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ABSTRACT: In this study, the characteristics of simulated tropical cyclones (TCs) over the western North Pacific by a
regional model (the WRF Model) are verified. We utilize 12-km horizontal grid spacing, and simulations are integrated for
5 days from model initialization. A total of 125 forecasts are divided into five clusters through the k-means clustering
method. The TCs in the cluster 1 and 2 (group 1), which includes many TCs moving northward in the subtropical region,
generally have larger track errors than for TCs in cluster 3 and 4 (group 2). The optimal steering vector is used to examine
the difference in the track forecast skill between these two groups. The bias in the steering vector between the model and
analysis data is found to be more substantial for group 1 TCs than group 2 TCs. The larger steering vector difference for
group 1 TCs indicates that environmental fields tend to be poorly simulated in group 1 TC cases. Furthermore, the residual
terms, including the storm-scale process, asymmetric convection distribution, or beta-related effect, are also larger for group
1 TCs than group 2 TCs. Therefore, it is probable that the large track forecast error for group 1 TCs is a result of unrea-
sonable simulations of environmental wind fields and residual processes in the midlatitudes.
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1. Introduction

A tropical cyclone (TC) is a natural disaster that causes
enormous property damage and casualties across a wide geo-
graphic area in a short amount of time, due to strong winds
and heavy rainfall. Socioeconomic damage caused by TCs has
increased rapidly over the past few decades because of an in-
crease in population density and social development (Pielke
et al. 2008; Zhang et al. 2009). Notably, the western North
Pacific region experiences huge amount of damage from TCs
because it has the highest frequency of TC genesis in combi-
nation with the high population densities of East Asia and
Southeast Asia. In 2019, the Korean Peninsula was exposed
to severe hazards from the landfalls of seven TCs, while TC
Hagibis caused widespread destruction to Japan. Accurate
track and intensity forecasts and appropriate preparedness and
responses are necessary to minimize property damage and
casualties from TCs.

The predictability of the numerical weather prediction
(NWP) model plays an essential role in the decision-making
process used to respond to a typhoon, since forecasters present
guidance based on the predictions of the NWP model. In the
past several decades, the track forecast skill of operational
NWP models has been steadily improved, with a mean error at
72-h lead time of less than 200 km (Chen et al. 2019). However,
NWP models still have significant errors, i.e., larger than
400km in a 5-day forecast. With the growth in demand for
accurate medium-range forecasts, the predictability of the
NWP model must be improved to minimize damage.
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The dynamics of mesoscale processes of a TC can be well
simulated by the high-resolution model simulation that better
represent the inner-core dynamics. Several studies on the
proper resolution for TC forecast (Chen et al. 2007; Davis et al.
2011, 2008; Fierro et al. 2009; Gentry and Lackmann 2010;
Gopalakrishnan et al. 2011; Jin et al. 2014) concluded that a
grid spacing of less than 5km is required, with 1-2km pre-
ferred in order to provide an accurate representation of TC
intensity and structure. At present, the most advanced op-
erational global NWP models have a horizontal grid length of
about 10 km, which is insufficient to resolve the small-scale
processes that influence storm development (Short and Petch
2018). Given the limitations of computing resources, many
TC forecasts and research studies are conducted using a
regional model.

There are advantages and disadvantages of using a regional
model in forecasting TC track. In comparison to global models,
regional models generally have relatively larger track errors,
especially for relatively long-term forecasts since their ability
to resolve large-scale atmospheric waves is limited (Liu and
Xie 2012; Waldron et al. 1996). On the other side, better rep-
resentation of storm-scale process associated with convective
heating asymmetry can improve the forecast of TC motion
(Yamada et al. 2016). Moon et al. (2018) improve the track
forecast of the WRF Model by using spectral nudging, which
provides the large-scale features of the global model forecasts
onto the regional model interior. Thus, to improve the track
forecast of regional models, the characteristics of the track
forecast need to be analyzed in order to understand the error
sources of the model.

The TC track error in the NWP model is profoundly af-
fected by the interaction with surrounding environmental
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TABLE 1. Forecast details and initial times for the 18 TCs that occurred during 2013-14. The interval of forecast initial time is 24 h.

TC No. TC name Forecast initial time (interval of 24 h) No. of cases
1307 Soulik 0000 UTC 8 Jul 2013 1
1311 Utor 0000 UTC 10 Aug 2013 1
1324 Nari 0000 UTC 10 Oct 2013 1
1326 Francisco 0000 UTC 17 Oct 2013-0000 UTC 20 Oct 2013 4
1328 Lekima 0000 UTC 21 Oct 2013 1
1331 Haiyan 0000 UTC 4 Nov 2013-0000 UTC 6 Nov 2013 3
1408 Neoguri 0000 UTC 4 Jul 2014-0000 UTC 5 Jul 2014 2
1409 Rammasun 0000 UTC 13 Jul 2014-0000 UTC 14 Jul 2014 2
1410 Matmo 0000 UTC 18 Jul 2014 1
1411 Halong 0000 UTC 29 Jul 2014-0000 UTC 5 Aug 2014 8
1418 Phanfone 0000 UTC 29 Sep 2014-0000 UTC 1 Oct 2014 3
1419 Vongfong 0000 UTC 3 Oct 2014-0000 UTC 8 Oct 2014 6
1420 Nuri 0000 UTC 1 Nov 2014 1
1422 Hagupit 0000 UTC 2 Dec 2014-0000 UTC 5 Dec 2014 4
1504 Maysak 0000 UTC 28 Mar 2015-0000 UTC 30 Mar 2015 3
1506 Noul 0000 UTC 4 May 2015-0000 UTC 6 May 2015 3
1507 Dolphin 0000 UTC 9 May 2015-0000 UTC 15 May 2015 7
1511 Nangka 0000 UTC 4 Jul 2015-0000 UTC 12 Jul 2015 9
1513 Soudelor 0000 UTC 31 Jul 2015-0000 UTC 4 Aug 2015 5
1516 Goni 0000 UTC 15 Aug 2015-0000 UTC 20 Aug 2015 6
1517 Atsani 0000 UTC 15 Aug 2015-0000 UTC 19 Aug 2015 5
1520 Krovanh 0000 UTC 16 Sep 2015 1
1521 Dujuan 0000 UTC 24 Sep 2015 1
1524 Koppu 0000 UTC 14 Oct 2015 1
1527 In-fa 0000 UTC 18 Nov 2015-0000 UTC 21 Nov 2015 4
1602 Nepartak 0000 UTC 4 Jul 2016 1
1608 Conson 0000 UTC 9 Aug 2016 1
1612 Lionrock 0000 UTC 22 Aug 2016-0000 UTC 25 Aug 2016 4
1616 Meranti 0000 UTC 10 Sep 2016 1
1618 Malakas 0000 UTC 12 Sep 2016-0000 UTC 15 Sep 2016 4
1625 Haima 0000 UTC 16 Oct 2016 1
1707 Noru 0000 UTC 22 Jul 2017-0000 UTC 2 Aug 2017 12
1720 Talim 0000 UTC 10 Sep 2017-0000 UTC 12 Sep 2017 3
1725 Lan 0000 UTC 16 Oct 2017-0000 UTC 17 Oct 2017 2
1727 Saola 0000 UTC 22 Oct 2017 1

Total 125

fields. Carr and Elsberry (2000a,b) analyzed the forecast results
of the Navy Operational Global Atmospheric Prediction System
model (NOGAPS) and the Geophysical Fluid Dynamics
Laboratory (GFDL) hurricane model, and suggested a con-
ceptual model for the error mechanism in the tropical and
midlatitude regions. These studies show that possible model
errors can arise from errors in the location or structure of
synoptic-scale features. Furthermore, Kehoe et al. (2007)
showed that the errors associated with aloft TC-related an-
ticyclone intensification could also contribute to environ-
mental wind errors that may lead to poor TC track forecasts.
In addition, Magnusson et al. (2019) reviewed studies on large
error cases. In this paper, several methods including ensem-
ble models and nudging experiment to understand the low
predictability for difficult cases were introduced (Nystrom
et al. 2018; Torn et al. 2018).

TC track is determined by the influence of the large-scale
flow around it, which is called the “steering effect.” Several
studies have been conducted to predict TC motion by analyz-
ing the surrounding wind fields. George and Gray (1976)
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compared the TC track and surrounding winds, and deter-
mined that 700- or 700-500-hPa flows can represent the motion
of TC. Chan and Gray (1982) defined the steering vector by
averaging large-scale wind at 700-500 hPa with a radius of
5°=7° of the center of a TC. There have been many studies
which have sought to determine the steering vector since then,
but it has considerable uncertainty regarding the steering flow
depth and radius for individual TCs (Aberson 2010; Dong and
Neumann 1986; George and Gray 1976; Velden and Leslie
1991). Galarneau and Davis (2013) suggested the optimal
steering vector, which was defined by optimized depth and
radius for each TC case, and quantitively analyzed the error of
TC motion. Understanding the steering vector can be useful for
error analysis because it can represent the characteristics of the
surrounding wind field.

TC track forecast error also varies depending on the location
or basin of the TC. Notably, the track error for the western
North Pacific TCs tends to be larger than that of other basins
(Hodges and Emerton 2015). Since the western North Pacific
has a large area for TC activity and therefore TCs tend to
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sustain for longer, various types of TCs coexist. Several studies
have classified TCs using various methods in order to understand
the characteristics of TCs (Camargo et al. 2008, 2007a,b; Elsner
2003; Elsner and Liu 2003; Hall and Jewson 2007; Harr and
Elsberry 1991, 1995a,b; Hodanish and Gray 1993; Kim et al.
2011; Lander 1996; Nakamura et al. 2009). Cluster analysis is one
of the classification methods, and is relatively objective. Studies
using cluster analysis are typically conducted using the k-means
clustering method (Camargo et al. 2007a,b; Elsner 2003; Elsner
and Liu 2003) and the fuzzy clustering method (Kim et al. 2011).

In this study, we analyzed TC simulation errors using the
Weather Research and Forecasting (WRF) Model, which is a
suitable regional model for simulating TCs (Fierro et al. 2009;
Raju et al. 2011; Skamarock et al. 2008). To figure out the
error sources, optimal steering vector analysis was conducted.
Regional differences in forecast skill were also studied
through k-means clustering analysis. Model configuration
and analysis methods are described in section 2, and model
results and errors are analyzed in section 3. Finally, a sum-
mary and conclusions are presented in section 4.

2. Data and methods
a. Model configuration and data

We used the WRF Model version 4.0.0 to analyze its track
forecast skill for the western North Pacific TCs. The horizontal
grid spacing of the forecast domain was 12 km, and the number
of horizontal grids was 421 and 371 for the west-east and
south-north direction, respectively. The domain contained 35
vertical levels from the surface to the top of the atmosphere at
50 hPa, with the sigma coordinate. All simulations were 120 h
forecasts from model initiation. The center of the domain
varied with the center of the observed TC and was designated
as 10° north and west of the observed TC center when the
latitude of the TC center is below 20°N, and 10° north when the
TC center is north of 20°N. Due to the change in the domain
center for each forecast, the domain was able to cover the
entire track of the simulated TCs for five days. Real-time
global analysis data and forecast data from the Global Forecast
System (GFS) of the National Centers for Environmental
Prediction (NCEP) were used to provide the initial and boundary
conditions for the WRF Model with a grid spacing of 0.5°. The
GFS real-time forecast is available every 6h. This 6-hourly
forecast data are used as the initial and boundary forcing data
through the WRF preprocessing system (WPS), and the model
sea surface temperature is updated with the GFS.

TC vortex initialization methods were not applied. The
model utilized the Yonsei University planetary boundary layer
scheme (Hong et al. 2006; Noh et al. 2003), WRF single-
moment 6-class microphysics scheme (Hong and Lim 2006),
Kain-Fritsch cumulus parameterization scheme (Kain 2004),
Dudhia shortwave radiation scheme (Dudhia 1989), and Rapid
Radiative Transfer Model longwave radiation scheme (Mlawer
etal. 1997). We conducted 125 forecasts of 37 TCs formed on the
western North Pacific in 2013-17, as listed in Table 1. The cases
which maintain the intensity stronger than tropical storm for five
days are chosen for test cases.
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FIG. 1. Mean (a) track error, (b) maximum wind speed error, and
(c) minimum sea level pressure error of the WRF Model and GFS
for 125 forecasts. The sample size is the same at each forecast time.

Cluster analysis and verification are conducted using Joint
Typhoon Warning Center (JTWC) best track data. NCEP GFS
analysis data are used for the observation data for optimal
steering vector analysis. The GFS analysis data are available
every 6 h with a horizontal grid spacing of 0.5°. The simulated
track and intensity of each experiment are compared with the
JTWC best track data. The location of the TC center is defined by
the simple method of identifying the minimum pressure in the sea
level pressure field (Feser and von Storch 2008). The maximum
wind speed is defined as the highest wind speed value within a
radius of 500 km from the TC center. Track error is defined as the
great circle distance between the TC center of the best track data
and the simulated center (Neumann and Pelissier 1981; Powell
and Aberson 2001), and it can be calculated as follows:

track error (km) = 111.11 cos™![sin @ Sin @,

+ cos ¢, cos @ _cos(A, —A)],
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FIG. 2. TC tracks simulated in the GFS
forecast for the five clusters.
where A and ¢q are the longitude and latitude of the TC center k )
in the best track data, respectively; and A; and ¢, are longitude S= 2{ EZC e —wl”, 1)
=1 x i

and latitude of simulated TC center, respectively.

b. Cluster analysis

Cluster analysis is a data mining technique that categorizes a
set of data into several groups by considering the character-
istics of each data point. Members of the same group show
greater similarity in characteristics to each other than to the
members of other groups. There are several cluster analysis
methods depending on how groups are classified. In this
study, the k-means cluster algorithm was used to classify the
simulation cases based on the active TC region (MacQueen
1967). The grouping method of k-means works in a way that
minimizes the variance of distance differences between the
members in a group. From Applied Statistics-136 (AS-136)
advanced k-means clustering algorithm (Hartigan and Wong
1979), the sum of the squared distances in the clusters is
calculated as follows:
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where x is a data point, k is the total number of clusters, C;is the
set of points that belong to cluster i, and u; is the cluster center
of Ci~

The k-means is the clustering method that aims to find the
positions of u; that minimize the sum of the squared distance S.
First, the centers of the k clusters are randomly initialized.
Next, each data point is attributed to the closest cluster center,
and new cluster centers are set to the mean of all points be-
longing to each cluster. The convergence points by several it-
erations of this process are the centers of each cluster, and the
peripheral points are the member of each cluster. The 5-day
mean latitude and longitude are used for data points in
this study.

The optimum number of clusters is determined by employ-
ing the Krzanowski-Lai (KL) index (Krzanowski and Lai
1988). The KL index is computed as
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FIG. 3. Mean track error of (a) each cluster and (b) group 1 and
2 TCs.

|diff |
|diff,

z+1|’

Krzanowski-Lai index =

@

diff, = (i — 1)"’SSW,_, —#PSSW,,  (3)

where i is the number of clusters, D is the number of datasets,
and SSW is the within-group sum of squares for all datasets in
the ith cluster. The optimum number of clusters is the i which
maximizes the KL index.

c. Optimal steering vector analysis

TC motion is largely governed by the surrounding flow
called the steering flow (Chan 2005). The steering flow is ob-
tained by averaging environmental winds, which are the re-
sidual wind resulting from the removal of TC vortex related
features (Galarneau and Davis 2013). To calculate environ-
mental winds from total wind field, the vortex removal
method from Davis et al. (2008) is used. The vortex is re-
moved at the layer from 850 to 200 hPa with an interval of
50 hPa within a given radius using the Poisson equation for
streamfunction (4) and velocity potential (5) with homo-
geneous boundary conditions applied at the edge of the
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FIG. 4. Mean track error for all cases (black line), upper 25%
error cases (red line), and lower 25% error cases (blue line) with
the spread of upper and lower error cases (red and blue shading,
respectively).

computational domain. The boundary value problem on
each pressure level can be stated as

14 for r=r

2, _ 0
vy (0 for r>r0)’ )

& for r=r

2 _ 0
Vix (0 for r>r0)’ ®)

where ¢ is the streamfunction, y is the velocity potential,
¢ = x = 0 on the lateral boundaries of the computational
domain, ¢ is the relative vorticity, é is the divergence, and r¢
is the radius of TC removal. Given the solutions for
streamfunction and velocity potential from (4) and (5), we
can determine the nondivergent and irrotational wind vec-
tors from

V,(x.y.p) =k XV, ©)
and
vV, (x,y,p) =Vx, (7

where k is the vertical unit vector.
By subtracting (6) and (7) from the total wind as follows:

Vo (.y,p) =V(x,y,p) =V, (x,y.p) =V (x.y.p), (8)

the environmental wind V., is obtained for each pressure
level within a given radius.

TABLE 2. Number and ratio of upper and lower 25% error cases for
group 1 and 2 TCs.

Group 1 (75)

22 (29.3%)
14 (18.7%)

Group 2 (36)

7 (19.4%)
13 (36.1%)

Upper 25% error cases
Lower 25% error cases
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The steering vector for observation (V) and model (V,,) is
computed by averaging the environmental wind within a re-
moval radius as follows:

1 2m (1,

v, ZWJO L V7 drdo, 9)
1 2m o,

V= L JO V. rdrde, (10)

where V, and V), are the area-average environmental wind
and r, and r,,, are the TC removal radii for the observation and
model TC, respectively. The area-averaged environmental
winds are computed for eight different radii ranging from 1° to
8° from the TC center. Then, the area-average environmental
winds of each radius are vertically averaged for layers of in-
creasing depth ranging from the shallowest layer of 850-
800 hPa to the deepest layer of 850-200 hPa with an interval of
50 hPa. A total of 104 steering vectors are computed for eight
averaging radius and thirteen averaging depth. The optimal
steering vector is defined as the best matched to the actual TC
motion among the 104 steering vectors for each averaging ra-
dius and depth. Actual TC motion is calculated from the po-
sition difference between 12h before and after the analysis
time to reduce the short-term variation. The example of a
specific calculation process is revealed in chapter 3b. We ap-
plied this approach to analyze the track errors in the model.

3. Results
a. Cluster analysis

Figure 1 shows the mean track error, maximum wind speed
bias, and minimum sea level pressure bias of all experiments
against the JTWC best track data. The error of GFS is also
analyzed for comparison. Overall, WRF and GFS have similar
mean track errors until the middle of the forecast, but the error
in WREF tends to be slightly larger after 96 h forecast time
(Fig. 1a). In terms of intensity forecast, the maximum wind
speed and minimum sea level pressure are more realistically
predicted by the WRF (Figs. 1b,c). The WRF Model simulates
the mean maximum wind speed and the minimum sea level
pressure with biases not exceeding 5ms~ ' and 7 hPa, respec-
tively, across the entire forecast time. On the other hand, the
GFS tends to significantly underestimate TC intensity com-
pared to the WRF Model. As shown in previous studies (Cha
et al. 2011; Moon et al. 2018), intensities of TC are better
simulated by the model since the structure of TCs is more re-
alistically represented with the parameterization of the WRF
Model. In this study, we focus on the track forecast skill and
analyze the track forecast of the WRF Model in detail through
the clustering analysis.

The optimized number of clusters is determined by calcu-
lating the KL index. This index has the highest value when the
number of clusters is five. At this point, TC cases are classified
into five clusters using the k-means clustering algorithm.
Figure 2 shows the tracks of GFS forecast for each cluster.
Each cluster is classified according to the 5-day mean latitude
and longitude of each case. The 5-day mean locations of cluster
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FIG. 5. TC track (dotted line), actual motion vector (black ar-
row), and optimal steering vector (green arrow) of (a) analysis data
and (b) model simulation at 24 h forecast initialized at 1 Oct 2014.

1 (C1) to cluster 5 (C5) are 23.3°N, 131.4°E; 18.1°N, 139.0°E;
13.4°N, 127.9°E; 13.2°N, 150.2°E; and 25.4°N, 148.9°E, respec-
tively. In C1, most TC forecasts are initialized at the subtrop-
ical regions, and the TCs move northwestward toward the
midlatitude continents. C2 TCs are initialized at the lower
latitudes and move northwestward. Both C3 and C4 TCs are
initialized at the low latitude and move nearly westward, but
C3 TCs are located to the west of the C4 TCs. The C5 TCs are
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TABLE 3. Magnitude of residuals for TC Phanfone initialized at 0000 UTC 1 Oct 2014. The residuals of the model and analysis data are
calculated from the difference between actual motion and optimal steering vector according to the removal radius and averaging depth.

The minimum value is bolded.

Depth (hPa)

Radius (°) 50 100 150 200 250 300 350 400 450 500 550 600 650
‘Vaoct - V0|
1 1.80 1.08 1.04 1.44 1.84 2.14 2.29 222 1.99 1.62 1.19 0.89 0.95
2 1.70 1.40 1.44 1.51 1.61 1.76 1.89 1.92 1.89 1.80 1.65 1.51 1.56
3 2.54 2.36 2.24 1.98 1.69 1.51 1.36 1.24 1.15 1.11 1.03 0.93 0.91
4 2.68 2.44 2.26 1.98 1.68 1.45 1.24 1.02 0.76 0.51 0.34 0.30 0.22
5 3.10 2.86 2.66 2.37 2.03 1.73 1.48 1.21 0.89 0.56 0.31 0.22 0.17
6 3.02 2.88 2.69 2.39 2.03 1.71 1.47 1.23 0.97 0.70 0.52 0.40 0.26
7 2.73 2.66 2.51 2.26 1.98 1.76 1.61 1.43 1.21 0.96 0.75 0.59 0.36
8 2.25 2.27 2.20 2.08 1.96 1.90 1.85 1.77 1.59 1.37 1.13 0.95 0.67
‘th_‘ﬁﬁ
1 8.99 8.23 7.52 7.04 6.75 6.41 5.97 5.48 4.97 4.49 4.10 3.83 3.55
2 6.55 6.28 5.92 5.53 5.15 4.80 4.46 4.10 3.61 2.90 213 1.60 1.48
3 3.53 3.69 3.95 4.14 4.27 4.33 4.33 4.26 4.08 3.66 2.96 2.08 1.27
4 2.69 2.83 3.08 331 3.49 3.63 3.7 3.74 3.66 3.43 2.94 220 1.39
5 2.16 2.36 2.70 3.00 3.20 3.30 3.32 3.28 3.20 3.04 2.67 2.07 1.44
6 2.06 2.41 2.75 2.98 3.07 3.04 297 2.85 2.72 2.57 2.28 1.79 1.27
7 1.89 2.35 2.64 2.77 2.75 2.66 2.56 2.46 2.37 2.29 2.12 1.69 1.16
8 1.72 213 2.36 243 2.39 2.30 224 223 223 2.26 2.19 1.84 1.29

located on the eastern boundary of the active TC region of the
western North Pacific. The number of members in C1 to CS is
39, 36, 19, 17, and 14, respectively.

Figure 3a shows the mean track error at different forecast
hours for each cluster against the JTWC best track data. There
are significant differences in track predictability among the
clusters. C1 and C2 that includes many TCs move northward
have the highest track error at 120 h while C3, in which TCs are
active on the southwest region of the western North Pacific
basin, has the smallest track error. The track error of C1 TCs is
approximately 200km at 72h and approximately 450km at
120 h, while that of C3 is approximately 140 km at 72h and
about 320 km at 120 h. To understand these regional charac-
teristic differences in track error, we organized two groups
according to the 5-day track error: group 1 (C1 and C2) and
group 2 TCs (C3 and C4). Figure 3b shows the difference in the
track forecast error between the two groups is evident. We
excluded the C5 from groups since TC cases in C5 move on

abnormal course and different characteristics from other
clusters. The difference between two groups is not significant
before 48h, but it increases rapidly as model integration
progresses. The track error of group 1 TCs at 120 h is 453 km,
which is approximately 28% greater than that of group 2
TCs (355km).

Figure 4 shows the spread of track forecast errors for all
WREF simulations. It shows that a large number of excessive
error cases exist in the upper 25% error cases of the WRF
forecasts. Those cases predominantly increase the mean track
error value. Notably, the highest error cases have a track error
of approximately 1500 km, which is more than three times
larger than the mean track error at 120 h. Improving the sim-
ulations that have these extremely high track errors is an im-
portant task to reduce the mean track error. Table 2 shows the
number and ratio of large and small error cases according to
the direction of transition. For group 1 TCs, more TCs are
included in the large error cases than the small error cases

1.8
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|

|

]

® GROUP1

*  GROUP2

Magnitude (m/s)

0.3 — T I T
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FIG. 6. Time series of the difference between the optimal steering vector of the model and
analysis data for group 1 TCs (red) and group 2 TCs (blue). The bars mean the 90% confidence
interval.
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TABLE 4. Histogram of percentages of upper-level boundary for model and analysis data steering vector calculation for each group.

The sample size is 657 and 279 for group 1 and 2, respectively.

Upper-level boundary (hPa)

200 250 300 350 400 450 500 550 600 650 700 750 800
WRF_Gl1 37.7 11.7 9.7 8.8 7.2 5.0 33 2.6 2.6 24 1.5 2.0 53
WRF_G2 33.7 14.3 10.4 8.6 5.0 5.7 4.7 5.7 2.5 1.8 1.4 1.8 43
ANL_G1 41.4 12.8 11.0 53 7.8 5.6 3.8 32 0.9 1.2 1.7 1.8 35
ANL_G2 28.7 54 133 16.8 9.7 6.5 2.5 3.6 1.1 1.8 1.8 43 4.7

(27% and 19.4%, respectively). Conversely, for group 2 TCs,
there is a large percentage of small error cases (36.1%) and a
smaller percentage of large error cases (19.1%). Moon et al.
(2018) also showed that the WRF Model has lower track pre-
dictability compared to the GFS for TCs located in the northeast
region of the western North Pacific TC basin. Larger error cases
in group 1 TCs indicate that the WRF Model has a weakness in
forecasting the tracks of TCs moving to the midlatitudes.

b. Optimal steering vector analysis

To investigate regional differences in track forecast skill, we
calculate the optimal steering vectors both for the model and
for analysis data. For example, the calculation of the optimal
steering vector for TC Phanfone, initialized at 0000 UTC
1 October 2014, is shown in Fig. 5. The set of steering vectors of
the model and analysis data are compared with the actual
motion vectors and residuals, and the magnitudes of difference
between the steering vector and the actual motion are shown in
Table 3. For the analysis data (model), the residual is at the
minimum with a radius of 5° (7°) and the upper averaging
boundary at 200 (200) hPa. Therefore, the optimal steering
vector of the model and analysis data can identify the envi-
ronmental winds that are best matched to the actual TC motion
(Galarneau and Davis 2013).

Figure 6 shows the mean magnitudes of difference in the
optimal steering vector between analysis data and the model
for group 1 and 2 TCs. The difference in the steering vector
between model and analysis data is related to the error of the
environmental winds in the model simulation. The steering
vector difference is similar between the two groups at 24 h.
The steering vector difference for group 1 TCs increases to
1.1ms ™! at 48 h while that for group 2 TCs slightly decreases.
Although the steering vector difference for group 2 TCs also
increases after 60h, group 1 TCs still have a larger steering
vector difference compared to group 2 TCs. It is notable that
the steering vector difference is always great for group 1 TCs.

Since TC motion is highly influenced by the surrounding
environmental winds, the larger difference in the steering wind

Group 1 TCs have a higher upper boundary than group 2
TCs in calculating optimal steering vector for analysis data
(Table 4). It is because group 1 TCs tend to be related to
the midlatitude trough as well as the western North Pacific
subtropical high (WNPSH). The percentage of the 200- and
250-hPa upper boundary for group 1 is 54% while that for
group 2 is 34%. For the model, the percentage of the 200- and
250-hPa upper boundary is 49% and 48% for group 1 and 2,
respectively. There is an inverse correlation between 200-hPa
geopotential height forecast skill and TC track error (not shown)
indicating that the TC track forecast error can be increased when
model is not simulating the upper-level atmosphere correctly.

The environmental wind fields are highly associated with
the pressure distribution in the atmosphere. Figure 7 shows the
pattern correlation of 500-hPa geopotential height between the
WREF simulation and the GFS analysis. The pattern correlation
of the pressure system shows a difference in aspect according to
the direction of the TC movement. The pattern correlation for
group 1 TCs is lower, especially at the late forecast time. Group
1 TCs are profoundly affected by the synoptic weather systems,
such as the WNPSH or the midlatitude trough. It seems that
lower pattern correlation for group 1 TCs arises from the un-
realistic representation of environmental fields affected by the
subtropical high or midlatitude trough. Since a poorer simu-
lation of the environmental wind fields leads to a large error in
track forecast, improved simulation of the synoptic fields, in-
cluding the pressure distribution, is essential for producing an
accurate 5-day track forecast.

Case studies for TC Lekima initialized at 0000 UTC 21
October 2013, and TC Phanfone initialized at 0000 UTC

N

Pattern correlation

0.88 —| =
could have induced the larger track error. The track error has 3 WAF \j e
correlation with the steering wind difference (not shown). This 084 - Gt “:ﬁjr,
result corresponds that the mean track error difference be- S
tween two groups is increasing after 48 h (Fig. 3b). Although 050 ‘ ‘ ‘ ‘
0 24 48 72 96 120

the difference for group 2 TCs also increases after 72 h, the
track error of group 1 TCs is large for longer forecast time.
Thus, it seems that the wind error is continuously induced from
unrealistic simulation of midlatitude pressure system, resulting
in a large track error in the 5-day forecast.
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F1G. 7. Time series of pattern correlations for 500-hPa geo-
potential height for the WRF (black), for group 1 TCs (red) and
group 2 TCs (blue).
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1 October 2014 are conducted to examine the impact of the
pressure system on TC track forecast. In both cases, the
WNPSH is developed at the eastern boundary of the model
domain, and it can induce anticyclonic flow along the 5880-gpm
contour of 500-hPa geopotential height shown in Fig. 8. This
flow leads the TC to track northward and curve northeastward.
In the simulation of Lekima, the WNPSH is realistically sim-
ulated, and then the TC track error is small at all forecast times.
In the case of Phanfone, WRF could not properly simulate the
TC track moving northward south of 30°N or curving to
the northeast north of that. Since the model overestimates the
strength of the WNPSH, the simulated 5800-gpm line is ex-
panded more toward the west compared to the analysis data.
The stronger WNPSH does not allow the WRF-simulated TC
to move toward Japan but instead pushes the TC more toward
the west, as compared to the analysis data (Cha et al. 2011; Sun
et al. 2017).

The deficiency in correctly simulating the large-scale pres-
sure fields corresponds to the environmental wind errors;
therefore, it can cause TC track errors. Figure 9 shows the
difference in the optimal steering vector between model and
analysis data for two TCs at each forecast time. For the simu-
lation of Lekima, there seems to be little difference in the
optimal steering vector between model and analysis data. The
differences are less than 0.5ms ™' for all forecast times, since
the WNPSH and the associated wind fields are realistically
simulated. For the simulation of Phanfone, the simulated
WNPSH is expanded to the north of the TC initially. The ex-
panded WNPSH inhibits the northward motion of the TC, and
it drives TC to deviate to the south from the actual motion.
Therefore, the optimal steering vector of WREF is directed to
the south compared to that of the analysis data during the first
48 h. After 48 h, the WRF Model cannot simulate the recurving
of the TC since the expanded WNPSH induces a relatively
southwestward flow. Consequently, the cyclone moves south-
westward compared to the actual motion, and the track error
becomes large. This suggests that the difference in the optimal
steering vector between the model and analysis data, or errors
in the environmental winds, can be a critical cause of track
error of more than 2 days for the northward moving TCs.

Figure 10 shows the mean magnitudes of the residual for
both model and analysis data. The residual is the difference
between the actual motion vector and the optimal steering
vector, and indicate the difference between the TC translation
speed and steering wind. Since the environmental wind field
cannot perfectly explain the TC motion, small residual terms
exist. According to Galarneau and Davis (2013), the residual
contains the features not considered in the environmental
wind, that is, storm-scale process, asymmetric convection dis-
tribution, or beta-related effect. A larger residual value indi-
cates that TC track with factors other than the environmental
winds. In the analysis data, the magnitude of the residual is
generally larger for group 1 TCs than group 2 TCs. The residual
slightly increases with corresponding forecast time but does
not significantly change, with a value of approximately 0.4—
0.5ms™! for two groups. The large residuals for group 1 TCs
can be associated with the fact that they are driven by a more
complicated process than group 2 TCs because they propagate
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FIG. 8. The 5-day mean 5880-gpm line of 500-hPa geopotential
height for the model (red contour) and analysis data (red contour),
and TC tracks of the model (red dotted line) and GFS analysis
(black dotted line) for (a) TC Lekima and (b) TC Phanfone ini-
tialized at 21 Oct 2013 and 1 Oct 2014, respectively.

into the baroclinic midlatitude. For the model, the mean re-
sidual value for group 2 TCs is mostly constant after 36 h (ap-
proximately 0.6 ms ') despite it being slightly larger than that
of analysis data. Conversely, for group 1 TCs, the mean re-
sidual is much higher than the analysis data. It rapidly increases
after 36 h and reaches 1.5ms ™! at 108 h, which is the three
times that of the analysis data. This means that simulated TC
motion for group 1 TCs deviates more from the motion ex-
pected by the environmental wind field.

To determine the characteristic of the residual term, the
deviation of the actual motion vector from the optimal steering
vector for group 1 TCs are analyzed in Fig. 11. The cross and
along components of the residual are calculated for the late
forecast times (72, 84, 96, and 108 h) when the mean residual of
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F1G. 9. Vector difference of the optimal steering vectors between the model and analysis data
at each forecast time for (a) TC Lekima and (b) TC Phanfone initialized at 0000 UTC 21 Oct
2013 and 0000 UTC 1 Oct 2014, respectively.

model for group 1 TCs is significantly large. The cross (along) means that the actual motion is shifted to the left of the steering
component is defined as the component of the residual vector  vector. This indicates that in a lot of cases, the TC motion
perpendicular (parallel) to the transition direction of the TC. deviated leftward from the steering vector in the midlatitude.
In the analysis of the cross and along component for group 1 It seems that the large residual value of group 1 TCs arises
TCs, the negative cross component cases are more dominant  from the unrealistic simulation of storm-scale processes in the
than the positive case. A negative value of cross component midlatitude baroclinic atmosphere. The considerable residual

QI
"En_ ' * GROUP1
é 1.5 * GROUPZ
L 12
2 09
> 0.6 e gP
0.3 — T T T | T T T T
12 24 36 48 60 72 84 96 108
) i Forecast leading time (hr)
1.8

& GROUP1

® GROUPZ

Magnitude (m/s)

12 24 36 48 60 72 84 96 108
Forecast leading time (hr)

F1G. 10. Time series of the difference between the optimal steering vector and actual TC
motion of (a) analysis data and (b) the model for group 1 TCs (red) and group 2 TCs (blue). The
bars mean the 90% confidence interval.
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FI1G. 11. Cross and along components of the vector difference of
the actual TC motion vector from the optimal steering vector for
group 1 TCs at 72, 84, 96, and 108 h of forecast time.

value may explain the significant track error for group 1 TCs.
To improve the simulation of storm-scale processes, therefore,
higher-resolution forecast or more sophisticated physical
schemes could solve this issue.

4. Summary and conclusions

In this study, the track forecast error of the WRF Model for
TCs over the western North Pacific was analyzed. Forecasts
were conducted for the 125 TCs formed over the western North
Pacific in 2013-17. The mean track error of WRF was similar or
slightly larger compared to that of GFS. A cluster analysis was
applied based on TC location through the k-means clustering
algorithm, and five clusters were classified. Since there were
robust differences in the track error between clusters with
dissimilar transition directions, we grouped the clusters into
two groups: group 1 (C1 and C2) and group 2 (C3 and C4). The
two groups had apparent differences in track errors. A higher
number of large error cases were included in group 1 TCs,
while more small error cases were included in group 2 TCs. To
understand this regional difference in track error, we analyzed
the optimal steering vectors. The steering vector difference
between model and analysis data, which indicates the envi-
ronmental wind error, was larger for group 1 TCs, especially at
the late forecast lead time. This result corresponded to the
rapidly increasing track error of group 1 TCs after 48 h. The
pattern correlation of 500-hPa geopotential height, which is
highly related to environmental wind, was also lower for group
1 TCs. This showed that the large track error for group 1 TCs
arises from the unrealistic representation of environmental
fields affected by the subtropical high or midlatitude trough.
The residuals, which contained the features not considered
in the environmental wind, were also larger for group 1 TCs.
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The significant forecast error for group 1 TCs at the late
forecast time can be attributed to the fact that the environ-
mental wind error is larger for group 1 TCs. In addition, the
more complicated processes of midlatitude TCs are not ade-
quately simulated.

We utilized the WRF Model with the horizontal grid spacing
of 12 km comparable to GFS forecast. This is because the WRF
Model has a consistency over target years, while there is an
inconsistency in the GFS forecast due to the updates of the
model system. In addition, 12-km grid spacing is used to verify
the compatibility of such resolution for TC forecast and figure
out the limitation of it. This study suggests that higher reso-
lution is necessary for improving storm-scale processes. For the
further study, higher resolution experiments with moving
nesting domain will be conducted, and the impact of increasing
resolution on track and intensity forecasts will be studied. The
forecast domain in this study is varies with the TC track to
minimize the computational cost. The larger domain can give
advantages to include more large-scale features affecting
TC activities (e.g., subtropical high and midlatitude trough),
but at the same time, it can lead to disadvantage such as
forecast errors induced by internal factors (e.g., steep
Tibetan plateau, strong air—sea interaction, and uncertain
soil moisture content). This topic on optimal domain size
needs further research.

Diagnosing model forecast error is an essential task in terms
of identifying the problem and establishing the solution for
model development. This study examined the track forecast of
the WRF Model for a large number of TCs over the WNP using
the optimal steering vector, and showed that different TC track
patterns can lead to different sources of track error through the
clustering analysis. Because the WRF Model has been widely
used for TC forecasting in the East Asian countries, this study
can serve as a useful reference for researchers when simulating
and analyzing TCs over the WNP using the same model.
However, the predictability of large-scale features in regional
model is still an ongoing research issue. Previous studies have
shown that improved initialization methods and the applica-
tion of spectral nudging could improve the predictability of a
large-scale field in a regional model. In addition, storm-scale
processes are also realistically considered in the model simu-
lation. Using smaller horizontal grid spacing and advanced
physics parameterizations, as well as more realistic air-sea
interaction can be helpful with this issue.
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