006)
and are an important target of commercial fisheries
in Japan (Hamada 1985, Han et al. 2012) and the
North Sea (Sherman et al. 1981, Furness 2002).
Pacific sand lance Ammodytes personatus are dis-
tributed throughout the eastern North Pacific Ocean,
Gulf of Alaska, Aleutian Islands, and eastern Bering
Sea (Orr et al. 2015). Other related species include
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A. hexapterus in the western North Pacific and North
American Arctic, A. japonicus and A. heian in the
western Pacific, A. dubius and A. americanus in the
western Atlantic, and A. marinus and A. tobianus in
the eastern Atlantic and North Sea. Despite their
importance as forage and as commercial stocks, little
is known about the biology, life history, and popula-
tion dynamics of post-larval sand lance and sand eels
(Nelson & Ross 1991, Robards et al. 1999a,b, Liedtke
et al. 2013, Selleck et al. 2015).

Sand lances and sand eels are distinguished from
other dominant northern latitude forage fish species,
such as capelin Mallotus villosus, eulachon Thaleich -
thys pacificus, herring Clupea pallasii, shad Alosa
spp., menhaden Brevoortia tyrannus, sardine Sardina/
Sardinella spp., and anchovies Engraulidae spp. in
their remarkable ability to actively burrow into near-
shore sand−gravel bottom sediments for refuge and
rest (Bizzarro et al. 2016). This behavior is exhibited
in both diurnal and seasonal cycles and time frames
(Field 1988, Quinn 1999), such that Ammodytes spp.
bury at night, for extended overwintering periods
(Fisheries and Ocean Canada 2009, 2018, Pearson
et al. 1984) and, in the case of A. japonicus and
A. heian, for summer aestivation (Kishi et al. 1991).
This highlights an important seasonal component to
their life cycle. Following a winter dormant period,
sand lance and sand eels emerge to forage in the
spring and summer months when zooplankton are
most abundant (Winslade 1974, Field 1988). In the
fall, the majority of individuals cease feeding, bury,
and remain dormant in benthic sediments for the
duration of the winter (A. personatus, Robards et
al. 1999a; A. marinus, Winslade 1974; A. tobianus,
Reeves 1994, O’Connell & Fives 1995). While there is
extensive documentation of these trends (Rindorf et
al. 2017), most work to characterize this phenomenon
is anecdotal. Our analyses focus on the critical au -
tumn season and the fall transition from summer
upwelling to winter downwelling conditions in the
eastern North Pacific as these fish transition from
summer foraging to winter dormancy.

There are apparent differences between Ammo -
dytes spp. in life span, size-at-maturity,  age-at-
maturity, and spawning dynamics. Sexual maturation
generally occurs towards the end of the second year
of life (age-2) in A. personatus (Kitaguchi 1979), A.
americanus (Richards 1982, Brethes 1992), and A.
tobianus (O’Connell & Fives 1995, Bergstad et al.
2001); although there is evidence for maturity as early
as age-1 in A. dubius (Nelson & Ross 1991). At the
same time, there is considerable variation in age-
at-maturity (Boulcott et al. 2006, Boulcott & Wright

2008), such that A. dubius (Scott 1968, Winters 1983)
and A. marinus (Reay 1970, Bergstad et al. 2001,
Boulcott et al. 2006) may mature at older ages. In
A. tobianus, few individuals survive beyond age-3 or
age-4 due to high natural mortality (van Deurs et al.
2009). Differences may also be evident within species
across their geographic range. Better defining basic
demographic traits and life history parameters is
 crucial to understand how these populations might
respond to changing climate or environmental per-
turbation, determine implications for harvest conser-
vation and management, and develop time scales for
rebuilding stocks.

Pacific sand lance A. personatus appear to reach a
length of 150 mm (Love et al. 2005) and are rela-
tively short-lived, with an estimated maximum age
of 6 yr (Robards et al. 2002). Adults spawn inter-
tidally once per year on fine gravel or sandy
beaches (Robards et al. 1999b, Penttila 1995). Larval
surveys suggest that Pacific sand lance spawn from
January−April in the Gulf of Alaska (Kendall et al.
1980, McGurk & Warburton 1992). Observations of
captive fish collected from the northern California
Current also indicate late winter spawning (Pinto
1984). Spawning occurs from November−February
in Puget Sound and the Strait of Georgia (Penttila
1995, Thu ringer & Truscott 2003), predominantly in
the first half of that time period (Penttila 1995), and
spawning sites appear to be used on a perennial
basis (Penttila 2007).

Pacific sand lance transition between several onto-
genetic stages in their first year of life. Demersal eggs
attach to beach and intertidal substrates until emer-
gence, with an incubation period of approximately
1 mo (Penttila 2007). Analyses of phenology and size-
at-stage in the northern Gulf of Alaska indicate larval
emergence at approximately 5 mm in February−
March, yolk absorption and commencement of feed-
ing at approximately 10 mm in March−April, flexion
at approximately 15−20 mm in May, and complete
transformation at approximately 50 mm in July (Doyle
& Mier 2016). These life history traits may vary with
latitude (Scott 1972). Planktonic sand lance larvae
are common in the nearshore waters of the Puget
Sound Basin in the late winter (Penttila 2007) and
juvenile sand lance are common in the nearshore
zone through their first summer of life (Penttila 2007).
After metamorphosis, young-of-the-year juvenile fish
descend to the bottom and settle in sandy substrates
(Fisheries and Ocean Canada 2009, Washington
Department of Fish and Wildlife 2018). Pacific sand
lance may also be found burrowing at or below mean
lower low water in the upper, oxygenated stratum of
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intertidal sediments on Puget Sound beaches (Quinn
& Schneider 1991, Quinn 1999). After settling, indi-
viduals show high site fidelity (Gauld 1990). Recruit-
ment is traditionally defined as the number of post-
settlement individuals in late spring.

Fish populations are highly sensitive to variation in
recruitment (Cushing 1990). Forage fishes, in partic-
ular, have relatively short life spans, small body size,
early maturation, and high fecundity. These traits
often result in particularly large fluctuations in
 abundance in response to environmental conditions,
susceptibility to predators, and availability of prey
(Anderson & Piatt 1999). In general, predation and
starvation mortality during early life stages of forage
fishes is substantial but decreases rapidly with in -
creasing size. More specifically for Ammodytes spp.,
it has been suggested that non-spawning (age-1)
fish may have density-dependent effects that are
not accounted for within spawning stock biomass-
recruitment (SSB-R) relationships (Furness 1999,
Arnott & Ruxton 2002, Arnott et al. 2002, van Deurs
et al. 2009). Cyclic dominance in recruitment (e.g.
divergent year-class strength in odd and even calen-
dar years) has been suggested for several popula-
tions, including North Sea A. marinus and western
Pacific A. personatus (Kishi et al. 1991, Kimura et al.
1992). This phenomenon may be the result of carry-
ing capacity, competition for habitat and resources
(Murdoch 1994), or density-dependent effects related
to population-regulating mechanisms inherent to the
species such as cannibalism (Ritzau Eigaard et al.
2014).

In addition to density-dependent constraints, envi-
ronmental conditions may structure populations and
influence relative survival and condition of individu-
als within a given period of time. Pelagic fishes are
often subject to large-scale fluctuations in produc -
tivity related to variation in oceanographic conditions
(Francis et al. 1998, Hollowed et al. 2001). Variability
in near-surface temperatures in the North Pacific
has been attributed to several large-scale modes of
climate variability, including the El Niño-Southern
Oscillation (ENSO; Zhang et al. 1997) and basin-
scale drivers such as the Pacific Decadal Oscillation
(PDO; Mantua et al. 1997). The condition of indi -
vidual fish and the abundance of the population
may also vary according to these changing oceano-
graphic regimes. In particular, temperature may
have direct effects on metabolic rates and indirect
effects on growth related to the quantity, quality,
composition, and availability (e.g. phenology of pro-
duction) of planktonic prey available for consump-
tion (Batten et al. 2016).

Understanding patterns and drivers in demographic
trends requires baseline and time series data. We
examined Pacific sand lance populations over a 6 yr
period at 2 locations: (1) a known spawning site and
nearshore rearing habitat; and (2) an offshore adult
habitat. Our objectives were to explore dynamics
related to foraging, condition, and winter dormancy
as well as evidence for biennial patterns in year-class
strength. To this end, we investigated several aspects
of Pacific sand lance population structure, including
their recruitment, relative abundance, condition, and
age structure over intra-seasonal and inter-annual
time scales. We also analyzed these trends in the con-
text of seasonal environmental metrics and regional
climate indices. This study represents one of the most
extensive time series available for Pacific sand lance
and provides insight into seasonal availability and
size structure of sand lance populations in the
 eastern Pacific. Our results provide (1) evidence for
 distinct habitat use according to life stage; (2) new
insights on fall seasonal dynamics related to forag-
ing, winter dormancy, and winter reset; (3) prelimi-
nary evidence for biennial patterns in year-class
strength and/or cyclical recruitment; and (4) evi-
dence for a pronounced shift in condition across all
age classes in response to recent anomalous warm-
ing in the North Pacific Ocean.

2.  MATERIALS AND METHODS

2.1.  Collection and handling of fish

Pacific sand lance were sampled from 2 distinct
sites near San Juan Island, WA, USA: (1) Jackson
Beach (JB), a known spawning and rearing habitat
(Washington Department of Fish and Wildlife 2017),
and (2) San Juan Channel (SJC), a recently discovered
offshore deep-water (80 m) habitat (Greene et al.
2011, 2017) characterized by a prominent sand wave
field that extends north to south a distance of approxi-
mately 2 km (Fig. 1). Both sites are within the San
Juan Island Archipelago in the Salish Sea, at the
US−Canadian border and confluence of the Cali fornia
Current and Gulf of Alaska large marine ecosystems.

Relative abundance (catch per unit effort, CPUE)
was recorded at JB and at the SJC wave field through -
out the fall. Fish at JB were sampled via beach seines
performed approximately twice per week at dawn or
dusk between 28 September (day of the year 271) and
10 November (day of the year 314) from 2010−2015.
Timing was designed to target apparent crepuscular
feeding behaviors. In total, 127 seines were conducted
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over 35 sampling events, using a knotless nylon mesh
with dimensions 36.6 m (width) × 3.7 m (depth). The
net was set parallel to the beach at a distance of 25 m
as described by Cailliet et al. (1986). A total of 127
seines (12−47 yr−1) were conducted at JB (Table 1).
A Van Veen grab sample (Høines & Bergstad 2001)
was deployed from the University of Washington
R/V ‘Centennial’ or R/V ‘Auklet’ to sample fish in
 sediments in the SJC sand wave field between 15
September (day of the year 258) and 28 November
(day of the year 332). The Van Veen samples a maxi-
mum sediment volume of 0.026 m3 over a surface area
of 0.12 m2. A total of 282 grabs (28−84 yr−1) were suc-
cessfully deployed (i.e. Van Veen completely closed
on retrieval) in the SJC wave field (Table 1). Sampling
also occurred in the area spanning the distance be-
tween these sites to assess whether there was poten-
tial benthic habitat between them (Fig. S1 in the Sup-
plement at www. int-res. com/ articles/ suppl/ m617 p221
_ supp .pdf); no fish were found in this area.

2.2.  Fish processing and measurements

All live fish brought back to the laboratory were
handled as described under the University of Wash-

ington Institutional Animal Care and Use Committee
(IACUC) Protocol 4238-03. Fish were administered a
lethal dose of the anesthetic tricaine methanesul-
fonate (MS-222) buffered with sodium bicarbonate
(1:1 ratio), in accordance with IACUC guidelines.
Most samples were stored in a 1:1 solution of 10%
formalin (formaldehyde supersaturated with Borax)
and saltwater (except for fish collected for otolith
analysis, described below). Fish were blotted dry,
and fork length (FL), total length (TL), and girth
measurements were taken. Length measurements
were taken to the nearest 1 mm. FL was used in
analyses of length−weight regressions, length fre-
quency distributions, and length-at-age analyses.
Wet weight was measured to the nearest 0.01 g using
an OHAUS Scout Pro 400 g × 0.01 g scale. A total
of 5499 fish were measured for length and weight
between 2010 and 2015 (SJC, n = 2597; JB, n = 2902;
Table 2).

2.3.  Otolith measurement and analysis

Sampling for age occurred from September−
November 2015. Sagittal otoliths were removed
from the sacculus after making a transverse incision
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Fig. 1. Pacific sand lance Ammodytes personatus sample sites in the San Juan Island archipelago in the Salish Sea (left panel):
spawning area Jackson Beach (JB), and offshore deep-water sand wave field in San Juan Channel (SJC) (center panel). A
high-resolution multibeam bathymetry contour is provided for the full extent of the San Juan Channel (center panel) as well as
for the SJC sand wave field (right panel) (multibeam data courtesy of G. Greene and J. Aschoff, Moss Landing Marine Labora-
tories, Tombolo Mapping Team). Sites of Van Veen grabs are displayed, with empty grabs represented by dark points and
grabs with fish represented by white points, each scaled proportionally to catch per unit effort (right panel). Inset photographs
(center panel) display sediments typical of each site. A larger proportion of coarse grain sand and shell hash was present at 

SJC and greater proportion of fine grain sand and pebbles was present at JB

https://www.int-res.com/articles/suppl/m617p221_supp.pdf
https://www.int-res.com/articles/suppl/m617p221_supp.pdf
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behind the skull. Otoliths were dissected from fresh
fish or fish preserved in ethanol and frozen. Otoliths
were cleaned of soft tissue and placed in Eppendorf
tubes containing ethanol. One otolith from each pair
was affixed to a glass slide sulcus-side down using
Loctite UV-curing adhesive. Otoliths were viewed
using a Leica MZ95 dissecting microscope and re -
flected light. Mineral oil was applied to the surfaces
of mounted otoliths to enhance contrast between
growth zones. The surfaces of some otoliths were
very faint or opaque in appearance; to improve clar-
ity, they were polished by hand using 320 grit fol-
lowed by 1200 grit Buehler wet−dry abrasive paper.
In some cases, the unmounted otolith was sectioned

transversely through the core to further aid identifi-
cation of growth zones.

Standard methods (Matta & Kimura 2012) were
used to estimate fish age. Otoliths were read 2 times
blindly and independently by a single age reader; if
age estimates did not agree, otoliths were read a third
time to reach a consensus age. Precision between age
estimates was estimated by calculating the percent
agreement (PA), average percent error (APE; Beamish
& Fournier 1981), and coefficient of variation (CV;
Chang 1982). PA between age estimates was 84%,
APE was 4.31%, and CV was 6.09%.

In agreement with other studies in the Atlantic and
Pacific oceans (Nelson & Ross 1991, Robards et al.
1999a), no significant differences in length−weight
relationships were observed between sexes. There-
fore all data were pooled in subsequent analyses. On
the basis of analyses of sagittal otoliths removed in
2015, Pacific sand lance with FLs 0−60 mm were con-
sidered young-of-the-year (YOY; age-0), fork lengths
60−80 mm corresponded to age-1, fork lengths
80−100 mm corresponded to age-2, and fork lengths
100−120 mm corresponded to age-3 (Fig. 2). Using
these data, known maturation cycles (van Deurs et al.
2009), and approaches used in other studies (Robards
et al. 1999b), fish were assigned as juveniles (age-0
and age-1; immature) or adults (age-2+; mature), as
per the age−length key (Table 3).

2.4.  Environmental measurements

Local environmental conditions and broad-scale
climate regime indices were evaluated to determine
correlation with seasonal and inter-annual trends in
fish condition and abundance. Photosynthetically
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Location Year Sample Total Fish No
(gear type) days samples present fish

JB 2010 4 12 4 8
(beach seines) 2011 − − − −

2012 9 19 5 14
2013 9 19 16 3
2014 9 47 36 11
2015 9 30 21 9

SJC 2010 4 28 26 2
(Van Veen 2011 2 36 31 5
grabs) 2012 11 44 42 2

2013 6 37 30 7
2014 8 84 72 12
2015 9 53 50 3

Table 1. Pacific sand lance sampling events from 2010−2015
in Jackson Beach (JB) and San Juan Channel (SJC) with
zero (empty) and non-zero (positive) catch. Sampling in off-
shore wave fields with Van Veen grabs occurred from 15
September to 28 November. Sampling in the nearshore site
with beach seines occurred from 25 September until fish
were no longer caught in beach seines on 2 consecutive
sampling occasions. Fish were not observed in the water 

column after 15 November in any year

Location Year 0−60 mm 60−80 mm 80−100 mm 100−120 mm 120 mm+
(gear type) (age-0) (age-1) (age-2) (age-3)

% n % n % n % n % n

JB 2010 6.16 9 79.45 116 14.22 21 − −
(beach seines) 2011 − − − − −

2012 21.81 190 73.25 638 4.94 43 − −
2013 7.05 9 76.31 979 22.68 291 0.00 4 −
2014 2.42 4 64.85 107 32.72 54 − −
2015 2.29 10 90.85 397 6.86 30 − −

SJC 2010 0.01 2 71.28 144 27.27 55 0.00 1 −
(Van Veen 2011 − 49.11 139 31.80 90 18.02 51 1.06 3
grabs) 2012 − 60.41 595 35.64 351 2.44 24 1.42 14

2013 − − 17.00 17 71.00 71 12.00 12
2014 − 36.00 175 58.64 285 3.91 19 1.44 7
2015 − 19.04 103 63.22 342 14.05 76 3.70 20

Table 2. Relative percentage and absolute numbers (n) of Pacific sand lance by length (age-class) in Jackson Beach (JB) and 
San Juan Channel (SJC)
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active radiation (PAR) and sea surface temperature
(SST) measurements were collected on-site at the
NOAA Friday Harbor Station FRDW1-9449880 at
48° 32’43’’N, 123° 0’44’’W (http://wx.fhl.washington.
edu/vdv/VV_Frame.php) and were referenced to
the NASA Aqua MODIS, NPP 1-day composite at 45°
32’42’’N, 123° 0’43’’W (http:// coastwatch. pfeg. noaa.
gov/erddap/griddap/erdMWpar01day_LonPM180.h
tml), approximately 4.5 km from SJC and 2.8 km from
JB. Upwelling indices (UI) were daily averages of
wind-driven, cross-shore transports computed from
the Fleet Numerical Meteorology and Oceanography
Center and National Data Buoy Center 6-hourly sur-
face pressure analyses in units of m3 s−1 along each
100 m of coastline, developed from NOAA Bakun
Index Values at 48° N, 125° W (www. pfel. noaa. gov/
products/PFELData/upwell/daily/p06dayac.all), mark -
ing the transition from summer upwelling conditions
to winter downwelling conditions. Indices for broad-
scale climate regimes, including ENSO, the North
Pacific Gyre Oscillation (NPGO; Di Lorenzo et al.
2008), and PDO (Mantua et al. 1997, Zhang et al.

1997) were derived from the Northwest
Association of Networked Ocean Ob -
serving Systems (NANOOS) database
(http://nvs.nanoos.org/Climatology).

2.5.  Statistical data analysis

Condition factor (K) was calculated
for fish collected at both sampling sites
using the following formula (Bagenal &
Ricker 1978):

K =  m × 107 × l –3 (1)

where m is mass (in g) and l is FL
(in mm).

Relative abundance (i.e. CPUE) for each date was
calculated by dividing the total number of fish caught
on that day by the number of seines or Van Veen
grabs performed that day. Regression analyses were
run in SigmaPlot (Systat Software). All other statis -
tical applications were applied in R statistical com-
puting software (R Development Core Team 2016).

Seasonal trends were assessed using linear or logistic
regression functions. Differences in K and FL  values
between the JB and SJC populations were assessed
using analysis of variance (ANOVA) and Tukey’s HSD
test. Differences in length distributions were analyzed
with Kolmogorov-Smirnov (KS) tests. Shifts in the
mean length distribution between years were evalu-
ated with the Wilcoxon rank sum test, and unimodality
was evaluated with the Hartigan dip test statistic.
Pearson correlations were calculated be tween annual
mean condition and physical environmental variables
(i.e. SST) and climate indices (ENSO, PDO, NPGO).

Wilcoxon rank sum test with continuity correction
was used to evaluate differences in occurrence (pres-
ence or absence at JB) as a function of odd and even
years. Kruskal-Wallis rank sum with pairwise com-
parisons and year as factor was used to evaluate
abundance (mean CPUE, JB) as a function of year.
Pooled mean and standard deviation for abundance
(mean CPUE, JB) in even vs. odd years was calcu-
lated as:

(2)

(3)

To further explore shifts in relative abundance over
the season, while accounting for inter-annual shifts
in abundance, individual catch per haul results (in
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p
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1 2
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Fig. 2. Lengths associated with Pacific sand lance Ammodytes personatus
age-0 to age-3+ yr, as assessed by analysis of growth zones within sagittal oto -
liths (Age and Growth Program, Alaska Fisheries Science Center, NOAA).
Boxplots display the range of length values; shaded box: inter-quartile range
or middle 50% of the data; vertical black line: median value; whiskers: 5th and 

95th percentiles; points: outliers

Estimated length Known-age observed length (mm)
(mm) (age class) Mean Range

0−60 (age-0) 55.1 ± 7.59 47−62
60−80 (age-1) 69.1 ± 5.36 60−83
80−100 (age-2) 89.4 ± 10.26 81−106
100−120 (age-3) 114.3 ± 13.04 110−129

Table 3. Age−length key of Pacific sand lance. Estimated
age-associated lengths based on analysis of lengths of
known-age fish sampled in the fall season of 2015 (Septem-
ber−December 2015, n = 64). No fish were aged in other
years. Differences in annual growth between years may
mean that length−age estimates based on 2015 samples are 

not applicable to other years
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every day and year, including hauls with no fish) were
analyzed using a generalized linear model (GLM,
negative binomial distribution). Since variances in
catch within each year were often higher than the
mean difference between years, a negative binomial
regression was used to account for  over-dispersion
(Venables & Ripley 2002). The zero-augmented mod-
els extend the mean function by modifying the likeli-
hood of zero counts (Chambers & Hastie 1992) and
 allow for associated methods for diagnostics and
 inference (https:// stats. idre. ucla. edu/ r/ dae/ negative-
binomial-regression/). The GLM was de veloped in R
using the ‘stats’ package and ‘glm.nb’ in the ‘MASS’
package (R Development Core Team 2016; https://
stat.ethz.ch/R-manual/R-devel/ library/ MASS/ html/
glm.nb.html). Standardization to the an nual mean
was implemented by including year as a factor.

A similar model framework (GLM, negative bino-
mial distribution) was applied to analyze trends in
relative condition of mature Pacific sand lance (off-
shore population, SJC) over the course of the fall sea-
son. A correlation matrix was also developed to com-
pare the decline in condition and decline in seasonal
environmental variables associated with summer
production (e.g. SST, PAR, and UI). Correlations
between physical indices (SST, PAR, UI) within and
among years were analyzed in R using the packages
‘PerformanceAnalytics’, ‘Hmisc’, and ‘corrplot’; ‘hclust.
method’ was used for hierarchical clustering and the
agglomeration of values.

A model (GLM, gamma distribution) was also
applied to analyze annual trends condition in both
the offshore (SJC) and nearshore (JB) populations as
a function of annual SST, annual PAR, year-specific
date of fall transition, and the predominant regional
climatic indices (ENSO, PDO, NPGO). Data on cli-
mate indices (ENSO, PDO, NPGO) were aggregated
into annual mean values. Data on environmental
variables (SST, PAR) were year-specific mean values
calculated over the dates of sampling (15 September−
15 December 2015). The annual date of fall transition
was determined at the following site: www. cbr.
washington.edu/status/trans.

3.  RESULTS

3.1.  Length-at-age and size and age structure

FL distribution data were compiled from 2010
through 2015 for the JB and SJC populations (Fig. 3).
While the JB population length frequency distribution
differed slightly in all years (KS test, p < 0.005), this

nearshore population was consistently composed of
age-0 and age-1 fish. It was characterized by a similar
range in FL across all years (mean ± SD = 74.88 ±
8.19 mm, range = 49−106 mm), with the exception of
2012 (66.84 ± 7.93 mm), for which the population had
a slightly smaller distribution (Fig. 3, Table 2). The
SJC population distribution was much more variable
from year to year (KS test, p < 0.001), and included fish
that were age-1 to age-3+. The mean (±1 SD) length
of the SJC population was 84.40 ± 12.20 mm (range =
61−144 mm) and was significantly higher than that
of the JB fish (F1,2640 = 1040, p < 0.001). In the SJC,
most years were dominated by fish corresponding to
lengths associated with age-1 and age-2 fish. A bi-
modal trend was notable in odd years, such that a
pulse of larger fish appeared in a relatively higher
proportion in 2011, 2013, and 2015. The same phe-
nomenon was noted in 2017 (Fig. S2 in the Supple-
ment). This was not apparent in even years, including
in the analysis of even-year data in a previous study
(Blaine 2006, Fig. S3 in the Supplement). The 2013
SJC population was almost entirely comprised of this
larger, presumably age-3, cohort. Histograms and
boxplots (Fig. 3, inset) of FL distribution in SJC fish
have a  distributional skew towards larger fish in the
2011 and 2015 SJC populations (KS test, p < 0.001;
Fig. 3, Table 2). At both sites (JB and SJC), significant
shifts in distribution were noted between all years (JB
all years, Wilcoxon test, p < 0.004; SJC all years, Wil -
coxon test, p < 0.001). At both locations, distributions
in all years were non-unimodal (i.e. at least bimodal;
Hartigan dip test, JB all years, p > 0.629; SJC all years,
p > 0.497), presumably reflecting the presence of
 multiple year classes at both locations (JB = age-0 to
age-1; SJC = age-1 to age-3+). No variation in FL over
the fall season was detected at either site (Fig. S4 in
the Supplement).

3.2.  Temporal trends in relative abundance

At JB, the mean (±SD) annual CPUE was 55.73 ±
41.58 fish seine−1 (range in annual mean = 14.91−
287.33). At SJC, mean annual CPUE was 12.04 ±
6.98 fish per Van Veen grab (range in annual mean =
4.61−23.17). Data from all available years were
plotted together initially without standardization to
visualize in-season trends. Sampling occasions where
no fish were caught were removed from seasonal
analyses to reduce zero inflation. For the nearshore JB
sand lance population (2013−2015 inclusive), CPUE
showed a decreasing but not significant trend (R2 =
0.06, p = 0.215; Fig. 4A). For the offshore SJC popula-
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tion (2012−2015 inclusive) CPUE showed an in -
creasing trend over the fall season (R2 = 0.11, p =
0.052; Fig. 4C). Data from all studies were also stan-
dardized for relative abundance within each year to
a mean of 0.0 and SD of 1.0 to reduce noise caused by

variation between years. Using standardized data, the
trend at JB remained nonsignificant (R2 = 0.02, p =
0.488; Fig. 4B). Using the standardized data strength-
ened the increasing trend in CPUE at SJC over fall
(R2 = 0.13, p = 0.043; Fig. 4D), indicating that more
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Fig. 3. (A) Pacific sand lance Ammodytes personatus length histograms at nearshore (Jackson Beach) and offshore (San Juan
Channel) sites. Boxplots (box: interquartile range; line: median; whiskers: 95% CI) are overlaid on histograms for comparison
of distributional spread. Length distributions were distinct in each habitat, suggesting immature fish nearshore and mature
adults offshore. Inter-annual patterns in age structure were evident in the bimodal distribution in the offshore adult popula-
tion, pronounced in odd years, suggesting pulsed year-class strength. (B) Length histograms overlaid for distributional com-
parison and background shading used to indicate expected age classes (age-0: off-white; age-1: light gray; age-2: medium 

gray; age-3+: dark gray)
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sand lance were present in the benthic substrates as
the fall season progressed. A GLM examining CPUE
as a function of day of the year (inclusive of all sam-
pling occasions, including zero catch) found a signifi-
cant increase of abundance over the season at SJC
(GLM = negative binomal, link = log, year as factor;
z288,1 = 2.58, p = 0.009) and a significant decrease in
abundance at JB (z106,1 = 2.99, p = 0.003). A com -
parison of models with and without a year effect de-
termined year to be an important factor in each case
(likelihood ratio test of negative binomial models: SJC
F1,286 = 59.96, p < 0.001; JB F1,04 = 6.81, p = 0.009).

3.3.  Temporal trends in the environment 
and condition

Variation in condition was also assessed across
the fall season. At JB, based on data pooled from
2012−2015, no significant increase or decrease in
condition in this juvenile population was noted over

the progression of the fall season (R2 = 0.04, p = 0.311;
Fig. 5A). When these data were standardized to con-
trol for year effects, the same trend was observed
(R2 = 0.02, p = 0.462; Fig. 5B). Data from SJC were
available from 2010 and 2012−2015. In this adult
population, there was a significant decline in condi-
tion over the fall (R2 = 0.20, p = 0.009; Fig. 5C). A sim-
ilar trend was observed in the standardized SJC data
(R2 = 0.17, p = 0.013; Fig. 5D). Trends in environmen-
tal variables over the course of the fall season indi-
cated a pronounced shift in oceanographic regime
(i.e. a transition from upwelling to downwelling), and
a marked reduction in light and temperature (Fig. 6).

Results of correlation analysis of seasonal indices
(SST, PAR, UI) demonstrated high positive correla-
tion between SST and PAR for all years (2010−2015;
Fig. 7). Within-year correlation between PAR and SST
was consistently high (mean = 0.70, range = 0.56−
0.82) and significant in all years from 2010−2015 (p <
0.001). UI and PAR were weakly positively correlated
(mean = 0.24, range = 0.00−0.44) in most years and
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nonsignificant in 2011 and 2013. UI and SST were
weakly positively correlated (mean = 0.24, range =
−0.03 to 0.46) in most years, negative in 2010, and
nonsignificant in 2011 and 2013.

A GLM examining condition as a function of day of
the year found a significant decrease in condition
over the season at SJC (GLM = negative binomial,
link = log, year as factor; z1623,1 = 3.88, p < 0.001). A
comparison of models evaluating all combinations of
environmental variables, day, and year effects de -
termined the best explanatory model to include all
environmental variables (PAR, SST, UI), day of the
year, and year (Table 4).

3.4.  Inter-annual patterns in abundance and 
year-class strength

Our sampling efforts provided a crude index for
abundance and we noted substantially higher (13.1×)
relative abundance in juvenile fish sampled at JB

(age-1) in odd (pooled mean ± SD = 131.02 ± 231.74,
n = 2) relative to even years (10.01 ± 24.81, n = 4;
Fig. 8). We also noted an increase in occurrence (non-
zero catches, JB beach seines) in odd years (Wilcoxon
test, W = 1312, p < 0.001) and an increase in abundance
in odd years (Kruskal-Wallis rank sum test, χ2

4 = 34.10,
p < 0.001). This pattern was significant in pairwise
comparisons of years, such that differences were noted
between all even and odd years (Kruskal-Wallis pair-
wise comparisons, p < 0.015), but no differences were
noted between odd (p = 0.612) or between even years
(p > 0.222). An examination of the bimodal length dis-
tribution in the SJC population also indicated a rela-
tively larger proportion of fish in lengths associated
with age-3 fish in odd years (Fig. 3, Figs. S2 & S3).

3.5.  Environmental indices and inter-annual response

Condition was also compared between years.
Pacific sand lance at JB had a mean (±SD) K of
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26.16 ± 4.98, while sand lance in SJC had a mean K
of 28.29 ± 3.91 (Fig. 9). In each year from 2012−2015,
K values for sand lance at SJC were consistently
higher than those of JB fish (ANOVA, F1,2640 = 66.91,
p < 0.001; Fig. 9), suggesting that older, mature fish
in the SJC generally had a higher proportion of
stored energy relative to juveniles. The breadth of

distribution of K for the SJC population was also dis-
tinguished from the JB population (KS test, D = 0.44,
p < 0.001), indicating that the amount of stored
energy was more variable among mature (SJC) fish
than immature (JB) fish.

Interestingly, the inter-annual pattern in relative
condition between years was mirrored at the 2 sites
(ANCOVA, R2 = 0.23, F2,3967 = 589.80, p < 0.001) with
strong correlation between mean values across the
time series (Pearson’s r = 0.997, df = 4, p < 0.001).
Condition was relatively high in 2012 and 2013 for
both study sites and notably lower at both in 2014
and 2015. Tukey’s HSD test was run on K values to
determine if any year was significantly different from
each of the others. Condition for JB fish in years
2010−2013 was not significantly different (p > 0.175),
while significant pairwise differences were noted in
years 2014 and 2015, distinguishing these years from
all others (p < 0.001). Condition for SJC fish in years
2010−2012 was not significantly different (p > 0.175),
while significant pairwise differences were noted in
years 2013−2015, distinguishing these years from all
others (p < 0.001). An examination of climate indices
over the time frame of the study indicates a shift in
early 2014 to the negative phase of the NPGO and a
positive phase of the ENSO and PDO (Fig. 10). This
corresponds to the marked decline in mean condition
for juvenile and adult fish (2014−2015) in contrast
to previous years. Significant correlations were noted
between JB condition, some environmental metrics
and climate indices, particularly the PDO (Table 5).
An overlay of fish condition, relative to environmen-
tal climate indices is provided for reference (Fig. 11).

A GLM examining mean annual condition as a
function of annual environmental conditions (SST,
PAR, UI) and climate indices (ENSO, PDO, NPGO)
found all 6 explanatory variables were influential on
mean annual condition in both juvenile (nearshore
population, JB) and mature fish (offshore population,
SJC). The limited number of years (n = 5) of data
available was a constraint, and model comparisons
were not able to consider all combinations of the ex -
planatory variables. Instead, all combinations includ-
ing 3 or fewer explanatory variables were evaluated.
The 2 most robust models each included 3 independ-
ent combinations of these predictors, such that, in
reviewing both models, all predictive variables were
determined significant. This was true for both SJC
and JB data. In the JB data, the best model included
the variables PDO (t4,1 = −88.00, p = 0.007), ENSO
(t4,1 = 26.84, p = 0.024) and the date of fall transition
(t4,1 = −27.23, p = 0.023). The next best model in -
cluded the variables mean SST (t4,1 = −24.98, p =
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0.026), mean PAR (t4,1 = −5.25, p = 0.119), and the
NPGO (t4,1 = 11.82, p = 0.054). Similarly, in the
SJC data the best model included mean SST (t4,1 =

−256.94, p = 0.002), mean PAR (t4,1 = −48.95, p =
0.013), and the NPGO (t4,1 = 130.96, p = 0.005). The
next best model included the remaining variables
PDO (t4,1 = −25.64, p = 0.025), ENSO (t4,1 = 9.17, p =
0.069), and the date of fall transition (t4,1 = −9.68, p =
0.066).

4.  DISCUSSION

This study provides insight into seasonal abun-
dance and demographics of Pacific sand lance
 populations, including their relative abundance, con-
dition, and size structure over intra-seasonal and
inter-annual time scales. The results indicate impor-
tant considerations related to shifts in habitat use by
life stage (e.g. nearshore vs. offshore), seasonal shifts
in distribution and availability (e.g. pelagic vs. ben-
thic), seasonal shifts in relative condition, and inter-
annual fluctuations in abundance and condition.
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Fig. 7. Correlation matrix for sea surface temperature (SST), photosynthetically active radiation (PAR) and the regional up-
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Best model ΔAIC
K ~ DoY + UI + SST + PAR + Year
Parameter estimates (coefficients)

Estimate SE t p

(Intercept) 1.051 × 103 2.706 × 102 3.882 0.0001 ***
DoY 2.362 × 101 1.299 × 102 −18.181 <0.0001 ***
UI 9.799 × 103 1.491 × 103 6.574 <0.0001 ***
SST −3.598 3.466 × 101 −10.379 <0.0001 ***
PAR −5.910 × 102 1.162 × 102 −5.086 <0.0001 ***
Year −4.547 × 101 1.366 × 101 −3.329 0.0009 ***

Table 4. Generalized linear model (GLM) of Pacific sand lance
condition factor (K) as a function of day-of-year (DoY), year, and
environmental variables. AIC: Akaike’s information criterion;
UI: upwelling index; SST: sea surface temperature; PAR: photo-
synthetically active radiation. Asterisks indicate significance at 

***p < 0.001 
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4.1.  Habitat use and population structure

Our analyses of 2 sites within the San Juan Ar-
chipelago, WA, provide further evidence that
Pacific sand lance may exhibit a profound onto-
genetic shift in their use of habitat, such that ju-
venile fish forage inshore and move to offshore
habitat at maturity or in response to declines in
system productivity, as the autumn season pro-
gresses. There are known differences in habitat
use between age-0 fish and adults (Chikilev &
Datskii 2000). Mature Pacific sand lance appear
in high numbers in the nearshore region (inter-
tidal and subtidal) in the early summer, followed
later by the appearance of age-0 in late summer
as they recruit from the larval stage (Dick &
Warner 1982). As the summer progresses, older
sand lance become less abundant in nearshore
waters, which become dominated by the age-0
and age-1 year class (Robards et al. 1999b). This
also corresponds with studies on western At-
lantic stocks (i.e. Ammodytes dubius) that have
demonstrated fish moving offshore as a function
of age (Scott 1968, 1972, Nelson & Ross 1991) as
well as abundance shifts from coastal to offshore
waters during the summer (Winters 1983, Nelson
& Ross 1991).
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Fig. 8. Comparison of relative abundance of Pacific sand lance Ammodytes personatus resulting from targeted sampling effort
at Jackson Beach (JB, beach seine) and San Juan Channel (SJC, Van Veen grab) from 2010−2015. Shaded box: interquartile 

range; line: median; whiskers: 10th and 90th percentiles; points: outliers. There was no available (NA) data at JB in 2011

Fig. 9. Condition factor (K) for Pacific sand lance Ammodytes per-
sonatus at each site during 2010−2015. K was significantly lower
in the period of anomalous warming in the North Pacific (i.e. ‘The
Blob’) in 2014−2015  relative to baseline data from 2010−2013. Box-
plots display the range of K values: shaded box: interquartile range;
line: median; whiskers: 10th and 90th percentiles; points: outliers
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It is likely that JB and SJC are life-stage specific
habitats for a common stock. Evidence from studies
on A. dubius and A. americanus (Scott 1972) as well
A. personatus (Robards et al. 1999b) suggest that
these species exhibit site fidelity and exhibit only lim-
ited movement along coastlines. Kühlmann & Karst
(1967) and van der Kooij et al. (2008) suggest daily
horizontal movements for mature Ammodytes spp. to
be limited to 1−5 km. While the intertidal is thought to
be important habitat (Robards et al. 1999b, Quinn
1999, Haynes et al. 2007), Pacific sand lance use of the
intertidal and subtidal nearshore environment is not
well understood. It is also unknown to what extent Pa-
cific sand lance partition habitat by life stage (Haynes
et al. 2007). Our results characterized habitat parti-
tioning between immature and mature stages of fish
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Fig. 10. Indices of climate regimes relevant to the study area (light gray bars: values less than the mean of the time series [neg-
ative anomaly]; dark gray bars: values greater than the mean of the time series [positive anomaly]). The North Pacific Gyre Os-
cillation (NPGO) is a climate pattern that emerges as the second dominant mode of sea surface height variability in the North
Pacific. This index is significantly correlated to fluctuations in salinity, nutrients, and chlorophyll a as measured in long-term
data sets in the California Current and Gulf of Alaska. The multivariate El Niño-Southern Oscillation (ENSO) Index (MEI) is
the dominant ocean−atmosphere driver of climate variability on inter-annual time scales. The Pacific Decadal Oscillation
(PDO) is a climate index based on patterns of variation in sea surface temperature in the North Pacific and is highly correlated
with precipitation and freshwater input into the eastern North Pacific. Climate indices were derived from the Northwest 

Ocean Observing System database (http://nvs.nanoos.org/Climatology)

Loca- Environ- Pearson correlation
tion mental index r (95% CI) t4 p

JB ENSO −0.57 (−0.94 to 0.45) −1.37 0.242
NPGO 0.62 (−0.18 to 0.95) −1.98 0.088*
PDO −0.75 (−0.97 to 0.17) −2.28 0.085*
SST −0.57 (−0.94 to 0.45) −1.37 0.241

SJC ENSO −0.53 (−0.94 to 0.49) −1.26 0.277
NPGO 0.57 (−0.45 to 0.94) −1.38 0.240
PDO −0.71 (−0.97 to −0.24) −2.41 0.014**
SST −0.54 (−0.94 to 0.49) −1.28 0.271

Table 5. Influence of climate and environmental conditions
on Pacific sand lance condition in Jackson Beach (JB) and
San Juan Channel (SJC). Asterisks indicate significant cor-
relation (*p < 0.100; **p < 0.050). ENSO: El Niño-Southern
Oscillation; NPGO: North Pacific Gyre Oscillation; PDO: Pa-
cific Decadal Oscillation; SST: sea surface temperature
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in the fall and suggest that nearshore sites (e.g.
known beach spawning sites) may serve as important
juvenile rearing habitats. Presumably many discrete
nearshore sites might serve as source populations to
larger offshore sites of the type identified in this study.
More research is needed to examine whether this ap-
parent life history pattern is evident in other seasons
(e.g. late winter, spring, early summer), determine the
consistency of this pattern at various temporal and
spatial scales, investigate potential connectivity be-
tween nearshore and offshore habitats, investigate ev-
idence for site fidelity, and determine whether there is
evidence for phenotypic and genetic differentiation
across discrete nearshore and offshore sites and phe-
notypic and genetic connectivity between linked
nearshore and offshore sites.

4.2.  Trends in abundance and mechanisms to
explain cyclical patterns in recruitment

This apparent biennial trend in year-class strength
may indicate a pulse in recruitment in alternating
years. Sampling in subsequent years (2016−2017)

suggests the persistence of this bien-
nial pattern (Figs. S2 & S3), though
the limited time series precludes any
definitive conclusion. In an examina-
tion of spawning stock biomass and
recruitment trends in Ammodytes
spp. throughout the Northern Hemi-
sphere, bien nial patterns in alternat-
ing year-class strength do not appear
evident nor consistent outside of
select stocks in the North Pacific.
While this pattern appears evident in
several (n = 4) short time series of
recruitment (3−8 yr) in the Gulf of
Alaska, Sea of Okhotsk, and north-
ern Sea of Japan, this pattern is not
emergent in recruitment time series
in the northeast and northwest At -
lantic and central and southern Sea
of Japan (n = 9), except at limited
time intervals (mean ± SD = 6.11 ±
2.32 yr, range = 3− 11 yr), or in less
than half of the available time series
in each case (Fig. 12).

High-magnitude, high-frequency
inter-annual fluctuations in recruit-
ment are common in forage fishes.
Low-frequency trends at decadal
scales are also often evident (So ma -

rakis 2017). It is important to distinguish be tween
fluctuations in stock abundance versus pulses in
year-class strength. Overall stock abundance may be
a reflection of predation, winter mortality, or en -
vironmental conditions affecting all age classes
within a population. Pulses in year-class strength, in
contrast, reflect patterns of recruitment. While we
expect fluctuations in both stock abundance and
recruitment, the apparent alternating inter-annual
year-class strength suggested here may in dicate reg-
ular biennial patterns in recruitment. Various factors
that may affect recruit ment include (1) the abundance
of spawners (influenced by fisheries exploitation,
predation, population age, and size structure); (2) the
number and viability of eggs (influenced by popula-
tion age structure and energy reserves); (3) the tim-
ing of spawning and emergence (influenced by life
history and physical conditions); (4) mortality in early
life history stages (influenced by physical and
trophodynamic factors, density-dependent competi-
tion for resources, and vulnerability to predation);
and (5) adult survival and growth (influenced by
physical conditions, food resources, and inter- and
intra-specific competition and densities). While the
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Fig. 11. Overlay of mean annual condition factor (K; box-plots in both panels,
right y-axis) of Pacific sand lance in San Juan Channel (SJC) and climate regime
(annual deviations, El Niño-Southern Oscillation [ENSO], Pacific De cadal Oscil-
lation [PDO], North Pacific Gyre Oscillation [NPGO]) displayed as trend lines
(top panel) and as deviation from the mean (bottom panel; positive anomalies in
dark gray, negative anomalies in light gray; see aslo Fig. 10). The inverse index
of the NPGO is used to simplify the display and to demonstrate correlation in the
climatic indices. Shaded box:  interquartile range; line: median; whiskers: 10th

and 90th percentiles; points: outliers
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size structure of the JB population appears relatively
constant interannually, the size structure of the SJC
population appears to fluctuate from year to year,
possibly reflecting inter-annual pulses in year-class
strength, which may in dicate density-dependent
processes. Possible mechanisms are explored below.

4.2.1.  Spawning stock size

Despite notoriously weak correlations in
stock− recruitment relationships, spawning
stock biomass is ultimately a critical factor in
informing recruitment (Ricker 1954, Bever-
ton & Holt 1957, Cushing 1981, Hilborn &
Walters 1992). Large year classes may per-
petuate large recruitments in subsequent
years as a reflection of their abundance
 relative to other year classes. Alternatively,
several studies in small pelagic fishes have
provided evidence for density-dependent
larval mortality (Somarakis & Nikolioudakis
2007), density-dependent habitat use (Fréon
et al. 2005, Barange et al. 2009), age/size
effects in annual fecundity (Parrish et al.
1986), and habitat constraints on spawning
and recruitment (Yatsu & Kaeriyama 2005,
Planque et al. 2007).

4.2.2.  Stock energetics, reproductive potential, and
skip spawning

Stock reproductive potential is another mechanism
worth further exploration. Similar to Pacific herring,
Pacific sand lance spawn demersal eggs in a single
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Fig. 12. Patterns in recruitment for 12 discrete
stocks of Ammodytes spp. throughout the Northern
Hemisphere (1980−2018). Vertical bars: standard-
ized indices of estimated recruitment (age-0 abun-
dance or inshore abundance, relative to survey
mean catch per unit effort, CPUE). Each graph is
unitless as annual estimates within each time series
are relative to the mean of the time series. Data
 includes time series of stocks of A. dubius in the
northwest Atlantic (Gulf of Maine, southern New
England, Middle Atlantic: Nelson & Ross 1991), A.
heian and A. japonicus in the northwest Pacific
(Seto Sea: Hamada 1966, 1967, Kishi et al. 1991;
central Sea of Japan: Yamada 2009; northern Sea
of Japan: Nanjo et al. 2017), A. hexapterus in the
northwest Pacific (Kamchatka: Tokanov 2007), A.
personatus in the northeast Pacific (Barkley Sound:
Haynes & Robinson 2011); and A. marinus in the
North Atlantic (Arnott & Ruxton 2002, van Deurs et
al. 2011; RAM Legacy Stock Assessment Database:
Ricard et al. 2012; North Sea S1–S3, stock aggre-
gate: ICES 2016). These time series are compared
to our observations of relative abundance (mean
CPUE = 2−139) of juvenile A. personatus in the San
Juan Archipelago (Salish Sea) at the confluence of
the southern Gulf of Alaska and northern California 
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wave rather than batch spawning as in other small
pelagics (e.g. anchovies Engraulis spp., sardines Sar-
dina spp., sardinella Sardinella spp., sprat Sprattus
spp.; McBride et al. 2015). Moreover, like Pacific her-
ring, Pacific sand lance may skip spawning in some
years (Rideout & Tomkiewicz 2011). Pulses in year-
class strength might be related to skip spawning in
the second reproductive season (Engelhard & Heino
2005) or in alternate years. Female nutritional energy
reserves may also determine relative energy expen-
diture in spawning in a given year. Density-depen-
dent effects from high previous year-class abun-
dance might reinforce relative female condition in a
cyclical pattern (Skjæraasen et al. 2012).

4.2.3.  Density-dependence

Population-level compensation. Density-dependence
is evident even in small pe lagic forage species (Ri card
et al. 2012, Somarakis 2017). Persistent patterns in
year-class strength have been demonstrated in other
fish, including sockeye salmon Oncorhynchus nerka
(Cass & Wood 1994) and walleye pollock Gadus
chalcogrammus (Bailey et al. 1999), 2 well-studied
species. Evidence for a 2 yr periodic fluctuation in rel-
ative abundance have been suggested in other
Ammo dytes stocks, including A. marinus in the North
Sea (Arnott & Ruxton 2002, van Deurs et al. 2009), A.
personatus in East Asia (Hamada 1966, 1967, Kishi et
al. 1991, Kimura et al. 1992), and A. personatus in the
Gulf of Alaska (Haynes & Robinson 2011). These stud-
ies noted alternating years of high and low recruit-
ment and attributed this to density-dependent recruit-
ment. It has also been noted that adults may compete
with juveniles for resources in the nearshore area (A.
personatus; summarized in Field 1988). Sand lance
and sand eels are non-migratory  residential species
associated with defined habitat areas, where the spa-
tial distribution of adults and juveniles may overlap.
These characteristics in crease the likelihood of den-
sity-dependence and decoupling of the spawning
stock−recruitment relationship when population size
approaches carrying capacity (van Deurs et al. 2009).

Cannibalism of larvae. Larval survival may also be
subject to density-dependent pressures from other
age classes. Kimura et al. (1992) developed a numer-
ical model of population dynamics of sand lance in
the eastern Seto Inland Sea that successfully simu-
lated an observed 2 yr periodic fluctuation as a func-
tion of adult cannibalism on larvae. Both Arnott &
Ruxton (2002) and van Deurs et al. (2009) provide
evidence that A. marinus recruitment (age-0) in the

North Sea is under density-dependent regulation,
related to the relative abundance of the age-1 popula-
tion. Specifically, these recruitment analyses suggest
the main driver of density-dependence is not spawn-
ing stock size, but the quantitatively dominant pre-
mature age-1 population, where age-0 abundance
may be negatively related to age-1. While the exact
mechanism is uncertain, this negative relationship
may reflect egg and larval mortality via disturbance
of sediments by age-1 fish, cannibalism (e.g. intra-
specific predation on eggs and larvae), or indirect
mortality and/or reduced growth via competition for
prey resources or benthic refuge (habitat). In the case
of age-0 fish, reduced growth might prolong foraging
in the marginal seasons, necessitate foraging in areas
further from the refuge of benthic substrates, and/or
postpone and abbreviate the relatively low-risk win-
ter dormancy period (Bergstad et al. 2002).

4.2.4.  Inter-species interactions

Alternatively, this signal in recruitment and year-
class strength might be indicative of interspecific
interaction. In the North Pacific, pink salmon Onco-
rhynchus gorbuscha differ significantly in abun-
dance in odd- and even-numbered years (Heard
1991, Ruggerone & Nielsen 2004). Since 1976, annual
returns of pink salmon in the Salish Sea have aver-
aged 17.8 ± 1.8 million fish in odd years and 0.4 ±
0.1 million in even years (Ruggerone & Irvine 2018).
These large odd-year runs produce hundreds of
 millions of juvenile pink salmon that enter marine
waters in even-numbered years; in odd-numbered
years there are very few juvenile pink salmon
(Beamish et al. 2010). Research elsewhere in the
North Pacific has demonstrated ecosystem effects of
biennial patterns in pink salmon recruitment (Sugi-
moto & Tadokoro 1997, Shiomoto et al. 1997, Rug-
gerone & Connors 2015, Ruggerone et al. 2016, Ward
et al. 2018). Biennial patterns in pink salmon abun-
dance correlate with the biennial patterns we ob -
served in Pacific sand lance (e.g. lower recruitment
in even years). Recent work has suggested a poten-
tial mechanism, where pink salmon exert top-down
pressures on plankton resources (Batten et al. 2018,
Springer et al. 2018).

4.2.5.  Need for continued monitoring and research

While our sampling time frame was too limited to
provide definitive insight into patterns in absolute or
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relative recruitment, the apparent differences in rel-
ative year-class strength in even and odd years and
the biennial patterns in juvenile abundance suggest
that patterns in recruitment in this region may mirror
similar trends noted elsewhere in the North Pacific,
may be influenced by the same mechanisms, and
warrant further study.

4.3.  Differential foraging, in-season condition, and
winter dormancy in adults and juveniles

Dramatic seasonal variations in energetics and
prox imate composition have been documented in
various forage species (e.g. herring and capelin;
Montevecchi & Piatt 1984, Smith et al. 1990, Lawson
et al. 1998). Contrasting interspecific life histories
may result in markedly different cycles of feeding
and energy storage. Ammodytes spp. exhibit a winter
dormant period, timed to coincide with periods of low
food availability (Field 1988). As the summer season
ends and the fall season progresses, sand lance re -
duce pelagic feeding, as evidenced by late summer
declines in CPUE and frequency-of-capture (Wins -
lade 1974, Robards et al. 1999b) and increases in the
prevalence of empty stomachs (Sisson & Baker 2017).
With reduced production in the water column (Dam -
kaer 1977), sand lance remain dormant in substrates
through the winter, reduce metabolic rates (Quinn &
Schneider 1991), and prolong gut evacuation times
(Ciannelli 1997).

4.3.1.  Onset of winter dormancy

Understanding the transition from an active state to
winter dormancy is crucial to understanding seasonal
changes in sand lance abundance and energetics
over the fall season. Two opposing pressures play a
role in determining the timing of this transition. The
first is the need to secure adequate energy reserves
to survive the winter. As primary productivity in the
system decreases with decreasing light over the fall
season, there is less available prey. Continued feed-
ing later in the season provides diminishing returns.
The second factor is the increased risk of predation.
Active foraging means leaving the safety of the sand
and risking exposure in the water column. There is a
basic ecological tradeoff between foraging profita -
bility and predation risk. If the risk of predation out-
weighs the benefits of feeding, it is no longer prof-
itable to continue feeding (Walters & Juanes 1993,
Ahrens et al. 2012, van Deurs et al. 2010).

Young-of-the-year fish direct energy in their first
year towards growth in length, rather than in weight,
in an attempt to outgrow a predation window (Ro -
bards et al. 1999a) and have less protein to buffer
against starvation than adults (Robards et al. 1999a).
Limited stored energy reserves may therefore mean
that there is no choice but to continue feeding in this
lower production environment, to ensure mainte-
nance and survival.

For relative abundance, the transition to winter
dormancy was expected to reduce CPUE in the water
column (JB) and increase CPUE in sediments (SJC).
We expected and observed an increase in CPUE in
SJC sediments, as more fish entered a dormant state
late in the season. At JB, we expected mean CPUE
to decrease as the season progressed, as fewer fish
emerged from the sand to forage at dawn and dusk.
A decreasing logistic trend was observed in some
years but had a poor fit. This expected decline in
prevalence in the water column from summer to fall
might be better captured with increased sampling
activity in late summer. Some of the high variability
in CPUE during the fall at Jackson Beach might also
result from the variable nature of beach seining.
Catch per seine is highly punctuated, in contrast to
sampling discrete sediments with the Van Veen.

4.3.2.  In-season condition and energy reserves

For relative condition, we expected and observed
mean condition to remain constant in fish that con-
tinued to feed (JB) and decrease in fish that initiated
dormancy (SJC) and began to expend their energy
reserves (Robards et al. 1999a). At SJC we observed
a significant decrease in condition over the fall, con-
sistent with the expectation that mature fish had
already entered dormancy and were expending
stored energy. For this adult population of fish, mar-
ginal feeding opportunities later in the fall season
may not be worth the continued risk of predation in
the water column. The trend in constant condition
at JB indicates that younger fish need to continue
foraging later in the season to secure sufficient
reserves to survive the winter. That young sand
lance may postpone overwintering to extend oppor-
tunities for growth or to maintain energy reserves is
consistent with other studies, including observations
of A. marinus, where large quantities of age-0 indi-
viduals were observed in the water column in fall
(Winslade 1974, Reeves 1994) and mechanistic
explanations for alternate year-class strength (van
Deurs et al. 2009).
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These results provide new insights about seasonal
energetics and seasonal availability of Pacific sand
lance as a forage resource for predators. No adults
were caught in the water column during our sam-
pling (September−December). This is consistent with
sampling of Ammodytes spp. in winter months (No -
vember−March) in other systems, including the Gulf
of Alaska (Robards et al. 1999b, Haynes et al. 2007)
and the North Sea (Macer 1966). Immature fish (age-0
and age-1), however, were present in the water col-
umn. Studies of A. marinus have also noted older or
high-condition fish burying earlier than smaller and
younger individuals (Bergstad et al. 2002, Wanless et
al. 2005, van Deurs et al. 2011).

4.4.  Inter-annual condition and winter reset

Condition increases in most fishes as a function of
length (Robards et al. 1999a). As expected, we noted
higher condition values for adults than juveniles.
While adult condition was always greater than juve-
nile condition, the inter-annual patterns in relative
condition in juvenile and adult populations were syn-
chronous. The striking parallel between the JB and
SJC populations each year suggests that a winter
reset in condition may occur, similar to the reset ob -
served in nutrient and production dynamics in the
region (Khangaonkar et al. 2012) and in ecological
systems more generally (Hastings 2001). Fish may
expend all or most accessible stored energy reserves
during the winter dormant period and rebuild energy
reserves each spring with limited carry-over between
years. The implication is that condition in each year
may be highly dependent on environmental condi-
tions in that specific year.

4.5.  Response to environmental conditions and
climate patterns

Seasonal and inter-annual differences in length−
weight relationships may be attributed to variation
in abiotic (e.g. light, temperature, latitude) and bio -
tic (e.g. production, competition, predation) factors
(Nel son & Ross 1991). Increased temperature will
increase metabolic rates and energetic demands. If
that increase is not matched with a coincident in -
crease in food availability, quality, or improved for-
aging conditions, increases in temperature will lead
to decreased condition (Pörtner et al. 2001). Arnott &
Ruxton (2002) found that warmer sea temperatures
correlated with poorer than average recruitment in

A. marinus, and recent sampling of A. personatus in
the northern Gulf of Alaska demonstrated a marked
decrease in condition in A. personatus sampled in
2012−2013 compared to 2014−2015 (Arimitsu & Piatt
2018), similar to our results. Further exploration of
the influence of recent North Pacific anomalous
warming (Bond et al. 2015) is needed.

Environmental effects may also influence recruit-
ment. Historical data suggest large fluctuations in
abundance of Ammodytes spp. (Winters 1983). The
reasons for such fluctuations remain unresolved.
Smith et al. (1978) suggested that favorable water
 circulation and bottom temperatures enhanced sur-
vivorship, while Sherman et al. (1981) dismissed
environmental conditions as factors that regulate
sand lance abundance and suggested that shifts in
abundance were in response to competitive release,
citing fishery-induced collapses in Atlantic mackerel
Scomber scombrus and herring. Match−mismatch
dynamics due to environmental effects on phenology
and seasonal timing may influence prey availability
during larval stages (Haldorsen et al. 1993, Fortier et
al. 1995). More recent studies have demonstrated ef -
fects of large-scale oceanographic processes on re -
cruitment. Arnott & Ruxton (2002) detected a nega-
tive relationship between recruitment and the winter
index of the North Atlantic Oscillation (e.g. SST and
egg and larval period). Robards et al. (2002) found
marked mesoscale differences in Pacific sand lance
abundance, growth, and mortality associated with
differing oceanic regimes, and van Deurs et al. (2009)
found a climate/temperature effect in models of
recruitment, particularly a significant effect of the
mean winter North Atlantic Oscillation index.

In the analysis of seasonal trends in environmental
metrics (SST, PAR, UI), a significantly weaker (and
occasionally negative) correlation between the UI
and SST and PAR was noted, particularly in 2010,
2011, and 2013 relative to other years. This was
expected. While SST and PAR represent daily meas-
ures illustrating seasonal trends, the UI indicates a
threshold shift from upwelling to downwelling. This
also suggests notable inter-annual differences in the
synchrony and the timing of nutrient cycling and
movement (advective surface velocities) of offshore
and nearshore water masses (i.e. the onset of fall
transition from upwelling to downwelling) relative to
background environmental conditions (i.e. light, tem -
perature). Still, all 3 seasonal variables were signifi-
cant in explaining intra-seasonal and inter-annual
trends in condition.

In contrast to the seasonal environmental metrics,
the climate indices (ENSO, PDO, NPGO) indicate

239



Mar Ecol Prog Ser 617-618: 221–244, 2019

broader regional patterns in environmental condi-
tions and ecological response. The ENSO reflects
periodic variation in wind and SST. The NPGO
reflects sea surface height variability in the North-
east Pacific and is correlated with salinity, nutrients,
and chlorophyll a (chl a) in the California Current
and Gulf of Alaska; it provides a strong indicator of
fluctuations in the mechanisms driving planktonic
productivity (Di Lorenzo et al. 2008). The PDO re -
flects variability of North Pacific SST anomalies (Man-
tua et al. 1997, Zhang et al. 1997); its temporal pat-
terns are linked to several biological and ecosystem
variables in the ocean (Hare & Mantua 2000). In our
time series, patterns in mean annual condition were
explained as a function of both annual environmental
conditions (SST, PAR, UI) and climate indices (ENSO,
PDO, NPGO). This was true for both SJC and JB.
These trends should be monitored, particularly in the
context of recent anomalous warming (Bond et
al. 2015) and expectations for continued increases in
temperature.

It should be noted that annual values for condition
were evaluated for only one period in the year (fall)
and compared to environmental indices that encom-
pass the full year. The rationale to include the full
year is that these environmental variables influence
growth and condition throughout the annual life
cycle of these fish. Environmental conditions in the
spring and summer influence annual growth and
accumulation of energy reserves, while fall and win-
ter conditions influence the rate of energy retention
and expenditure. In our analysis, we used a single
consistent reference period for annual condition, at
the conclusion of the summer growing season (end
point for energy accumulation), and at the onset of
winter dormancy (initiation of expenditure of stored
energy reserves). While information on fish condition
in alternate seasons is currently not available, it
would be valuable to collect these data to better
define annual cycles in energy accumulation and
expenditure and contrast trends in condition be -
tween seasons.

4.6.  Implications and further research

We identified trends in Pacific sand lance abun-
dance, condition, and age structure over  intra-
seasonal and inter-annual time scales. Our findings
suggest that Pacific sand lance may segregate
according to age, with an ontogenetic shift from
nearshore to offshore habitats following maturity.
Our findings also suggest that relative body condi-

tion is influenced by environmental conditions within
the year and that body condition may be subject to
winter reset. This study also strengthens evidence for
pronounced inter-annual cyclic fluctuations in popu-
lation structure that reflect either density-dependent
recruitment or a pulsed response to interspecific
competition. These results have expanded our eco-
logical knowledge and may be used to inform
 management of this important forage species, while
underscoring the necessity of long-term studies to
monitor its population dynamics.
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