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ABSTRACT: Several simple andcomputationally inexpensivemachine learningmodels are explored that canuse advancedDvorak

technique (ADT)-retrieved features of tropical cyclones (TCs) from satellite imagery toprovide improvedmaximumsustained surface

wind speed (MSW) estimates. ADT (version 9.0) TC analysis parameters and operational TC forecast center best track datasets from

2005 to 2016 are used to train and validate the various models over all TC basins globally and select the best among them. Two

independent test sets of TC cases from 2017 to 2018 are used to evaluate the intensity estimates produced by the final selected model

called the ‘‘artificial intelligence (AI)’’ enhancedadvancedDvorak technique (AiDT).The2017–18MSWresults demonstrate a global

RMSEof 7.7 and 8.2kt (1kt’ 0.51ms21), respectively. Basin-specificMSWRMSEs of 8.4, 6.8, 7.3, 8.0, and 7.5 kt were obtained

with the 2017 dataset in the North Atlantic, east/central Pacific, northwest Pacific, South Pacific/south Indian, and north

Indian Ocean basins, respectively, with MSW RMSE values of 8.9, 6.7, 7.1, 10.4, and 7.7 obtained with the 2018 dataset.

These represent a 30% and 23% improvement over the corresponding ADT RMSE for the 2017–18 datasets, respectively,

with the AiDT error reduction significant to 99% in both sets. The AiDTmodel represents a notable improvement over the

ADT performance and also compares favorably to more computationally expensive and complex machine learning models

that interrogate satellite images directly while still preserving the operational familiarity of the ADT.
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1. Motivation

Machine learning is a rapidly growing application of study

being used to examine a wide variety of topics, especially in the

environmental sciences. It can be employed to discern patterns

in large datasets that are more difficult to examine using tra-

ditional methods due to its ability to decipher correlations

in datasets objectively. Due to considerable advancements in

computer hardware, such as new graphical processing units

(GPUs), and software analysis packages such as Tensorflow

(Abadi et al. 2016) and Keras (Chollet 2015), a greater number

of researchers are able to access, learn, and utilize machine

learning techniques than ever before.

The three most popular types of neural networks in the

atmospheric sciences applications are multilayer perceptron,

convolutional, and recurrent. Multilayer perceptron net-

works (MLP) are a type of ‘‘feed-forward’’ network where

the data flows in one direction through the model. These are

the most general type, containing varying numbers of layers

and neurons. A MLP can be called ‘‘shallow’’ or ‘‘deep,’’

depending on the number of hidden layers in the model. A

typical MLP has three types of layers: input, output, and

hidden layers. Input and output layers are self-explanatory

and are equal in size to the vector size of the model input and

output, respectively. By contrast, hidden layers exist between

the input and output layers and can be any size according to

their number of ‘‘neurons.’’ Neurons are computational units

that have weighted connections to the adjoining layers, with a

layer being considered ‘‘fully connected’’ to the adjoining

layers when each neuron in a layer is connected to each node

(either neurons, input or output) of the adjacent layers. An

‘‘activation function’’ normally applies to each neuron: this

can be as simple as a step function (pass the information on if

the weighted sum is greater than a value, otherwise do not),

and usually these functions are nonlinear to allow the net-

work to learn nonlinear relationships.

Figure 1 provides a schematic diagram of a simpleMLP with

only three layers. The input layer contains the observed pre-

dictors (or features in ML literature) being passed forward to

the next layer of the model containing 32 neurons. This layer is

fully connected to a hidden layer since each of the 26 predictor

values is connected to each of the 32 neurons. For each neuron

in the hidden layer, a weighed sum (plus an offset) of each of

the 26 values is calculated. The weights for each input value for

each neuron and the corresponding offset are optimized during

the training process of the model. An activation function is

then applied to the weighted sum values of each neuron in the

hidden layer to define how the information from the 32 neu-

rons is passed to the next layer. This single node is the output

layer and represents the final predicted value of the MLP.

Convolutional neural networks (CNN) are typically applied

to computer vision analysis to perform abstract feature char-

acterization. CNNs identify components within the images

using convolutional filters and down-sampling processes that

make up a method of hierarchical pattern-matching. The

product of successive convolutions (called a ‘‘feature map’’) is

then transformed, or ‘‘flattened,’’ to a one-dimension array
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after all convolution and down-sampling iterations have been

performed, which can then be analyzed with a MLP to

produce a final predicted value. Finally, there are recurrent

neural networks (RNN), which recursively feed the output of a

layer back into itself. This allows the past iterations of a layer to

influence the future iterations, which is advantageous for ap-

plications to sequential datasets.

Satellite-based tropical cyclone (TC) intensity analysis is one

field where machine learning techniques have been explored a

great deal in the past fewyears. Legacy techniques have achieved

reasonable accuracies based upon empirical or statistics-based

algorithms operating on geostationary satellite infrared (IR)

imagery (Velden et al. 1998; Pineros et al. 2008; Ritchie et al.

2014; Olander and Velden 2019), polar-orbiting satellite passive

microwave (PMW) imagery (Xiang et al. 2019; Jiang et al. 2019),

or techniques using both (Velden and Herndon 2020).

Recent machine learning studies normally use the same

datasets as the statistics-based algorithms but employ a much

more powerful image analysis methodology to decipher pat-

terns that may be missed or ignored in those techniques.

These are CNN architectures, which is a process based on

breaking down gridded data, such as satellite imagery, into a

series of one or more progressively smaller grid layers using a

series of image operations. A convolution operation is first

performed, which highlights the larger, multi-element fea-

tures in the image using filters. An element-wise, nonlinear

operation can also be applied during the convolution process

to remove data above or below a set threshold. A final down-

sampling, or pooling, operation is performed to further highlight

features and reduce the overall size of the image. The image is

then flattened from a two-dimensional grid to a one-dimensional

array of scalar values, which is then analyzed with a MLP to

result in a final output layer of predicted value(s).

Highlighting select recent CNN studies, Pradhan et al.

(2018), Combinido et al. (2018) and Maskey et al. (2020) fo-

cused on geostationary cloud top temperature information

from a single IR channel, typically the longwave IR (LWIR)

window channel (approximately 10.7mm). Zhang et al. (2020)

used a combination of LWIR and water vapor (WV, ap-

proximately 6.7mm) imagery, while Lee et al. (2019) and

Yu et al. (2020) employed several additional IR channels

(3.9 and 12.0mm) in addition to the LWIR andWV channels.

Wimmers et al. (2019) focused exclusively on PMW data

(37- and 85–92-GHz channels) from available polar-orbiting

satellites. Chen et al. (2019) used both PMW rain rate and

geostationary LWIR andWV imagery in their study. Utilization

of a combination of channels and/or sensors over a single

channel can provide more information to the model being

derived, but doing so will increase the amount of time and

computational power needed to incorporate each new set of

data. Each of the previously listed studies balanced these

requirements and availability of data when determining

which datasets to use. All of these CNN studies showed

promise for objectively estimating TC intensity, with some

yielding superior results to the legacy methods.

CNNs have both the advantage and disadvantage of en-

capsulating spatial patterns in a neural network form. The

advantage of this is the thoroughness and objectivity that

comes from direct training on image inputs since all of the

image data are utilized in the final determination of a predicted

value. There are a few disadvantages to CNNmodels, however.

It can be difficult to achieve a general optimization since many

different methods can be used to subsample/filter the image in

the convolution process. Also, CNN can have high computa-

tional costs, especially if the computer GPU is not sufficient

and/or the model is very complex. In addition, CNN require a

great deal of data to sufficiently train the model in order to

avoid overfitting to the training data. Some of these drawbacks

can be experienced with ANN, but are heightened with CNN

due to their increased complexity.

By contrast, the statistical advanced Dvorak technique

(ADT; Olander and Velden 2019) is a fully automated and

objective algorithm that has been applied in real time for almost

two decades by operational forecast centers worldwide as an aid

to estimate TC intensity. The ADT has also been employed as

the primary analysis tool in several TC climatological studies

(Velden et al. 2017; Kossin et al. 2013, 2020; Courtney et al.

2020). It primarily examines geostationary satellite LWIR im-

agery to assess the intensity of TCs through pattern matching

and explicit feature analysis techniques. PMW imagery (ap-

proximately 85–92GHz) is also used in certain cases to provide

indicators of early eyewall formation.

The basis of the ADT is the objective determination of a

storm cloud pattern or ‘‘scene type,’’ which attempts to mimic

the parent Dvorak technique (Dvorak 1975, 1984; Velden

et al. 2006) methodology that requires a human analyst. Once

the ADT scene type is derived the current storm intensity is

estimated using statistical methods specific to that scene type.

There are four primary scene-type categories used in the

ADT, examples of which are shown in Fig. 2. ‘‘Eye’’ refer-

ences when an eye feature is apparent and is a feature asso-

ciated with stronger intensity TCs. A ‘‘CDO,’’ or central

dense overcast, is a large, coherent cirrus cloud shield that

covers the rotational storm center or forming eye feature. It

typically occurs prior to the appearance of an eye. ‘‘Curved

band’’ features typically occur in forming TCs when an arc of

convection is wrapping around a storm circulation center as

the storm is developing. As the storm increases in strength the

FIG. 1. Schematic diagram of final regression-based MLP model

with one hidden layer of 32 neurons and one output layer with 1

neuron.
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extent of the convective arc will also increase and move closer

toward the storm circulation center. Once the convection wraps

completely around the circulation center the clouds will tend to

cover this location and form a CDO. Finally, the ‘‘shear’’ scene

can occur at any time during the storm life cycle. This scene type

occurs when a TC encounters strong environmental winds and

the low level circulation center is exposed and separated from

the convection. The more intense the atmospheric shear the

larger the separation between the storm center and the con-

vection (and typically the weaker the storm will be).

The scene type is calculated in the ADT using two separate

score equations, one for the eye region (#24 km from the

storm center) and another for the cloud region (24–136 km

from the storm center) of the storm. These equations use

various TC parameters retrieved from the IR imagery to

derive the scores and a series of threshold values to

classify the final scene type. Depending upon the scene

type classified, either a regression equation (eye and CDO

scene types) or a linear relationship of select TC parameter

values (shear and curved band scene types) can be used to

derive the intensity estimate. The shear and curved band scene

types are based upon the original analysis techniques outlined

in the Dvorak technique and have not been investigated in

depth and modified like the eye and CDO scene types.

The retrieved TC parameters are stored in an ADT ‘‘history

file’’ for that storm and are used in the subsequent intensity

analyses for the lifetime of the storm. Typically, theADT is run

every 30min, providing real-time, objective estimates of TC

intensity for all storms around the globe with accuracies com-

mensurate with the legacy manual Dvorak technique. Further

details on theADT are provided inOlander andVelden (2019)

and in Olander (2021).

FIG. 2. Examples of ADT scene-type classifications. Imagery is LWIR imagery with the standard basic Dvorak

‘‘BD’’ enhancement to enhance ranges of cloud top temperatures. Black, white, and dark gray are colder tem-

peratures, as in the eye and CDO examples, with several other shades of gray shown in the shear and curved band

indicating warmer temperatures.
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Since the ADT is a proven and mature algorithm that al-

ready objectively analyzes the IR imagery and determines

the scene type and resultant intensity using methods that

have been developed over two decades, why not utilize the

output TC parameters stored within the ADT history file

and apply machine learning techniques to assess value-

added potential? Such a model would be relatively simple

and computationally inexpensive to develop and deploy

since the image interrogation is already done by the ADT.

Development of a MLP takes minutes, not hours or days, to

derive and can be done using relatively modest computer

processing power available on a laptop or desktop computer.

CNNs typically require much higher priced machines con-

taining multiple and/or more expensive GPUs to derive a

model efficiently. Repurposing the elements of the ADT, in-

stead of replacing it with a CNN-style algorithm, allows oper-

ational users familiar with the ADT to understand the basis of

the ADT intensity estimates while providing the user com-

munity with improved results, especially in areas where the

ADT has struggled or has not been as thoroughly examined

and improved.

This paper reports on the development of a MLP model to

augment the ADT intensity estimation process. This ‘‘artificial

intelligence (AI)’’ enhanced ADT (AiDT) model is executed

after the real-time ADT processing sequence is completed for

an active TC. It modifies the ADT intensity estimate by ap-

plying MLP techniques to the ADT analysis parameters fa-

miliar to operational TC users. Many different MLP networks

and data inputs are explored to determine the best possible

configuration. The final MLP configuration is independently

validated and the TC intensity estimation performance is

compared to several recent CNN algorithms to assess the

competitiveness of the AiDT technique.

2. Data

ADT history files are collected globally from TCs during the

period 2005–18 using the latest ADT-version 9.0 run at a 30-

min temporal resolution for all storms with best track intensi-

ties of greater or equal to 30 kt (1 kt ’ 0.51m s21), including

extratropical and subtropical cyclones. The satellite imagery is

provided by the geostationary operational satellite with the

lowest viewing angle at the time of the analysis for the storm in

each TC basin: Geostationary Operational Environmental

Satellites (GOES-8–16),Himawari-8, Multifunction Transport

Satellites (MTSAT-1R, MTSAT-2), and Meteosat-7–10. The

ADT does not require the IR imagery to be spatially homo-

geneous over the analysis period since it accounts for reso-

lution changes within the algorithm itself. ADT estimates are

derived when the storm center position is over open ocean.

The ADT estimates are derived in terms of a ‘‘T-number’’

(tropical number, or T#) or current intensity (CI#), with each

separate value defined from 1.0 (weakest TCs) to 8.5 (strongest

TCs) in 0.1 increments. The CI# is calculated from the current

and previous T# intensity values, employing time-dependent

intensity change rules and a time averaging scheme, and repre-

sents the current storm intensity estimate. The CI# can be con-

verted to a maximum wind speed (MSW) estimate using a

standard conversion outlined in Velden et al. (2006).

Five oceanic regions (TC basins) are examined separately and

also as a combined global dataset. The five regions are the North

Atlantic, eastern/central North Pacific (east of the international

date line, with central region defined from 1408W to the date

line), western North Pacific (west of the international date line),

northern Indian Ocean, and southern Pacific/Indian Oceans.

These basins, shown in Fig. 3, will be referred to as the Atlantic,

EastPac, WestPac, NIO, and SouthPac, respectively, with the

combined set referred to as the global dataset.

MLP models are developed for each of the five separate

basins as well as an ‘‘AllBasins’’ model using the combined

global dataset. ADT history files from 2017 to 2018 TCs are set

aside as independent ‘‘test’’ datasets. The test datasets from

each year are examined separately for two reasons: 1) to

provide amore direct comparison of results with the Chen et al.

(2019) study which examined 2017 WestPac TCs, and 2) to

discern the robustness of the results from one TC season to the

next. Years 2007, 2010, and 2014 are designated as the ‘‘vali-

dation’’ dataset, with the remaining years between and in-

cluding 2005 and 2016 serving as the ‘‘training’’ dataset. It must

be noted that ‘‘validation’’ in machine learning terminology

does not refer to the final independent evaluation process, but

instead to the in-training check onmodel performance in order

to tune the model design. The three years selected for the

validation dataset are chosen to provide a representation of all

FIG. 3. World map outlining the tropical cyclone ocean region boundaries.
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TC intensities, from tropical depression to category 5/Super

Typhoon, for each of the five basins. These years were chosen

before the model training and validation process were per-

formed. The total number ofADT individual intensity analyses

for each dataset and ocean basin are listed in Table 1.

The ground truth data, otherwise known as the ‘‘label’’ data

in machine learning nomenclature, used in the training, vali-

dating, and testing of the model are the official final best track

MSW estimates provided by the National Hurricane Center

(NHC) for theAtlantic and EastPac storms, the Central Pacific

Hurricane Center (CPHC) for EastPac storms in the Central

Pacific region (west of 140W and east of the international date

line), and the Joint Typhoon Warning Center (JTWC) for the

WestPac, SouthPac, and NIO storms.1 Both label datasets

define MSW as the 1-min sustained wind at 10m above the

surface. The best track MSW estimates for each TC in the

sample are provided every 6 h and linearly interpolated to each

30min ADT history file record. The ADT current intensity

numbers (CI#) are converted toMSW values using the standard

Dvorak relationships (Dvorak 1984) to provide the baseline

ADTMSW estimates shown in section 4. All MSW units are in

knots (kt). The NHC and JTWC best track data are available

from their respective websites, as listed in the data availability

statement at the end of the article.

All training dataset feature values are normalized by re-

moving the mean and scaling to variance (i.e., mean 5 0 and

standard deviation 5 1) using the Keras StandardScaler func-

tion. This scalar transformation is then applied to the validation

and test data to ensure all values are scaled in the same fashion.

3. Methodology

Several different neural networks configurations are explored

in this study. The first is a regression-based network, outputting a

single MSW intensity estimate value within a continuous range.

This network is extensively examined to determine the best

number of hidden layers to employ in the ANN. In addition,

two multi-classification networks are explored. These types

of networks result in an output expressed probabilistically

over a range of 5-kt MSW bins instead of a single value. The

main difference in the two networks is in the input label data.

A single label (SL) bin is used for the first network, meaning

the label data are assigned to a single bin, while in the second

network the label data are assigned to several bins representing

a multiple label (ML) bin distribution, such as a Gaussian

distribution, of MSW. Within each of the two categorical

classification networks two independent experiments are

conducted to explore different methods of handing the input

and/or output intensity bins.

In addition to the different neural network configurations

noted above, an additional experiment was conducted to ex-

plore the use of four scene-type specific models with their own

set of model features versus using one single model with a set

feature list.

To focus the scope of this article on the impact of theAiDTon

the ADT MSW estimates, the experiment methodology details

of each of the five networks variations and two scene-type exper-

iments are presented in the appendixes at the end of this article.

Detailed analysis of each network and experiment varia-

tions are examined using the training and validation data-

sets in appendix A. An independent analysis of the various

network experiments is performed on the 2017 test dataset

and is provided in appendix B, with a final best model selected

in appendix C. A schematic diagram of the final model is presented

in Fig. 1 to illustrate the structure of the final model selected.

4. Results

The selection of the best MLP is outlined in appendix C, with

the regression network being chosen. This network is referred to

as AiDT-SV, for ‘‘AiDT single value,’’ for the remainder of the

article. The following sections will focus on theAiDT-SV and its

performance in amultitude of analyses to highlight the impact of

the MLP on the ADT. Analysis will focus not only on basin-

specific and global statistical comparisons of the performance

of the two techniques, but will also highlight specific situations

during a TC life cycle where theMLP network aids theADT the

most. Significance testing between theMLP andADT statistical

comparison will be presented to demonstrate independence of

the datasets.A final comparison between the regression network

and other satellite-basedTC intensity estimation neural network

models and algorithms is provided at the end of this section.

a. Time averaging of independently derived

intensity estimates

To smooth out some of the inherent noise associated with

single, independently derived intensity estimates produced by

theAiDT-SV, a weighted time-averaging technique is applied to

the intensity values, similar to the time-averaging technique

usedwithin theADTalgorithm (Olander andVelden 2019). The

methodology weights the records between the current analysis

TABLE 1. Total number of ADT history file records in the five

ocean basin regions and combined global training, validation, and

independent test datasets.

Basin Training Validation Test 2017 Test 2018

Atlantic 36 087 10 846 5188 4944

EastPac 35 270 10 007 3677 5143

WestPac 38 636 9359 5475 4334

SouthPac 29 833 10 852 3766 3688

NIO 7076 1988 566 1227

Global 146 902 43 052 18 672 19 336

1As noted in Olander and Velden (2019), ADT estimates can be

used in the generation of NHC and JTWC best track intensity es-

timates, especially outside of the North Atlantic where in situ

aircraft measurements are not available, thus the valuesmay not be

truly independent. However, given the availability of other inten-

sity sources (e.g. in situ aircraft measurements, scatterometer

winds, ship/buoy measurements, microwave imagery, subjective

Dvorak, other objective intensity methods, etc.), the TC experts

will account for the respective strengths and limitations of each

value to formulate the best possible ‘‘educated’’ best track intensity

estimate.
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(t0) and 3.0 h prior using a weight of (3.02 DT) where DT is the

time difference in hours from the current analysis time [e.g., t02
30min (0.5 h) prediction is weighted 2.5, t0 2 1.0 h is weighted

2.0, and so forth]. To assess this application, comparisons of the

weighted time-averaged intensity estimates versus the inde-

pendently derived, non-time-averaged, single-value intensity

estimates (AiDT-SV) are shown for each of the five ocean basins

during 2017 in Table 2.

Use of the 3-h time-weighted average estimate results in

slightly improvedMAE and RMSE versus non-time-averaged,

single-value intensity estimate values (AiDT-SV) in all five

basins and the combined global dataset, with an improvement

of about 0.3 kt noted in the RMSE using the time-weighted

average over the unaveraged individual values. Therefore, the

time-weighted version of the regression network is used for the

remainder of the paper, and is designated as AiDT.

Closer examination of the AiDT improvements shows nota-

ble bias improvements in four of the five individual ocean basins.

Reductions of largeADTpositive biases in the South Pacific and

northern Indian Ocean basins of 1.73 and 3.99, respectively,

were noted with a lowering of the RMSE values around 2.5 kt in

each basin. While smaller improvements to the negative ADT

bias values (absolute value of the bias was reduced) were seen in

the Atlantic and west Pacific using the AiDT, these corre-

sponded to much larger RMSE reductions of over 4.1 and 3.5 kt

in the two basins, respectively. The east Pacific RMSE was re-

duced by 2.67kt with a very small negative bias obtained by both

theADT andAiDT. TheAiDTMSWestimates demonstrated a

30% improvement over the ADTMSW estimates in RMSE for

the 2017 global dataset, lowering from 10.98 to 7.70.

b. Tropical cyclone categorical analysis

Additional analysis of the 2017 independent test results is

performed to determine where the AiDT impacts and im-

proves upon the original ADT algorithm the most. The

ADT and AiDT estimate errors versus NHC/JTWC best

track for the global dataset are broken down by storm in-

tensity using the Saffir–Simpson hurricane intensity classi-

fication categories. These categories are tropical depression

(TD), tropical storm (TS), and five hurricane categories

(H1–H5). Two additional groupings include weaker hurri-

canes (H1 and H2) and major hurricanes (H3–H5). The

results are presented in Table 3.

Examination of the differences between the ADT and AiDT

statistics shows the largest RMSE impact in the TS and H1 (and

H1–H2 combined) categories, where theADTRMSEvalues are

reduced nearly 4 kt in each category. The H2 RMSE errors are

also reduced 2.5 kt. This is a notable improvement since the

ADT struggles (exhibiting a low bias) in these intensity ranges

since a central dense overcast (CDO) obscuring an eye structure

in geostationary IR imagery is usually apparent during these

ranges. This will also be discussed in the following section. It

must be noted that while theAiDT did reduce the bias in theH1

category by almost 2 kt, the bias worsened in the TS and H2

categories where the negative bias increased slightly.

Eye features normally appear in IR imagery in category H2

hurricanes and stronger, and ADT eye scene RMSE values are

typically smaller here. This is noted in the smaller RSME re-

ductions of the AiDT versus the ADT in the H3–H5 categories

with limited reductions of the bias, especially noted in the H4

and H5 categories.

Unfortunately, the AiDT could not rectify the large over-

estimate and underestimate biases noted in the ADT for TD

and H5 category storms, respectively. H5 cases are harder for

theADT andAiDT to analyze due to an insufficient number of

training cases for this category, combined with a shortage of

distinguishing features. H5 TCs are often characterized by very

small eyes of less than 10 km (called ‘‘pinhole’’ eyes) that may

not be fully resolved by the IR imagers, especially on older

geostationary platforms,2 leading to intensity underestimates

TABLE 2. Comparisons between the best regression network 3-h time-weighted average (AiDT), unaveraged single value estimate

(AiDT-SV), and the original ADTMSW intensity estimates for the five ocean basins and the global dataset for the independent 2017 test

dataset. MAE is mean absolute error. RMSE is root-mean-square error and is highlighted in bold text. Units are in knots. Negative bias

indicates MSW estimates are generally weaker than the NHC/JTWC best track estimates.

Network Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Atlantic East Pacific West Pacific

ADT 20.91 9.50 12.33 20.15 7.38 9.44 21.87 8.47 10.88
AiDT-SV 0.49 6.89 8.76 20.13 5.50 7.04 20.60 6.02 7.56

AiDT 0.33 6.59 8.44 20.13 5.30 6.77 20.86 5.89 7.35

No. of records 5188 5188 5188 3677 3677 3677 5475 5475 5475

South Pacific North Indian All basins

ADT 2.71 8.43 10.70 5.03 7.51 9.96 20.13 8.50 10.98
AiDT-SV 0.80 6.52 8.29 1.50 5.90 8.15 20.18 6.26 7.98

AiDT 20.98 6.27 7.99 1.04 5.33 7.49 20.35 6.03 7.70

No. of records 3766 3766 3766 566 566 566 18 672 18 672 18 672

2 Spatial resolution of the IR window channel (LWIR) im-

agery (approx. 10.7 mm) used by the ADT has varied between

2 and 5 km since 1994. Current operational geostationary satellites

GOES-16, GOES-17, and Himawari-8 possess resolutions of

2 km, with Meteosat-8 andMeteosat-11 (along with non-operational

Meteosat-9 and Meteosat-10) having 3-km resolutions. Prior GOES

(GOES-8–15) and MTSAT imagers had a 4-km resolution, while

Meteosat-5–7 and GMS-5 exhibited a 5-km resolution.
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in these situations. TDs are difficult due to the lack of orga-

nization in the IR cloud features for these weaker systems.

While it is common for statistical models to struggle with the

extreme conditions, further research is required to explore and

improve satellite-based intensity estimation procedures in both

of these disparate classifications.

c. ADT scene-type analysis

An additional breakdown of the ADT and AiDT statistics

is carried out to assess how the AiDT performs with regards

to the four main ADT scene types. These results are pre-

sented in Table 4, and further highlight the situational impact

of the AiDT.

While a notable reduction in error is evident for the CDO

and eye scene-type classifications using the AiDT, larger re-

ductions occur for the curved band and shear scene-types that

are more difficult cloud patterns for the ADT to analyze em-

pirically, so the improvements are a meaningful advancement

over the current ADT techniques. Curved band scene types

also typically occur during TC formation stages (i.e., during the

TD and TS intensity classification stages) that can have higher

cloud pattern analysis uncertainties than with more developed

storms, so application of the AiDT will greatly help the ADT

results during this important period of the storm life cycle when

the convective structure is still organizing.

For shear scene types, the ADT uses this classification more

often as a TC encounters stronger vertical wind shear in the

midlatitudes as it is transitioning to an extratropical (ET)

system or dissipating. An intensity adjustment scheme is

implemented in the ADT to modify the estimates during and

after ET transition (Manion et al. 2015). But the results in

Table 4 indicate the AiDT provides further improvement to

intensity estimates during periods when a TC is encountering

stronger environmental shear.

d. Examples of AiDT performance and behavior

Figure 4 shows scatterplots of all the ADT and AiDT in-

tensity estimates for each of the five basins during the 2017

test. The scatterplots show the MSW estimates versus the

NHC/JTWCbest trackMSWestimates and highlights the reduction

of spread between the AiDT estimates and the corresponding

ADT estimates. The AiDT reduces the outliers present in the

ADT estimates, most notably in the lower MSW ranges.

Figures 5–8 show example intensity time series displays for

selected TCs in each of the different basins. The examples are

selected to highlight storms that exhibit large intensity

changes as well as some of the AiDT impacts demonstrated in

sections 4b and 4c. Particular attention should be paid to

those portions of the time series where the AiDT model de-

viates from the ADT estimates. For example, during the

Atlantic storms Jose and Maria, EastPac storms Fernanda

and Kenneth, and WestPac storms Sanvu and Talim, the

AiDT improves the ADT estimates during the dissipation

stage of the storm where shear scene types are primarily used

to provide the MSW estimates as the stormmoves into higher

latitudes and encounters more atmospheric shear.

TABLE 3. Statistical comparisons between theAiDT 3-h time-weighted average (AiDT), and originalADTMSW intensity estimates for

the independent 2017 global test dataset broken down into intensity bins based on Saffir–Simpson classifications. MAE is mean absolute

error. RMSE is root-mean-square error and is highlighted in bold text. Units are in knots. Negative bias indicates MSW estimates are

generally weaker than the NHC/JTWC best track estimates.

Saffir–Simpson intensity category Sample size

ADT AiDT

Bias MAE RMSE Bias MAE RMSE

TD , 35.0 kt 3519 5.34 6.58 9.27 5.96 6.28 7.83

TS 35.0–63.9 kt 9016 20.37 8.54 10.72 21.19 5.30 6.79

H1 64.0–82.9 kt 3001 23.99 9.90 12.87 22.09 6.45 8.15

H2 83.0–95.9 kt 1445 22.03 10.02 12.43 23.50 8.01 9.92
H3 96.0–112.9 kt 845 2.44 8.35 10.22 20.44 6.21 7.86

H4 113.0–136.9 kt 607 24.18 7.83 10.15 24.14 6.35 8.24

H5 . 137.0 kt 239 210.34 10.84 13.44 210.02 11.00 12.82

H1–H2 64.0–95.9 kt 4446 23.35 9.94 12.73 22.55 6.96 8.77
H3–H5 . 96.0 kt 1691 22.95 8.52 10.71 23.41 6.94 8.88

TABLE 4. Statistical comparisons between the AiDT and original ADTMSW intensity estimates for the 2017 global test dataset broken

down by ADT scene types. MAE is mean absolute error. RMSE is root-mean-square error and is highlighted in bold text. Units are in

knots. Negative bias indicates MSW estimates are generally weaker than the NHC/JTWC best track estimates.

ADT scene type Sample size

ADT AiDT

Bias MAE RMSE Bias MAE RMSE

Eye 2590 0.10 8.66 11.03 21.43 6.55 8.30

CDO 7246 2.20 8.92 11.18 20.67 6.53 8.30

Curved band 5670 21.50 8.54 11.17 0.57 5.75 7.27

Shear 3166 23.21 7.36 10.12 20.41 4.95 6.35
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AiDT adjustments to the ADT MSW estimates during the

formation stage are also highlighted in the examples where

curved band scene types are primarily used. The Atlantic

storms Harvey and Ophelia, EastPac storm Greg, and all four

WestPac and SouthPac/NIO storms all demonstrate an AiDT

deviation from theADT toward the best track estimates during

the early formation stage. These formation stage examples

include weaker intensity periods when curved band scene types

are primarily used by the ADT (in the TD and TS categories in

section 4b) as well as H1 and H2 categories when the PMW

adjustment is applied in conjunction with CDO scene types. As

mentioned previously, the curved band and shear scene types

have not been investigated in depth and still rely upon the

original Dvorak technique techniques to provide a MSW

FIG. 4. Scatterplot comparisons of the ADT (blue) and AiDT

(red)MSWestimates vs NHC/JTWCbest trackMSWestimates for

the 2017 testing dataset for all five TC basins.
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estimate in the ADT, so the impact of the AiDT during these

scene types, as well as with CDO scene types, is quite

promising.

In most cases only small deviations are noted between the

AiDT andADT estimates during themost mature TC stages of

the storm life cycle (H3–H5 TC categories). These periods

usually encompass TCs with well-defined eyes and convective

structures, thus empirical methods to infer intensity (e.g.,

Dvorak, ADT) do quite well. However, in some cases, such as

WestPac storms Talim and Lin and SouthPac storm Debbie,

the AiDT estimates can adjust the ADT estimates upward or

downward noticeably, demonstrating the power of machine

learning models to identify and utilize additional information

even in relatively well-behaved TC stages where the ADT

MSW estimate methodology for eye scenes is typically reliable

and stable. Some of these differences could be related to

temporal changes associated with eyewall replacement cycles

or spatial features that are not currently used in the eye anal-

ysis. While the AiDT can highlight periods to examine more

closely to further improve the ADT algorithms in the future,

it cannot state what the specific differences are. Performing

machine learning feature selection analysis is one possible

avenue to identify which specific features are important in each

situation where the ADT and AiDT differ.

e. Testing for AiDT robustness

The robustness of the AiDT performance results in 2017 is

tested on another independent sample of TC cases during 2018

for the five ocean basins analyzed previously. Table 5 presents

the statistical analysis of the TC intensity estimates provided by

the ADT and AiDT, and Fig. 9 illustrates a graphical com-

parison of the results between the two independent tests. Bias,

RMSE and MAE are shown in Table 5 while only bias and

RMSE are shown in Fig. 9 for clarity.

There are a similar total number of records (intensity an-

alyses) examined in both years, with 600 more in 2018 than

2017. Only small deviations in AiDT RMSE are observed in

four of the five TC basins, with changes of 0.46,20.09,20.29,

and 0.24 kt in the Atlantic, east Pacific, west Pacific, and north

Indian Ocean basins, respectively, from 2017 to 2018. Only

the South Pacific basin results in 2018 deviate notably

from 2017, with the RMSE increasing by 2.42 kt. There is

FIG. 5. Time series displays for four selected Atlantic storms in the 2017 independent test dataset. ADT (blue lines) and AiDT (red lines)

are shown vs NHC/JTWC best track MSW (black lines). Units are in knots.
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also a corresponding increase in the ADT RMSE errors of

1.08 kt between the two years in the South Pacific along with a

large AiDT bias shift from 20.98 in 2017 to 23.45 kt in 2018.

A possible explanation of this increased negative bias is a

significantly higher number ofH3–H5 storms in the 2018 dataset

than in the 2017 dataset (with all other categories being

relatively the same). However, considering that the global

RMSE only differs by 0.53 kt between the 2017 and 2018 inde-

pendent sample tests, the robustness of the AiDT perfor-

mance is clearly demonstrated. The AiDT MSW estimates

represented a 23% improvement in RMSE over the corre-

sponding ADT MSW estimates for the 2018 global dataset,

lowering from 10.73 for the ADT to 8.23 for the AiDT.

f. Statistical significance testing

Significance testing is performed by examining the p value

from a paired Student’s t test using bootstrap sampling to de-

termine whether the ADT and AiDT errors are significantly

separated. This analysis was performed separately for the

global and five individual basin datasets for 2017 (section 4a)

and 2018 (section 4e) as well as the 2017 tropical cyclone cat-

egory (section 4b) and ADT scene type (section 4c) datasets.

The bootstrap sample sizes for each of these datasets were

chosen to remove the temporal autocorrelation in the 30-min

data. For this we used the decorrelation time for ADT esti-

mates determined in Kossin et al. 2020, where it was found that

the estimates decorrelate between 12 and 18 h. In that study,

which used 6-hourly ADT estimates, the degrees of freedom

were reduced by a conservative factor of 3 (the actual reduc-

tion factor was 2.7). Here, for the 30-min data, the degrees of

freedom in the Student’s t test would need to be reduced by a

factor of 32 (i.e., 2.7 3 6 h/30min). For each dataset described

above, the bootstrap sample size was specified asN/32 whereN

is the size of the dataset. We then form 10 000 bootstrap sam-

ples and compute the bias and RMSE of each for the ADT and

theAiDT data. The distributions of bias andRMSE are normal

and represent independent errors.

Plots of the bias and RMSE probability density functions

(PDF) are generated to visually compare the ADT and AiDT

bootstrap datasets. Statistical significance for the 2017 and 2018

basin statistics as well as the 2017 categorical and scene-type

statistics are determined by deriving the p value for the bias

and RMSE distributions, with all p values found to be less than

0.01, thus theADT andAiDT errors examined in sections 4a–d

FIG. 6. As in Fig. 5, but for the 2017 east Pacific dataset.
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are determined to be significantly separated with greater than

99% confidence.

Figure 10 displays the bias and RMSE PDF distributions

for the 2017 ADT scene-type datasets, as discussed previ-

ously in section 4c. The 2017–18 basin PDF comparisons, as

well as the categorical PDF comparisons, available at

https://tropic.ssec.wisc.edu/real-time/adt/AiDT/pdf, show

similar separation to those in Fig. 10. It is noted that the AiDT

PDF bias and RMSE distributions have less overall bias/RMSE

spread (x axis) and corresponding increase in PDF maxima (y

axis) than the corresponding ADT distributions, meaning the

AiDT estimates have greater overall accuracy than the ADT

estimates. It is also noted again that the more notable PDF

distribution changes occur in the curved band, shear, and CDO

scene types (along with the previously discussed changed to the

bulk bias and RMSE value reductions obtained with the AiDT

over the corresponding ADT values).

g. Comparisons with other satellite-based methods

Table 6 lists a number of recently published satellite-based

TC intensity estimation models and algorithms, including ex-

perimental deep learning/neural network methods as well as

more traditional methods. The published performance accu-

racies are shown for comparison with the AiDT presented in

this study.

As can be seen, the performance of the AiDT is very

competitive with or superior to all of the methods, even

many of the more sophisticated DL/CNN models which

employ a variety of satellite data image sources. Most

methods rely upon traditional geostationary imagery, pri-

marily focusing on the infrared window channel cloud top

temperature field around the TC center position. The Lee

et al. (2019) study uses additional geostationary channels

such as shortwave IR and water vapor, while the Wimmers

et al. (2019) method uses passive microwave imagery sensi-

tive to ice scattering below the cloud tops. Other techniques,

like the Dvorak technique, ADT and DAV-T are not

DL/CNN techniques, instead they rely on other methods to

interrogate the satellite imagery. SATCON (Velden and

Herndon 2020) is a weighted consensus of intensity estimates

from several independent objective methods that include the

ADT. This approach is being used operationally at several

global TC analysis centers and provides accuracies that are

better than its input members.

FIG. 7. As in Fig. 5, but for the 2017 west Pacific dataset.
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While it is difficult to directly compare all of these tech-

niques since they are not tested on homogeneous TC sam-

ples, it can be inferred that the AiDT compares favorably

with the two most accurate DL/CNN techniques, the Lee

2D3 model and Chen CNN-TC model. A specific comparison

of the Chen results in the northwest Pacific during 2017 with

the AiDT results obtained during the same period (Table 2)

shows that Chen obtained an RMSE of 8.39 kt while the

AiDT obtained a RMSE of 7.35 kt. While this specific com-

parison may not be statistically significant since the models

FIG. 8. As in Fig. 5, but for the 2017 South Pacific and north Indian Ocean datasets.

TABLE 5. Statistical comparisons between the AiDT and original ADT MSW intensity estimates for the five ocean basins and global

dataset for the independent test sample of TC cases in 2018. MAE is mean absolute error. RMSE is root-mean-square error and is

highlighted in bold text. Units are in knots. Negative bias indicates MSW estimates are generally weaker than the NHC/JTWC best track

estimates.

Network Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Atlantic East Pacific West Pacific

ADT 21.23 9.56 12.16 0.06 7.42 9.64 20.21 7.17 9.27

AiDT 0.34 7.13 8.90 20.80 5.30 6.68 0.34 5.68 7.06

No. of records 4944 4944 4944 5143 5143 5143 4334 4334 4334

South Pacific North Indian All basins

ADT 20.58 9.44 11.78 3.56 8.14 10.48 20.01 8.34 10.73
AiDT 23.45 7.87 10.41 21.23 5.84 7.73 20.79 6.38 8.23

No. of records 3688 3688 3688 1227 1227 1227 19 336 19 336 19 336
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were not homogeneous, it demonstrates the potential of

simple MLP model enhancements to existing methods (i.e.,

ADT) versus more computationally expensive and time-

consuming full DL/CNN image analysis models. This result

may be surprising but emphasizes the robustness of the ADT

analysis techniques and related output features stored in the

history file. As mentioned previously, many of the ADT

analysis techniques have undergone extensive analysis over

the years, but a simple MLP model was able to obtain

additional information from these feature parameters not

previously recognized and can help guide future research

efforts to improve both the ADT and AiDT.

5. Summary and future directions

This study examines the potential to employ machine

learning enhancements to an existing proven algorithm (ADT)

that estimates the intensity of tropical cyclones from satellite

FIG. 9. Comparison of performance statistics for the ADT and AiDT covering the five dif-

ferent ocean basins and global dataset (All) for the two independent test data samples in 2017

and 2018. MSW intensity estimate bias and RMSE are presented. MSW units are in knots.

FIG. 10. Comparison of ADT (blue) and AiDT (orange) probability density function (PDF) bias and RMSE distributions for MSW

intensity estimates for the 2017 global test dataset broken down by ADT scene types, as shown in Table 4. MSW units are in knots.
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data, to assess whether superior performance can be achieved.

It is found that various MLP models can augment the ADT by

interrogating features that are output from the image pro-

cessing, resulting in improvements in the accuracy of TC in-

tensity estimates over the ADT itself. We found that a

regression-based network, which derives an estimate in a

continuous range of values, is slightly superior to multi-

classification network models that derive estimate probabil-

ities in a set series of range classes. The AiDT models are

better when derived using the entire ADT feature list instead

of a scene-specific subset of ADT features. In addition, the

use of a network derived using the entire global combined

dataset versus a set of individual basin-specific networks also

produces superior results. The AiDT models, most impor-

tantly, improve TC intensity estimates for situations when the

ADT (and Dvorak technique) struggles. Improvements of

30% and 23% were noted in the global AiDT MSW RMSE

versus the ADT MSW estimates for the 2017 and 2018 inde-

pendent tests, respectively, with the advantage being highly

significant.

AiDT model TC intensity estimate accuracies and recently

documented accuracies from other satellite-based neural net-

work models (including CNNmodels) compare favorably. The

AiDT is much easier and computationally cheaper to modify

and run versus direct image interrogation models that can take

considerable time to set up and execute, which makes it at-

tractive for real-time application and potential operational

implementation. Also, science upgrades and analysis modifi-

cations can be accomplished without requiring significant

computational expense since adding new feature values to and

recalculating the model is simple and not time consuming.

Finally, the AiDT preserves much of the operational famil-

iarity and heritage of the ADT, and Dvorak technique, while

providing improvedMSWestimates since it still relies upon the

ADT analysis as input.

Future investigations will focus on optimizing the feature

selection process that feeds the AiDT to determine which

ADT history file features are most impactful and which can

possibly be removed. Integration of other features, such as

storm information from the ARCHER (Wimmers and Velden

2016) algorithm could be explored to augment the current

ADT history file features utilized in this study. Finally, inte-

gration of the higher-precisionAiDT results into the SATCON

(Velden and Herndon 2020) model should improve the per-

formance of that TC intensity estimate consensus algorithm,

which currently relies upon the ADT.
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https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks, respec-

tively. The satellite data were obtained from the University of

Wisconsin—Madison/Space Science and Engineering Center

(SSEC) using the Man computer Interactive Data Access

System (McIDAS) proprietary software which prohibits sharing

the data publicly. The advanced Dvorak technique (ADT)

version 9.0 history files may be obtained upon request from the

lead author of this article. The ADT Users Guide may be ob-

tained from https://tropic.ssec.wisc.edu/misc/adt.

APPENDIX A

Network Training and Validation

a. Scene-type experiments

Five separate models are first developed according to the

ADT pattern (scene)-type categories of eye, central dense

overcast (CDO), curved band, shear, and all. The first four

models are applied to individual ADT scene types only (des-

ignated MIX), while the last ‘‘all’’ model uses all available

ADT history file records regardless of the scene type, with

scene type being a training input feature to the model (desig-

nated ALL). This is done to determine whether one single

overall model or four separate scene-type models produce

more accurate intensity estimates.

Different ADT history file parameters, sometimes referred

to as predictors or ‘‘features’’ in machine learning nomen-

clature, are used in each of the five scene-type models

(Table A1). Using different features in each model might

seem unconventional, but it allows for more targeted infor-

mation to be used in each scene-type model while removing

as much unnecessary information as possible. One ADT

history file parameter stores information specific to the scene

type designated during the ADT processing and will change

meaning based on the scene type. This single ‘‘shared’’ ADT

history file parameter stores the CDO diameter for CDO

scene types, the eye size for eye scene types, and the shear

distance from center for shear scenes. In addition, for some

scene types certain parameters are not measured and are

designated with a missing value in the ADT history file. Such

examples illustrate why select features are used for the dif-

ferent models. The list of features for the five different scene-

type models is shown in Table A1. For detailed information

regarding the features listed in Table A1, please refer to the

ADT Users Guide (Olander 2021).

For the ALL scene-type model, the values of the three

features in Table A1 designated with an asterisk following the

checkmark correspond to the single shared parameter outlined

above. The model will assign the feature value based on the

scene type of that history file record and will also fill the

‘‘missing’’ features with values that are reasonable and valid.

TABLE A1. ADT parameters (features) included in each of the five different scene models (ALL, eye, CDO, curved band, and shear).

Checkmarks indicate whether the feature is used in the model. An asterisk indicates the feature is scene-type dependent (determined

using the eye and cloud scene ID features) in the ALL scene-type model exclusively. C/W is coldest 2 warmest, PMW is passive mi-

crowave, CDO is central dense overcast, and FFT is fast Fourier transform.

Feature ALL Eye CDO Curved band Shear

Raw T# ✔ ✔ ✔ ✔ ✔

Adjusted raw T# ✔ ✔ ✔ ✔ ✔

Final T# ✔ ✔ ✔ ✔ ✔

CI# ✔ ✔ ✔ ✔ ✔

Eye temperature ✔ ✔ ✔ ✔ ✔

Cloud temperature ✔ ✔ ✔ ✔ ✔

C/W temperature ✔ ✔ ✔ ✔ ✔

Latitude ✔ ✔ ✔ ✔ ✔

Sin of longitude ✔ ✔ ✔ ✔ ✔

Cos of longitude ✔ ✔ ✔ ✔ ✔

Viewing angle ✔ ✔ ✔ ✔ ✔

Eye FFT ✔ ✔ ✔ ✔ ✔

Cloud FFT ✔ ✔ ✔ ✔ ✔

Eye scene ID value ✔ ✔

Cloud scene ID value ✔ ✔

Eye std dev ✔ ✔

Cloud symmetry ✔ ✔ ✔

Curved band value ✔ ✔

Curved band amount ✔ ✔

C/W temperature distance ✔ ✔

PMW eye score ✔ ✔

Extratropical flag ✔ ✔ ✔

Subtropical flag ✔ ✔

Eye size (2/eye size) ✔* ✔

CDO size ✔* ✔

Shear distance ✔* ✔

Total No. 26 17 17 18 15
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For the ‘‘eye size’’ feature during noneye situations or eye

scenes with a missing ADT value, the feature is assigned a

value of zero. For valid eye scene situations, this feature is set

to 2.0/(eye size), where eye size is the diameter of the eye. This

equation will result in values between 0 and 1 (assuming

maximum IR imagery resolution is 2 km), with smaller eyes

near 1 (meaning an eye diameter at or near 2 km, which are

typically associated with more intense storms) and larger/no

eye situations near/at 0 (meaning much larger eye diameters

typically associated with less intense storms). This ‘‘normal-

ized’’ value is also used in the eye scene model. ‘‘CDO size’’

feature values for non-CDO scenes are set to 170 km, which is

the average CDO size for the training dataset. For nonshear

scenes, the ‘‘shear distance’’ feature value is set to 0.

The longitude value is replaced in the scene-type models

with two separate features, the sine and cosine of the longi-

tude, in order to maintain meridional continuity. Finally,

missing or negative PMW eye score values, derived during

ADT processing when input PMW imagery is available, are

given a value of zero. More information about these ADT

history file parameters can be found in the ADT Users Guide

(Olander 2021).

b. Regression network

The first network investigated is a regression-based network

utilizing a varying number of hidden multineuron layers (in-

cluding the single neuron output layer) producing a continuous

range of output values. An ‘‘rmsprop’’ optimizerA1 and ‘‘mean

squared error’’ (MSE) loss function are used to compile the

network.

An experiment is performed to focus on determining the

best configuration of hidden layers for the model. Twelve dif-

ferent configurations of hidden layers are examined: from one

to six hidden layers using 32 neurons, a three-layer network

with 32/64/32 neurons, a five layer network with alternating

32 or 64 neurons, and four additional single layer networks with

either 8, 16, 64, or 128 neurons. A final single-neuron output

layer will contain the final MSW estimate for the regression

network. A batch size of 150 with 250 epochs is used for all

regression networks. A batch is a collection of training samples

that are used for each iteration during the model derivation

process before the model is tuned and another batch is exam-

ined. The number of iterations for one complete examination

of the training set, called an epoch, will depend upon the size of

the training set being utilized; the larger the batch size the

smaller the number of iterations. The error of the model

(model estimate versus the label data) is then derived for each

epoch and the process is repeated for another pass through the

training data, which are randomly shuffled for each epoch. The

model is also applied to the validation dataset at the end of

each epoch, as the model is being derived, to examine if the

model behavior with the validation data are similar to the

behavior exhibited with the training data. The errors obtained

from each epoch during the training process will typically level

out as less adjustment to the model is needed as more data are

examined. However, if the model is tuned to this training set

too much, the errors obtained during the validation may ac-

tually increase as more epochs are examined. This is known as

model overfitting and must be avoided.

Comparing the training and validation MSE values can

identify overfitting. Table A2 shows the training and valida-

tion accuracy values obtained for the last (250th) epoch for

the AllBasin/ALL scene-type models using a MSE model

loss/accuracy metric. The AllBasin and ALL scene-type

models are chosen for this analysis in order to reduce any

basin or scene-type specific biases into the selection of the

final model and make the data as homogenous as possible.

Figure A1 shows a plot of the training and validation accuracy

for 6 of the 12 models, with the final plotted point on each

graph being the corresponding value in Table A2

As shown in Table A2 and Fig. A1, the networks with fewer

hidden layers tend to be themost accurate, with networks more

hidden layers having much higher MSE losses, typically due to

overfitting of the networks. For the higher layer networks the

training MSE values are quite low, indicating that the network

has modeled the features to accurately match the label data.

When this network is used on the validation data, however, the

resulting intensity estimates are much different than the cor-

responding label data values, resulting in MSE values that are

significantly higher. Thus the model is considered overfit to the

training dataset. This behavior is noted in Fig. A1 with the

lower layer network MSE errors (such as the three 1 layer

models and 2 layer model) tending to flatten as the number of

epochs increases, but higher layer models (the 4 and 6 layer

models) have their validation errors minimize at lower epoch

values and then increase as the epochs, and training data input

into the derived model, increases.

The single hidden layer networks are typically best and dis-

play the least amount of overfitting, with the 1 layer, 32-neuron

network being most accurate for the AllBasin, ALL scene-type

models. It will represent the regression analysis in appendix C.

TABLE A2. Regression network training and validation mean-

squared error (MSE) accuracy scores for the AllBasin model using

the ALL scene-type model. Network configuration is listed as

(number of hidden layers)–(number of neurons) in the network

column.

Network

(layers-neurons)

Training

accuracy

Validation

accuracy

1–8 76.85 85.98

1–16 72.47 84.85

1–32 70.24 82.74

1–64 67.28 84.78

1–128 62.95 89.43

2–32 64.26 84.61

3–32 56.07 92.11

3–mix 51.38 101.06

4–32 53.51 97.87

5–mix 36.69 115.98

6–32 48.06 105.25

A1Unpublished learning rate model proposed by G. Hinton in

Lecture 6e of his online Coursera class, which is available at https://

www.cs.toronto.edu/;hinton/coursera/lecture6/lec6.pdf.
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It must be noted that other techniques to minimize overfitting

exist, such as early stopping and learning rate reduction; how-

ever, the method in this study was employed for ease of model

comparison between different network configurations (pre-

sented in the following sections). These methods can/will be

explored in future experiments to investigate their impact on

model performance.

c. Multiclassification networks

A second type of machine learning network is examined:

multiclassification. Unlike the regression network outlined

above which has a single neuron output layer containing a

predicted value, these networks possess a multiple neuron

output layer containing a probability distribution. The input

labels are also restructured into bins of intensity value at 5-kt

intervals, similar to Wimmers et al. (2019), with 32 bins de-

fined, starting at 25–30 kt and ending at 180–185 kt. The input

best track intensity label value is assigned to either a single

intensity bin for the single label network, with a value of 1.0 in

that single bin, or a range of intensity bins for the multilabel

network, representing a probability distribution, summing to

1.0 for all 32 bins. The former, referred to as one-hot encoding,

represents a single-label (SL), multiclass classification problem

and uses a sparse categorical crossentropy loss function, while

the latter is known as a multilabel (ML), multiclass classifica-

tion problem and uses a categorical crossentropy loss-function.

Experiments using both networks will be discussed in the fol-

lowing sections.

Both the SLandMLmulticlassification networkswill output a

final layer of 32 neurons representing a probability distribution

over the 32 outputMSW bins. Each of the 32 neurons contains a

likelihood, or percentage, that the final estimate is in that specific

bin, from 0 to 1. One can either use the output bin with the

maximum likelihood value as the predicted intensity, or a

weighted-value using the specific likelihood values contained

in each 5-kt output bin to derive a single value estimate. In

this study two output layer weighting schemes will be ex-

plored for both the SL and ML networks to derive a single

output MSW estimate from the 32 neuron distribution

contained in the final layer. The first will derive a weighted

intensity value using the bin with the maximum likelihood

value and the two adjacent bin likelihood values (referred to

as 3Bin), while the second will use an average of all of the

likelihood bin values to calculate the intensity estimate value

(AllBin). The equations for both are listed below, where i is

the bin number, x is the maximum likelihood bin (for the 3Bin

equation), W is the likelihood value for bin i, and M is the

mean value for the 5-kt bin. This will produce a single MSW

estimate for each method:

3Bin5
�
x11

x21

W
i
3M

i

�
x11

x21

W
i

or AllBin5
�
32

1

W
i
3M

i

�
32

1

W
i

.

Both the SL and ML networks utilize a softmax activation in

the final layer to produce the probability distribution

As with the regression network, determination of the proper

network configuration should be explored. This is more diffi-

cult using intensity bins for the verification label data since we

are not comparing discrete values, but instead distributions of

likelihood. Accuracy in categorical models is determined by

FIG. A1. Training (blue) and validation (red) loss plots for various regression models listed in Table A2. The number of layers and

neurons are listed at the top of each plot.
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deriving the difference between the SL input label data bin or

ML input label data distribution with the output layer proba-

bility bins. Thus, any small deviation in the 32-bin output layer

probability distribution can change a match to a nonmatch,

thus affecting the ‘‘accuracy’’ of the model. That being said, we

will examine the network validation accuracy for a limited set of

network configurations consisting of the four single hidden layer

networks with the five different number of neurons (8, 16, 32, 64,

and 128) as well as the 2, 3, and 4 hidden layer networks using 32

neurons. Again, the number of hidden layers referred to in this

this section does not include the final 32 neuron output layer,

only the number of layers prior to that final output layer (which

is uniform between all networks). Table A3 shows the training

and validation accuracy values obtained for the last (250th)

epoch for the AllBasin and ALL-Scenes model, as with the re-

gression network shown in TableA2, using ‘‘sparse_categorical_

accuracy’’ and ‘‘accuracy’’ metrics for the SL andML networks,

respectively.

Examination of the SL and ML network training and vali-

dation accuracy results in Table A3 shows that the single layer

networks possess the highest validation accuracies, with the 8

and 16 neuron networks being the most accurate for the SL

network, with the 32 neuron network very close to the 16

neuron accuracy in the ML network. It is interesting to note

that the SL and ML networks both obtain similar accuracy

characteristics.

Selection of the categorical network to be used is not as

apparent as with the regression network. While the 1 layer/8

neuron network has the highest validation accuracy scores

for both the SL andML networks, the values are not notably

higher than those obtained by the 16 and 32 neuron net-

works. Due to this fact, and in order to provide some con-

sistency between the different networks in this paper, the

1 layer/32 neuron network will be utilized for the SL andML

networks also.

1) SINGLE-LABEL CATEGORICAL NETWORK

Two experiments are performed with the SL model; one

using a label class-weighting scheme defined in the model fit

(class_weight input parameter in Keras model.fit) and one

without a label class-weighting scheme. To be clear, the label

value being input is still assigned to single bin value. The

purpose of a class weight is to normalize for the number of best

track/label samples in each intensity bin across the entire

training dataset. This is done in order to provide more/less

weight to underrepresented/overrepresented bins so the dis-

tribution is not skewed heavily toward the overrepresented

label bins For example, in the Atlantic training label dataset

there are about 36 000 best track data points, with a majority of

those intensities being tropical depression and tropical storm

strengths (less than 65 kt). Bins 1–4 have over 4000 instances in

each bin. However, higher intensity bins typically have less

than 100, so this leads to a model that is pushed to err toward

lower intensity estimates. A simple 1/N weighting scheme is

used here (bins with zero records are given a 1.0 weight to

avoid a divide by zero error). The non-class-weighting test will

be referred to as ‘‘NoCW,’’ with the 1/N class weighing scheme

test being referred to as ‘‘1NCW.’’

2) MULTI-LABEL CATEGORICAL NETWORK

As with the SL network analysis, two experiments are per-

formed using the ML network and focused on two types of

weighting schemes when characterizing the best track label

data. Unlike the SL analysis, which uses a one-hot, single-label

classification identifying a single 5-kt bin where the best track

data are placed, the ML network is a multilabel classification

using a range of label values to characterize the label classifi-

cation data. This is done in order to model any inherent errors

associated with operational best track MSW datasets. One

method, as discussed and utilized in Wimmers et al. (2019),

characterizes the best track MSW label data using a Gaussian

distribution centered on the best track value. This typically

yields a center bin weight of 0.34, with values of 0.23 and 0.10 in

the adjacent bins on either side of the center. The values are

adjusted if the best track value lies within bins 0, 1, 30, and 31 in

order to renormalize to a sum of 1. This method will be labeled

‘‘GaussD.’’ A second experiment will give a value of 0.6 to the

best track MSW label bin and 0.2 to the adjacent bins (again

adjusted if the center bin is either bin 1 or 32), and will be

labeled ‘‘262D.’’

APPENDIX B

Independent Network Testing

All TCs from 2017 are used as the primary independent

testing dataset for the models under investigation. Performance

statistics are presented by individual TC basin in order to

TABLE A3. SL and ML multiclassification network training and validation mean-squared error (MSE) accuracy scores for the

AllBasinmodel using theALL scene-typemodel. Network configuration is listed as (number of hidden layers)–(number of neurons) in the

network column.

Network (layers-neurons) SL train accuracy SL validation accuracy ML train accuracy ML validation accuracy

1–8 0.280 0.269 0.278 0.270

1–16 0.291 0.266 0.286 0.262

1–32 0.308 0.256 0.302 0.260

1–64 0.325 0.258 0.323 0.252

1–128 0.354 0.252 0.350 0.237

2–32 0.341 0.246 0.324 0.241

3–32 0.333 0.228 0.349 0.239

4–32 0.358 0.239 0.355 0.238
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FIG. B1. Statistical comparisons between the regression network TC maximum sustained

winds (MSW) estimates for theAiDT andADT for theAtlantic (Atl), east Pacific (EPac), west

Pacific (WPac), southern Pacific (SPac), and northern Indian Ocean (NIO), and combined

global (All) basins for independent 2017 test dataset. Bias and root-mean-squared error

(RMSE) are shown. (a) Five individual basin-specific models and (b) the globally derived

AllBasinmodel. ALL indicates the single ‘‘all-scene-type’’ model andMIX the four ‘‘combined

scene-type’’ models.MSWerror units are in knots. A negative bias indicates theMSWestimate

is weaker than the NHC/JTWC best track estimates.
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facilitate comparisons with other studies mentioned pre-

viously and to highlight basin-specific differences. Note

again that ‘‘AllBasin’’ refers to the globally derived model

using the combined ADT history file records for 2017 for

all storm basins to determine if individual basin-specific

models are better or worse than one all-encompassing

global model. The AllBasin model is applied to the

storms in each of the five individual basins, and results are

tabulated by basin as well as overall global performance

statistics.

a. Regression network

TC intensity estimates for the independent 2017 testing

dataset are calculated with the regression network and

FIG. B2. As in Fig. B1, but for SL network, NoCW (no label weighing scheme utilized). In

addition, the two output classification bin weighing schemes are displayed. AiDT3 andAiDTW

designate the 3-bin and all-bin classification averaging schemes, respectively.
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compared to the original ADT estimates for that year.

Figure B1 presents the regression network (labeled AiDT)

and ADT MSW error statistics, including bias and root

mean squared error (RMSE) (positive bias indicating a

model overestimate versus NHC/JTWC best track MSW

estimates) for each TC basin and the global dataset. Figure B1a

presents the results from the five individual basin-specific

models and Fig. B1b presents the results obtained using the

global AllBasin model applied to each individual basin. The

global result (labeled All in the figures to signify all com-

bined global cases) is provided in both Figs. B1a and B1b

for consistency but is equal in each figure. Two scene-

specific variants are run for each of the five basin-specific

models and the one AllBasin model, as described previ-

ously: one containing the combined four scene-type models

(MIX) and one for the single, all-scene-type (ALL) model.

The results from both scene-type model variants are pre-

sented in Figs. B1a and B1b.

FIG. B3. As in Fig. B1, but for SL network, 1NCW (1/N label weighing scheme utilized).
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As shown in Fig. B1, both the ALL and MIX models are

better than the original ADT, with the ALL scene-type model

being superior in RMSE to theMIX scene-type in all basins for

both the five basin-specific models (Fig. B1a) and the single

AllBasin globally derived model (Fig. B1b) in RMSE. In ad-

dition, the AllBasin model results in Fig. B1b are superior to

the corresponding basin-specific models in Fig. B1a for all five

basins. Overall, the AllBasin model using the ALL scene-type

model performed best for the regression network.

While it may be counterintuitive that a more homogenized

network/model would be more accurate than the specialized

basin/scene specific models, one can make the case that a more

specific model might be ‘‘over-tuned’’ to that particular con-

dition, especially if the sample size is small. For example, in the

FIG. B4. As in Fig. B1, but for ML network, 262D (0.2/0.6/0.2 weighing distribution). In

addition, the two output classification bin weighing schemes are displayed. AiDT3 andAiDTW

designate the 3-bin and all-bin classification averaging schemes, respectively.
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Atlantic model, there are almost 36 000 records in the training

dataset, but of those about 21 500 (;60%) of those are CDO

and curved band scene types. Only around 3000 (;8%) are eye

scene types, so while a scene-specific model could provide a

good relationship in the training data, when applied to the

validation data the relationship might be overfit and provide a

less accurate estimate than with a multi-feature model devel-

oped on a much larger dataset. This is highlighted in the basin

specific plots where there are larger differences between the

MIX and ALL models, illustrating the importance of having

large data samples when training a machine learning model.

b. Single-label categorical networks

Figures B2 and B3 show the performance results obtained

for both experiments using the SL networks. NoCW, shown in

Fig. B2, uses no class_weight weighting scheme while 1NCW,

shown in Fig. B3, utilizes the 1/N class_weight scheme for

weighting the label data bins.

FIG. B5. As in Fig. B1, but for ML network, GaussD (Gaussian weighing distribution).
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The same general results are obtained for both SL networks

and are consistent with the results obtained with the regression

network discussed in the previous section. The AllBasin model is,

in general, superior to the five individual basinmodels, and the all-

scene (ALL)model is superior to the combined four-scene (MIX)

model. In addition, specific to the SL network experiments, the

derivation of the final intensity value using a weighted average of

all output classification bins (AiDTA) is more accurate than just

using the maximum and two adjacent classification bins (AiDT3).

Finally, the 1NCWnetworkproduces slightly better results overall

than those obtained with the NoCW network.

It should be noted that the performance of the basin-specific

NIO network NIO is poorer with respect to the other basin-

specific models, especially in NoCW, where the RSME values

are much larger than obtainedwith theADT. This result is likely

due to the smaller size of the samples used in the NIO when

deriving the networks in the training stage (TCs are generally less

common in this basin), leading to overfitting of the basin-specific

networks. The RMSE values for the NIO 1NCW network are

reduced but also result in an increased bias versus the NoCW

network. Overall, use of the AllBasin model does improve the

performance of the NIO storms, further illustrating the superi-

ority of the AllBasin model against the basin-specific models.

A comparison of the SL NoCW and 1NCW network results

using the AllBasin and ALL scene-type models and all-bin

output classification weighting-scheme (AiDTA) against other

networks is presented in appendix C.

c. Multi-label categorical networks

The ML multiclassification networks are investigated next.

As described above, two different experiments are conducted

and focus on the use a range of classification bins defining the input

label data insteadof a single label value.Thefirst experiment, 262D,

defines the input label bins using a simple 0.2/0.6/0.2 weighting

distribution centered on the 5-kt bin where the label best track

MSW value is contained, while the second experiment, GaussD,

uses a Gaussian distribution weighting scheme for the label bins

centered on the best track MSW label value classification bin.

Figures B4 and B5 present the ML network performance

results obtained from both 262D and GaussD, respectively.

The same output bin classification averaging schemes (AiDT3

and AiDTA) are used as explained in the SL discussion above.

As with the regression and SL results, the ML AllBasin model

results are better than the basin-specific model results for the

262D and GaussD experiments, with the ALL scene-type model

being superior to theMIX scene-typemodel in both experiments.

GaussD typically performs worse than 262D, with much larger

bias values noted with the GaussD experiments. In addition, the

NIO dataset issues with the SL networks above are also noted in

the ML network results, again highlighting the superiority of the

AllBasin model over the individual basin-specific models.

In general, the AllBasin model using the ALL scene-type

model and AiDTA output bin classification scheme yields the

lowest errors for the ML networks, which is consistent with the

SL network results presented previously.

APPENDIX C

Best Network Comparison

Figure C1 and Table C1 display results obtained from the

regression, SL and ML networks using the AllBasin and ALL

FIG. C1. As in Fig. B1, but a plot of the five best-performing networks using the AllBasin,

ALL scene-type, and all-bin classification averaging scheme (AiDTA) for the regression (Reg),

SL, andML networks for five individual ocean basins and global total for independent 2017 test

dataset. Units are in knots.
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scene-type models. Both experiments for the SL and ML net-

works are shown along with the single regression network re-

sults. Bias, RMSE, and mean absolute error (MAE) are shown

in Table C1 while only bias and RMSE are shown in Fig. C1 for

clarity.

Overall, the regression network produces the best statistical

results for TC intensity estimates for models run on the 2017

independent test dataset. In three of the five individual basins,

as well as the global set, the lowest RMSE values are achieved

using the regression network, whereas the best results in the

South Pacific and north Indian derive from the ML-262D and

SL-NoCW networks, respectively (regression is second and

third, only 0.10 and 0.12 higher RMSE in each respective ba-

sin). Given these findings, the regression networkmodel is used

for the network of choice in section 4. A schematic diagram of

the final network is shown in Fig. 1.
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