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ABSTRACT

The National Hurricane Center (NHC) has stated that guidance on tropical cyclone (TC) genesis is an
operational forecast improvement need, particularly since numerical weather prediction models produce TC-
like features and operationally required forecast lead times recently have increased. Using previously defined
criteria for TC genesis in global models, this study bias corrects TC genesis forecasts from global models using
multiple logistic regression. The derived regression equations provide 48- and 120-h probabilistic genesis
forecasts for each TC genesis event that occurs in the Environment Canada Global Environmental Multiscale
Model (CMC), the NCEP Global Forecast System (GFS), and the Met Office’s global model (UKMET).
Results show select global model output variables are good discriminators between successful and un-
successful TC genesis forecasts. Independent verification of the regression-based probabilistic genesis fore-
casts during 2014 and 2015 are presented. Brier scores and reliability diagrams indicate that the forecasts
generally are well calibrated and can be used as guidance for NHC’s Tropical Weather Outlook product. The
regression-based TC genesis forecasts are available in real time online.

1. Introduction

Although considerable progress has been made, many
aspects of tropical cyclones (TCs), including their devel-
opment and intensification, remain insufficiently un-
derstood and represent a continuing challenge to both the
research and operational communities (Emanuel 1986;
Rappaport et al. 2009). Researchers historically have fo-
cused on improving TC track and intensity forecast guid-
ance (e.g., Rappaport et al. 2012; Gall et al. 2013). The
resulting forecast improvements generally have been at-
tributed to better operational model guidance and forecast
tools available to forecasters (Rappaport et al. 2012). As
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the forecast guidance has become more reliable, opera-
tional centers such as the National Hurricane Center
(NHC) have increased their forecast lead times, which
in turn, require more accurate genesis forecasts. For
example, a tropical disturbance can develop near land,
intensify, make landfall, and dissipate all within the current
5-day forecast window (e.g., Humberto in 2007). NHC’s
Tropical Weather Outlook (TWO), a product that pro-
vides categorical and probabilistic forecasts of TC genesis,
also was extended from 2 to 5 days in August 2013
(Cangialosi and Franklin 2014). Thus, the ability to accu-
rately predict TC genesis is an important operational need.
The goal of the present study is to develop reliable prob-
abilistic TC genesis forecasts based on global model output
to serve as skillful guidance for NHC forecasters in pre-
paring the TWO.

Several TC genesis guidance products have already
been developed. DeMaria et al. (2001) used 5-day
running averages of vertical wind shear, instability,
and midlevel moisture over the tropical Atlantic to
produce genesis probabilities relative to climatology.
Their Tropical Cyclone Formation Probability (TCFP)


mailto:danieljhalperin@gmail.com

28 WEATHER AND FORECASTING

product exhibited skill relative to climatology. Schumacher
et al. (2009) described updates to the TCFP, employing
screening and linear discriminant analysis of predictors
averaged over 5° X 5° areas to provide a 24-h proba-
bility of genesis. Both the TCFP and its revision use
environmental conditions averaged over various spa-
tial and temporal scales; they are not disturbance spe-
cific. They also do not use model forecast fields,
although model analyses are included. Further updates
to the TCFP (Schumacher et al. 2014) extended the
product to 48h and included information from model
forecast fields. Cossuth et al. (2013) developed 48- and
120-h TC genesis probabilities using a climatology of
pregenesis Dvorak classifications. The tropical cyclone
genesis index (Dunion et al. 2013) is a statistical guid-
ance tool that employs observations and GFS forecast
fields to provide 48- and 120-h probabilistic genesis
forecasts for NHC-designated invest areas over the
North Atlantic (NATL) basin. Zhang et al. (2015)
demonstrated the use of a decision tree to predict
whether western North Pacific (WNP) tropical distur-
bances present in Navy Operational Global Atmo-
spheric Prediction System (NOGAPS) analyses would
develop into a TC within 24-48h. Others have used
global model ensembles to generate probabilistic gen-
esis forecasts (e.g., Marchok 2002; Gall et al. 2013;
Majumdar and Torn 2014), where the uncalibrated
percentage of ensemble members that exceed specified
genesis criteria defines the genesis probability. The cur-
rent study is unique in that it presents the development of
calibrated, disturbance-specific TC genesis probabilities
for the 48- and 120-h forecast periods over the NATL and
eastern North Pacific (EPAC) basins that rely solely on
deterministic global model output. For some distur-
bances, both the proposed and previously developed
products will provide TC genesis guidance. However,
there are instances when the proposed products will be
one of the only sources of TC genesis guidance (e.g., when
the models forecast genesis at 120 h for a disturbance that
does not yet exist at the initial time).

Global model forecasts provide important guidance
for the TWO (R. Pasch 2012, personal communication).
This begs the question, “How well do global models
predict TC genesis?” Early studies (e.g., Beven 1999)
showed that the models predicted too many spurious
vortices to skillfully forecast TC genesis. Schumacher
et al. (2009) suggested that global model forecasts have
limited application in TC genesis forecasting because of
uncertainties associated with their forecast skill and
biases. However, multiyear, multimodel investigations
of model-indicated TC genesis forecasts by Halperin
et al. (2013, 2016, hereafter H13 and H16, respectively)
revealed that the models’ ability to predict TC genesis
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has improved in recent years. Additionally, Komaromi
and Majumdar (2015) used European Centre for
Medium-Range Weather Forecasts (ECMWF) ensem-
bles to demonstrate that TC genesis events exhibit some
predictability out to 1 week. Furthermore, Elsberry et al.
(2014) showed that the ECMWF ensembles were able to
capture the genesis of some TCs during 2012 at 1-4-
week lead times. The present study explores whether
there is untapped predictability in the global model TC
genesis forecasts that can be exploited by bias correc-
tion. For example, H13 and Cossuth et al. (2013) showed
that genesis predictability varies regionally. Elsberry et al.
(2014) found differences in model performance between
TCs that formed from African easterly waves versus those
that formed from baroclinic origins. H13 also showed that
model performance varies by forecast hour (lead time)
and month. The present study expands on H13 by using
multiple logistic regression to bias correct global model-
indicated TC genesis forecasts. The regression-based
probabilistic TC genesis forecasts are produced in real
time to provide objective genesis guidance to the Hurricane
Specialist Unit at NHC. Please refer to appendix A for a
description of the available products.

2. Methodology

The statistically derived TC genesis guidance products
developed here are based on output from three numerical
models: Environment Canada’s Global Environmental
Multiscale Model (CMC; Coté et al. 1998a,b), the Na-
tional Centers for Environmental Prediction’s (NCEP)
Global Forecast System (GFS; Kanamitsu 1989), and the
Met Office’s global model (UKMET, also referred to as
UKM,; Cullen 1993). TC genesis guidance products were
developed from the ECMWF (ECMWF 2016) model
output. However, ECMWF-based statistical models are
not discussed here because the real-time model output
needed to test the guidance products was not available.
Since NOGAPS (Rosmond 1992) was decommissioned
in 2013, it was not included. The Navy Global Environ-
mental Model (NAVGEM; Hogan et al. 2014), the re-
placement for NOGAPS, is not included since the sample
size of archived forecasts currently is too small.

Operational global model data were available from a
local archive during 2004-13, providing a sufficient
sample of model genesis forecasts to construct a de-
velopmental/training dataset for the statistical analysis.
The appendixes of H13 and H16 list select model up-
grades that occurred during the period of study (e.g.,
resolution increases, changes in data assimilation,
changes to convective parameterizations, etc.). Output
for each global model was available for the 0000 and
1200 UTC initialization cycles. The present study used
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the definition of TC genesis given in H13 and H16 to
identify TC genesis events in the forecast fields out to
120h. Each TC genesis forecast is verified against the
best-track dataset (Jarvinen et al. 1984; McAdie et al.
2009; Torn and Snyder 2012; Landsea and Franklin
2013) and is classified as a “hit” or ““false alarm” for the
48- and 120-h forecast windows according to the verifi-
cation criteria in H16.

H13 tested numerous sets of TC genesis criteria and
selected the set of criteria that optimized the probability
of detection and the false alarm ratio. H13 and H16
found notable differences in model performance. On
average, CMC had the smallest success ratio, but the
greatest probability of detection compared to the other
models. In contrast, ECMWF had the greatest mean
success ratio, but the smallest mean probability of de-
tection. All four models exhibited critical success index
values near 0.2 over the NATL, indicating a trade-off
between the success ratio and the probability of de-
tection. Mean values of the critical success index over
the EPAC generally were greater than over the NATL
because of comparable success ratios and larger proba-
bilities of detection (H16). The larger false alarm ratio
exhibited by CMC does not hinder the performance of
its regression equation. Smaller forecast probabilities
occur more frequently, but the probabilities are fairly
well calibrated (shown in section 5). However, smaller
probabilities of detection may negatively impact the
forecast products since they will result in a smaller de-
velopmental dataset and will reduce the number of cases
for which the product will provide guidance. For ex-
ample, GFS misses many best-track TCs poleward of
25°N (according to the H13 and H16 criteria), usually
as a result of not exceeding the thickness threshold.
Thus, the GFS-based regression model often is unable to
provide guidance for Invests in that region. Future ver-
sions of this guidance product will examine the impact of
altering the genesis criteria threshold values.

Theoretical and observational TC genesis studies
have provided physically relevant variables and pro-
cesses that are associated with TC genesis (e.g., Charney
and Eliassen 1964; Gray 1968, 1979; Emanuel 1986;
Ritchie and Holland 1997; Simpson et al. 1997; Bister
and Emanuel 1997; Emanuel and Nolan 2004; Nolan
2007; Dunkerton et al. 2009). We use logistic regression
to test whether these variables, when obtained from
global models at the time of forecast genesis, are good
discriminators between successful (i.e., hit) and un-
successful (i.e., false alarm) forecasts. Some predictors
that have not been discussed in the aforementioned lit-
erature also were considered. An averaged predictor
refers to values averaged over the box area extending
+5° from the model-indicated TC center and is denoted
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by an overbar (e.g., RH). A perturbation refers to the
maximum value of a predictor within 5° of the model-
indicated TC center minus the average value in that
area and is denoted by the prime (') symbol [e.g.,
RH’ = max(RH) — RH]. Appendix B provides a list of
symbols used in this paper. The multiple logistic
regression (MLR) model is given by

eg(x)
14 es®’

E(ylx) = 1)
where E(y| x) is the expected probability of the outcome
variable y (i.e., TC genesis), given a value of x, and

g(x)=Bx; +Bx, + ... +Bx,. )

Equation (2) is the logit transformation, x,, is the value of
the nth predictor, and B,, is the regression coefficient of the
nth predictor (Hosmer et al. 2013). Peng et al. (2012) and Fu
et al. (2012) found differences in the relative importance of
various parameters in distinguishing between developing
and nondeveloping tropical disturbances over the NATL
and WNP. Given their results and the model-to-model and
basin-to-basin differences revealed in H13 and H16, sepa-
rate MLR equations were developed for each global model,
each basin, and each forecast window (0-48 and 0-120h).
Development of the regression equations was limited by the
data archive. For example, nearly all GFS output variables
were available to test as predictors, but far fewer UKMET
variables were available locally.

3. Univariable logistic regression equations and TC
genesis theories

The first objective is to determine whether statistically
significant relationships exist between individual environ-
mental and storm-centered variables and the probability of
genesis. The findings then are compared to theoretically
proposed physical relationships based on the prior literature.
This comparison will determine whether conditions found to
be important for TC genesis in established theories also are
good discriminators for genesis in the global models. Single-
variable logistic regression equations are used to facilitate
this comparison. This use of univariable equations provides a
clear interpretation of the coefficients without having to
consider potential interactions between predictors.

Tables 1 and 2 provide the list of predictors that are
statistically significant (p value < 0.05) for at least one
univariable regression equation (i.e., at least one global
model, basin, and forecast window). Some physically rel-
evant variables (e.g., wind shear) generally are not found
to be significant predictors. These variables may be im-
portant in the genesis process, but simply are not good
discriminators between the hit and false alarm outcomes.
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TABLE 1. List of significant predictors (p < 0.05) for each NATL univariable regression equation using 200413 genesis events as the
developmental set. The plus (+) and minus (—) symbols indicate the sign of a significant predictor coefficient. Exclamation points (!)
indicate that the predictor was not in the data archive and significance testing was not possible. No symbol indicates that the predictor was
tested, but not significant. Unless denoted with a prime () or a double asterisk (**), all variables are averaged over the box area extending
+5° from the model-indicated TC center. A prime denotes a perturbation, which refers to the maximum value of the variable within 5° of
the model-indicated TC center minus the average value in that area. A double asterisk denotes a value used for defining TC genesis in the

models, as in H13 and H16.

Predictor CMC48 CMC120 GFS48 GFS120 UKM48 UKM120
Forecast hour - — — _ _ _
Year + + i
Lat (°) - - + +
Lon (°) - - _
925-hPa Vi, (ms™ 1y - - _
250-850-hPa AZ (m)** + + + +
850-hPa (x107°s™1) - - - _
850-hPa ¢’ (X107 %s™h) - -
850-hPa OW (s 2) - - —
700-hPa RH (%) + - - ] !
700-hPa RH’ (0/0) — — + + | |
600-hPa RH (%) + + - - ] !
600-hPa RH' ((yo) — — + + | 1
200-hPa V;, - V (x107s™1) + - : |
Vaoo — Viso (ms™") - | |
PWAT (kgm™?) ! ! I : |
CAPE (Tkg ") ! ! ; ‘ \ |
CIN (Jkg ) ! ! + + ! |
Surface LH flux (W m™?) ! ! + + | |
Skin temp (K) ! ! + + ! |

There are several notable similarities among the sig-
nificant predictors for the univariable regression equa-
tions (Tables 1 and 2). Forecast hour is significant in each
case and has a negative coefficient. The 250-850-hPa
layer thickness AZ is significant for all regression equa-
tions except for the UKM 120-h NATL and exhibits the
theoretically consistent positive coefficient. Latitude
is significant with a positive coefficient for all EPAC
forecasts. The NATL GFS and CMC regression equa-
tions all have negative coefficients for the following pre-
dictors: 850-hPa ¢, Okubo-Weiss (OW) parameter, and
925-hPa maximum wind speed. The negative sign is
counterintuitive, suggesting that false alarms in these two
models may be exaggerated because of erroneous posi-
tive feedback. For the EPAC forecasts, these same pre-
dictors only are significant at 120 h.

There are also several interesting differences in
the significant predictors among the global models
(Tables 1 and 2). For NATL forecasts, latitude has a
positive coefficient for GFS, but is negative for CMC.
This highlights some of the model biases: GFS pro-
duces a large number of false alarms equatorward of
10°N, while CMC produces numerous false alarms at
higher latitudes. Both models agree that the 200-hPa
divergence is statistically significant only at 120h,
but the signs of the coefficients are opposite. CMC’s
positive coefficient is consistent with theory: greater
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upper-tropospheric divergence is related to greater
outflow and a developing disturbance, which leads to a
greater probability of genesis. However, GFS exhibits a
counterintuitive negative coefficient.

There are also several notable differences in the co-
efficients between the NATL and EPAC basins (Tables
1 and 2). Fewer predictors are significant over the EPAC
compared to the NATL, especially for 48-h forecasts.
If a GFS 48-h predictor is significant over the NATL, it is
also significant (with the same coefficient sign) at 120 h.
Over the EPAC, nearly all meteorological predictors
(i.e., not latitude, longitude, etc.) are significant at either
48 or 120 h, but not at both times.

Perhaps the most intriguing relationships are be-
tween RH and genesis probability. CMC over both
basins exhibits a positive coefficient for the 600- and
700-hPa RH, but a negative coefficient for 600- and
700-hPa RH'. This implies that greater environmental
RH is associated with a greater probability of genesis
[consistent with Gray (1968, 1979), Nolan (2007), and
Helms and Hart (2015)]. However, GFS exhibits the
opposite relationship over the NATL, with a positive
coefficient for RH’ and a negative coefficient for RH.
One would expect that greater RH would lead to
greater genesis probability. However, in a study of the
NASA GEOS-5 climate model, Lim et al. (2015) sug-
gests that enhanced entrainment of dry environmental
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TABLE 2. As in Table 1, but for the EPAC basin.

Predictor CMC48 CMC120

GFS48 GFS120 UKM48 UKM120

Forecast hour - -
Year -

Month -
Lat (°) + +
Lon (°) -
925-hPa Ve (ms™1)*#

250-850-hPa AZ (m)** +
850-hPa 7 (X107 °s™ 1)
850-hPa 2> (X107 5571
850-hPa OW (s 2)
700-hPa RH (%)

700-hPa RH' (%)

600-hPa RH (%)

600-hPa RH' (%)

850-hPa V;, - V (x107°s™1)
200-hPa V, - V (x107°s™1)
1000-700-hPa T’ (K km ™)
PWAT (kgm?)

CAPE (Jkg™")

CIN (Jkg ™1

Surface LH flux (Wm™?)
Skin temp (K)

+ o+ +

I+ 1+
—mmem— L+ L+

+ + +

+ + + +

air can lead to drying of the midlevels and a positive
latent heat (LH) flux in the lower levels. They found
this scenario to be more conducive to TC genesis. This
scenario also may be occurring in the GFS forecasts
and might explain the observed statistical relationships
between midlevel RH, surface LH flux, and genesis
probability. It also may explain GFS’s frequent TC
genesis forecasts off the coast of Africa, where dry air
may be entrained into the TC. Another possibility is
that when the RH values are recorded (at the forecast
genesis time), the model’s TC secondary circulation is
sufficiently established to produce subsidence sur-
rounding the TC that results in smaller RH. Regard-
less, this is an interesting disagreement that highlights
the differences in how successful genesis forecasts are
simulated in each model. Over the EPAC, GFS is not
temporally consistent regarding the RH relationships.
For 48-h forecasts, only 700-hPa RH is statistically sig-
nificant (same coefficients as over the NATL). However,
for the 120-h forecasts, only 600-hPa RH is significant,
and the coefficient signs are opposite, such that they
now agree with CMC.

Vertical wind shear between 200 and 850 hPa is sig-
nificant only for CMC 120-h NATL forecasts. This
does not mean that shear is unimportant for model-
derived genesis. Rather, shear simply is not a good
discriminator between the hit and false alarm out-
comes for most of the models investigated.

To summarize, the models exhibit some of the ex-
pected statistical relationships between predictors and
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genesis probability. However, there are also some sur-
prising and counterintuitive relationships and notable
differences among the models.

4. Multivariable logistic regression equation
development

a. Regression equations for each individual global
model

The univariable regression equations offered insight
as to whether the statistical relationships between the
various parameters and genesis probability are consis-
tent with theory. Conversely, they showed which theo-
retically relevant variables are not useful discriminators
between the hit and false alarm outcomes. This section
develops multivariable regression equations to produce
probabilistic genesis forecasts. The proper combination
of multiple variables is expected to yield better-
calibrated forecasts than any univariable regression
equation. Separate MLR equations are developed for
each global model, basin, and forecast window (0-48
and 0-120h).

Details of developing the regression equations are
presented using the GFS 120-h NATL forecast dataset
as an example. Hosmer et al. (2013) recommend iden-
tifying the MLR equation predictors using the method
of purposeful selection. This approach typically is used
when it is well known which predictors have physically
meaningful relationships to the outcome variable. While
the literature points to several such predictors, section 3
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showed that not all of these physically relevant vari-
ables are statistically significant predictors in the global
models. Therefore, predictors were selected using the
method of backward elimination combined with a
multiple fractional polynomial analysis (Sauerbrei
et al. 2006; Hosmer et al. 2013). The multiple fractional
polynomial analysis assesses if the relationship be-
tween a predictor and the outcome variable is linear or
if an exponential transformation of the predictor
provides a better fit. This method makes no a priori
assumptions about which predictors have physical
relevance to the outcome variable. However, it does
require that one specify the statistical significance level
at which a predictor is to be removed from the re-
gression model during the backward elimination step
(p > 0.15) as well as the significance level for
selecting a nonlinear transform (p < 0.05). All vari-
ables in Tables 1 and 2 are tested for significance
while creating the MLR equations.

To ensure that the selected predictors are robust,
cross validation (Wilks 2011) was performed. Specifi-
cally, the historical cases were split into a developmental
set, which consisted of a randomly selected 95% of the
events (N = 679), and a verification set, which com-
prised the remaining 5% (N = 36). A logistic regression
equation is fit using the developmental set, and the sig-
nificant predictors are recorded. This process is repeated
for 20 iterations. Each time, a different, randomly se-
lected set of events is used as the verification set. Thus,
each case is used once in the verification set. This cross
validation reveals in how many iterations each predictor
is statistically significant. The predictors that are signif-
icant in at least 15 of the 20 iterations are denoted as the
initial predictor set.

Once the initial predictor set is developed (Table 3),
it is refined based on how well the predictors fit an
independent/verification dataset. It is desirable to re-
move any predictors that do not impact the goodness of
fit. Because of the potential interactions between the
predictors, it is possible that a predictor may be statis-
tically significant on its own, but is no longer significant
when included with other covariates.

In an operational setting, the independent/verification
set would be the current season’s genesis forecasts (not a
random 5% sample as used above). Thus, to refine the
initial predictor set, the historical cases were split using
2004-10 cases (N = 498) as the developmental set and
2011-13 cases (N = 217) as the verification set. Three
years’ worth of data were chosen for the verification set
to ensure a sufficient sample size. A regression equation
using the initial predictors (Table 3) is fit based on the
developmental dataset. This equation is tested on the
events in the verification set. A reliability diagram
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TABLE 3. Initial predictor set for the GFS 120-h NATL re-
gression equation listed in order of increasing p value (except the
intercept term).

Predictor B, p value
(Intercept) -581.9 531 %107
Forecast hour —-0.028 1.68 x 1071
Year +0.283 855 x107°
Surface LH flux +0.148 143 X 107>
600-hPa RH’ +0.089 258 %1074
PWAT +0.274 2.68 X 1074
Lon (°) —-0.015 0.011
Relative Julian day +0.001 0.697
CAPE +1.72 x 107 0.706

reveals how well the regression equation fits the data.
The regression-based probabilities ideally will lie along
the line y = x (i.e., where the forecast probability equals
the verification probability). If the forecast probabilities
are above (below) the line y = x, the regression equation
underpredicts (overpredicts) the probability of TC
genesis. Figure 1a shows that the initial predictor set fits
the verification dataset reasonably well. Predictors with
p values > 0.05 are removed from the regression model,
one at a time, and a new model is fit and evaluated. This
occurs until all remaining predictors have a p value <
0.05, and the goodness of fit suffers from removing any
additional predictors. For example, Fig. 1b shows the
reliability diagram after CAPE and the relative Julian
day! were removed from the model. Since their removal
has little negative impact on the goodness of fit, they
were deleted from the final predictor set. Thus, Table 4
and Fig. 1b describe the final set of predictors for the
GFS-based 120-h NATL regression equation. This
process was conducted for each model (CMC, GFS, and
UKMET), for each basin, and for each forecast time
period (0-48 and 0-120h).

The final set of predictors and their coefficients for each
regression equation used in 2014’s operational testing are
presented in Table 5. While the predictors were selected
using 2004-10 as the developmental set as described
above, the predictor coefficients are recalibrated using
2004-13 as the developmental set for 2014 testing. The
impact of adding 2011-13 to the developmental set is
evident by comparing Table 4 with the GFS NATL 120-h
column in Table 5. The coefficient values change slightly,
but the equations are quite similar overall.

There are a number of interesting similarities and
differences among the regression equations (Table 5).

! Relative Julian day is defined here as the difference between
the current Julian day and the Julian day of the climatological peak
of the TC season.
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GFS 120 h Genesis Forecasts (NATL)

8 Predictors: 8 -Predictors:
™ |year, forecast hour, PWAT, longitude, CAPE, - year, forecast hour, PWAT, longitude,
surface latent heat net flux, relative Julian Day, surface latent heat net flux,
600 hPa relative humidity perturbation 600 hPa relative humidity perturbation

3 3
£ Underpredicti g icti
< prediction N=217 < Underprediction N=217
o 2o
5 © -]
o o
o 2
o o
& o
s §
9 - i9 -
£ Overprediction = Overprediction
2 3

2 Developmental set: 2004-2010 & Developmental set: 2004-2010

Verification set: 2011-2013 Verification set: 2011-2013
o # of cases per bin (a) # of cases per bin (b)
2 18 25 18 25 20 15 28 37 17 12 2 19 24 17 28 19 17 31 33 15 12
0 20 40 60 80 100 0 20 40 60 80 100

Forecast Probability (%)

Forecast Probability (%)

F1G. 1. Reliability diagram of GFS-based regression equation probabilities for 0-120-h forecasts over the NATL
for the (a) initial and (b) final predictor sets. Results are from the independent data (2011-13 cases). Perfect
reliability is given by the gray, diagonal line; above (below) this line indicates underprediction (overprediction).

Forecast hour is a significant predictor in each of the
regression equations. While not a physical covariate, it
does have predictive power in determining whether a
given model genesis forecast is more likely to result in a
hit or a false alarm. It also may suggest when physical
biases become more pronounced. The negative co-
efficient indicates that as genesis is predicted later in
the forecast cycle, the probability of genesis actually
occurring decreases. This trend is confirmed by results
shown in H13 and H16. Latitude and/or longitude are
also included in most of the regression equations. Again,
while these location covariates are not physically based,
they do fit the data and may act as proxies for other
variables. For example, longitude in the GFS-based
NATL regression equations captures the large number
of GFS false alarms over the main development region
(MDR). Although some regression equations contain
no physically based covariates, most regression equa-
tions contain at least one. For example, surface LH flux
is significant in most of the GFS-based regressions. For
the CMC-based EPAC 120-h regression, an increased
1000-700-hPa lapse rate and 850-hPa convergence
yield a greater genesis probability. This is consistent
with the upward vertical motion that is needed for TC
development. As noted earlier, the limited archive of
UKM model forecast fields reduces the number of pre-
dictors that are available for testing.

b. Regression equation for consensus of global
models

H13 indicated that when multiple global models
predict the same TC genesis event, the probability of
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actual genesis increases. Thus, in addition to the indi-
vidual global model-based regression equations de-
scribed in the previous section, a consensus-based
regression equation (denoted CON) was developed.
For the individual global model-based regression
equations, the g(x) term in (2) consisted of predictor
values from that global model’s forecast fields. How-
ever, the g(x) term for the CON regression [(3)] is
based on the appropriately weighted genesis proba-
bilities from each of the three individual regression
equations. That is,

8(x) = B,[P(CMC)] +B,[P(GFS)] +B;[P(UKM)].  (3)

If a global model does not predict genesis, the
regression-based probability for that individual model
term is zero. The TC genesis probabilities from all of the
aforementioned multiple logistic regression equations,
including CON, were generated in real time during 2014
and 2015. These probabilities were made available to
NHC forecasters for evaluation. The verification of the
regression equations is presented next.

TABLE 4. As in Table 3, except for the final predictor set.

Predictor B, p value
(Intercept) —588.5 1.16 X 107°
Forecast hour —-0.028 529 x 10712
Year +0.286 214 x10°°
Surface LH flux +0.015 1.44 X 107>
600-hPa RH’ +0.093 534 x107°
PWAT +0.284 575 % 1073
Lon (°) —-0.014 0.012
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TABLE 5. Final predictor list with coefficients (8,,) for 2014 regression equations. Predictors are listed in order of decreasing significance
based on their p values (except the intercept term).

NATL 48h NATL 120h

EPAC48h

EPAC120h

CMC
—174.6 (intercept)
—0.04 X forecast hour

+7.57 (intercept)
—0.03 X forecast hour

+0.02 X 250-850-hPa AZ —0.07 X lat
—0.04 X lat —0.02 X lon
—0.01 X lon

GFS
—110.8 (intercept)
—0.04 X forecast hour

—623.3 (intercept)
—0.03 X forecast hour

+0.01 X 250-850-hPa AZ +0.30 X yr
—0.03 X lon —0.02 X lon
+0.40 X PWAT
+0.01 X surface LH flux
+0.12 X 600-hPa RH’
UKM

+8.13 (intercept)
—0.03 X forecast hour
—0.02 X lon

+3.71 (intercept)

—0.02 X forecast hour
—0.02 X lon

—4224 X lat ™2

+1898 X lat ™2 X In (lat)

—2.81 (intercept)
—0.03 X forecast hour
+0.24 X lat

—3.98 (intercept)

—0.04 X forecast hour
+0.29 X lat

+0.01 X surface LH flux

—0.90 (intercept)
—0.04 X forecast hour
+0.21 X lat

—5.33 (intercept)

—0.01 X forecast hour
+0.22 X lat

+1.12 X 1000-700-hPa I
—1.08 X 850-hPa V, -V

—3.21 (intercept)

—0.02 X forecast hour
+0.24 X lat

+0.01 X surface LH flux
—0.02 X 850-hPa ¢’

—1.13 (intercept)
—0.02 X forecast hour
+0.22 X lat

5. Verification
a. 2014

Verification of each regression equation first is
presented for the 2014 hurricane season. For the re-
mainder of the paper, when referencing a global
model (e.g., GFS), the text discusses the regression
equation developed from that model’s output (unless
specified otherwise). NHC’s verification is obtained
from Cangialosi and Franklin (2015). The nonhomo-
geneous® results are presented first using the Brier
score. The Brier score is the mean of the square of the
difference between the regression-based forecast
genesis probability and the outcome, which equals 1
for a hit and 0 for a false alarm (Wilks 2011). It is
expressed as

1 n
Brier Score =— O, — Ok)z, 4)
n =1

where 7 is the number of forecast pairs, y is the forecast
genesis probability for the kth forecast, and oy is the
outcome for the kth forecast (Wilks 2011, his Eq. 8.36).
Given that the forecast probabilities range from 0 to 1

2 This refers to all available results from each technique. For
example, cases where NHC was issuing probabilities on a given
disturbance that the models did not detect and vice versa are
included.
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and the outcome values are either O or 1, the Brier score
values here will range from 0 to 1. A Brier score of
0 indicates a perfect forecast.

Wilks (2011) also shows that the Brier score can be
expressed as the sum of three components: reliability,
resolution, and uncertainty. The reliability term in-
dicates how well calibrated the forecast probabilities
are. As with the full Brier score, a reliability value of
0 is desirable and indicates a perfectly calibrated re-
gression equation. The resolution term indicates how
well the forecasts can distinguish between the hits and
false alarms. For example, if the verification proba-
bility is 50% for all forecast probability bins, the re-
gression equation has poor resolution. Finally, the
amount of uncertainty in the forecast is given by the
uncertainty term. This term depends on the climato-
logical probability of the hit outcome. For models
with a smaller success ratio (e.g., CMC), the un-
certainty term is smaller. The uncertainty term ranges
from 0 to 0.25; it is minimized when the success ratio
is either 0 or 1 and maximized when the success ratio
is 0.5. The Brier score can be calculated from these
three terms as

Brier Score = reliability — resolution

®)

+ uncertainty.

Wilks (2011) provides a more detailed description of
each of the Brier score components, but it is evident here



FEBRUARY 2017

TABLE 6. Brier score and its components for each set of 2014

forecasts.
Model Brierscore  Reliability  Resolution  Uncertainty
NATL 48h
CMC 0.156 0.032 0.026 0.150
GFS 0.295 0.176 0.032 0.151
UKM 0.281 0.205 0.098 0.174
CON 0.096 0.017 0.039 0.118
NHC 0.089 0.008 0.041 0.121
NATL 120 h
CMC 0.181 0.010 0.057 0.228
GFS 0.249 0.089 0.080 0.240
UKM 0.217 0.045 0.078 0.250
CON 0.210 0.011 0.042 0.241
NHC 0.126 0.014 0.083 0.195
EPAC48h
CMC 0.135 0.028 0.058 0.165
GFS 0.187 0.026 0.079 0.240
UKM 0.233 0.112 0.057 0.178
CON 0.104 0.011 0.062 0.155
NHC 0.117 0.008 0.074 0.184
EPAC120h
CMC 0.179 0.005 0.056 0.230
GFS 0.215 0.053 0.059 0.221
UKM 0.221 0.008 0.037 0.250
CON 0.200 0.019 0.069 0.250
NHC 0.200 0.026 0.075 0.250

that small values of reliability and uncertainty and a
large value of resolution are needed for the desirable
small Brier score. Table 6 gives the Brier score values
with each of its components for all 2014 forecasts. For
the NATL 48-h forecasts, NHC and CON have the
smallest Brier scores, due in part to their smaller re-
liability and uncertainty values. Among the individual
regression equations, CMC has the smallest Brier
score because of its superior reliability, compared to
GFS and UKM. At 120h, NHC again exhibits the
smallest Brier score. NHC’s reliability is comparable
to CON and CMC, and its resolution is comparable to
those of GFS and UKM, but its uncertainty value is
smaller than those of all the regression models. The
uncertainty terms for the regression models are near
the maximum value of 0.25, indicating that the success
ratiois near 0.5. This contributes to the relatively large
Brier scores for the regression equations.

CON exhibits the smallest Brier score for the EPAC
48-h forecasts. NHC is a close second, but suffers a bit
from larger uncertainty values. CMC again has the
smallest Brier score among the individual model re-
gression equations. At 120 h, CMC has the smallest Brier
score overall because of its good reliability and relatively
smaller uncertainty. UKM, CON, and NHC all exhibit the
maximum uncertainty value of 0.25, which largely causes
the total Brier scores near 0.2.
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The reliability and resolution components of the
Brier score are also provided graphically using re-
liability diagrams (Fig. 2) that show the verification for
each single-model regression equation (color coded),
the CON regression equation (black line), and NHC
TWO forecasts (red line). Breaks in the lines indicate
that five or fewer cases are available in a given forecast
bin, yielding a sample size that is too small to draw
meaningful conclusions. The 48-h NATL verifica-
tion (Fig. 2a) shows well-calibrated forecasts in the
0%-20% probability bins for CMC, GFS, and NHC
TWO. However, at probabilities = 30%, CMC and
NHC TWO underpredict genesis, while UKM and
CON overpredict genesis. For the 120-h NATL
(Fig. 2b), CMC is well calibrated, while CON exhibits
some overprediction bias. GFS and UKM generally
overpredict genesis. NHC’s TWO forecasts are very
reliable in the 0%—-40% forecast probability bins, but
genesis is underpredicted in the higher forecast
probability bins.

Verification of the guidance was mixed for the 48-h
EPAC forecasts (Fig. 2c). While CMC, CON, and NHC
perform fairly well in the 0%-40% range, they stray from
the perfect reliability line at the higher forecast probability
bins, with CMC, GFS, and NHC (CON and UKM) un-
derpredicting (overpredicting) genesis. For the 120-h EPAC
forecasts (Fig. 2d), GFS and NHC generally underpredict
genesis. CMC and UKM are fairly well calibrated.

Overprediction by UKM (Figs. 2a,b) may be due in
part to a new global model configuration that was
implemented during July 2014. Heming (2014) noted
that reforecasts of TCs using the new UKM global
model configuration generally yielded stronger fore-
cast intensities of mature TCs compared to the prior
configuration. While the impact to genesis forecasts
was not explicitly discussed, it is possible that the new
configuration of the UKM global model also may
produce more intense disturbances or early-stage TCs,
thus causing the UKM-based regression equation to
overpredict genesis during 2014. Upgrades to all
global models in the guidance suite undoubtedly im-
pact the reliability of the regression equations. The
UKM global model upgrade is the most obvious ex-
ample during 2014.

The 120-h NATL GFS regression equation exhibits
especially poor reliability during 2014 (Fig. 2b). The use
of “year” as a predictor was a contributing factor. While
the developmental dataset did indicate an improvement
in GFS global model TC genesis forecasts over time, there
was no guarantee that these improvements would continue
during 2014. Indeed, the GFS global model success ratio
during 2014 was less than during 2010-13. Thus, it became
apparent in the postseason verification that the GFS-based
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2014 NATL 48 h Forecast Verification (non-homogeneous)

2014 NATL 120 h Forecast Verification (non-homogeneous)
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FIG. 2. Reliability diagram comparing the nonhomogeneous set of regression and NHC TWO probabilities
for the (a) NATL 48-h, (b) NATL 120-h, (c) EPAC 48-h, and (d) EPAC 120-h forecasts during 2014. Verifi-
cation is based on the best track. Perfect reliability is given by the gray, diagonal line; above (below) this line
indicates underprediction (overprediction). Breaks in the lines indicate forecast probability bins with five or

fewer cases.

regression probabilities were inflated by including year as a
predictor. The operational GFS-based regression equation
for the NATL at 120h was compared to a regression
equation that excluded year as a predictor. While still far
from perfect, removing year as a predictor would have
prevented the notable overprediction (not shown).

It is encouraging that the CMC-based regression
equations performed well for both basins and forecast
windows (Fig. 2). While historical verification indicates
that the false alarm ratio for the CMC global model is
greater than for the other global models (H16), it ap-
pears that the regression equations are able to correct
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FIG. 3. Reliability diagram comparing the homogeneous set of 2014 NHC TWO (red line) and CON regression
(black line) probabilities for the (a) NATL 48-h, (b) NATL 120-h, (c) EPAC 48-h, and (d) EPAC 120-h forecasts.
The number of cases in each forecast probability bin is given in the corresponding red and black text. Verification is

based on the best track.

for the global model’s biases and provide well-calibrated
probabilistic forecasts.

To provide a more direct comparison of the verification
results, a set of homogeneous’ NHC TWO and CON
regression forecasts was constructed, with the associated
reliability diagrams presented in Fig. 3. The verification
of the NATL 48-h forecasts in the 10% and 30% forecast
probability bins is comparable between CON and NHC
(Fig. 3a). For probabilities exceeding 30%, the sample
size—given by the black (CON) and red (NHC TWO)

3 This indicates that only cases where both NHC and the CON
regression were issuing probabilities for the same genesis event are
included.
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text—is too small. Using probability bins with a 20% in-
terval reveals underprediction in the NHC forecasts and
overprediction from the CON forecasts (not shown).
However, the sample size still is fairly small even when
using the 20% probability interval. Sample size is not an
issue at 120 h (Fig. 3b). NHC TWO outperforms CON in
the 0%-30% forecast probability range. However, at the
higher probability bins, CON is better calibrated. Over
the EPAC at 48h (Fig. 3c), NHC TWO (CON) under-
predicts (overpredicts) genesis. At 120h, CON struggles
in the 20%-50% forecast probability range, but is fairly
well calibrated in the 70%—-100% range (Fig. 3d). NHC
TWO generally underpredicts genesis.

The sample sizes of the NHC TWO and CON prob-
abilities are not equal. There are a few instances where
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TABLE 7. As in Table 5, but for 2015 regression equations.
NATL 48h NATL 120h EPAC 48h EPAC 120h

CMC
—174.58 (intercept)
—0.04 X forecast hour

+8.70 (intercept)
—0.03 X forecast hour

+0.02 X 250-850-hPa AZ —0.07 X lat
—0.04 X lat —0.02 X lon
—0.01 X lon

GFS

—245.01 (intercept)
—0.04 X forecast hour
+0.03 X 250-850-hPa AZ
—0.02 X lon

+0.01 X surface LH flux
—0.04 X 850-hPa ¢’

—285.7 (intercept)

—0.03 X forecast hour
—0.20 X 200-850-hPa shear
+0.03 X 250-850-hPa AZ
—0.02 X 850-hPa ¢’

+0.02 X surface LH flux

UKM
+8.28 (intercept)
—0.03 X forecast hour
—0.02 X lon

+3.71 (intercept)

—0.02 X forecast hour
—0.02 X lon

—4224 X lat™2

+1897 X lat ™2 X In (lat)

—3.25 (intercept)
—0.03 X forecast hour
+0.28 X lat

—6.61 (intercept)
—0.016 X forecast hour
+0.24 X lat

+1.35 X 1000-700-hPa I"
—1.08 X 850-hPa 'V, -V

—4.02 (intercept)

—0.04 X forecast hour
+0.32 X lat

+0.01 X surface LH flux

—4.70 (intercept)

—0.02 X forecast hour
+0.27 X lat

+0.01 X surface LH flux
—0.02 X 850-hPa ¢’
+0.001 X CAPE

—3.30 (intercept)
—0.0003 X forecast hour?
—63.9 X lat™!

+0.04 X lon

—1.13 (intercept)
—0.02 X forecast hour
+0.22 X lat

the global models disagree on the timing and location of
genesis for a particular disturbance. This causes the
automated tracking algorithm to assume that these are
forecasts of two or three different TC genesis events.
However, because each model genesis forecast occurs
within the TWO-shaded potential genesis region, all
three forecasts are included in the homogeneous verifi-
cation. This issue generally causes the lower forecast
probability bins to contain more cases and to under-
predict genesis and causes the higher forecast probability
bins to have fewer cases and potentially overpredict
genesis. Since it does not occur frequently, however,
this issue likely is not significant.

b. 2015

All regression equations were recalibrated prior to
operational testing during 2015 to determine whether
any predictors should be added or removed when the
2014 forecasts were added to the developmental dataset
that originally consisted of the years 2004—13. The pre-
dictors used in 2015 are given in Table 7. The predictors
for all CMC-based equations are unchanged (Tables 5
and 7), although the coefficients are slightly different in
2015 compared with 2014. The 2015 UKM-based pre-
dictors are similar to the 2014 predictors (Tables 5 and 7),
except that longitude has been added to or removed
from some equations. The greatest differences between
the 2014 and 2015 versions of the regression equations
occur with the GFS-based equations for the NATL
(Tables 5 and 7). Regardless of potential significance,
year was removed from the GFS-based regression
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model since there was no guarantee that improved GFS
genesis forecasts would occur during 2015. In fact, ret-
rospective TC genesis forecasts for 2012-14 using the
2015 version of GFS reveals that the 2015 version of
GFS exhibits a greater false alarm ratio and smaller
probability of detection over the NATL compared with
the 2012-14 operational versions of GFS (not shown).

Nonhomogeneous Brier scores with their three com-
ponents for 2015 forecasts are given in Table 8. NHC
exhibits the smallest Brier scores with CON generally a
close second. NHC and CON have comparable re-
liability, but NHC produces better resolution. CMC has
smaller Brier scores than GFS and UKM. The smaller
success ratio for CMC provides it less uncertainty than
GFS and UKM, especially at 120 h.

Nonhomogeneous verification of the 2015 regression
equations was conducted using the best-track files*
(Fig. 4). NHC’s verification is obtained from Cangialosi
and Franklin (2016). The 48-h NATL NHC verification
(Fig. 4a) shows some well calibrated forecasts; however,
CMC, UKM, and CON overpredict genesis. Meanwhile
GFS underpredicts genesis in the 0%-20% forecast
probability range. There are small sample sizes in the
higher forecast probability bins of all regression equa-
tions. NHC’s forecasts for the NATL at 120 h (Fig. 4b)
are well calibrated in the 0%-40% range but under-
predict genesis at the higher forecast probabilities.
CON is reliable in the 10%-40% and 90% bins, but

4 Best-track file for EP042015 is preliminary as of 9 Aug 2016.
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TABLE 8. As in Table 6, but for 2015.

Model  Brier score  Reliability =~ Resolution = Uncertainty
NATL 48h
CMC 0.115 0.047 0.028 0.096
GFS 0.142 0.033 0.030 0.139
UKM 0.268 0.132 0.041 0.177
CON 0.108 0.007 0.026 0.127
NHC 0.087 0.002 0.066 0.150
NATL 120 h
CMC 0.151 0.009 0.044 0.186
GFS 0.265 0.069 0.054 0.250
UKM 0.247 0.040 0.041 0.248
CON 0.190 0.010 0.044 0.224
NHC 0.145 0.007 0.077 0.215
EPAC48h
CMC 0.138 0.042 0.018 0.114
GFS 0.222 0.011 0.034 0.245
UKM 0.223 0.082 0.041 0.182
CON 0.111 0.008 0.036 0.139
NHC 0.110 0.004 0.085 0.191
EPAC120h
CMC 0.181 0.008 0.023 0.196
GFS 0.223 0.073 0.024 0.174
UKM 0.220 0.010 0.040 0.250
CON 0.169 0.008 0.073 0.234
NHC 0.166 0.012 0.095 0.249

overpredicts genesis in the 50%-60% and 100% forecast
probability bins. UKM (GFS) generally overpredicts
(underpredicts) genesis, similar to that at 48 h.

The regression equations generally are better cali-
brated over the EPAC than the NATL. All guidance
except GFS performs well in the 0%-30% forecast
range for the 48-h EPAC forecasts (Fig. 4c). NHC and
GFS (CMC and CON) generally underpredict (over-
predict) genesis at the higher forecast probabilities.
UKM is well calibrated, except for overprediction in the
40%-50% range. At 120h, UKM and CON are well
calibrated, especially in the 30%-60% range (Fig. 4d).
GFS (CMC) underpredicts (overpredicts) genesis. NHC’s
forecasts generally are reliable, with underprediction in
some probability bins.

Verification of the homogeneous set of NHC TWO
and CON forecasts also was conducted (Fig. 5). With
NHC’s increased use of the guidance products
experimentally during 2015 compared with 2014
(E. Blake 2016, personal communication), this compari-
son becomes less independent, and it is increasingly dif-
ficult for the CON forecasts to outperform the NHC
TWO forecasts. Small sample sizes preclude meaningful
conclusions for the 48-h NATL forecasts (Fig. Sa), except
in the 10%-30% forecast probability range, where CON
exhibits slight underprediction. CON generally under-
predicts genesis, with the best reliability in the 40%—60%
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forecast probability range for the 120-h NATL forecasts
(Fig. 5b). Unlike 2014, the NHC TWO forecasts are
better calibrated than CON at the high forecast proba-
bilities. The NHC TWO 48-h EPAC forecasts also are
very reliable in the 80%-90% forecast probability range
(Fig. 5c). Otherwise, NHC (CON) generally under-
predicts (overpredicts) genesis for this time period. The
verification for the 120-h EPAC forecasts (Fig. 5d) is
fairly similar for both sets of forecasts, with a general
underprediction bias.

c. Combined 2014-15

Given the relatively small sample size for some of the
verification comparisons—possibly due in part to rela-
tively quiet TC seasons over the NATL—results for the
combined 2014-15 seasons are presented. Figure 6
shows the homogeneous NHC and CON verification
for the combined 201415 period. The probabilities are
comparable in the 10%-40% forecast probability range
for the NATL 48-h forecasts (Fig. 6a). NHC (CON)
tends to underpredict (overpredict) genesis at the larger
forecast probabilities. At 120h, CON is fairly well cali-
brated in the medium-to-high forecast probabilities,
while NHC tends to underpredict genesis (Fig. 6b).
NHC'’s forecasts in the 0%—-40% probability range are
quite reliable. NHC (CON) generally underpredicts
(overpredicts) genesis for the EPAC 48-h forecasts
(Fig. 6¢). NHC underpredicts genesis at 120 h, with CON
exhibiting good reliability in the 60%-90% forecast
probability range.

The spatial distribution of the genesis forecasts is also
of interest. Figure 7 shows the forecast genesis location,
120-h regression-based probability (color coded), and
whether the forecast verified as a hit (filled circle) or
false alarm (open circle) for each model. It also shows
the best-track genesis locations during 2014-15 [black
plus signs (+)]. For all of the models, the only clear
spatial bias over the EPAC is that more false alarms
occur at the more equatorward latitudes. Since latitude
is a predictor in the EPAC regression equations, the
probabilities for low-latitude genesis forecasts tend to
be relatively small.

There are different spatial biases over the NATL. For
example, the CMC forecast probabilities over the
NATL are greatest over the MDR between 25° and
45°W (Fig. 7a). Meanwhile, there are many small fore-
cast probability events over the northwest and north-
central Atlantic. Appropriately, most of those forecasts
are false alarms. The majority of GFS forecast genesis
events occur over the MDR. There appears to be a shift
in predictability over the MDR near 30°W. East (west)
of that longitude there are numerous (fewer) false
alarms. UKM also forecasts many genesis events over
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the MDR. Most of its genesis forecasts poleward of 25°N

verify as false alarms.

6. Summary and conclusions

The goal of this study was to develop a set of reliable
operational TC genesis probability guidance products
based on global model output. A decade’s worth of his-
torical model-indicated TC genesis forecasts was used as
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FIG. 4. As in Fig. 2, but for 2015 forecasts.
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the developmental dataset for deriving multiple logistic

regression equations. These equations attempt to bias
correct the model genesis forecasts and provide proba-
bilistic TC genesis forecasts within 48 and 120 h over the
North Atlantic and eastern North Pacific basins.

Unauthenticated

Univariable logistic regression equations were de-
veloped to determine the significance of various pre-
dictors in discriminating between the hit and false alarm
outcomes for global model TC genesis forecasts. The
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FIG. 5. As in Fig. 3, but for 2015 forecasts.

signs of the regression coefficients were used to de-
termine whether the statistical relationships be-
tween a predictor and the probability of genesis were
consistent with proposed genesis theories. Results
showed that the models exhibited some of the ex-
pected statistical relationships. For example, a greater
250-850-hPa thickness (i.e., stronger warm core) re-
sulted in greater genesis probabilities. However,
several counterintuitive relationships were noted. For
example, larger values of 850-hPa relative vorticity
were associated with smaller genesis probabilities,
contrary to the expected enhanced cyclonic relative
vorticity being needed for genesis (Gray 1968, 1979).
The statistical relationships between midlevel rela-
tive humidity and genesis probability were intriguing.
CMC exhibited a positive coefficient for the 600- and
700-hPa environmental relative humidity and a negative
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coefficient for 600- and 700-hPa relative humidity pertur-
bation. This implies that greater environmental relative
humidity was associated with a greater probability of gen-
esis [consistent with Gray (1968, 1979), Nolan (2007), and
Helms and Hart (2015)]. However, GFS exhibited the op-
posite relationship over the NATL, indicating that smaller
average relative humidity was associated with greater
genesis probability. This could be due to enhanced en-
trainment [similar to findings from Lim et al. (2015)] or the
GFS’s TC secondary circulation being sufficiently estab-
lished at the genesis time to cause subsidence and reduced
relative humidity in the TC environment. Regardless, it is
an interesting disagreement among the models.
Multivariable logistic regression equations then were
developed to provide probabilistic TC genesis guidance.
Separate equations were developed for each global model,
basin, and forecast window. Predictors were selected using
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FIG. 6. As in Fig. 3, but for 201415 forecasts.

backward elimination combined with a multiple frac-
tional polynomial analysis. Cross validation was con-
ducted to ensure that the predictor pool was robust.
Verification of the regression-based forecasts during
the 2014 season revealed that some were well calibrated
(Fig. 2). However, it appears that an upgrade to the
UKM global model configuration caused the regression
equations to overpredict genesis over the NATL. The
GFS-based 120-h NATL regression equation also suf-
fered from overprediction. A retrospectively developed
regression equation with year removed as a predictor
exhibited somewhat better reliability (not shown). The
CMC-based regression equations were quite reliable.
Although the CMC global model exhibited more false
alarms compared to GFS and UKM, it appears that CMC
had more consistent biases than the other models. Thus,
the regression technique was able to correct for the biases
and provide well-calibrated probabilistic genesis forecasts.
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However, one should not solely rely on the CMC, since it
does not often produce probabilities > 70%. The con-
sensus forecast benefits from information from all three
individual models and is able to capture the high genesis
probability events. Homogeneous comparisons between
the consensus regression equation and NHC TWO
probabilities (Fig. 3) showed that NHC performed best
in the 0%-30% forecast probability range at 120h.
However, the 120-h consensus regression equations were
more reliable in the higher forecast probability ranges.
Verification during the 2015 season revealed some
results similar to those from 2014. The GFS- (UKM-)
based regression equations underpredicted (over-
predicted) genesis over the EPAC (NATL). In contrast
to 2014, the 120-h NATL GFS-based regression equa-
tion underpredicted genesis during 2015. The CON re-
gression equation had a slight overprediction bias in both
basins. NHC’s forecasts generally were well calibrated,
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FIG. 7. Plot showing the locations of model-indicated genesis events, the regression-
based 120-h genesis probability (color coded), and whether the forecast verified as a hit
(filled circle) or false alarm (open circle) for (a) CMC, (b) GFS, (c¢) UKM, and
(d) CON.
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F1G. Al. Example graphics from the Tropical Cyclone Genesis Portal website. (a) Overview page of TC genesis forecasts for the NATL.
(b) Graphic of GFS-indicated TC genesis events. The ex (X) indicates the forecast genesis location (colored by categorical genesis
probability) and the filled circles (o) give the model-indicated forecast track. The “+54 hr” indicates the time with respect to model
initialization at which the genesis criteria were met. This time is provided for situational awareness, but the probability of genesis is valid
for the 0-120-h forecast window. The genesis probability is calculated from the multiple logistic regression equation for the GFS 120-h
NATL forecasts. (c) Graphic of the consensus-based TC genesis events. The X gives the average genesis location (colored by categorical
genesis probability). The genesis probability is calculated from the consensus-based logistic regression equation. The letters under the
probability indicate the models that are predicting genesis to occur.

with some underprediction bias. The homogeneous com-
parison between the NHC and CON forecasts revealed
that NHC’s underprediction bias at the higher forecast
probability bins was reduced in 2015 compared with
2014. NHC tested and evaluated these guidance
products during 2014 and 2015 to determine whether
they showed promise as an operational guidance tool.

Acknowledgments. The authors thank Julian Heming
for providing the historical UKMET data. This research
benefited from discussions with Eric Blake, Mark
DeMaria, James Franklin, Todd Kimberlain, Chris

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 08:04 PM UTC

Landsea, Craig Mattocks, and Richard Pasch at NHC as
well as Jeff Chagnon at FSU. The authors wish to thank
the three anonymous AMS reviewers for their con-

structive comments on this manuscript. This research
was funded by NOAA Grant NA130OAR4590185.

APPENDIX A

Real-Time Guidance Products

Since this research was sponsored by the Joint Hur-
ricane Testbed, the major goal was to create real-time
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TC genesis guidance products that could be used by the
Hurricane Specialist Unit at the National Hurricane
Center. The multiple logistic regression equations de-
veloped in section 4 were used to determine 48- and
120-h genesis probabilities for each model-indicated
TC genesis event. The process was fully automated,
and output was displayed on a locally hosted website
(http://moe.met.fsu.edu/modelgen) that was accessible by
NHC and the general public. A suite of guidance
products was provided.

An overview graphic of the current model initializa-
tion cycle (e.g., Fig. Ala)is shown on the website’s home
page. This graphic indicates which models are predicting
genesis and the categorical genesis probability for each
model-generated TC. The user can gain more detailed
information by selecting an individual model on the left
toolbar. For example, Fig. A1b shows the forecast gen-
esis location, track, and genesis probability for each
GFS-indicated genesis event. Multiple models some-
times predict the same genesis event. In those cases, the
consensus product (Fig. Alc) provides a single genesis
probability for each forecast TC.

Several text products also are available. All graphics
have a corresponding text product that gives the genesis
forecast time, location, and probability in a tabular
format. A more detailed table provides the values of the
genesis criteria and the predictors used in the regression
equations at each 6-h model output time. Finally, a
history file of each forecast TC displays how the
forecast genesis time, location, and probabilities
have changed with each model initialization cycle. This
gives the forecasters trend information and allows them
to see how consistently a given TC has been forecast.

APPENDIX B

Definition of Symbols

Table B1 provides the definitions of the symbols used
in this paper.

TABLE B1. List of symbols.

Symbol Definition

B, Estimated regression coefficient

r Lapse rate

RH Relative humidity averaged within 5° from TC
RH’ Max — avg relative humidity

AZ Layer thickness

ViV Divergence of the horizontal wind

A% Total horizontal wind

4 Relative vorticity

{ Relative vorticity averaged within 5° from TC
I Max — avg relative vorticity
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