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ABSTRACT: Big skate Beringraja binoculata is the most frequently landed skate in the Gulf of
Alaska portion of the Northeast Pacific Ocean, with recent stock assessment surveys showing rel-
atively healthy skate stocks and continued interest from the commercial fishing industry to
increase skate landings. Considered a data-poor species, there is a need for additional ecological
information on big skates, including movement patterns and habitat use. We deployed pop-up
satellite archival transmitting (PSAT) tags on 8 big skates in the Gulf of Alaska and set the tags to
release 1 yr after deployment. The minimum distance traveled by big skates varied between 6 and
205 km, with 1 individual traveling at least 2100 km based on light geolocation data. Three indi-
viduals showed evidence of having made long-range movement and crossed at least 1 manage-
ment boundary, and 3 remained relatively close to their tagging locations. Two tags did not report.
The PSAT tags also extended the maximum documented depth of big skates to over 500 m and
confirmed that they are thermally tolerant, occupying waters between 2 and 18°C. Because the
total catch of big skate is divided into multiple areas and limited movement between areas is
assumed, information from this study will aid in the development of appropriate spatial manage-
ment plans for this species.
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INTRODUCTION

Skates (Rajiformes: Rajoidei) are dorsoventrally
compressed cartilaginous fishes related to sharks and
rays and are increasingly recognized as an important
part of the benthic ecosystem (Coll et al. 2013). They
are captured in directed fisheries and retained in
other fisheries as non-targeted catch, mainly for their
pectoral fins, or wings. Recently, there has been
interest in further developing skate fisheries in
Alaska (ADCCED 2009), where skate stocks are not
currently listed as overfished or threatened by over-
fishing (NMFS 2013). Of the 15 most common species
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of skates captured in the Gulf of Alaska (GOA), the
big skate Beringraja binoculata (formerly Raja bi-
noculata) is the largest (Eschmeyer et al. 1983) and
most commonly retained species in state and federal
waters (Ormseth 2015). The North Pacific Fishery
Management Council, the management body
responsible for federal fisheries management in the
exclusive economic zone (3-200 nautical miles [nmi])
off Alaska, currently treats big skates as a data-poor
species. It has designated skates as a research prior-
ity and determined that stock assessment and man-
agement of data-poor stocks such as skates requires
basic life history information and better estimation of
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fishery interactions (NPFMC 2015). Likewise, the
Alaska Department of Fish and Game recognizes the
important role of big skates in coastal ecosystems
and as a species captured in state-managed fisheries
within 3 nmi of the coast and, therefore, seeks to col-
lect more biological and ecological information about
this species (Wessel et al. 2014).

The knowledge base of big skates has been grow-
ing over the past decade, including studies on diet
(Bizzarro et al. 2007, Ormseth 2011), age and growth
(McFarlane & King 2006, Gburski et al. 2007), repro-
ductive biology (Ebert et al. 2008), and distribution
(Stevenson et al. 2008, Bizzarro et al. 2014). In the
GOA, big skates aggregate in certain hot spots along
the coast of Alaska (Bizzarro et al. 2014). Most stud-
ies indicate that big skates primarily occupy depths
between the surface and 200 m (Love et al. 2005,
Ormseth 2011), although bottom trawl surveys have
retrieved big skates from hauls occurring as deep as
376 m in Alaska (Stevenson et al. 2008) and 459 m
along the west coast of the US (Bizzarro & Summers
2015). Big skates are also considered to have a wide
thermal niche (Bizzarro et al. 2014).

However, there have been no studies to identify
habitat use (such as depth and temperature occu-
pancy). One study has examined movement of big
skates in the Pacific Ocean using conventional tags
in waters off British Columbia, Canada (King &
McFarlane 2010). In that study, over 18 000 big skates
were tagged, of which 17 traveled between 800 and
2370 km and were recaptured in the GOA, the Aleu-
tian Islands, or the Bering Sea. However, about 75 %
of these tagged big skates were recaptured within
21 km of the release location by the commercial fish-
ing fleet, indicating that the majority of skates may
not undergo long-distance movements. Whereas
conventional tagging efforts are informative, they
rely on recaptures in commercial fisheries, which in
turn depend on the temporal and geographic cover-
age of fishing fleets (Bolle et al. 2005). Consequently,
conclusions regarding movement and distribution of
fishes may be biased by unequal spatial and tempo-
ral commercial fishing efforts. Moreover, conven-
tional tags do not provide information about move-
ment or habitat utilization by tagged fish while at
liberty. Lacking information to the contrary, manage-
ment agencies assume that big skates do not make
extensive movements or cross management bound-
aries and that they are restricted to relatively shallow
waters, where fishing occurs.

Satellite tagging provides a fisheries-independent
solution for examining movement patterns and habi-
tat use of big skates in the GOA region. Pop-up satel-

lite archival transmitting (PSAT) tags measure and
record temperature, depth, and ambient light data at
user-specified intervals while externally attached to
the fish (Arnold & Dewar 2001). On a user-program-
mable date, the tag releases from the fish, floats to
the surface of the ocean, and transmits summarized
data to orbiting satellites such as the Argos satellite
system. PSAT tags do not need to be physically
recovered and are therefore a fisheries-independent
means of studying fishes and a valuable tool for
studying the biology and ecology of elasmobranchs
(Conrath & Musick 2008, Weng et al. 2008) as well as
other benthic species, such as Pacific halibut Hippo-
glossus stenolepis (Seitz et al. 2003, Loher & Seitz
2006).

This study provides the first documentation of the
movement, swimming depth, and ambient tempera-
ture occupancy for big skates in the GOA. Based on
previous studies, we hypothesized that no more than
25% of tagged skates moved beyond the area where
they were tagged, that big skates occupied depths up
to 500 m, and that they utilized a wide temperature
range. Although the information from PSAT tags may
not be easily extrapolated to populations, it can be
used to determine how far individuals are able to
travel and what temperatures and depths they can
tolerate and may prefer, independent of fishing effort.
Results from this research will help advance our un-
derstanding of the biology and ecology of big skates
and will be valuable in assisting in the evaluation of
assumptions currently made in stock assessment
models used for managing fisheries in the GOA.

MATERIALS AND METHODS
Study area and skate collection

Eight big skates were captured in either the state of
Alaska waters of Prince William Sound (PWS) (n = 7)
or the US federal waters of the continental shelf
(n =1) of the GOA (Fig. 1A). Alaska state waters in-
clude all of PWS and are managed by the Alaska
Department of Fish and Game. US federal waters are
managed by the National Marine Fisheries Service
(NMFS), which divides the federal waters of the
GOA into the western GOA (WGOA), central GOA
(CGOA), and eastern GOA (EGOA) (Fig. 1), each
with its own allowable biological catch and overfish-
ing level.

PWS is a large (>9000 km?), productive fjord estu-
ary with seasonally high freshwater input from sur-
rounding glaciers and precipitation runoff (Stabeno
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Fig. 1. Deployment and end locations of tagged big skates (designated by their sex and total length; e.g. F177 is the 177 cm

female) in the Gulf of Alaska (GOA). Borders of the state management area (3 nautical miles) are shown by the grey dashed

line, and borders of the National Marine Fisheries Service (NMFS) federal management areas are shown in blue (WGOA,

CGOA, and EGOA represent the western, central, and eastern GOA, respectively). The deployed and pop-up end locations

for each skate are denoted by black triangles and red circles, respectively. The lines connecting deployed and end locations

are the hypothetical minimum distances traveled by the skate. (A) The GOA in the North Pacific, with the extent of the study
area designated by the red dashed box. (B) Prince William Sound (PWS) shown in greater detail

et al. 2004, Harwell et al. 2010, Musgrave et al. 2013).
Because of this seasonal melt, mean surface tem-
peratures range from 4 to 13°C, while bottom tem-
peratures range from 4 to 7°C (Vaughan et al. 2001,
Musgrave et al. 2013). The bathymetry of PWS is
complex, with many islands and steep slopes drop-
ping to 800 m over short distances. Surface circula-
tion in PWS changes seasonally, being a relatively
closed system during the spring and summer, while
southerly flows in the autumn and winter exit PWS
through its 2 main connections to the GOA, both of
which have sills shallower than 200 m depth (Har-
well et al. 2010, Musgrave et al. 2013). Water temper-
atures near the surface in the GOA vary seasonally
from 3.5 to 13°C, whereas they are fairly constant,
around 6°C, near the seafloor. The continental shelf
can be as narrow as 5 km in southeastern Alaska to
more than 200 km wide around Kodiak Island,
Alaska, and varies in depth between 150 and 250 m,

after which the continental slope descends rapidly to
abyssal depths of 4000 m (Weingartner 2007).

In PWS, big skates were collected from 5 to 14 July
2011 during the Alaska Department of Fish and
Game multispecies large-mesh bottom trawl survey.
The trawls were conducted during daylight hours for
approximately 26 min, covering a distance of 1.85 km
at depths between 0 and 500 m, following standard-
ized agency methods (Rumble et al. 2014). The big
skate tagged in US federal waters was collected on
25 August 2013 during the annual NMFS longline
survey, which covered over 16 km of groundline
deployed down the slope and left to soak for 4 to 8 h
at each station, following standardized NMFS meth-
ods (Lunsford & Rodgveller 2013). The University of
Alaska Fairbanks (UAF) Institutional Animal Care
and Use Committee (IACUC) has approved the col-
lection and tagging of big skates under UAF TACUC
protocol no. 2175%5.
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PSAT tag attachment and deployment

Immediately after bringing the skates on deck,
they were placed in a 1 x 2 x 1 m (length x width x
depth) holding tank equipped with flowing seawater
for at least 10 min to recover. They were then
weighed to the nearest 0.1 kg, measured to the near-
est 1 cm (total length [TL] from the tip of the snout to
the tip of the tail, measured in a straight line, and disc
width, from one wing tip to the other, measured in a
straight line), and sexed based on the presence or ab-
sence of claspers. Males were also assessed for matu-
rity using clasper length and calcification (Ebert et al.
2008). We only tagged big skates that displayed reg-
ular spiracle breathing, had no visible wounds, and
were larger than 8 kg (corresponding to approxi-
mately 100 cm TL). This size was selected based on
an analysis of the drag caused by PSAT tags attached
to cownose rays Rhinoptera bonasus over 7.8 kg that
showed they could carry a PSAT tag at moderate
speeds with an extra energy exertion of only about
5% (Grusha & Patterson 2005). Because of the similar
body shape and swimming mode shared by cownose
rays and big skates, a big skate larger than 8 kg was
assumed to be able to carry a PSAT tag with minimal
effects on its swimming efficiency.

Skates were tagged with Mk10 PSAT tags (Wild-
life Computers) measuring 175 mm in length and
40 mm in diameter, weighing 75 g in air, and pres-
sure-rated to 2000 m. The attachment system was
based on one developed for Pacific halibut (Seitz et
al. 2003), consisting of a titanium dart that was con-
nected to the corrodible link of the PSAT tag by a
short length (15 cm) of monofilament fishing line
(250 1b test) covered with heat-shrink plastic tubing
to minimize abrasion to the skin of the skate (Seitz
et al. 2003). Immediately before tag deployment,
the dart and tether were disinfected with 95%
ethanol. To attach the tag, the dart was inserted
into the wing of a big skate dorsoventrally midway
between the eye orbit and the insertion of the pec-
toral fin and one-third of the distance between the
spine and the wing tip (Fig. 2). The dart was push-
ed through the pectoral radials so that it locked in
the radials, immediately above the skin on the ven-
tral side of the skate. Total measuring and tagging
time for the skates was less than 10 min, with
skates being out of water for a maximum of 2 min
at a time. The skates were not anesthetized during
the process (UAF IACUC protocol no. 2175%75).

Once tagged, the skates were immediately re-
leased back into the ocean as close to the site of cap-
ture as possible (between 0 and 2 km). Release of

tagged big skates in state waters was accomplished
by placing the individual in a 1 x 1 m square of net-
ting attached to 4 lines. While the trawl vessel was
stationary, the net was lowered in the water and left
in place until the skate voluntarily exited the net
(Fig. 2). In federal waters, the tagged skate was
released by hand over the side of the longline vessel
and observed until it swam out of sight.

Data collection

The tags were programmed to collect 3 types of data
at 5 s intervals: depth (range: —40 to 1000 m, resolu-
tion: 0.5 m), ambient water temperature (range: —40 to
60°C, resolution: 0.05°C), and ambient light intensity
(sensitivity: 5 x 1072 to 5 x 102 W cm™2). For tags de-
ployed in 2011, the archived depth and temperature
data were summarized into 4 h bins (00:00-03:59 h,
04:00-7:59 h, etc.) for transmission to satellites. For
each time bin, the tag transmitted data representing
the percent of time the tag spent in each of 9 tempera-
ture bins (<0, 0-2, 2-4, 4-6, 6-8, 8-10, 10-14, 14-18,
>18°C) and 11 depth bins (<-1, -1 to 25, 25-50, 50-75,
75-100, 100-125, 125-150, 150-175, 175-200, 200-
500, >500 m). More depth bins were created between
0 and 200 m because big skates were expected to
spend the majority of their time in shallower waters.
Satellite transmissions of tag data also included daily
maximum and minimum temperatures and depths.
One tag was physically recovered, and the complete
archived 5 s interval data set was retrieved. It was
sent back to the manufacturer, refurbished, and re-
deployed on a big skate in 2013 in the GOA (Table 1).

Fig. 2. (A) Tagged big skate F145 being released, with a sat-
ellite tag attached. (B) Satellite tag shown in greater detail
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Table 1. Deployment summary for pop-up archival transmitting tags attached to big skates in the Gulf of Alaska (GOA), including sex, total
length (TL), disc width (DW), age, tagging and pop-off date, location and management area, days at liberty, and percent data reported to
the satellite. The sex and TL are used to identify the skate. Age is based on the von Bertalanffy growth curve determined for GOA skates by
Ghburski et al. (2007). Horizontal movement is the shortest straight-line distance between the tagging and end location and represents the
minimum distance the skate could have traveled while at liberty. F: female; M: male; PWS: Prince William Sound; CGOA: central Gulf of
Alaska; WGOA: western Gulf of Alaska. —: tag did not report

Sex TL DW Age Tagging Tagging location Tagging Pop-off End location  Pop-off Hori- No.of Data No.of

(cm) (cm) (yr) date Lat. Long. area date Lat. Long. area  zontal days at reported light

(°N) (°W) (°N) (°W) move- liberty (%) loca-

ment (km) tions
F 145 111 10 5Jul2011 60.6194 146.4038 PWS 23Jun 2012 60.692 146.173 PWS 15 354 80 31
F 165 133 13 5Jul2011 60.4846 146.6588 PWS 7Jun 2012 60.607 146.366 PWS 21 338 0 0
M 124 101 10 8Jul2011 60.5595 146.5758 PWS 17 May 2012 59.327 149.300 CGOA  205° 314 69 44
F 164 126 13 9Jul2011 60.5755 146.3595 PWS 18 Jun 2012 60.527 146.303 PWS 6 345 89 47
M 121 88 10 12Jul2011 60.8153 146.8493 PWS - - - - - 0 0
F 110 81 6 14Jul2011 60.7347 146.1065 PWS 120Oct2012 60.152 147.791 PWS 113 90 99 62
F 157 117 12 14 Jul2011 60.6442 145.6787 PWS - - - - - 0 0
F 177 134 15 25 Aug 2013 56.1867 155.9883 CGOA 1Jun 2014 54.775 159.589 WGOA 278 280 72 40

“Based on light geolocation data, this skate actually traveled over 2000 km

The refurbished tag was programmed slightly differ-
ently because general habitat use data had already
been acquired with the first round of tagging. Instead
of binning depth and temperature data, it was pro-
grammed to collect time-series data of the ambient
water temperature and depth at 10 min intervals. In
both years, ambient light intensity data collected by
the tags were processed by the onboard computer to
produce light curves for sunrise and sunset each day.

All PSAT tags were programmed to release 323 to
365 d after deployment to provide approximately 1 yr
of data and to release during the summer months,
when more fishing vessels are present, to increase
the likelihood of recovering the tags. The tag's pro-
gramming sent a small electrical signal through the
corrodible wires attaching the tags to the skates,
causing them to corrode. The PSAT tags then re-
leased from the skates, leaving behind only the dart
tags. After releasing, the slightly positively buoyant
PSAT tags floated to the surface and transmitted the
summarized data and light curves to the Argos satel-
lite system. The surface locations of the tags were
determined from the Doppler shift of the radio fre-
quency transmitted in successive uplinks received
during 1 Argos satellite pass (Keating 1995). The first
location for each tag with an Argos class of 1, 2, or 3
(indicating an accuracy <1.5 km) was considered the
end location of that skate track. Summarized depth
and temperature data, and light curves produced
from ambient light intensity data, were downloaded
from the Argos satellite system data servers. The
number of days during which the tag was attached to
the skate is termed 'days at liberty'.

Data analysis

Tag transmission performance was assessed to
examine the representativeness of each tag's data
record for describing each skate's behavior and envi-
ronment during its entire time at liberty. Tag trans-
mission performance was defined as the proportion
of data retrieved by Argos satellites from each trans-
mitting tag and was calculated by dividing the
number of data packets retrieved by Argos by the
hypothetical number of packets the tag could have
transmitted under ideal conditions. The hypothetical
number of packets depended on the duration of tag
deployment and the number of data summaries per
day.

To investigate the movement of skates while at lib-
erty, the minimum horizontal movement was calcu-
lated as the shortest great-circle distance between
the tagging and end locations, allowing for this dis-
tance to pass over land. In addition, light-based geo-
location was used to examine whether skates trav-
elled farther while at liberty than might be shown by
their release and end locations alone. Longitude esti-
mates are usually more accurate than latitude esti-
mates for approximating positions of demersal fishes
(Seitz et al. 2006), so we focused our analyses on the
longitude estimates alone. To obtain longitude esti-
mates, the downloaded light curve data were pro-
cessed by the proprietary program Data Analysis
(Wildlife Computers), which estimated times of sun-
rise, sunset, and local noon, followed by the Global
Position Estimator (Wildlife Computers), which cal-
culated the longitude. These light-based longitude
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geolocations were examined visually by assessing
the slope of the light curve for both dawn and dusk
(Seitz et al. 2006). Poor light curves (asymmetrical
dawn and dusk curves and/or very shallow slopes in
the curve) and highly uncertain positions were dis-
carded. Each longitude estimate was associated with
a measure of uncertainty based on the quality of the
light curve, and the longitude estimates of a tag,
along with the uncertainty estimates, provided a
measure of the east-west movement of the tagged
skate. We considered applying filters to improve
these position estimates; however, these are prima-
rily based on environmental variables, which either
do not apply to skates (e.g. sea surface temperature)
or do not have sufficient data available (e.g. bottom
temperature).

The movement of skates could have management
implications if skates moved frequently between
management areas. Since each area has its own
catch limit, biomass transferring from one area to
another could influence the proportion of the stock
that is available to harvest in those areas. To infer
whether skates crossed management boundaries, we
examined the end locations, light-based longitude
estimates, and temperature and depth records. The
management areas in the GOA are mostly oriented
east to west, meaning that changes in light-based
longitude estimates can be used to infer movement
between management areas, as seen in several
Pacific halibut studies (Seitz et al. 2003, 2011, Loher
& Seitz 2006, Loher 2008, Loher & Blood 2009). A
skate was considered to have crossed a management
boundary if the longitude estimates crossed the lon-
gitudinal boundary of the management area and the
uncertainty range did not overlap with the manage-
ment boundary. In addition, different management
areas (i.e. PWS vs. the CGOA shelf) have different
temperature-at-depth characteristics, so all of the
depth and temperature records from the 1 physically
recovered tag were examined to provide coarse
inference on whether the skate moved between
these different bodies of water.

Finally, to examine seasonal depths and water tem-
peratures occupied by tagged big skates, data from
both satellite transmissions and the physically recov-
ered tag were grouped into summer (July-Septem-
ber), autumn (October-December), winter (January—
March), and spring (April-June) seasons. Differen-
ces in time spent in depth and temperature bins
among seasons were analyzed using a chi-squared
test (Zar 1999).

All statistical analyses were conducted with R (R
Core Team 2014), using a significance level of o =

0.05. Mapping and distance measurements were per-
formed in ArcGIS (v.10.2, ESRI). The depth and tem-
perature plot of the recovered tag was produced with
MatLab (v.R2014b, MathWorks). For identification
purposes, the tagged skates are identified in the fig-
ures and table by a 4-character code designating
their sex and TL (e.g. M124 for a male skate measur-
ing 124 cm TL).

RESULTS

Five female and 2 male big skates (range: 110-
165 cm TL) were captured and tagged between 49
and 190 m water depth in the eastern part of PWS in
2011 (Table 1). The tag deployed on a 164 cm TL
female was recovered on a beach by a commercial
fisherman and was returned in 2012. After the full
data set was downloaded, the tag was refurbished
and re-deployed in 2013 on an eighth big skate, a
177 cm TL female captured at a depth of 205 m south-
west of Kodiak Island (Fig. 1).

Tag performance

Six of the 8 PSAT tags deployed on big skates in the
GOA reported to satellites upon pop-up, whereas the
other 2 failed to report (Table 1). Of these, 5 transmit-
ted 69 to 99 % of their summarized depth, tempera-
ture, and light level data; the sixth tag (F165) only
reported its final location through the Argos satellite
system but did not transmit any other data (Table 1).
The tag on F110 prematurely released after 90 d at
liberty, but the other 4 tags remained attached nearly
a full year. In all, we recovered 931 d of depth data
and 922 d of temperature data. While at liberty, the
tags collected light level data, but only 31 to 62 ac-
ceptable daily light curves were produced per tag
(Table 1).

Movement

The 6 tags for which Argos-calculated end loca-
tions were available popped up in 3 different man-
agement areas (Table 1). Four of the tags deployed in
PWS had end locations in PWS (minimum horizontal
movement: 6-113 km), and 1 had an end location in
the CGOA (minimum horizontal movement: 205 km).
The tag deployed in the CGOA transmitted its data
from the WGOA (minimum horizontal movement:
278 km; Fig. 1). The 3 tagged skates that moved a
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Fig. 3. Example of 2 dispersal types, showing the longitude tracks of tagged big skates (A) F145 (pink line) and (B) M124
(green line) while at liberty. The initial black symbols represent the known tagging locations, and the final colored symbols
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minimum of 100 km travelled to the southwest,
whereas the other 3 travelled to the southeast and
northeast while remaining in the eastern PWS.

Of the 5 tags from which daily geolocation longi-
tude estimates could be derived, 2 dispersal types
were observed. The first dispersal type was defined
as having start and end locations in the same man-
agement area and with no evidence that the tagged
skates crossed management boundaries while they
were at liberty (F145 and F110; Fig. 3A). The second
dispersal type was exhibited by 3 skates that crossed
management boundaries while at liberty. In one case
(F177), the light-based longitude estimates showed a
direct westward progression from the point of release
to the end location, undertaken primarily in the late
summer and autumn. In another case (M124), the
release and end locations were in relatively close
proximity (205 km apart), but the longitude estimates
provided evidence that the fish traveled much farther
than the minimum horizontal distance between those
2 points. Indeed, the geolocation data suggest that
this skate moved at least 2100 km from the release

site in PWS (longitude: 146.6°W) through the CGOA
and into the WGOA to 160°W (£1°) between July
2011 and January 2012 and then back to 149.3°W in
the CGOA by May 2012 (Fig. 3B). In doing so, the
skate crossed 3 management boundaries in 314 d, for
a minimum average speed of 6.8 km d'. Finally, evi-
dence of this dispersal pattern was also found using
the fine-scale data from the physically recovered tag
(F164), which allowed a closer examination of the
depth and temperature occupancy of this skate. The
data from this tag suggest that the skate moved out of
PWS and into the GOA in mid-August and subse-
quently returned into PWS in late September. In
PWS, the tag experienced water at 20 m depth that
only reached 8°C in late July, and then as it moved
into the GOA, it experienced temperatures above
10°C at 70 m in August and September 2011 (Fig. 4).
In addition, the maximum depth of the tag between
mid-August and mid-September did not exceed
115 m, more typical of the depths on the continental
shelf of the GOA. Starting in late September, the tag
again experienced deep depths typical of PWS.
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Depth and temperature range occupancy

Tagged big skates occupied depths from 0 to over
500 m and encountered temperatures between 2 and
over 18°C (Fig. 5). Based on depth and temperature
occupancy, 3 depth-based behavior types were in-
ferred: local resident, slope transient, and shelf tran-
sient. The local resident behavior type was demon-
strated by skates that provided no evidence of long-
distance movement while tagged (F145 and F164).
As mentioned earlier, F164 likely crossed a manage-
ment boundary, from PWS to the GOA, but based on
its location, it did so while still undergoing a small
(less than 100 km) horizontal movement (Fig. 1).
Local residents occupied different depth ranges in
summer and winter, staying above 50 m for most of
the summer but spending most of the winter and
spring between 100 and 200 m (Fig. 5). Temperatures
experienced by these skates were confined to be-
tween 4 and 14°C, although they primarily occupied
waters between 10 and 14°C during the summer and
spent all of winter and spring almost exclusively in 4
to 6°C waters (Fig. 5).

The skate for which we had fine-scale data (F164)
experienced a maximum depth of 376 m, with an
average of 125.6 m (+60.96 m, 1 SD) and a tempera-
ture range between 3.2 and 12.9°C (average of 6.2 =
2.09°C). Interestingly, despite its wide depth occupa-
tion, F164 spent 39.8 % of its time at liberty in a 20 m
depth range between 122 and 140 m. It returned to
that depth range 12 times during the year, each time
staying there more than 3 d consecutively (Fig. 4).
Often while in this depth range, the depth record
changed in a sinusoidal fashion, exactly mirroring
the tidal cycle in PWS. For example, during a 4 d bout
in April 2012, the water depths of the skate tag and

the tidal cycle were not significantly different in
amplitude (paired t-test: tg = 0.95, p = 0.38), cycle
length (paired t-test: g = 0.75, p = 0.48), and timing
(paired t-test: t; = 1.24, p = 0.98). This suggests that
the skate was stationary on the sea floor for 3 to 15 d
at a time, while the water column height fluctuated
with the tide.

The slope transient behavior type was associated
with skates that traveled over 100 km and occupied
shallow depths (<175 m) during the summer, spring,
and autumn and depths down to 500 m during the
winter (i.e. M124, F110; Fig. 5). Based on the longi-
tude estimates while at liberty, it appears these
skates undertook their long-range movements in the
late summer or early autumn (Fig. 3). Although data
for F110 were only available for 90 d, this individual
started displaying this long-range movement while
spending over 84 % of its time between 0 and 50 m in
the summer and autumn. During the winter and
spring, the slope transients occupied warmer waters
(mostly 6 to 8°C) than the other 2 behavior types and
never occupied waters colder than 4°C (Fig. 5).

The final depth-based behavior type, the shelf
transient (F177), moved long distances along the
continental shelf and never experienced depths
below 150 m, most likely because it remained on
the continental shelf throughout its time at liberty.
In contrast with the other 2 depth-based behavior
types, this skate occupied shallower depths more
often in winter and spring than in summer and
autumn (Fig. 5). The shelf transient behavior type
generally occupied colder waters than the other
behavior types, inhabiting mostly 4 to 6°C waters
during the winter and spring. While dispersing in
the summer and autumn, it mostly occupied a tem-
perature range of 6 to 8°C.
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DISCUSSION

Satellite tags deployed on big skates provided
novel ecological data allowing insight into their be-
havior that can be used to help evaluate and poten-
tially refine assumptions currently used in the man-
agement of this species. Specifically, we found that
this species may undergo large horizontal move-
ments and occupy greater depths more often than
previously thought. Therefore, it is prudent to re-
examine the assumption that big skates undergo lim-
ited long-range movements. Interestingly, the area
around the Shumagin Islands in the WGOA, to which
2 tagged skates traveled, has been recently identi-
fied as a location with high spring and summer big
skate abundance based on trawl survey data span-
ning 1999 to 2012 (Bizzarro et al. 2014). In addition,
both tagging locations were within a high-abun-
dance location found by Bizzarro et al. (2014). To-
gether, these findings suggest that there may be mul-
tiple areas around the GOA that have relatively high
densities of big skates, at least during the spring and
summer seasons, and that big skates may travel be-
tween them. In other words, these areas are not iso-
lated hot spots or centers of distinct big skate popula-
tions but rather are areas that may have seasonal
characteristics beneficial to big skates, such as abun-
dant food sources, protection from predators, and
optimal temperatures, or hold importance as nursery
and mating areas.

Conventional tagging studies almost certainly
underestimate the distance travelled and number of
management boundaries crossed by skates. One
skate in our study traveled a net distance of 21 km
between tagging and end locations, but the archived
data suggested a much larger-scale movement. Data
from another skate showed that tagging and end
locations alone underestimated the distance traveled
and the number of management boundaries crossed.
A conventional tagging study in British Columbia
found that only 6.1 % of big skates were recaptured
over 100 km from the tagging location and that 70 %
of the skates that traveled over 800 km were females
of immature size (King & McFarlane 2010). We found
both males and females underwent long movements,
and the longest movement (>2000 km) was under-
taken by a male of mature size. In the conventional
tagging study, big skates traveled at an average
speed of 2 to 6 km d~!, similar to what we found in
this study.

In contrast to the skates that traveled away from
their tagging areas, 3 of the tagged skates (50 %)
likely remained in PWS for the duration of the tag

deployment and traveled a maximum of 21 km
between tagging and pop-up locations. It is note-
worthy that this is the same distance within which
75% of the big skates conventionally tagged in
British Columbia were recaptured (King & McFar-
lane 2010). Site fidelity has been found in other elec-
tronic tagging studies of skates: common skates Dip-
turus batis in the North Atlantic (Wearmouth & Sims
2009) and Arctic skates Amblyraja hyperborean in
the Canadian Arctic (Peklova et al. 2014). It has been
proposed that persistent food supplies may account
for site fidelity in some skates (Wearmouth & Sims
2009) and that high-abundance locations for other
species could be linked to niche differentiation
between species (Bizzarro et al. 2014). In our study,
we did confirm that big skates show site fidelity
rather than inferring it based on the tagging and
recapture location of conventional tags.

Consistent with findings in other studies (Love et
al. 2005, Ormseth 2011), big skates tagged with satel-
lite tags spent the majority of their time at depths
<200 m. However, they also occupied greater depths
more often than previously assumed (Stevenson et al.
2008), most likely as a result of limited coverage of
surveys during the winter and spring, when big
skates occupy relatively deeper water. The maxi-
mum depth of big skates has occasionally been re-
ported in the literature as 800 m, always citing the
same unpublished manuscript (by K. M. Howe in
1981). This likely spurious record has not been con-
firmed as far as we can tell and should not be cited
until confirmed. The deepest confirmed records of
big skates are 376 m in the GOA (Stevenson et al.
2008) and 459 m along the California coast (Bizzarro
& Summers 2015), both from summer bottom trawl
surveys. This study has not only confirmed that big
skates can travel below 500 m, it has also shown that
big skates occupy these greater depths more often
than previously thought, with one individual spend-
ing nearly 10% of the winter season below 500 m.
Ecological knowledge such as this provides evidence
for extending the habitat description of big skates.

The temperature range occupied by big skates in
this study is similar to that found in previous research
(Bizzarro et al. 2014) and confirms that big skates are
thermally tolerant, occupying temperatures between
2 and 18°C. Overall, tagged big skates in this study
generally occupied deeper and colder waters during
the winter and spring seasons. The temperature oc-
cupancy was most likely related to available water
temperatures, which are usually restricted to be-
tween 4 and 7°C in both the GOA and PWS during
the winter (Vaughan et al. 2001, Weingartner 2007,
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Musgrave et al. 2013). During the summer and
autumn, when a stronger thermocline is established
and a wider range of temperatures is available, the
tagged skates tended to occupy warmer tempera-
tures at shallower depths, possibly for the metabolic
advantages conferred by warmer temperatures
(Wallman & Bennett 2006). Temperature is an impor-
tant factor in structuring skate assemblages (Ark-
hipkin et al. 2012, Bizzarro et al. 2014), parsing out
the habitat between species based on their thermal
optima. However, other factors such as food avail-
ability may further refine this distribution, and a ther-
mally tolerant species like the big skate may be
found in sub-optimal temperatures to reduce compe-
tition if other skate species are present (Bizzarro et al.
2014).

PSAT tags deployed on big skates were able to
provide novel and salient ecological information on
a potentially important commercial fishery species,
but this technology comes with a certain number of
caveats and drawbacks. First, 2 tags (25% of de-
ployed tags) did not report, and therefore there was
no evidence of the reason for their lack of data
transmission. This percentage of tag failure is com-
parable to other studies that have deployed PSAT
tags on demersal high-latitude species like Pacific
halibut (19% tag failure; Seitz et al. 2011), Pacific
sleeper shark Somniosus pacificus (33 % tag failure;
Hulbert et al. 2006), and Arctic skate (22 % tag fail-
ure; Peklova et al. 2014). Despite these failures, suc-
cessful big skate tags reported the majority of their
data, providing us with valuable insight into the
ecology of this species. Second, only 6 tags provided
data, making any population-level extrapolations
tenuous. Big skates likely display more than 3 be-
havior types, and our small sample size is not suffi-
cient to define all behaviors that this species can
exhibit. Although we were able to show that big
skates are capable of long-range movements,
understanding the frequency of this long-range
movement at the population level will require a
much larger sample of tagged individuals. Third,
the size of the PSAT tags restricted us to use only
larger individuals (over 100 cm TL) to avoid affect-
ing their behavior, but there is conflicting evidence
as to which way this might have biased our conclu-
sions. Wearmouth & Sims (2009) determined that
larger common skates were more likely to be verti-
cally active, based on PSAT tag data. However, con-
ventional tags on big skates in British Columbia
showed that smaller (<90 cm TL) individuals under-
took most of the long-range movements (King &
McFarlane 2010).

Finally, some of the capabilities of PSAT tags,
namely the ability to determine geolocations based
on ambient light levels, are more difficult for a dem-
ersal species and at high latitudes. New models are
being developed that may help refine positions of
fish tagged in high-latitude areas, such as the hid-
den Markov models that integrate maximum depth,
tidal patterns, and activity of the fish (Pedersen et
al. 2008). Most other existing models use a sea sur-
face temperature- and/or primary productivity-
based approach (Chittenden et al. 2013), which can-
not be applied to deeper-water demersal species
like skates.

Although the present study only examined a small
number of individuals during a relatively short time
scale, the results provide initial qualitative evidence
that big skates can, and likely frequently do, travel
long distances, cross management boundaries
within the GOA, and spend more time in deeper
waters than previously thought, especially during
the winter months. As a result, this information can
be used to refine assumptions of stock assessment
models, such as the depth selectivity of fishing and
survey gear, the area of suitable skate habitat for
extrapolating abundance surveys, and movement
rates among and out of management areas. Man-
agers may therefore want to consider incorporating
catch rates at multiple depths during abundance
surveys and developing management strategies for
this species at the scale of the entire GOA rather
than broken down into smaller management areas
(such as the WGOA, CGOA, and EGOA). Future
research should be designed to further quantify the
connectivity of big skates across the entire GOA to
better define their stock structure and to facilitate
coordinated management in state and federal
waters.
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