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ABSTRACT: In this study, the characteristics of simulated tropical cyclones (TCs) over the western North Pacific by a

regional model (the WRFModel) are verified. We utilize 12-km horizontal grid spacing, and simulations are integrated for

5 days from model initialization. A total of 125 forecasts are divided into five clusters through the k-means clustering

method. The TCs in the cluster 1 and 2 (group 1), which includes many TCs moving northward in the subtropical region,

generally have larger track errors than for TCs in cluster 3 and 4 (group 2). The optimal steering vector is used to examine

the difference in the track forecast skill between these two groups. The bias in the steering vector between the model and

analysis data is found to be more substantial for group 1 TCs than group 2 TCs. The larger steering vector difference for

group 1 TCs indicates that environmental fields tend to be poorly simulated in group 1 TC cases. Furthermore, the residual

terms, including the storm-scale process, asymmetric convection distribution, or beta-related effect, are also larger for group

1 TCs than group 2 TCs. Therefore, it is probable that the large track forecast error for group 1 TCs is a result of unrea-

sonable simulations of environmental wind fields and residual processes in the midlatitudes.
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1. Introduction

A tropical cyclone (TC) is a natural disaster that causes

enormous property damage and casualties across a wide geo-

graphic area in a short amount of time, due to strong winds

and heavy rainfall. Socioeconomic damage caused by TCs has

increased rapidly over the past few decades because of an in-

crease in population density and social development (Pielke

et al. 2008; Zhang et al. 2009). Notably, the western North

Pacific region experiences huge amount of damage from TCs

because it has the highest frequency of TC genesis in combi-

nation with the high population densities of East Asia and

Southeast Asia. In 2019, the Korean Peninsula was exposed

to severe hazards from the landfalls of seven TCs, while TC

Hagibis caused widespread destruction to Japan. Accurate

track and intensity forecasts and appropriate preparedness and

responses are necessary to minimize property damage and

casualties from TCs.

The predictability of the numerical weather prediction

(NWP) model plays an essential role in the decision-making

process used to respond to a typhoon, since forecasters present

guidance based on the predictions of the NWP model. In the

past several decades, the track forecast skill of operational

NWPmodels has been steadily improved, with a mean error at

72-h lead time of less than 200 km (Chen et al. 2019). However,

NWP models still have significant errors, i.e., larger than

400 km in a 5-day forecast. With the growth in demand for

accurate medium-range forecasts, the predictability of the

NWP model must be improved to minimize damage.

The dynamics of mesoscale processes of a TC can be well

simulated by the high-resolution model simulation that better

represent the inner-core dynamics. Several studies on the

proper resolution for TC forecast (Chen et al. 2007; Davis et al.

2011, 2008; Fierro et al. 2009; Gentry and Lackmann 2010;

Gopalakrishnan et al. 2011; Jin et al. 2014) concluded that a

grid spacing of less than 5 km is required, with 1–2 km pre-

ferred in order to provide an accurate representation of TC

intensity and structure. At present, the most advanced op-

erational global NWPmodels have a horizontal grid length of

about 10 km, which is insufficient to resolve the small-scale

processes that influence storm development (Short and Petch

2018). Given the limitations of computing resources, many

TC forecasts and research studies are conducted using a

regional model.

There are advantages and disadvantages of using a regional

model in forecasting TC track. In comparison to global models,

regional models generally have relatively larger track errors,

especially for relatively long-term forecasts since their ability

to resolve large-scale atmospheric waves is limited (Liu and

Xie 2012; Waldron et al. 1996). On the other side, better rep-

resentation of storm-scale process associated with convective

heating asymmetry can improve the forecast of TC motion

(Yamada et al. 2016). Moon et al. (2018) improve the track

forecast of the WRF Model by using spectral nudging, which

provides the large-scale features of the global model forecasts

onto the regional model interior. Thus, to improve the track

forecast of regional models, the characteristics of the track

forecast need to be analyzed in order to understand the error

sources of the model.

The TC track error in the NWP model is profoundly af-

fected by the interaction with surrounding environmentalCorresponding author: Dong-Hyun Cha, dhcha@unist.ac.kr
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fields. Carr andElsberry (2000a,b) analyzed the forecast results

of theNavyOperationalGlobalAtmospheric Prediction System

model (NOGAPS) and the Geophysical Fluid Dynamics

Laboratory (GFDL) hurricane model, and suggested a con-

ceptual model for the error mechanism in the tropical and

midlatitude regions. These studies show that possible model

errors can arise from errors in the location or structure of

synoptic-scale features. Furthermore, Kehoe et al. (2007)

showed that the errors associated with aloft TC-related an-

ticyclone intensification could also contribute to environ-

mental wind errors that may lead to poor TC track forecasts.

In addition,Magnusson et al. (2019) reviewed studies on large

error cases. In this paper, several methods including ensem-

ble models and nudging experiment to understand the low

predictability for difficult cases were introduced (Nystrom

et al. 2018; Torn et al. 2018).

TC track is determined by the influence of the large-scale

flow around it, which is called the ‘‘steering effect.’’ Several

studies have been conducted to predict TC motion by analyz-

ing the surrounding wind fields. George and Gray (1976)

compared the TC track and surrounding winds, and deter-

mined that 700- or 700–500-hPa flows can represent the motion

of TC. Chan and Gray (1982) defined the steering vector by

averaging large-scale wind at 700–500 hPa with a radius of

58–78 of the center of a TC. There have been many studies

which have sought to determine the steering vector since then,

but it has considerable uncertainty regarding the steering flow

depth and radius for individual TCs (Aberson 2010; Dong and

Neumann 1986; George and Gray 1976; Velden and Leslie

1991). Galarneau and Davis (2013) suggested the optimal

steering vector, which was defined by optimized depth and

radius for each TC case, and quantitively analyzed the error of

TCmotion.Understanding the steering vector can be useful for

error analysis because it can represent the characteristics of the

surrounding wind field.

TC track forecast error also varies depending on the location

or basin of the TC. Notably, the track error for the western

North Pacific TCs tends to be larger than that of other basins

(Hodges and Emerton 2015). Since the western North Pacific

has a large area for TC activity and therefore TCs tend to

TABLE 1. Forecast details and initial times for the 18 TCs that occurred during 2013–14. The interval of forecast initial time is 24 h.

TC No. TC name Forecast initial time (interval of 24 h) No. of cases

1307 Soulik 0000 UTC 8 Jul 2013 1

1311 Utor 0000 UTC 10 Aug 2013 1

1324 Nari 0000 UTC 10 Oct 2013 1

1326 Francisco 0000 UTC 17 Oct 2013–0000 UTC 20 Oct 2013 4

1328 Lekima 0000 UTC 21 Oct 2013 1

1331 Haiyan 0000 UTC 4 Nov 2013–0000 UTC 6 Nov 2013 3

1408 Neoguri 0000 UTC 4 Jul 2014–0000 UTC 5 Jul 2014 2

1409 Rammasun 0000 UTC 13 Jul 2014–0000 UTC 14 Jul 2014 2

1410 Matmo 0000 UTC 18 Jul 2014 1

1411 Halong 0000 UTC 29 Jul 2014–0000 UTC 5 Aug 2014 8

1418 Phanfone 0000 UTC 29 Sep 2014–0000 UTC 1 Oct 2014 3

1419 Vongfong 0000 UTC 3 Oct 2014–0000 UTC 8 Oct 2014 6

1420 Nuri 0000 UTC 1 Nov 2014 1

1422 Hagupit 0000 UTC 2 Dec 2014–0000 UTC 5 Dec 2014 4

1504 Maysak 0000 UTC 28 Mar 2015–0000 UTC 30 Mar 2015 3

1506 Noul 0000 UTC 4 May 2015–0000 UTC 6 May 2015 3

1507 Dolphin 0000 UTC 9 May 2015–0000 UTC 15 May 2015 7

1511 Nangka 0000 UTC 4 Jul 2015–0000 UTC 12 Jul 2015 9

1513 Soudelor 0000 UTC 31 Jul 2015–0000 UTC 4 Aug 2015 5

1516 Goni 0000 UTC 15 Aug 2015–0000 UTC 20 Aug 2015 6

1517 Atsani 0000 UTC 15 Aug 2015–0000 UTC 19 Aug 2015 5

1520 Krovanh 0000 UTC 16 Sep 2015 1

1521 Dujuan 0000 UTC 24 Sep 2015 1

1524 Koppu 0000 UTC 14 Oct 2015 1

1527 In-fa 0000 UTC 18 Nov 2015–0000 UTC 21 Nov 2015 4

1602 Nepartak 0000 UTC 4 Jul 2016 1

1608 Conson 0000 UTC 9 Aug 2016 1

1612 Lionrock 0000 UTC 22 Aug 2016–0000 UTC 25 Aug 2016 4

1616 Meranti 0000 UTC 10 Sep 2016 1

1618 Malakas 0000 UTC 12 Sep 2016–0000 UTC 15 Sep 2016 4

1625 Haima 0000 UTC 16 Oct 2016 1

1707 Noru 0000 UTC 22 Jul 2017–0000 UTC 2 Aug 2017 12

1720 Talim 0000 UTC 10 Sep 2017–0000 UTC 12 Sep 2017 3

1725 Lan 0000 UTC 16 Oct 2017–0000 UTC 17 Oct 2017 2

1727 Saola 0000 UTC 22 Oct 2017 1

Total 125
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sustain for longer, various types of TCs coexist. Several studies

have classifiedTCs using variousmethods in order to understand

the characteristics of TCs (Camargo et al. 2008, 2007a,b; Elsner

2003; Elsner and Liu 2003; Hall and Jewson 2007; Harr and

Elsberry 1991, 1995a,b; Hodanish and Gray 1993; Kim et al.

2011; Lander 1996; Nakamura et al. 2009). Cluster analysis is one

of the classification methods, and is relatively objective. Studies

using cluster analysis are typically conducted using the k-means

clustering method (Camargo et al. 2007a,b; Elsner 2003; Elsner

and Liu 2003) and the fuzzy clusteringmethod (Kim et al. 2011).

In this study, we analyzed TC simulation errors using the

Weather Research and Forecasting (WRF) Model, which is a

suitable regional model for simulating TCs (Fierro et al. 2009;

Raju et al. 2011; Skamarock et al. 2008). To figure out the

error sources, optimal steering vector analysis was conducted.

Regional differences in forecast skill were also studied

through k-means clustering analysis. Model configuration

and analysis methods are described in section 2, and model

results and errors are analyzed in section 3. Finally, a sum-

mary and conclusions are presented in section 4.

2. Data and methods

a. Model configuration and data

We used the WRF Model version 4.0.0 to analyze its track

forecast skill for the western North Pacific TCs. The horizontal

grid spacing of the forecast domain was 12 km, and the number

of horizontal grids was 421 and 371 for the west–east and

south–north direction, respectively. The domain contained 35

vertical levels from the surface to the top of the atmosphere at

50 hPa, with the sigma coordinate. All simulations were 120 h

forecasts from model initiation. The center of the domain

varied with the center of the observed TC and was designated

as 108 north and west of the observed TC center when the

latitude of the TC center is below 208N, and 108 north when the

TC center is north of 208N. Due to the change in the domain

center for each forecast, the domain was able to cover the

entire track of the simulated TCs for five days. Real-time

global analysis data and forecast data from theGlobal Forecast

System (GFS) of the National Centers for Environmental

Prediction (NCEP)were used to provide the initial and boundary

conditions for the WRF Model with a grid spacing of 0.58. The
GFS real-time forecast is available every 6 h. This 6-hourly

forecast data are used as the initial and boundary forcing data

through the WRF preprocessing system (WPS), and the model

sea surface temperature is updated with the GFS.

TC vortex initialization methods were not applied. The

model utilized the Yonsei University planetary boundary layer

scheme (Hong et al. 2006; Noh et al. 2003), WRF single-

moment 6-class microphysics scheme (Hong and Lim 2006),

Kain–Fritsch cumulus parameterization scheme (Kain 2004),

Dudhia shortwave radiation scheme (Dudhia 1989), and Rapid

Radiative Transfer Model longwave radiation scheme (Mlawer

et al. 1997).We conducted 125 forecasts of 37 TCs formed on the

western North Pacific in 2013–17, as listed in Table 1. The cases

whichmaintain the intensity stronger than tropical storm for five

days are chosen for test cases.

Cluster analysis and verification are conducted using Joint

TyphoonWarning Center (JTWC) best track data. NCEPGFS

analysis data are used for the observation data for optimal

steering vector analysis. The GFS analysis data are available

every 6 h with a horizontal grid spacing of 0.58. The simulated

track and intensity of each experiment are compared with the

JTWCbest track data. The location of the TC center is defined by

the simplemethod of identifying theminimumpressure in the sea

level pressure field (Feser and von Storch 2008). The maximum

wind speed is defined as the highest wind speed value within a

radius of 500km from the TC center. Track error is defined as the

great circle distance between the TC center of the best track data

and the simulated center (Neumann and Pelissier 1981; Powell

and Aberson 2001), and it can be calculated as follows:

track error (km)5 111:11 cos21[sinu
0
sinu

s

1 cosu
0
cosu

s
cos(l

0
2l

s
)] ,

FIG. 1. Mean (a) track error, (b) maximumwind speed error, and

(c) minimum sea level pressure error of the WRFModel and GFS

for 125 forecasts. The sample size is the same at each forecast time.
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where l0 andu0 are the longitude and latitude of the TC center

in the best track data, respectively; and ls and us are longitude

and latitude of simulated TC center, respectively.

b. Cluster analysis

Cluster analysis is a data mining technique that categorizes a

set of data into several groups by considering the character-

istics of each data point. Members of the same group show

greater similarity in characteristics to each other than to the

members of other groups. There are several cluster analysis

methods depending on how groups are classified. In this

study, the k-means cluster algorithm was used to classify the

simulation cases based on the active TC region (MacQueen

1967). The grouping method of k-means works in a way that

minimizes the variance of distance differences between the

members in a group. From Applied Statistics-136 (AS-136)

advanced k-means clustering algorithm (Hartigan and Wong

1979), the sum of the squared distances in the clusters is

calculated as follows:

S5 �
k

i51
�
x2Ci

jx2m
i
j2 , (1)

where x is a data point, k is the total number of clusters,Ci is the

set of points that belong to cluster i, and mi is the cluster center

of Ci.

The k-means is the clustering method that aims to find the

positions of mi that minimize the sum of the squared distance S.

First, the centers of the k clusters are randomly initialized.

Next, each data point is attributed to the closest cluster center,

and new cluster centers are set to the mean of all points be-

longing to each cluster. The convergence points by several it-

erations of this process are the centers of each cluster, and the

peripheral points are the member of each cluster. The 5-day

mean latitude and longitude are used for data points in

this study.

The optimum number of clusters is determined by employ-

ing the Krzanowski–Lai (KL) index (Krzanowski and Lai

1988). The KL index is computed as

FIG. 2. TC tracks simulated in the GFS

forecast for the five clusters.
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Krzanowski–Lai index 5
jdiff

i
j

jdiff
i11

j , (2)

diff
i
5 (i2 1)2/DSSW

i21
2 i2/DSSW

i
, (3)

where i is the number of clusters, D is the number of datasets,

and SSW is the within-group sum of squares for all datasets in

the ith cluster. The optimum number of clusters is the i which

maximizes the KL index.

c. Optimal steering vector analysis

TC motion is largely governed by the surrounding flow

called the steering flow (Chan 2005). The steering flow is ob-

tained by averaging environmental winds, which are the re-

sidual wind resulting from the removal of TC vortex related

features (Galarneau and Davis 2013). To calculate environ-

mental winds from total wind field, the vortex removal

method from Davis et al. (2008) is used. The vortex is re-

moved at the layer from 850 to 200 hPa with an interval of

50 hPa within a given radius using the Poisson equation for

streamfunction (4) and velocity potential (5) with homo-

geneous boundary conditions applied at the edge of the

computational domain. The boundary value problem on

each pressure level can be stated as

=2c5

�
z for r# r

0

0 for r. r
0

�
, (4)

=2x5

�
d for r# r

0

0 for r. r
0

�
, (5)

where c is the streamfunction, x is the velocity potential,

c 5 x 5 0 on the lateral boundaries of the computational

domain, z is the relative vorticity, d is the divergence, and r0
is the radius of TC removal. Given the solutions for

streamfunction and velocity potential from (4) and (5), we

can determine the nondivergent and irrotational wind vec-

tors from

V
c
(x, y, p)5k3=c , (6)

and

V
x
(x, y,p)5=x , (7)

where k is the vertical unit vector.

By subtracting (6) and (7) from the total wind as follows:

V
env

(x, y,p)5V(x, y,p)2V
c
(x, y,p)2V

x
(x, y,p), (8)

the environmental wind Venv is obtained for each pressure

level within a given radius.

FIG. 3. Mean track error of (a) each cluster and (b) group 1 and

2 TCs.

FIG. 4. Mean track error for all cases (black line), upper 25%

error cases (red line), and lower 25% error cases (blue line) with

the spread of upper and lower error cases (red and blue shading,

respectively).

TABLE 2. Number and ratio of upper and lower 25% error cases for

group 1 and 2 TCs.

Group 1 (75) Group 2 (36)

Upper 25% error cases 22 (29.3%) 7 (19.4%)

Lower 25% error cases 14 (18.7%) 13 (36.1%)
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The steering vector for observation (VO) and model (VM) is

computed by averaging the environmental wind within a re-

moval radius as follows:

V
O
5

1

pr2o

ð2p
0

ðro
0

V
obs

r dr dQ , (9)

V
M
5

1

pr2o

ð2p
0

ðrm
0

V
wrf

r dr dQ , (10)

where VO and VM are the area-average environmental wind

and ro and rm are the TC removal radii for the observation and

model TC, respectively. The area-averaged environmental

winds are computed for eight different radii ranging from 18 to
88 from the TC center. Then, the area-average environmental

winds of each radius are vertically averaged for layers of in-

creasing depth ranging from the shallowest layer of 850–

800 hPa to the deepest layer of 850–200 hPa with an interval of

50 hPa. A total of 104 steering vectors are computed for eight

averaging radius and thirteen averaging depth. The optimal

steering vector is defined as the best matched to the actual TC

motion among the 104 steering vectors for each averaging ra-

dius and depth. Actual TC motion is calculated from the po-

sition difference between 12 h before and after the analysis

time to reduce the short-term variation. The example of a

specific calculation process is revealed in chapter 3b. We ap-

plied this approach to analyze the track errors in the model.

3. Results

a. Cluster analysis

Figure 1 shows the mean track error, maximum wind speed

bias, and minimum sea level pressure bias of all experiments

against the JTWC best track data. The error of GFS is also

analyzed for comparison. Overall, WRF and GFS have similar

mean track errors until the middle of the forecast, but the error

in WRF tends to be slightly larger after 96 h forecast time

(Fig. 1a). In terms of intensity forecast, the maximum wind

speed and minimum sea level pressure are more realistically

predicted by the WRF (Figs. 1b,c). The WRFModel simulates

the mean maximum wind speed and the minimum sea level

pressure with biases not exceeding 5m s21 and 7 hPa, respec-

tively, across the entire forecast time. On the other hand, the

GFS tends to significantly underestimate TC intensity com-

pared to the WRF Model. As shown in previous studies (Cha

et al. 2011; Moon et al. 2018), intensities of TC are better

simulated by the model since the structure of TCs is more re-

alistically represented with the parameterization of the WRF

Model. In this study, we focus on the track forecast skill and

analyze the track forecast of the WRFModel in detail through

the clustering analysis.

The optimized number of clusters is determined by calcu-

lating the KL index. This index has the highest value when the

number of clusters is five. At this point, TC cases are classified

into five clusters using the k-means clustering algorithm.

Figure 2 shows the tracks of GFS forecast for each cluster.

Each cluster is classified according to the 5-day mean latitude

and longitude of each case. The 5-day mean locations of cluster

1 (C1) to cluster 5 (C5) are 23.38N, 131.48E; 18.18N, 139.08E;
13.48N, 127.98E; 13.28N, 150.28E; and 25.48N, 148.98E, respec-
tively. In C1, most TC forecasts are initialized at the subtrop-

ical regions, and the TCs move northwestward toward the

midlatitude continents. C2 TCs are initialized at the lower

latitudes and move northwestward. Both C3 and C4 TCs are

initialized at the low latitude and move nearly westward, but

C3 TCs are located to the west of the C4 TCs. The C5 TCs are

FIG. 5. TC track (dotted line), actual motion vector (black ar-

row), and optimal steering vector (green arrow) of (a) analysis data

and (b) model simulation at 24 h forecast initialized at 1 Oct 2014.
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located on the eastern boundary of the active TC region of the

western North Pacific. The number of members in C1 to C5 is

39, 36, 19, 17, and 14, respectively.

Figure 3a shows the mean track error at different forecast

hours for each cluster against the JTWC best track data. There

are significant differences in track predictability among the

clusters. C1 and C2 that includes many TCs move northward

have the highest track error at 120 h while C3, in which TCs are

active on the southwest region of the western North Pacific

basin, has the smallest track error. The track error of C1 TCs is

approximately 200 km at 72 h and approximately 450 km at

120 h, while that of C3 is approximately 140 km at 72 h and

about 320 km at 120 h. To understand these regional charac-

teristic differences in track error, we organized two groups

according to the 5-day track error: group 1 (C1 and C2) and

group 2 TCs (C3 and C4). Figure 3b shows the difference in the

track forecast error between the two groups is evident. We

excluded the C5 from groups since TC cases in C5 move on

abnormal course and different characteristics from other

clusters. The difference between two groups is not significant

before 48 h, but it increases rapidly as model integration

progresses. The track error of group 1 TCs at 120 h is 453 km,

which is approximately 28% greater than that of group 2

TCs (355 km).

Figure 4 shows the spread of track forecast errors for all

WRF simulations. It shows that a large number of excessive

error cases exist in the upper 25% error cases of the WRF

forecasts. Those cases predominantly increase the mean track

error value. Notably, the highest error cases have a track error

of approximately 1500 km, which is more than three times

larger than the mean track error at 120 h. Improving the sim-

ulations that have these extremely high track errors is an im-

portant task to reduce the mean track error. Table 2 shows the

number and ratio of large and small error cases according to

the direction of transition. For group 1 TCs, more TCs are

included in the large error cases than the small error cases

TABLE 3. Magnitude of residuals for TC Phanfone initialized at 0000 UTC 1 Oct 2014. The residuals of the model and analysis data are

calculated from the difference between actual motion and optimal steering vector according to the removal radius and averaging depth.

The minimum value is bolded.

Depth (hPa)

Radius (8) 50 100 150 200 250 300 350 400 450 500 550 600 650

jVO
act 2VOj

1 1.80 1.08 1.04 1.44 1.84 2.14 2.29 2.22 1.99 1.62 1.19 0.89 0.95

2 1.70 1.40 1.44 1.51 1.61 1.76 1.89 1.92 1.89 1.80 1.65 1.51 1.56

3 2.54 2.36 2.24 1.98 1.69 1.51 1.36 1.24 1.15 1.11 1.03 0.93 0.91

4 2.68 2.44 2.26 1.98 1.68 1.45 1.24 1.02 0.76 0.51 0.34 0.30 0.22

5 3.10 2.86 2.66 2.37 2.03 1.73 1.48 1.21 0.89 0.56 0.31 0.22 0.17

6 3.02 2.88 2.69 2.39 2.03 1.71 1.47 1.23 0.97 0.70 0.52 0.40 0.26

7 2.73 2.66 2.51 2.26 1.98 1.76 1.61 1.43 1.21 0.96 0.75 0.59 0.36

8 2.25 2.27 2.20 2.08 1.96 1.90 1.85 1.77 1.59 1.37 1.13 0.95 0.67

jVM
act 2VMj

1 8.99 8.23 7.52 7.04 6.75 6.41 5.97 5.48 4.97 4.49 4.10 3.83 3.55

2 6.55 6.28 5.92 5.53 5.15 4.80 4.46 4.10 3.61 2.90 2.13 1.60 1.48

3 3.53 3.69 3.95 4.14 4.27 4.33 4.33 4.26 4.08 3.66 2.96 2.08 1.27

4 2.69 2.83 3.08 3.31 3.49 3.63 3.71 3.74 3.66 3.43 2.94 2.20 1.39

5 2.16 2.36 2.70 3.00 3.20 3.30 3.32 3.28 3.20 3.04 2.67 2.07 1.44

6 2.06 2.41 2.75 2.98 3.07 3.04 2.97 2.85 2.72 2.57 2.28 1.79 1.27

7 1.89 2.35 2.64 2.77 2.75 2.66 2.56 2.46 2.37 2.29 2.12 1.69 1.16
8 1.72 2.13 2.36 2.43 2.39 2.30 2.24 2.23 2.23 2.26 2.19 1.84 1.29

FIG. 6. Time series of the difference between the optimal steering vector of the model and

analysis data for group 1 TCs (red) and group 2 TCs (blue). The bars mean the 90% confidence

interval.
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(27% and 19.4%, respectively). Conversely, for group 2 TCs,

there is a large percentage of small error cases (36.1%) and a

smaller percentage of large error cases (19.1%). Moon et al.

(2018) also showed that the WRF Model has lower track pre-

dictability compared to theGFS for TCs located in the northeast

region of the western North Pacific TC basin. Larger error cases

in group 1 TCs indicate that the WRFModel has a weakness in

forecasting the tracks of TCs moving to the midlatitudes.

b. Optimal steering vector analysis

To investigate regional differences in track forecast skill, we

calculate the optimal steering vectors both for the model and

for analysis data. For example, the calculation of the optimal

steering vector for TC Phanfone, initialized at 0000 UTC

1October 2014, is shown in Fig. 5. The set of steering vectors of

the model and analysis data are compared with the actual

motion vectors and residuals, and the magnitudes of difference

between the steering vector and the actual motion are shown in

Table 3. For the analysis data (model), the residual is at the

minimum with a radius of 58 (78) and the upper averaging

boundary at 200 (200) hPa. Therefore, the optimal steering

vector of the model and analysis data can identify the envi-

ronmental winds that are best matched to the actual TCmotion

(Galarneau and Davis 2013).

Figure 6 shows the mean magnitudes of difference in the

optimal steering vector between analysis data and the model

for group 1 and 2 TCs. The difference in the steering vector

between model and analysis data is related to the error of the

environmental winds in the model simulation. The steering

vector difference is similar between the two groups at 24 h.

The steering vector difference for group 1 TCs increases to

1.1m s21 at 48 h while that for group 2 TCs slightly decreases.

Although the steering vector difference for group 2 TCs also

increases after 60 h, group 1 TCs still have a larger steering

vector difference compared to group 2 TCs. It is notable that

the steering vector difference is always great for group 1 TCs.

Since TC motion is highly influenced by the surrounding

environmental winds, the larger difference in the steering wind

could have induced the larger track error. The track error has

correlation with the steering wind difference (not shown). This

result corresponds that the mean track error difference be-

tween two groups is increasing after 48 h (Fig. 3b). Although

the difference for group 2 TCs also increases after 72 h, the

track error of group 1 TCs is large for longer forecast time.

Thus, it seems that the wind error is continuously induced from

unrealistic simulation of midlatitude pressure system, resulting

in a large track error in the 5-day forecast.

Group 1 TCs have a higher upper boundary than group 2

TCs in calculating optimal steering vector for analysis data

(Table 4). It is because group 1 TCs tend to be related to

the midlatitude trough as well as the western North Pacific

subtropical high (WNPSH). The percentage of the 200- and

250-hPa upper boundary for group 1 is 54% while that for

group 2 is 34%. For the model, the percentage of the 200- and

250-hPa upper boundary is 49% and 48% for group 1 and 2,

respectively. There is an inverse correlation between 200-hPa

geopotential height forecast skill and TC track error (not shown)

indicating that theTC track forecast error can be increasedwhen

model is not simulating the upper-level atmosphere correctly.

The environmental wind fields are highly associated with

the pressure distribution in the atmosphere. Figure 7 shows the

pattern correlation of 500-hPa geopotential height between the

WRF simulation and the GFS analysis. The pattern correlation

of the pressure system shows a difference in aspect according to

the direction of the TC movement. The pattern correlation for

group 1 TCs is lower, especially at the late forecast time. Group

1 TCs are profoundly affected by the synoptic weather systems,

such as the WNPSH or the midlatitude trough. It seems that

lower pattern correlation for group 1 TCs arises from the un-

realistic representation of environmental fields affected by the

subtropical high or midlatitude trough. Since a poorer simu-

lation of the environmental wind fields leads to a large error in

track forecast, improved simulation of the synoptic fields, in-

cluding the pressure distribution, is essential for producing an

accurate 5-day track forecast.

Case studies for TC Lekima initialized at 0000 UTC 21

October 2013, and TC Phanfone initialized at 0000 UTC

TABLE 4. Histogram of percentages of upper-level boundary for model and analysis data steering vector calculation for each group.

The sample size is 657 and 279 for group 1 and 2, respectively.

Upper-level boundary (hPa)

200 250 300 350 400 450 500 550 600 650 700 750 800

WRF_G1 37.7 11.7 9.7 8.8 7.2 5.0 3.3 2.6 2.6 2.4 1.5 2.0 5.3

WRF_G2 33.7 14.3 10.4 8.6 5.0 5.7 4.7 5.7 2.5 1.8 1.4 1.8 4.3

ANL_G1 41.4 12.8 11.0 5.3 7.8 5.6 3.8 3.2 0.9 1.2 1.7 1.8 3.5

ANL_G2 28.7 5.4 13.3 16.8 9.7 6.5 2.5 3.6 1.1 1.8 1.8 4.3 4.7

FIG. 7. Time series of pattern correlations for 500-hPa geo-

potential height for the WRF (black), for group 1 TCs (red) and

group 2 TCs (blue).
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1 October 2014 are conducted to examine the impact of the

pressure system on TC track forecast. In both cases, the

WNPSH is developed at the eastern boundary of the model

domain, and it can induce anticyclonic flow along the 5880-gpm

contour of 500-hPa geopotential height shown in Fig. 8. This

flow leads the TC to track northward and curve northeastward.

In the simulation of Lekima, the WNPSH is realistically sim-

ulated, and then the TC track error is small at all forecast times.

In the case of Phanfone, WRF could not properly simulate the

TC track moving northward south of 308N or curving to

the northeast north of that. Since the model overestimates the

strength of the WNPSH, the simulated 5800-gpm line is ex-

panded more toward the west compared to the analysis data.

The stronger WNPSH does not allow the WRF-simulated TC

to move toward Japan but instead pushes the TC more toward

the west, as compared to the analysis data (Cha et al. 2011; Sun

et al. 2017).

The deficiency in correctly simulating the large-scale pres-

sure fields corresponds to the environmental wind errors;

therefore, it can cause TC track errors. Figure 9 shows the

difference in the optimal steering vector between model and

analysis data for two TCs at each forecast time. For the simu-

lation of Lekima, there seems to be little difference in the

optimal steering vector between model and analysis data. The

differences are less than 0.5m s21 for all forecast times, since

the WNPSH and the associated wind fields are realistically

simulated. For the simulation of Phanfone, the simulated

WNPSH is expanded to the north of the TC initially. The ex-

pandedWNPSH inhibits the northward motion of the TC, and

it drives TC to deviate to the south from the actual motion.

Therefore, the optimal steering vector of WRF is directed to

the south compared to that of the analysis data during the first

48 h. After 48 h, theWRFModel cannot simulate the recurving

of the TC since the expanded WNPSH induces a relatively

southwestward flow. Consequently, the cyclone moves south-

westward compared to the actual motion, and the track error

becomes large. This suggests that the difference in the optimal

steering vector between the model and analysis data, or errors

in the environmental winds, can be a critical cause of track

error of more than 2 days for the northward moving TCs.

Figure 10 shows the mean magnitudes of the residual for

both model and analysis data. The residual is the difference

between the actual motion vector and the optimal steering

vector, and indicate the difference between the TC translation

speed and steering wind. Since the environmental wind field

cannot perfectly explain the TC motion, small residual terms

exist. According to Galarneau and Davis (2013), the residual

contains the features not considered in the environmental

wind, that is, storm-scale process, asymmetric convection dis-

tribution, or beta-related effect. A larger residual value indi-

cates that TC track with factors other than the environmental

winds. In the analysis data, the magnitude of the residual is

generally larger for group 1 TCs than group 2 TCs. The residual

slightly increases with corresponding forecast time but does

not significantly change, with a value of approximately 0.4–

0.5m s21 for two groups. The large residuals for group 1 TCs

can be associated with the fact that they are driven by a more

complicated process than group 2 TCs because they propagate

into the baroclinic midlatitude. For the model, the mean re-

sidual value for group 2 TCs is mostly constant after 36 h (ap-

proximately 0.6m s21) despite it being slightly larger than that

of analysis data. Conversely, for group 1 TCs, the mean re-

sidual is much higher than the analysis data. It rapidly increases

after 36 h and reaches 1.5m s21 at 108 h, which is the three

times that of the analysis data. This means that simulated TC

motion for group 1 TCs deviates more from the motion ex-

pected by the environmental wind field.

To determine the characteristic of the residual term, the

deviation of the actual motion vector from the optimal steering

vector for group 1 TCs are analyzed in Fig. 11. The cross and

along components of the residual are calculated for the late

forecast times (72, 84, 96, and 108 h) when the mean residual of

FIG. 8. The 5-day mean 5880-gpm line of 500-hPa geopotential

height for the model (red contour) and analysis data (red contour),

and TC tracks of the model (red dotted line) and GFS analysis

(black dotted line) for (a) TC Lekima and (b) TC Phanfone ini-

tialized at 21 Oct 2013 and 1 Oct 2014, respectively.
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model for group 1 TCs is significantly large. The cross (along)

component is defined as the component of the residual vector

perpendicular (parallel) to the transition direction of the TC.

In the analysis of the cross and along component for group 1

TCs, the negative cross component cases are more dominant

than the positive case. A negative value of cross component

means that the actual motion is shifted to the left of the steering

vector. This indicates that in a lot of cases, the TC motion

deviated leftward from the steering vector in the midlatitude.

It seems that the large residual value of group 1 TCs arises

from the unrealistic simulation of storm-scale processes in the

midlatitude baroclinic atmosphere. The considerable residual

FIG. 9. Vector difference of the optimal steering vectors between themodel and analysis data

at each forecast time for (a) TC Lekima and (b) TC Phanfone initialized at 0000 UTC 21 Oct

2013 and 0000 UTC 1 Oct 2014, respectively.

FIG. 10. Time series of the difference between the optimal steering vector and actual TC

motion of (a) analysis data and (b) themodel for group 1 TCs (red) and group 2 TCs (blue). The

bars mean the 90% confidence interval.
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value may explain the significant track error for group 1 TCs.

To improve the simulation of storm-scale processes, therefore,

higher-resolution forecast or more sophisticated physical

schemes could solve this issue.

4. Summary and conclusions

In this study, the track forecast error of the WRF Model for

TCs over the western North Pacific was analyzed. Forecasts

were conducted for the 125 TCs formed over the westernNorth

Pacific in 2013–17. Themean track error ofWRFwas similar or

slightly larger compared to that of GFS. A cluster analysis was

applied based on TC location through the k-means clustering

algorithm, and five clusters were classified. Since there were

robust differences in the track error between clusters with

dissimilar transition directions, we grouped the clusters into

two groups: group 1 (C1 and C2) and group 2 (C3 and C4). The

two groups had apparent differences in track errors. A higher

number of large error cases were included in group 1 TCs,

while more small error cases were included in group 2 TCs. To

understand this regional difference in track error, we analyzed

the optimal steering vectors. The steering vector difference

between model and analysis data, which indicates the envi-

ronmental wind error, was larger for group 1 TCs, especially at

the late forecast lead time. This result corresponded to the

rapidly increasing track error of group 1 TCs after 48 h. The

pattern correlation of 500-hPa geopotential height, which is

highly related to environmental wind, was also lower for group

1 TCs. This showed that the large track error for group 1 TCs

arises from the unrealistic representation of environmental

fields affected by the subtropical high or midlatitude trough.

The residuals, which contained the features not considered

in the environmental wind, were also larger for group 1 TCs.

The significant forecast error for group 1 TCs at the late

forecast time can be attributed to the fact that the environ-

mental wind error is larger for group 1 TCs. In addition, the

more complicated processes of midlatitude TCs are not ade-

quately simulated.

We utilized theWRFModel with the horizontal grid spacing

of 12 km comparable toGFS forecast. This is because theWRF

Model has a consistency over target years, while there is an

inconsistency in the GFS forecast due to the updates of the

model system. In addition, 12-km grid spacing is used to verify

the compatibility of such resolution for TC forecast and figure

out the limitation of it. This study suggests that higher reso-

lution is necessary for improving storm-scale processes. For the

further study, higher resolution experiments with moving

nesting domain will be conducted, and the impact of increasing

resolution on track and intensity forecasts will be studied. The

forecast domain in this study is varies with the TC track to

minimize the computational cost. The larger domain can give

advantages to include more large-scale features affecting

TC activities (e.g., subtropical high and midlatitude trough),

but at the same time, it can lead to disadvantage such as

forecast errors induced by internal factors (e.g., steep

Tibetan plateau, strong air–sea interaction, and uncertain

soil moisture content). This topic on optimal domain size

needs further research.

Diagnosing model forecast error is an essential task in terms

of identifying the problem and establishing the solution for

model development. This study examined the track forecast of

theWRFModel for a large number of TCs over theWNPusing

the optimal steering vector, and showed that different TC track

patterns can lead to different sources of track error through the

clustering analysis. Because the WRF Model has been widely

used for TC forecasting in the East Asian countries, this study

can serve as a useful reference for researchers when simulating

and analyzing TCs over the WNP using the same model.

However, the predictability of large-scale features in regional

model is still an ongoing research issue. Previous studies have

shown that improved initialization methods and the applica-

tion of spectral nudging could improve the predictability of a

large-scale field in a regional model. In addition, storm-scale

processes are also realistically considered in the model simu-

lation. Using smaller horizontal grid spacing and advanced

physics parameterizations, as well as more realistic air–sea

interaction can be helpful with this issue.
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