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Parameters to Estimate Tropical Cyclone Intensity

TIMOTHY OLANDER,* ANTHONY WIMMERS,* CHRISTOPHER VELDEN,? AND JAMES P. KOssIN??

@ Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—-Madison, Madison, Wisconsin
® The Climate Service, Durham, North Carolina

(Manuscript received 15 December 2020, in final form 27 September 2021)

ABSTRACT: Several simple and computationally inexpensive machine learning models are explored that can use advanced Dvorak
technique (ADT)-retrieved features of tropical cyclones (TCs) from satellite imagery to provide improved maximum sustained surface
wind speed (MSW) estimates. ADT (version 9.0) TC analysis parameters and operational TC forecast center best track datasets from
2005 to 2016 are used to train and validate the various models over all TC basins globally and select the best among them. Two
independent test sets of TC cases from 2017 to 2018 are used to evaluate the intensity estimates produced by the final selected model
called the “artificial intelligence (AI)” enhanced advanced Dvorak technique (AiDT). The 2017-18 MSW results demonstrate a global
RMSE of 7.7 and 82 kt (1kt ~ 0.51 ms "), respectively. Basin-specific MSW RMSE:s of 8.4, 6.8, 7.3, 8.0, and 7.5 kt were obtained
with the 2017 dataset in the North Atlantic, east/central Pacific, northwest Pacific, South Pacific/south Indian, and north
Indian Ocean basins, respectively, with MSW RMSE values of 8.9, 6.7, 7.1, 10.4, and 7.7 obtained with the 2018 dataset.
These represent a 30% and 23 % improvement over the corresponding ADT RMSE for the 2017-18 datasets, respectively,
with the AiDT error reduction significant to 99% in both sets. The AiDT model represents a notable improvement over the
ADT performance and also compares favorably to more computationally expensive and complex machine learning models

that interrogate satellite images directly while still preserving the operational familiarity of the ADT.
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1. Motivation

Machine learning is a rapidly growing application of study
being used to examine a wide variety of topics, especially in the
environmental sciences. It can be employed to discern patterns
in large datasets that are more difficult to examine using tra-
ditional methods due to its ability to decipher correlations
in datasets objectively. Due to considerable advancements in
computer hardware, such as new graphical processing units
(GPUs), and software analysis packages such as Tensorflow
(Abadi et al. 2016) and Keras (Chollet 2015), a greater number
of researchers are able to access, learn, and utilize machine
learning techniques than ever before.

The three most popular types of neural networks in the
atmospheric sciences applications are multilayer perceptron,
convolutional, and recurrent. Multilayer perceptron net-
works (MLP) are a type of “feed-forward” network where
the data flows in one direction through the model. These are
the most general type, containing varying numbers of layers
and neurons. A MLP can be called “shallow” or ‘“‘deep,”
depending on the number of hidden layers in the model. A
typical MLP has three types of layers: input, output, and
hidden layers. Input and output layers are self-explanatory
and are equal in size to the vector size of the model input and
output, respectively. By contrast, hidden layers exist between
the input and output layers and can be any size according to
their number of “‘neurons.” Neurons are computational units
that have weighted connections to the adjoining layers, with a
layer being considered ‘““fully connected” to the adjoining
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layers when each neuron in a layer is connected to each node
(either neurons, input or output) of the adjacent layers. An
‘“‘activation function” normally applies to each neuron: this
can be as simple as a step function (pass the information on if
the weighted sum is greater than a value, otherwise do not),
and usually these functions are nonlinear to allow the net-
work to learn nonlinear relationships.

Figure 1 provides a schematic diagram of a simple MLP with
only three layers. The input layer contains the observed pre-
dictors (or features in ML literature) being passed forward to
the next layer of the model containing 32 neurons. This layer is
fully connected to a hidden layer since each of the 26 predictor
values is connected to each of the 32 neurons. For each neuron
in the hidden layer, a weighed sum (plus an offset) of each of
the 26 values is calculated. The weights for each input value for
each neuron and the corresponding offset are optimized during
the training process of the model. An activation function is
then applied to the weighted sum values of each neuron in the
hidden layer to define how the information from the 32 neu-
rons is passed to the next layer. This single node is the output
layer and represents the final predicted value of the MLP.

Convolutional neural networks (CNN) are typically applied
to computer vision analysis to perform abstract feature char-
acterization. CNNs identify components within the images
using convolutional filters and down-sampling processes that
make up a method of hierarchical pattern-matching. The
product of successive convolutions (called a ‘“feature map”’) is
then transformed, or ‘““flattened,” to a one-dimension array
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FIG. 1. Schematic diagram of final regression-based MLP model
with one hidden layer of 32 neurons and one output layer with 1
neuron.

after all convolution and down-sampling iterations have been
performed, which can then be analyzed with a MLP to
produce a final predicted value. Finally, there are recurrent
neural networks (RNN), which recursively feed the output of a
layer back into itself. This allows the past iterations of a layer to
influence the future iterations, which is advantageous for ap-
plications to sequential datasets.

Satellite-based tropical cyclone (TC) intensity analysis is one
field where machine learning techniques have been explored a
great deal in the past few years. Legacy techniques have achieved
reasonable accuracies based upon empirical or statistics-based
algorithms operating on geostationary satellite infrared (IR)
imagery (Velden et al. 1998; Pineros et al. 2008; Ritchie et al.
2014; Olander and Velden 2019), polar-orbiting satellite passive
microwave (PMW) imagery (Xiang et al. 2019; Jiang et al. 2019),
or techniques using both (Velden and Herndon 2020).

Recent machine learning studies normally use the same
datasets as the statistics-based algorithms but employ a much
more powerful image analysis methodology to decipher pat-
terns that may be missed or ignored in those techniques.
These are CNN architectures, which is a process based on
breaking down gridded data, such as satellite imagery, into a
series of one or more progressively smaller grid layers using a
series of image operations. A convolution operation is first
performed, which highlights the larger, multi-element fea-
tures in the image using filters. An element-wise, nonlinear
operation can also be applied during the convolution process
to remove data above or below a set threshold. A final down-
sampling, or pooling, operation is performed to further highlight
features and reduce the overall size of the image. The image is
then flattened from a two-dimensional grid to a one-dimensional
array of scalar values, which is then analyzed with a MLP to
result in a final output layer of predicted value(s).

Highlighting select recent CNN studies, Pradhan et al.
(2018), Combinido et al. (2018) and Maskey et al. (2020) fo-
cused on geostationary cloud top temperature information
from a single IR channel, typically the longwave IR (LWIR)
window channel (approximately 10.7 um). Zhang et al. (2020)
used a combination of LWIR and water vapor (WV, ap-
proximately 6.7 um) imagery, while Lee et al. (2019) and
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Yu et al. (2020) employed several additional IR channels
(3.9 and 12.0 um) in addition to the LWIR and WV channels.
Wimmers et al. (2019) focused exclusively on PMW data
(37- and 85-92-GHz channels) from available polar-orbiting
satellites. Chen et al. (2019) used both PMW rain rate and
geostationary LWIR and WV imagery in their study. Utilization
of a combination of channels and/or sensors over a single
channel can provide more information to the model being
derived, but doing so will increase the amount of time and
computational power needed to incorporate each new set of
data. Each of the previously listed studies balanced these
requirements and availability of data when determining
which datasets to use. All of these CNN studies showed
promise for objectively estimating TC intensity, with some
yielding superior results to the legacy methods.

CNNs have both the advantage and disadvantage of en-
capsulating spatial patterns in a neural network form. The
advantage of this is the thoroughness and objectivity that
comes from direct training on image inputs since all of the
image data are utilized in the final determination of a predicted
value. There are a few disadvantages to CNN models, however.
It can be difficult to achieve a general optimization since many
different methods can be used to subsample/filter the image in
the convolution process. Also, CNN can have high computa-
tional costs, especially if the computer GPU is not sufficient
and/or the model is very complex. In addition, CNN require a
great deal of data to sufficiently train the model in order to
avoid overfitting to the training data. Some of these drawbacks
can be experienced with ANN, but are heightened with CNN
due to their increased complexity.

By contrast, the statistical advanced Dvorak technique
(ADT; Olander and Velden 2019) is a fully automated and
objective algorithm that has been applied in real time for almost
two decades by operational forecast centers worldwide as an aid
to estimate TC intensity. The ADT has also been employed as
the primary analysis tool in several TC climatological studies
(Velden et al. 2017; Kossin et al. 2013, 2020; Courtney et al.
2020). It primarily examines geostationary satellite LWIR im-
agery to assess the intensity of TCs through pattern matching
and explicit feature analysis techniques. PMW imagery (ap-
proximately 85-92 GHz) is also used in certain cases to provide
indicators of early eyewall formation.

The basis of the ADT is the objective determination of a
storm cloud pattern or ‘“‘scene type,” which attempts to mimic
the parent Dvorak technique (Dvorak 1975, 1984; Velden
et al. 2006) methodology that requires a human analyst. Once
the ADT scene type is derived the current storm intensity is
estimated using statistical methods specific to that scene type.
There are four primary scene-type categories used in the
ADT, examples of which are shown in Fig. 2. ““Eye” refer-
ences when an eye feature is apparent and is a feature asso-
ciated with stronger intensity TCs. A “CDO,” or central
dense overcast, is a large, coherent cirrus cloud shield that
covers the rotational storm center or forming eye feature. It
typically occurs prior to the appearance of an eye. “Curved
band” features typically occur in forming TCs when an arc of
convection is wrapping around a storm circulation center as
the storm is developing. As the storm increases in strength the



DECEMBER 2021

OLANDER ET AL.

2163

FIG. 2. Examples of ADT scene-type classifications. Imagery is LWIR imagery with the standard basic Dvorak
“BD” enhancement to enhance ranges of cloud top temperatures. Black, white, and dark gray are colder tem-
peratures, as in the eye and CDO examples, with several other shades of gray shown in the shear and curved band
indicating warmer temperatures.

extent of the convective arc will also increase and move closer
toward the storm circulation center. Once the convection wraps
completely around the circulation center the clouds will tend to
cover this location and form a CDO. Finally, the “shear” scene
can occur at any time during the storm life cycle. This scene type
occurs when a TC encounters strong environmental winds and
the low level circulation center is exposed and separated from
the convection. The more intense the atmospheric shear the
larger the separation between the storm center and the con-
vection (and typically the weaker the storm will be).

The scene type is calculated in the ADT using two separate
score equations, one for the eye region (=24 km from the
storm center) and another for the cloud region (24-136 km
from the storm center) of the storm. These equations use
various TC parameters retrieved from the IR imagery to
derive the scores and a series of threshold values to
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classify the final scene type. Depending upon the scene
type classified, either a regression equation (eye and CDO
scene types) or a linear relationship of select TC parameter
values (shear and curved band scene types) can be used to
derive the intensity estimate. The shear and curved band scene
types are based upon the original analysis techniques outlined
in the Dvorak technique and have not been investigated in
depth and modified like the eye and CDO scene types.

The retrieved TC parameters are stored in an ADT “‘history
file” for that storm and are used in the subsequent intensity
analyses for the lifetime of the storm. Typically, the ADT is run
every 30 min, providing real-time, objective estimates of TC
intensity for all storms around the globe with accuracies com-
mensurate with the legacy manual Dvorak technique. Further
details on the ADT are provided in Olander and Velden (2019)
and in Olander (2021).
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FIG. 3. World map outlining the tropical cyclone ocean region boundaries.

Since the ADT is a proven and mature algorithm that al-
ready objectively analyzes the IR imagery and determines
the scene type and resultant intensity using methods that
have been developed over two decades, why not utilize the
output TC parameters stored within the ADT history file
and apply machine learning techniques to assess value-
added potential? Such a model would be relatively simple
and computationally inexpensive to develop and deploy
since the image interrogation is already done by the ADT.
Development of a MLP takes minutes, not hours or days, to
derive and can be done using relatively modest computer
processing power available on a laptop or desktop computer.
CNNs typically require much higher priced machines con-
taining multiple and/or more expensive GPUs to derive a
model efficiently. Repurposing the elements of the ADT, in-
stead of replacing it with a CNN-style algorithm, allows oper-
ational users familiar with the ADT to understand the basis of
the ADT intensity estimates while providing the user com-
munity with improved results, especially in areas where the
ADT has struggled or has not been as thoroughly examined
and improved.

This paper reports on the development of a MLP model to
augment the ADT intensity estimation process. This “artificial
intelligence (AI)” enhanced ADT (AiDT) model is executed
after the real-time ADT processing sequence is completed for
an active TC. It modifies the ADT intensity estimate by ap-
plying MLP techniques to the ADT analysis parameters fa-
miliar to operational TC users. Many different MLP networks
and data inputs are explored to determine the best possible
configuration. The final MLP configuration is independently
validated and the TC intensity estimation performance is
compared to several recent CNN algorithms to assess the
competitiveness of the AiDT technique.

2. Data

ADT history files are collected globally from TCs during the
period 2005-18 using the latest ADT-version 9.0 run at a 30-
min temporal resolution for all storms with best track intensi-
ties of greater or equal to 30kt (1kt ~ 0.51ms™!), including
extratropical and subtropical cyclones. The satellite imagery is
provided by the geostationary operational satellite with the
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lowest viewing angle at the time of the analysis for the storm in
each TC basin: Geostationary Operational Environmental
Satellites (GOES-8-16), Himawari-8, Multifunction Transport
Satellites (MTSAT-1R, MTSAT-2), and Meteosat-7-10. The
ADT does not require the IR imagery to be spatially homo-
geneous over the analysis period since it accounts for reso-
lution changes within the algorithm itself. ADT estimates are
derived when the storm center position is over open ocean.
The ADT estimates are derived in terms of a “T-number”
(tropical number, or T#) or current intensity (CI#), with each
separate value defined from 1.0 (weakest TCs) to 8.5 (strongest
TCs) in 0.1 increments. The CI# is calculated from the current
and previous T# intensity values, employing time-dependent
intensity change rules and a time averaging scheme, and repre-
sents the current storm intensity estimate. The CI# can be con-
verted to a maximum wind speed (MSW) estimate using a
standard conversion outlined in Velden et al. (2006).

Five oceanic regions (TC basins) are examined separately and
also as a combined global dataset. The five regions are the North
Atlantic, eastern/central North Pacific (east of the international
date line, with central region defined from 140°W to the date
line), western North Pacific (west of the international date line),
northern Indian Ocean, and southern Pacific/Indian Oceans.
These basins, shown in Fig. 3, will be referred to as the Atlantic,
EastPac, WestPac, NIO, and SouthPac, respectively, with the
combined set referred to as the global dataset.

MLP models are developed for each of the five separate
basins as well as an “AllBasins’’ model using the combined
global dataset. ADT history files from 2017 to 2018 TCs are set
aside as independent ““test” datasets. The test datasets from
each year are examined separately for two reasons: 1) to
provide a more direct comparison of results with the Chen et al.
(2019) study which examined 2017 WestPac TCs, and 2) to
discern the robustness of the results from one TC season to the
next. Years 2007, 2010, and 2014 are designated as the “vali-
dation” dataset, with the remaining years between and in-
cluding 2005 and 2016 serving as the “‘training” dataset. It must
be noted that ‘““validation” in machine learning terminology
does not refer to the final independent evaluation process, but
instead to the in-training check on model performance in order
to tune the model design. The three years selected for the
validation dataset are chosen to provide a representation of all
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TC intensities, from tropical depression to category 5/Super
Typhoon, for each of the five basins. These years were chosen
before the model training and validation process were per-
formed. The total number of ADT individual intensity analyses
for each dataset and ocean basin are listed in Table 1.

The ground truth data, otherwise known as the ‘“‘label”” data
in machine learning nomenclature, used in the training, vali-
dating, and testing of the model are the official final best track
MSW estimates provided by the National Hurricane Center
(NHC) for the Atlantic and EastPac storms, the Central Pacific
Hurricane Center (CPHC) for EastPac storms in the Central
Pacific region (west of 140W and east of the international date
line), and the Joint Typhoon Warning Center (JTWC) for the
WestPac, SouthPac, and NIO storms.! Both label datasets
define MSW as the 1-min sustained wind at 10 m above the
surface. The best track MSW estimates for each TC in the
sample are provided every 6 h and linearly interpolated to each
30min ADT history file record. The ADT current intensity
numbers (CI#) are converted to MSW values using the standard
Dvorak relationships (Dvorak 1984) to provide the baseline
ADT MSW estimates shown in section 4. All MSW units are in
knots (kt). The NHC and JTWC best track data are available
from their respective websites, as listed in the data availability
statement at the end of the article.

All training dataset feature values are normalized by re-
moving the mean and scaling to variance (i.e., mean = 0 and
standard deviation = 1) using the Keras StandardScaler func-
tion. This scalar transformation is then applied to the validation
and test data to ensure all values are scaled in the same fashion.

3. Methodology

Several different neural networks configurations are explored
in this study. The first is a regression-based network, outputting a
single MSW intensity estimate value within a continuous range.
This network is extensively examined to determine the best
number of hidden layers to employ in the ANN. In addition,
two multi-classification networks are explored. These types
of networks result in an output expressed probabilistically
over a range of 5-kt MSW bins instead of a single value. The
main difference in the two networks is in the input label data.
A single label (SL) bin is used for the first network, meaning
the label data are assigned to a single bin, while in the second
network the label data are assigned to several bins representing
a multiple label (ML) bin distribution, such as a Gaussian

! As noted in Olander and Velden (2019), ADT estimates can be
used in the generation of NHC and JTWC best track intensity es-
timates, especially outside of the North Atlantic where in situ
aircraft measurements are not available, thus the values may not be
truly independent. However, given the availability of other inten-
sity sources (e.g. in situ aircraft measurements, scatterometer
winds, ship/buoy measurements, microwave imagery, subjective
Dvorak, other objective intensity methods, etc.), the TC experts
will account for the respective strengths and limitations of each
value to formulate the best possible “‘educated” best track intensity
estimate.
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TABLE 1. Total number of ADT history file records in the five
ocean basin regions and combined global training, validation, and
independent test datasets.

Basin Training Validation Test 2017 Test 2018
Atlantic 36087 10 846 5188 4944
EastPac 35270 10007 3677 5143
WestPac 38636 9359 5475 4334
SouthPac 29833 10852 3766 3688
NIO 7076 1988 566 1227
Global 146 902 43052 18672 19336

distribution, of MSW. Within each of the two categorical
classification networks two independent experiments are
conducted to explore different methods of handing the input
and/or output intensity bins.

In addition to the different neural network configurations
noted above, an additional experiment was conducted to ex-
plore the use of four scene-type specific models with their own
set of model features versus using one single model with a set
feature list.

To focus the scope of this article on the impact of the AiDT on
the ADT MSW estimates, the experiment methodology details
of each of the five networks variations and two scene-type exper-
iments are presented in the appendixes at the end of this article.
Detailed analysis of each network and experiment varia-
tions are examined using the training and validation data-
sets in appendix A. An independent analysis of the various
network experiments is performed on the 2017 test dataset
and is provided in appendix B, with a final best model selected
in appendix C. A schematic diagram of the final model is presented
in Fig. 1 to illustrate the structure of the final model selected.

4. Results

The selection of the best MLP is outlined in appendix C, with
the regression network being chosen. This network is referred to
as AiDT-SV, for “AiDT single value,” for the remainder of the
article. The following sections will focus on the AiDT-SV and its
performance in a multitude of analyses to highlight the impact of
the MLP on the ADT. Analysis will focus not only on basin-
specific and global statistical comparisons of the performance
of the two techniques, but will also highlight specific situations
during a TClife cycle where the MLP network aids the ADT the
most. Significance testing between the MLP and ADT statistical
comparison will be presented to demonstrate independence of
the datasets. A final comparison between the regression network
and other satellite-based TC intensity estimation neural network
models and algorithms is provided at the end of this section.

a. Time averaging of independently derived
intensity estimates

To smooth out some of the inherent noise associated with
single, independently derived intensity estimates produced by
the AiDT-SV, a weighted time-averaging technique is applied to
the intensity values, similar to the time-averaging technique
used within the ADT algorithm (Olander and Velden 2019). The
methodology weights the records between the current analysis
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TABLE 2. Comparisons between the best regression network 3-h time-weighted average (AiDT), unaveraged single value estimate
(AIDT-SV), and the original ADT MSW intensity estimates for the five ocean basins and the global dataset for the independent 2017 test
dataset. MAE is mean absolute error. RMSE is root-mean-square error and is highlighted in bold text. Units are in knots. Negative bias
indicates MSW estimates are generally weaker than the NHC/JTWC best track estimates.

Network Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE
Atlantic East Pacific West Pacific
ADT -0.91 9.50 12.33 -0.15 7.38 9.44 -1.87 8.47 10.88
AiDT-SV 0.49 6.89 8.76 -0.13 5.50 7.04 —0.60 6.02 7.56
AiDT 0.33 6.59 8.44 -0.13 5.30 6.77 -0.86 5.89 7.35
No. of records 5188 5188 5188 3677 3677 3677 5475 5475 5475
South Pacific North Indian All basins

ADT 2.71 8.43 10.70 5.03 7.51 9.96 -0.13 8.50 10.98
AiDT-SV 0.80 6.52 8.29 1.50 5.90 8.15 -0.18 6.26 7.98
AiDT -0.98 6.27 7.99 1.04 5.33 7.49 -0.35 6.03 7.70
No. of records 3766 3766 3766 566 566 566 18672 18672 18672

(to) and 3.0 h prior using a weight of (3.0 — AT) where AT is the
time difference in hours from the current analysis time [e.g., ) —
30min (0.5h) prediction is weighted 2.5, fo — 1.0 h is weighted
2.0, and so forth]. To assess this application, comparisons of the
weighted time-averaged intensity estimates versus the inde-
pendently derived, non-time-averaged, single-value intensity
estimates (AiDT-SV) are shown for each of the five ocean basins
during 2017 in Table 2.

Use of the 3-h time-weighted average estimate results in
slightly improved MAE and RMSE versus non-time-averaged,
single-value intensity estimate values (AiDT-SV) in all five
basins and the combined global dataset, with an improvement
of about 0.3kt noted in the RMSE using the time-weighted
average over the unaveraged individual values. Therefore, the
time-weighted version of the regression network is used for the
remainder of the paper, and is designated as AiDT.

Closer examination of the AiDT improvements shows nota-
ble bias improvements in four of the five individual ocean basins.
Reductions of large ADT positive biases in the South Pacific and
northern Indian Ocean basins of 1.73 and 3.99, respectively,
were noted with a lowering of the RMSE values around 2.5 kt in
each basin. While smaller improvements to the negative ADT
bias values (absolute value of the bias was reduced) were seen in
the Atlantic and west Pacific using the AiDT, these corre-
sponded to much larger RMSE reductions of over 4.1 and 3.5 kt
in the two basins, respectively. The east Pacific RMSE was re-
duced by 2.67 kt with a very small negative bias obtained by both
the ADT and AiDT. The AiDT MSW estimates demonstrated a
30% improvement over the ADT MSW estimates in RMSE for
the 2017 global dataset, lowering from 10.98 to 7.70.

b. Tropical cyclone categorical analysis

Additional analysis of the 2017 independent test results is
performed to determine where the AiDT impacts and im-
proves upon the original ADT algorithm the most. The
ADT and AiDT estimate errors versus NHC/JTWC best
track for the global dataset are broken down by storm in-
tensity using the Saffir-Simpson hurricane intensity classi-
fication categories. These categories are tropical depression
(TD), tropical storm (TS), and five hurricane categories
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(H1-HS5). Two additional groupings include weaker hurri-
canes (H1 and H2) and major hurricanes (H3-HS5). The
results are presented in Table 3.

Examination of the differences between the ADT and AiDT
statistics shows the largest RMSE impact in the TS and H1 (and
H1-H2 combined) categories, where the ADT RMSE values are
reduced nearly 4 kt in each category. The H2 RMSE errors are
also reduced 2.5kt. This is a notable improvement since the
ADT struggles (exhibiting a low bias) in these intensity ranges
since a central dense overcast (CDO) obscuring an eye structure
in geostationary IR imagery is usually apparent during these
ranges. This will also be discussed in the following section. It
must be noted that while the AiDT did reduce the bias in the H1
category by almost 2kt, the bias worsened in the TS and H2
categories where the negative bias increased slightly.

Eye features normally appear in IR imagery in category H2
hurricanes and stronger, and ADT eye scene RMSE values are
typically smaller here. This is noted in the smaller RSME re-
ductions of the AiDT versus the ADT in the H3-HS categories
with limited reductions of the bias, especially noted in the H4
and HS5 categories.

Unfortunately, the AiDT could not rectify the large over-
estimate and underestimate biases noted in the ADT for TD
and HS5 category storms, respectively. HS cases are harder for
the ADT and AiDT to analyze due to an insufficient number of
training cases for this category, combined with a shortage of
distinguishing features. H5 TCs are often characterized by very
small eyes of less than 10 km (called “‘pinhole” eyes) that may
not be fully resolved by the IR imagers, especially on older
geostationary platforms,” leading to intensity underestimates

% Spatial resolution of the IR window channel (LWIR) im-
agery (approx. 10.7 um) used by the ADT has varied between
2 and 5 km since 1994. Current operational geostationary satellites
GOES-16, GOES-17, and Himawari-8 possess resolutions of
2 km, with Meteosat-8 and Meteosat-11 (along with non-operational
Meteosat-9 and Meteosat-10) having 3-km resolutions. Prior GOES
(GOES-8-15) and MTSAT imagers had a 4-km resolution, while
Meteosat-5-7 and GMS-5 exhibited a 5-km resolution.
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TABLE 3. Statistical comparisons between the AiDT 3-h time-weighted average (AiDT), and original ADT MSW intensity estimates for
the independent 2017 global test dataset broken down into intensity bins based on Saffir-Simpson classifications. MAE is mean absolute
error. RMSE is root-mean-square error and is highlighted in bold text. Units are in knots. Negative bias indicates MSW estimates are

generally weaker than the NHC/JTWC best track estimates.

ADT AiDT
Saffir-Simpson intensity category Sample size Bias MAE RMSE Bias MAE RMSE
TD < 35.0kt 3519 5.34 6.58 9.27 5.96 6.28 7.83
TS 35.0-63.9kt 9016 -0.37 8.54 10.72 -1.19 5.30 6.79
H1 64.0-82.9 kt 3001 -3.99 9.90 12.87 -2.09 6.45 8.15
H2 83.0-95.9kt 1445 —2.03 10.02 12.43 —3.50 8.01 9.92
H3 96.0-112.9kt 845 2.44 8.35 10.22 -0.44 6.21 7.86
H4 113.0-136.9 kt 607 —-4.18 7.83 10.15 —4.14 6.35 8.24
HS5 > 137.0kt 239 -10.34 10.84 13.44 -10.02 11.00 12.82
H1-H2 64.0-95.9 kt 4446 -3.35 9.94 12.73 —2.55 6.96 8.77
H3-HS5 > 96.0kt 1691 -2.95 8.52 10.71 —3.41 6.94 8.88

in these situations. TDs are difficult due to the lack of orga-
nization in the IR cloud features for these weaker systems.
While it is common for statistical models to struggle with the
extreme conditions, further research is required to explore and
improve satellite-based intensity estimation procedures in both
of these disparate classifications.

c. ADT scene-type analysis

An additional breakdown of the ADT and AiDT statistics
is carried out to assess how the AiDT performs with regards
to the four main ADT scene types. These results are pre-
sented in Table 4, and further highlight the situational impact
of the AiDT.

While a notable reduction in error is evident for the CDO
and eye scene-type classifications using the AiDT, larger re-
ductions occur for the curved band and shear scene-types that
are more difficult cloud patterns for the ADT to analyze em-
pirically, so the improvements are a meaningful advancement
over the current ADT techniques. Curved band scene types
also typically occur during TC formation stages (i.c., during the
TD and TS intensity classification stages) that can have higher
cloud pattern analysis uncertainties than with more developed
storms, so application of the AiDT will greatly help the ADT
results during this important period of the storm life cycle when
the convective structure is still organizing.

For shear scene types, the ADT uses this classification more
often as a TC encounters stronger vertical wind shear in the
midlatitudes as it is transitioning to an extratropical (ET)

system or dissipating. An intensity adjustment scheme is
implemented in the ADT to modify the estimates during and
after ET transition (Manion et al. 2015). But the results in
Table 4 indicate the AiDT provides further improvement to
intensity estimates during periods when a TC is encountering
stronger environmental shear.

d. Examples of AiDT performance and behavior

Figure 4 shows scatterplots of all the ADT and AiDT in-
tensity estimates for each of the five basins during the 2017
test. The scatterplots show the MSW estimates versus the
NHC/JTWC best track MSW estimates and highlights the reduction
of spread between the AiDT estimates and the corresponding
ADT estimates. The AiDT reduces the outliers present in the
ADT estimates, most notably in the lower MSW ranges.

Figures 5-8 show example intensity time series displays for
selected TCs in each of the different basins. The examples are
selected to highlight storms that exhibit large intensity
changes as well as some of the AiDT impacts demonstrated in
sections 4b and 4c. Particular attention should be paid to
those portions of the time series where the AiDT model de-
viates from the ADT estimates. For example, during the
Atlantic storms Jose and Maria, EastPac storms Fernanda
and Kenneth, and WestPac storms Sanvu and Talim, the
AiDT improves the ADT estimates during the dissipation
stage of the storm where shear scene types are primarily used
to provide the MSW estimates as the storm moves into higher
latitudes and encounters more atmospheric shear.

TABLE 4. Statistical comparisons between the AiDT and original ADT MSW intensity estimates for the 2017 global test dataset broken
down by ADT scene types. MAE is mean absolute error. RMSE is root-mean-square error and is highlighted in bold text. Units are in
knots. Negative bias indicates MSW estimates are generally weaker than the NHC/JTWC best track estimates.

ADT AiDT
ADT scene type Sample size Bias MAE RMSE Bias MAE RMSE
Eye 2590 0.10 8.66 11.03 -1.43 6.55 8.30
CDO 7246 2.20 8.92 11.18 —0.67 6.53 8.30
Curved band 5670 —1.50 8.54 11.17 0.57 5.75 7.27
Shear 3166 =321 7.36 10.12 -0.41 4.95 6.35
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AiDT adjustments to the ADT MSW estimates during the
formation stage are also highlighted in the examples where
curved band scene types are primarily used. The Atlantic
storms Harvey and Ophelia, EastPac storm Greg, and all four
WestPac and SouthPac/NIO storms all demonstrate an AiDT
deviation from the ADT toward the best track estimates during
the early formation stage. These formation stage examples
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FI1G. 4. Scatterplot comparisons of the ADT (blue) and AiDT
(red) MSW estimates vs NHC/JTWC best track MSW estimates for
the 2017 testing dataset for all five TC basins.

include weaker intensity periods when curved band scene types
are primarily used by the ADT (in the TD and TS categories in
section 4b) as well as H1 and H2 categories when the PMW
adjustment is applied in conjunction with CDO scene types. As
mentioned previously, the curved band and shear scene types
have not been investigated in depth and still rely upon the
original Dvorak technique techniques to provide a MSW
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FIG. 5. Time series displays for four selected Atlantic storms in the 2017 independent test dataset. ADT (blue lines) and AiDT (red lines)
are shown vs NHC/JTWC best track MSW (black lines). Units are in knots.

estimate in the ADT, so the impact of the AiDT during these
scene types, as well as with CDO scene types, is quite
promising.

In most cases only small deviations are noted between the
AiDT and ADT estimates during the most mature TC stages of
the storm life cycle (H3-HS TC categories). These periods
usually encompass TCs with well-defined eyes and convective
structures, thus empirical methods to infer intensity (e.g.,
Dvorak, ADT) do quite well. However, in some cases, such as
WestPac storms Talim and Lin and SouthPac storm Debbie,
the AiDT estimates can adjust the ADT estimates upward or
downward noticeably, demonstrating the power of machine
learning models to identify and utilize additional information
even in relatively well-behaved TC stages where the ADT
MSW estimate methodology for eye scenes is typically reliable
and stable. Some of these differences could be related to
temporal changes associated with eyewall replacement cycles
or spatial features that are not currently used in the eye anal-
ysis. While the AiDT can highlight periods to examine more
closely to further improve the ADT algorithms in the future,
it cannot state what the specific differences are. Performing
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machine learning feature selection analysis is one possible
avenue to identify which specific features are important in each
situation where the ADT and AiDT differ.

e. Testing for AiDT robustness

The robustness of the AiDT performance results in 2017 is
tested on another independent sample of TC cases during 2018
for the five ocean basins analyzed previously. Table 5 presents
the statistical analysis of the TC intensity estimates provided by
the ADT and AiDT, and Fig. 9 illustrates a graphical com-
parison of the results between the two independent tests. Bias,
RMSE and MAE are shown in Table 5 while only bias and
RMSE are shown in Fig. 9 for clarity.

There are a similar total number of records (intensity an-
alyses) examined in both years, with 600 more in 2018 than
2017. Only small deviations in AiDT RMSE are observed in
four of the five TC basins, with changes of 0.46, —0.09, —0.29,
and 0.24 kt in the Atlantic, east Pacific, west Pacific, and north
Indian Ocean basins, respectively, from 2017 to 2018. Only
the South Pacific basin results in 2018 deviate notably
from 2017, with the RMSE increasing by 2.42kt. There is
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FIG. 6. As in Fig. 5, but for the 2017 east Pacific dataset.

also a corresponding increase in the ADT RMSE errors of
1.08 kt between the two years in the South Pacific along with a
large AiDT bias shift from —0.98 in 2017 to —3.45 kt in 2018.
A possible explanation of this increased negative bias is a
significantly higher number of H3-HS5 storms in the 2018 dataset
than in the 2017 dataset (with all other categories being
relatively the same). However, considering that the global
RMSE only differs by 0.53 kt between the 2017 and 2018 inde-
pendent sample tests, the robustness of the AiDT perfor-
mance is clearly demonstrated. The AiDT MSW estimates
represented a 23% improvement in RMSE over the corre-
sponding ADT MSW estimates for the 2018 global dataset,
lowering from 10.73 for the ADT to 8.23 for the AiDT.

f. Statistical significance testing

Significance testing is performed by examining the p value
from a paired Student’s ¢ test using bootstrap sampling to de-
termine whether the ADT and AiDT errors are significantly
separated. This analysis was performed separately for the
global and five individual basin datasets for 2017 (section 4a)
and 2018 (section 4e) as well as the 2017 tropical cyclone cat-
egory (section 4b) and ADT scene type (section 4c) datasets.
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The bootstrap sample sizes for each of these datasets were
chosen to remove the temporal autocorrelation in the 30-min
data. For this we used the decorrelation time for ADT esti-
mates determined in Kossin et al. 2020, where it was found that
the estimates decorrelate between 12 and 18 h. In that study,
which used 6-hourly ADT estimates, the degrees of freedom
were reduced by a conservative factor of 3 (the actual reduc-
tion factor was 2.7). Here, for the 30-min data, the degrees of
freedom in the Student’s ¢ test would need to be reduced by a
factor of 32 (i.e., 2.7 X 6 h/30 min). For each dataset described
above, the bootstrap sample size was specified as N/32 where N
is the size of the dataset. We then form 10 000 bootstrap sam-
ples and compute the bias and RMSE of each for the ADT and
the AiDT data. The distributions of bias and RMSE are normal
and represent independent errors.

Plots of the bias and RMSE probability density functions
(PDF) are generated to visually compare the ADT and AiDT
bootstrap datasets. Statistical significance for the 2017 and 2018
basin statistics as well as the 2017 categorical and scene-type
statistics are determined by deriving the p value for the bias
and RMSE distributions, with all p values found to be less than
0.01, thus the ADT and AiDT errors examined in sections 4a—d
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F1G. 7. As in Fig. 5, but for the 2017 west Pacific dataset.

are determined to be significantly separated with greater than
99% confidence.

Figure 10 displays the bias and RMSE PDF distributions
for the 2017 ADT scene-type datasets, as discussed previ-
ously in section 4c. The 2017-18 basin PDF comparisons, as
well as the categorical PDF comparisons, available at
https://tropic.ssec.wisc.edu/real-time/adt/AiDT/pdf, show
similar separation to those in Fig. 10. It is noted that the AiDT
PDF bias and RMSE distributions have less overall biassRMSE
spread (x axis) and corresponding increase in PDF maxima (y
axis) than the corresponding ADT distributions, meaning the
AiDT estimates have greater overall accuracy than the ADT
estimates. It is also noted again that the more notable PDF
distribution changes occur in the curved band, shear, and CDO
scene types (along with the previously discussed changed to the
bulk bias and RMSE value reductions obtained with the AiDT
over the corresponding ADT values).

g. Comparisons with other satellite-based methods

Table 6 lists a number of recently published satellite-based
TC intensity estimation models and algorithms, including ex-
perimental deep learning/neural network methods as well as

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 08:08 PM UTC

more traditional methods. The published performance accu-
racies are shown for comparison with the AiDT presented in
this study.

As can be seen, the performance of the AiDT is very
competitive with or superior to all of the methods, even
many of the more sophisticated DL/CNN models which
employ a variety of satellite data image sources. Most
methods rely upon traditional geostationary imagery, pri-
marily focusing on the infrared window channel cloud top
temperature field around the TC center position. The Lee
et al. (2019) study uses additional geostationary channels
such as shortwave IR and water vapor, while the Wimmers
et al. (2019) method uses passive microwave imagery sensi-
tive to ice scattering below the cloud tops. Other techniques,
like the Dvorak technique, ADT and DAV-T are not
DL/CNN techniques, instead they rely on other methods to
interrogate the satellite imagery. SATCON (Velden and
Herndon 2020) is a weighted consensus of intensity estimates
from several independent objective methods that include the
ADT. This approach is being used operationally at several
global TC analysis centers and provides accuracies that are
better than its input members.


https://tropic.ssec.wisc.edu/real-time/adt/AiDT/pdf

2172

WEATHER AND

SPac 2017 -- Storm 9 (Enawo)

160
— ADT
1404|— ADT
— BestTrack
120 |
7 100
[=]
c
=
= 801
[0}
=
60
40
20
SV <) > <] © A 3
o ’J\.Q '§Q ‘§° 1;\,0 o ’b‘D
W W W W« B W W
Date
166 SPac 2017 -- Storm 18 (Donna)
— ADT
— ADT
140
— BestTrack
120
w100
a
[=]
c
=
= 801
[0}
=
60 -
40 -
20
q\,o"’ q,o"’ ‘\,6" _\,0“ _xo" {0’0 {6‘ q\p’*’ ‘\p"' ‘\,x“ \\9
LA S S A R L A T

Date

FORECASTING VOLUME 36
sa SPac 2017 -- Storm 13 (Debbie)
— ADT
a5 — ADT
— BestTrack
120
@ 100
k]
£
= 801
w
L5
60
40 -
20
] > 5 o A Y o
e e WY v 13 1y 13
N Y X & N oy &
® +*® +© © ® ® <
Date
NIO 2017 -- Storm 3 (Ockhi)
160
—— ADT
—— ADT
140 — BestTrack
120
@ 100
g
=
= 801
wv
=
60
40 -
20
i a° g T S g & & &
N & N Ny < < 4 ' 5 4
® * ~® <® <+ L &F & F F
Date

FIG. 8. As in Fig. 5, but for the 2017 South Pacific and north Indian Ocean datasets.

While it is difficult to directly compare all of these tech-
niques since they are not tested on homogeneous TC sam-
ples, it can be inferred that the AiDT compares favorably
with the two most accurate DL/CNN techniques, the Lee
2D3 model and Chen CNN-TC model. A specific comparison

of the Chen results in the northwest Pacific during 2017 with
the AiDT results obtained during the same period (Table 2)
shows that Chen obtained an RMSE of 8.39kt while the
AiDT obtained a RMSE of 7.35 kt. While this specific com-
parison may not be statistically significant since the models

TABLE 5. Statistical comparisons between the AiDT and original ADT MSW intensity estimates for the five ocean basins and global
dataset for the independent test sample of TC cases in 2018. MAE is mean absolute error. RMSE is root-mean-square error and is
highlighted in bold text. Units are in knots. Negative bias indicates MSW estimates are generally weaker than the NHC/JTWC best track

estimates.

Network Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Atlantic East Pacific West Pacific
ADT -1.23 9.56 12.16 0.06 7.42 9.64 -0.21 7.17 9.27
AiDT 0.34 7.13 8.90 -0.80 5.30 6.68 0.34 5.68 7.06
No. of records 4944 4944 4944 5143 5143 5143 4334 4334 4334
South Pacific North Indian All basins

ADT —0.58 9.44 11.78 3.56 8.14 10.48 —0.01 8.34 10.73
AiDT —3.45 7.87 10.41 -1.23 5.84 7.73 -0.79 6.38 8.23
No. of records 3688 3688 3688 1227 1227 1227 19336 19336 19336
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FIG. 9. Comparison of performance statistics for the ADT and AiDT covering the five dif-
ferent ocean basins and global dataset (All) for the two independent test data samples in 2017
and 2018. MSW intensity estimate bias and RMSE are presented. MSW units are in knots.

were not homogeneous, it demonstrates the potential of
simple MLP model enhancements to existing methods (i.e.,
ADT) versus more computationally expensive and time-
consuming full DL/CNN image analysis models. This result
may be surprising but emphasizes the robustness of the ADT
analysis techniques and related output features stored in the
history file. As mentioned previously, many of the ADT
analysis techniques have undergone extensive analysis over
the years, but a simple MLP model was able to obtain

additional information from these feature parameters not
previously recognized and can help guide future research
efforts to improve both the ADT and AiDT.

5. Summary and future directions

This study examines the potential to employ machine
learning enhancements to an existing proven algorithm (ADT)
that estimates the intensity of tropical cyclones from satellite
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FIG. 10. Comparison of ADT (blue) and AiDT (orange) probability density function (PDF) bias and RMSE distributions for MSW
intensity estimates for the 2017 global test dataset broken down by ADT scene types, as shown in Table 4. MSW units are in knots.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 08:08 PM UTC



2174 WEATHER AND FORECASTING VOLUME 36

data, to assess whether superior performance can be achieved.
It is found that various MLP models can augment the ADT by
interrogating features that are output from the image pro-
cessing, resulting in improvements in the accuracy of TC in-
tensity estimates over the ADT itself. We found that a
regression-based network, which derives an estimate in a
continuous range of values, is slightly superior to multi-
classification network models that derive estimate probabil-
ities in a set series of range classes. The AiDT models are
better when derived using the entire ADT feature list instead
of a scene-specific subset of ADT features. In addition, the
use of a network derived using the entire global combined
dataset versus a set of individual basin-specific networks also
produces superior results. The AiDT models, most impor-
tantly, improve TC intensity estimates for situations when the
ADT (and Dvorak technique) struggles. Improvements of
30% and 23% were noted in the global AiDT MSW RMSE
versus the ADT MSW estimates for the 2017 and 2018 inde-
pendent tests, respectively, with the advantage being highly
significant.

AiDT model TC intensity estimate accuracies and recently
documented accuracies from other satellite-based neural net-
work models (including CNN models) compare favorably. The
AiDT is much easier and computationally cheaper to modify
and run versus direct image interrogation models that can take
considerable time to set up and execute, which makes it at-
tractive for real-time application and potential operational
implementation. Also, science upgrades and analysis modifi-
cations can be accomplished without requiring significant
computational expense since adding new feature values to and
recalculating the model is simple and not time consuming.
Finally, the AiDT preserves much of the operational famil-
iarity and heritage of the ADT, and Dvorak technique, while
providing improved MSW estimates since it still relies upon the
ADT analysis as input.

Future investigations will focus on optimizing the feature
selection process that feeds the AiDT to determine which
ADT history file features are most impactful and which can
possibly be removed. Integration of other features, such as
storm information from the ARCHER (Wimmers and Velden
2016) algorithm could be explored to augment the current
ADT history file features utilized in this study. Finally, inte-
gration of the higher-precision AiDT results into the SATCON
(Velden and Herndon 2020) model should improve the per-
formance of that TC intensity estimate consensus algorithm,
which currently relies upon the ADT.

8.32

MSW RMSE (kt)
10-15
12.9-13.4
9.0
10.98
9.6-14.3
8.39
10.18
9.97
13.23
7.70-8.23
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Global
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TABLE 6. Comparison of published TC intensity estimation models and algorithms.
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TABLE Al. ADT parameters (features) included in each of the five different scene models (ALL, eye, CDO, curved band, and shear).
Checkmarks indicate whether the feature is used in the model. An asterisk indicates the feature is scene-type dependent (determined
using the eye and cloud scene ID features) in the ALL scene-type model exclusively. C/W is coldest — warmest, PMW is passive mi-
crowave, CDO is central dense overcast, and FFT is fast Fourier transform.

Feature ALL Eye CDO Curved band Shear
Raw T# v v v v v
Adjusted raw T# v v v v v
Final T# v v v v v
CI# v v v v v
Eye temperature v v v v v
Cloud temperature v v v v v
C/W temperature v v v v v
Latitude v v v v v
Sin of longitude v v v v v
Cos of longitude v v v v v
Viewing angle v v v v v
Eye FFT v v v v v
Cloud FFT v v v v v
Eye scene ID value v v
Cloud scene ID value v v
Eye std dev v v
Cloud symmetry v v v
Curved band value v v
Curved band amount v v
C/W temperature distance v v
PMW eye score v v
Extratropical flag v v v
Subtropical flag v v
Eye size (2/eye size) Ve v
CDO size V& v
Shear distance Ve v
Total No. 26 17 17 18 15

https://www.metoc.navy.mil/jtwc/jtwe.html?best-tracks, respec-
tively. The satellite data were obtained from the University of
Wisconsin—Madison/Space Science and Engineering Center
(SSEC) using the Man computer Interactive Data Access
System (McIDAS) proprietary software which prohibits sharing
the data publicly. The advanced Dvorak technique (ADT)
version 9.0 history files may be obtained upon request from the
lead author of this article. The ADT Users Guide may be ob-
tained from https:/tropic.ssec.wisc.edu/misc/adt.

APPENDIX A

Network Training and Validation
a. Scene-type experiments

Five separate models are first developed according to the
ADT pattern (scene)-type categories of eye, central dense
overcast (CDO), curved band, shear, and all. The first four
models are applied to individual ADT scene types only (des-
ignated MIX), while the last “all” model uses all available
ADT history file records regardless of the scene type, with
scene type being a training input feature to the model (desig-
nated ALL). This is done to determine whether one single
overall model or four separate scene-type models produce
more accurate intensity estimates.
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Different ADT history file parameters, sometimes referred
to as predictors or “features’ in machine learning nomen-
clature, are used in each of the five scene-type models
(Table A1). Using different features in each model might
seem unconventional, but it allows for more targeted infor-
mation to be used in each scene-type model while removing
as much unnecessary information as possible. One ADT
history file parameter stores information specific to the scene
type designated during the ADT processing and will change
meaning based on the scene type. This single “‘shared” ADT
history file parameter stores the CDO diameter for CDO
scene types, the eye size for eye scene types, and the shear
distance from center for shear scenes. In addition, for some
scene types certain parameters are not measured and are
designated with a missing value in the ADT history file. Such
examples illustrate why select features are used for the dif-
ferent models. The list of features for the five different scene-
type models is shown in Table Al. For detailed information
regarding the features listed in Table A1, please refer to the
ADT Users Guide (Olander 2021).

For the ALL scene-type model, the values of the three
features in Table A1 designated with an asterisk following the
check mark correspond to the single shared parameter outlined
above. The model will assign the feature value based on the
scene type of that history file record and will also fill the
“missing” features with values that are reasonable and valid.


https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
https://tropic.ssec.wisc.edu/misc/adt
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For the “‘eye size” feature during noneye situations or eye
scenes with a missing ADT value, the feature is assigned a
value of zero. For valid eye scene situations, this feature is set
to 2.0/(eye size), where eye size is the diameter of the eye. This
equation will result in values between 0 and 1 (assuming
maximum IR imagery resolution is 2 km), with smaller eyes
near 1 (meaning an eye diameter at or near 2 km, which are
typically associated with more intense storms) and larger/no
eye situations near/at 0 (meaning much larger eye diameters
typically associated with less intense storms). This ‘“‘normal-
ized” value is also used in the eye scene model. “CDO size”
feature values for non-CDO scenes are set to 170 km, which is
the average CDO size for the training dataset. For nonshear
scenes, the ‘“‘shear distance” feature value is set to 0.

The longitude value is replaced in the scene-type models
with two separate features, the sine and cosine of the longi-
tude, in order to maintain meridional continuity. Finally,
missing or negative PMW eye score values, derived during
ADT processing when input PMW imagery is available, are
given a value of zero. More information about these ADT
history file parameters can be found in the ADT Users Guide
(Olander 2021).

b. Regression network

The first network investigated is a regression-based network
utilizing a varying number of hidden multineuron layers (in-
cluding the single neuron output layer) producing a continuous
range of output values. An “rmsprop’” optimizer! and “mean
squared error” (MSE) loss function are used to compile the
network.

An experiment is performed to focus on determining the
best configuration of hidden layers for the model. Twelve dif-
ferent configurations of hidden layers are examined: from one
to six hidden layers using 32 neurons, a three-layer network
with 32/64/32 neurons, a five layer network with alternating
32 or 64 neurons, and four additional single layer networks with
either 8, 16, 64, or 128 neurons. A final single-neuron output
layer will contain the final MSW estimate for the regression
network. A batch size of 150 with 250 epochs is used for all
regression networks. A batch is a collection of training samples
that are used for each iteration during the model derivation
process before the model is tuned and another batch is exam-
ined. The number of iterations for one complete examination
of the training set, called an epoch, will depend upon the size of
the training set being utilized; the larger the batch size the
smaller the number of iterations. The error of the model
(model estimate versus the label data) is then derived for each
epoch and the process is repeated for another pass through the
training data, which are randomly shuffled for each epoch. The
model is also applied to the validation dataset at the end of
each epoch, as the model is being derived, to examine if the
model behavior with the validation data are similar to the
behavior exhibited with the training data. The errors obtained

Al Unpublished learning rate model proposed by G. Hinton in
Lecture 6e of his online Coursera class, which is available at https:/
www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 08:08 PM UTC

FORECASTING VOLUME 36

TABLE A2. Regression network training and validation mean-
squared error (MSE) accuracy scores for the AllBasin model using
the ALL scene-type model. Network configuration is listed as
(number of hidden layers)-(number of neurons) in the network
column.

Network Training Validation

(layers-neurons) accuracy accuracy
1-8 76.85 85.98
1-16 72.47 84.85
1-32 70.24 82.74
1-64 67.28 84.78
1-128 62.95 89.43
2-32 64.26 84.61
3-32 56.07 92.11
3-mix 51.38 101.06
4-32 53.51 97.87
5-mix 36.69 115.98
6-32 48.06 105.25

from each epoch during the training process will typically level
out as less adjustment to the model is needed as more data are
examined. However, if the model is tuned to this training set
too much, the errors obtained during the validation may ac-
tually increase as more epochs are examined. This is known as
model overfitting and must be avoided.

Comparing the training and validation MSE values can
identify overfitting. Table A2 shows the training and valida-
tion accuracy values obtained for the last (250th) epoch for
the AllBasin/ALL scene-type models using a MSE model
loss/accuracy metric. The AllBasin and ALL scene-type
models are chosen for this analysis in order to reduce any
basin or scene-type specific biases into the selection of the
final model and make the data as homogenous as possible.
Figure A1 shows a plot of the training and validation accuracy
for 6 of the 12 models, with the final plotted point on each
graph being the corresponding value in Table A2

As shown in Table A2 and Fig. A1, the networks with fewer
hidden layers tend to be the most accurate, with networks more
hidden layers having much higher MSE losses, typically due to
overfitting of the networks. For the higher layer networks the
training MSE values are quite low, indicating that the network
has modeled the features to accurately match the label data.
When this network is used on the validation data, however, the
resulting intensity estimates are much different than the cor-
responding label data values, resulting in MSE values that are
significantly higher. Thus the model is considered overfit to the
training dataset. This behavior is noted in Fig. A1 with the
lower layer network MSE errors (such as the three 1 layer
models and 2 layer model) tending to flatten as the number of
epochs increases, but higher layer models (the 4 and 6 layer
models) have their validation errors minimize at lower epoch
values and then increase as the epochs, and training data input
into the derived model, increases.

The single hidden layer networks are typically best and dis-
play the least amount of overfitting, with the 1 layer, 32-neuron
network being most accurate for the AllBasin, ALL scene-type
models. It will represent the regression analysis in appendix C.


https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
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FIG. Al. Training (blue) and validation (red) loss plots for various regression models listed in Table A2. The number of layers and
neurons are listed at the top of each plot.

It must be noted that other techniques to minimize overfitting
exist, such as early stopping and learning rate reduction; how-
ever, the method in this study was employed for ease of model
comparison between different network configurations (pre-
sented in the following sections). These methods can/will be
explored in future experiments to investigate their impact on
model performance.

¢. Multiclassification networks

A second type of machine learning network is examined:
multiclassification. Unlike the regression network outlined
above which has a single neuron output layer containing a
predicted value, these networks possess a multiple neuron
output layer containing a probability distribution. The input
labels are also restructured into bins of intensity value at 5-kt
intervals, similar to Wimmers et al. (2019), with 32 bins de-
fined, starting at 25-30 kt and ending at 180-185 kt. The input
best track intensity label value is assigned to either a single
intensity bin for the single label network, with a value of 1.0 in
that single bin, or a range of intensity bins for the multilabel
network, representing a probability distribution, summing to
1.0 for all 32 bins. The former, referred to as one-hot encoding,
represents a single-label (SL), multiclass classification problem
and uses a sparse categorical crossentropy loss function, while
the latter is known as a multilabel (ML), multiclass classifica-
tion problem and uses a categorical crossentropy loss-function.
Experiments using both networks will be discussed in the fol-
lowing sections.

Both the SL and ML multiclassification networks will output a
final layer of 32 neurons representing a probability distribution
over the 32 output MSW bins. Each of the 32 neurons contains a
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likelihood, or percentage, that the final estimate is in that specific
bin, from 0 to 1. One can either use the output bin with the
maximum likelihood value as the predicted intensity, or a
weighted-value using the specific likelihood values contained
in each 5-kt output bin to derive a single value estimate. In
this study two output layer weighting schemes will be ex-
plored for both the SL and ML networks to derive a single
output MSW estimate from the 32 neuron distribution
contained in the final layer. The first will derive a weighted
intensity value using the bin with the maximum likelihood
value and the two adjacent bin likelihood values (referred to
as 3Bin), while the second will use an average of all of the
likelihood bin values to calculate the intensity estimate value
(AllBin). The equations for both are listed below, where i is
the bin number, x is the maximum likelihood bin (for the 3Bin
equation), W is the likelihood value for bin i, and M is the
mean value for the 5-kt bin. This will produce a single MSW
estimate for each method:

x+1 32
2 W, XM, SW, XM,
3Bin=*1 — or AlBin=1-_ .
x+1 32
W, W,
x—1 1

Both the SL and ML networks utilize a softmax activation in
the final layer to produce the probability distribution

As with the regression network, determination of the proper
network configuration should be explored. This is more diffi-
cult using intensity bins for the verification label data since we
are not comparing discrete values, but instead distributions of
likelihood. Accuracy in categorical models is determined by
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TABLE A3. SL and ML multiclassification network training and validation mean-squared error (MSE) accuracy scores for the
AllBasin model using the ALL scene-type model. Network configuration is listed as (number of hidden layers)—(number of neurons) in the

network column.

Network (layers-neurons) SL train accuracy

SL validation accuracy

ML train accuracy ML validation accuracy

1-8 0.280 0.269 0.278 0.270
1-16 0.291 0.266 0.286 0.262
1-32 0.308 0.256 0.302 0.260
1-64 0.325 0.258 0.323 0.252
1-128 0.354 0.252 0.350 0.237
2-32 0.341 0.246 0.324 0.241
3-32 0.333 0.228 0.349 0.239
4-32 0.358 0.239 0.355 0.238

deriving the difference between the SL input label data bin or
ML input label data distribution with the output layer proba-
bility bins. Thus, any small deviation in the 32-bin output layer
probability distribution can change a match to a nonmatch,
thus affecting the “‘accuracy” of the model. That being said, we
will examine the network validation accuracy for a limited set of
network configurations consisting of the four single hidden layer
networks with the five different number of neurons (8, 16, 32, 64,
and 128) as well as the 2, 3, and 4 hidden layer networks using 32
neurons. Again, the number of hidden layers referred to in this
this section does not include the final 32 neuron output layer,
only the number of layers prior to that final output layer (which
is uniform between all networks). Table A3 shows the training
and validation accuracy values obtained for the last (250th)
epoch for the AllBasin and ALL-Scenes model, as with the re-
gression network shown in Table A2, using “‘sparse_categorical_
accuracy” and “‘accuracy” metrics for the SL and ML networks,
respectively.

Examination of the SL and ML network training and vali-
dation accuracy results in Table A3 shows that the single layer
networks possess the highest validation accuracies, with the 8
and 16 neuron networks being the most accurate for the SL
network, with the 32 neuron network very close to the 16
neuron accuracy in the ML network. It is interesting to note
that the SL and ML networks both obtain similar accuracy
characteristics.

Selection of the categorical network to be used is not as
apparent as with the regression network. While the 1 layer/8
neuron network has the highest validation accuracy scores
for both the SL and ML networks, the values are not notably
higher than those obtained by the 16 and 32 neuron net-
works. Due to this fact, and in order to provide some con-
sistency between the different networks in this paper, the
1 layer/32 neuron network will be utilized for the SL and ML
networks also.

1) SINGLE-LABEL CATEGORICAL NETWORK

Two experiments are performed with the SL model; one
using a label class-weighting scheme defined in the model fit
(class_weight input parameter in Keras model.fit) and one
without a label class-weighting scheme. To be clear, the label
value being input is still assigned to single bin value. The
purpose of a class weight is to normalize for the number of best
track/label samples in each intensity bin across the entire
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training dataset. This is done in order to provide more/less
weight to underrepresented/overrepresented bins so the dis-
tribution is not skewed heavily toward the overrepresented
label bins For example, in the Atlantic training label dataset
there are about 36 000 best track data points, with a majority of
those intensities being tropical depression and tropical storm
strengths (less than 65 kt). Bins 1-4 have over 4000 instances in
each bin. However, higher intensity bins typically have less
than 100, so this leads to a model that is pushed to err toward
lower intensity estimates. A simple 1/N weighting scheme is
used here (bins with zero records are given a 1.0 weight to
avoid a divide by zero error). The non-class-weighting test will
be referred to as “NoCW,” with the 1/N class weighing scheme
test being referred to as “INCW.”

2) MULTI-LABEL CATEGORICAL NETWORK

As with the SL network analysis, two experiments are per-
formed using the ML network and focused on two types of
weighting schemes when characterizing the best track label
data. Unlike the SL analysis, which uses a one-hot, single-label
classification identifying a single 5-kt bin where the best track
data are placed, the ML network is a multilabel classification
using a range of label values to characterize the label classifi-
cation data. This is done in order to model any inherent errors
associated with operational best track MSW datasets. One
method, as discussed and utilized in Wimmers et al. (2019),
characterizes the best track MSW label data using a Gaussian
distribution centered on the best track value. This typically
yields a center bin weight of 0.34, with values of 0.23 and 0.10 in
the adjacent bins on either side of the center. The values are
adjusted if the best track value lies within bins 0, 1, 30, and 31 in
order to renormalize to a sum of 1. This method will be labeled
“GaussD.” A second experiment will give a value of 0.6 to the
best track MSW label bin and 0.2 to the adjacent bins (again
adjusted if the center bin is either bin 1 or 32), and will be
labeled “262D.”

APPENDIX B

Independent Network Testing

All TCs from 2017 are used as the primary independent
testing dataset for the models under investigation. Performance
statistics are presented by individual TC basin in order to
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F1G. B1. Statistical comparisons between the regression network TC maximum sustained
winds (MSW) estimates for the AiDT and ADT for the Atlantic (Atl), east Pacific (EPac), west
Pacific (WPac), southern Pacific (SPac), and northern Indian Ocean (NIO), and combined
global (All) basins for independent 2017 test dataset. Bias and root-mean-squared error
(RMSE) are shown. (a) Five individual basin-specific models and (b) the globally derived
AllBasin model. ALL indicates the single ““all-scene-type’’ model and MIX the four ““combined
scene-type”” models. MSW error units are in knots. A negative bias indicates the MSW estimate
is weaker than the NHC/JTWC best track estimates.
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FIG. B2. As in Fig. B1, but for SL network, NoCW (no label weighing scheme utilized). In
addition, the two output classification bin weighing schemes are displayed. AiDT3 and AiDTW
designate the 3-bin and all-bin classification averaging schemes, respectively.

facilitate comparisons with other studies mentioned pre-
viously and to highlight basin-specific differences. Note
again that ‘“AllBasin’’ refers to the globally derived model
using the combined ADT history file records for 2017 for
all storm basins to determine if individual basin-specific
models are better or worse than one all-encompassing
global model. The AllBasin model is applied to the

Brought to you by NOAA Central

storms in each of the five individual basins, and results are
tabulated by basin as well as overall global performance
statistics.

a. Regression network

TC intensity estimates for the independent 2017 testing
dataset are calculated with the regression network and

Library | Unauthenticated | Downloaded 08/13/24 08:08 PM UTC
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F1G. B3. As in Fig. B1, but for SL network, INCW (1/N label weighing scheme utilized).

compared to the original ADT estimates for that year.
Figure B1 presents the regression network (labeled AiDT)
and ADT MSW error statistics, including bias and root
mean squared error (RMSE) (positive bias indicating a
model overestimate versus NHC/JTWC best track MSW
estimates) for each TC basin and the global dataset. Figure Bla
presents the results from the five individual basin-specific
models and Fig. B1b presents the results obtained using the
global AllBasin model applied to each individual basin. The
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global result (labeled All in the figures to signify all com-
bined global cases) is provided in both Figs. Bla and B1b
for consistency but is equal in each figure. Two scene-
specific variants are run for each of the five basin-specific
models and the one AllBasin model, as described previ-
ously: one containing the combined four scene-type models
(MIX) and one for the single, all-scene-type (ALL) model.
The results from both scene-type model variants are pre-
sented in Figs. Bla and B1b.
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FIG. B4. As in Fig. B1, but for ML network, 262D (0.2/0.6/0.2 weighing distribution). In
addition, the two output classification bin weighing schemes are displayed. AiDT3 and AiDTW
designate the 3-bin and all-bin classification averaging schemes, respectively.

As shown in Fig. B1, both the ALL and MIX models are
better than the original ADT, with the ALL scene-type model
being superior in RMSE to the MIX scene-type in all basins for
both the five basin-specific models (Fig. Bla) and the single
AllBasin globally derived model (Fig. B1b) in RMSE. In ad-
dition, the AllBasin model results in Fig. B1b are superior to
the corresponding basin-specific models in Fig. Bla for all five
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basins. Overall, the AllBasin model using the ALL scene-type
model performed best for the regression network.

While it may be counterintuitive that a more homogenized
network/model would be more accurate than the specialized
basin/scene specific models, one can make the case that a more
specific model might be “over-tuned” to that particular con-
dition, especially if the sample size is small. For example, in the
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F1G. BS5. As in Fig. B1, but for ML network, GaussD (Gaussian weighing distribution).

Atlantic model, there are almost 36 000 records in the training
dataset, but of those about 21500 (~60%) of those are CDO
and curved band scene types. Only around 3000 (~8%) are eye
scene types, so while a scene-specific model could provide a
good relationship in the training data, when applied to the
validation data the relationship might be overfit and provide a
less accurate estimate than with a multi-feature model devel-
oped on a much larger dataset. This is highlighted in the basin
specific plots where there are larger differences between the
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MIX and ALL models, illustrating the importance of having
large data samples when training a machine learning model.

b. Single-label categorical networks

Figures B2 and B3 show the performance results obtained
for both experiments using the SL networks. NoCW, shown in
Fig. B2, uses no class_weight weighting scheme while INCW,
shown in Fig. B3, utilizes the 1/N class_weight scheme for
weighting the label data bins.
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FIG. Cl1. As in Fig. B1, but a plot of the five best-performing networks using the AllBasin,
ALL scene-type, and all-bin classification averaging scheme (AiDTA) for the regression (Reg),
SL, and ML networks for five individual ocean basins and global total for independent 2017 test

dataset. Units are in knots.

The same general results are obtained for both SL networks
and are consistent with the results obtained with the regression
network discussed in the previous section. The AllBasin model is,
in general, superior to the five individual basin models, and the all-
scene (ALL) model is superior to the combined four-scene (MIX)
model. In addition, specific to the SL network experiments, the
derivation of the final intensity value using a weighted average of
all output classification bins (AiDTA) is more accurate than just
using the maximum and two adjacent classification bins (AiDT3).
Finally, the INCW network produces slightly better results overall
than those obtained with the NoCW network.

It should be noted that the performance of the basin-specific
NIO network NIO is poorer with respect to the other basin-
specific models, especially in NoCW, where the RSME values
are much larger than obtained with the ADT. This result is likely
due to the smaller size of the samples used in the NIO when
deriving the networks in the training stage (TCs are generally less
common in this basin), leading to overfitting of the basin-specific
networks. The RMSE values for the NIO INCW network are
reduced but also result in an increased bias versus the NoCW
network. Overall, use of the AllBasin model does improve the
performance of the NIO storms, further illustrating the superi-
ority of the AllBasin model against the basin-specific models.

A comparison of the SL NoCW and INCW network results
using the AllBasin and ALL scene-type models and all-bin
output classification weighting-scheme (AiDTA) against other
networks is presented in appendix C.

¢. Multi-label categorical networks

The ML multiclassification networks are investigated next.
As described above, two different experiments are conducted
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and focus on the use a range of classification bins defining the input
label data instead of a single label value. The first experiment, 262D,
defines the input label bins using a simple 0.2/0.6/0.2 weighting
distribution centered on the 5-kt bin where the label best track
MSW value is contained, while the second experiment, GaussD,
uses a Gaussian distribution weighting scheme for the label bins
centered on the best track MSW label value classification bin.

Figures B4 and BS5 present the ML network performance
results obtained from both 262D and GaussD, respectively.
The same output bin classification averaging schemes (AiDT3
and AiDTA) are used as explained in the SL discussion above.

As with the regression and SL results, the ML AllBasin model
results are better than the basin-specific model results for the
262D and GaussD experiments, with the ALL scene-type model
being superior to the MIX scene-type model in both experiments.
GaussD typically performs worse than 262D, with much larger
bias values noted with the GaussD experiments. In addition, the
NIO dataset issues with the SL networks above are also noted in
the ML network results, again highlighting the superiority of the
AllBasin model over the individual basin-specific models.

In general, the AllBasin model using the ALL scene-type
model and AiDTA output bin classification scheme yields the
lowest errors for the ML networks, which is consistent with the
SL network results presented previously.

APPENDIX C

Best Network Comparison

Figure C1 and Table C1 display results obtained from the
regression, SL and ML networks using the AllBasin and ALL
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TABLE C1. Comparison listing of various model performance values (MSW errors vs NHC/JTWC best track values) for all five indi-
vidual ocean basins and overall global (All) set for the independent 2017 test data. MAE is mean absolute error. RMSE is root-mean-
square error. Units are in knots. Negative bias indicates MSW estimates are generally weaker than the NHC/JTWC best track estimates.
Minimum basin-specific and global MAE and RMSE values are highlighted in bold.

Network Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE
Atlantic East Pacific West Pacific
ADT —-0.91 9.50 12.33 —0.15 7.38 9.44 —1.87 8.47 10.88
ML-T1 1.35 7.26 9.24 0.57 5.71 7.27 -0.14 5.93 7.66
ML-T2 3.85 7.98 9.84 3.05 6.57 7.96 2.67 6.56 8.30
Regression 0.49 6.89 8.76 -0.13 5.50 7.04 —0.60 6.02 7.56
SL-T1 -0.31 7.41 9.54 —0.83 5.60 7.16 -1.07 6.02 7.65
SL-T2 1.84 7.39 10.08 0.99 5.94 7.55 0.76 6.47 8.37
No. of records 5188 5188 5188 3677 3677 3677 5475 5475 5475
South Pacific North Indian Global (all)
ADT 2.71 8.43 10.70 5.03 7.51 9.96 -0.13 8.50 10.98
ML-T1 -0.07 6.30 8.19 2.05 5.63 8.08 0.49 6.32 8.18
ML-T2 343 6.80 8.68 5.66 7.44 9.99 3.32 7.03 8.82
Regression 0.80 6.52 8.29 1.50 5.90 8.15 -0.18 6.26 7.98
SL-T1 -0.96 6.61 8.65 0.28 6.01 8.03 -0.75 6.44 8.34
SL-T2 1.81 7.06 9.22 5.85 8.39 11.29 1.47 6.80 9.00
No. of records 3766 3766 3766 566 566 566 18672 18672 18672

scene-type models. Both experiments for the SL and ML net-
works are shown along with the single regression network re-
sults. Bias, RMSE, and mean absolute error (MAE) are shown
in Table C1 while only bias and RMSE are shown in Fig. C1 for
clarity.

Overall, the regression network produces the best statistical
results for TC intensity estimates for models run on the 2017
independent test dataset. In three of the five individual basins,
as well as the global set, the lowest RMSE values are achieved
using the regression network, whereas the best results in the
South Pacific and north Indian derive from the ML-262D and
SL-NoCW networks, respectively (regression is second and
third, only 0.10 and 0.12 higher RMSE in each respective ba-
sin). Given these findings, the regression network model is used
for the network of choice in section 4. A schematic diagram of
the final network is shown in Fig. 1.
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