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ABSTRACT

The National Hurricane Center (NHC) has stated that guidance on tropical cyclone (TC) genesis is an

operational forecast improvement need, particularly since numerical weather predictionmodels produce TC-

like features and operationally required forecast lead times recently have increased. Using previously defined

criteria for TC genesis in global models, this study bias corrects TC genesis forecasts from global models using

multiple logistic regression. The derived regression equations provide 48- and 120-h probabilistic genesis

forecasts for each TC genesis event that occurs in the Environment CanadaGlobal EnvironmentalMultiscale

Model (CMC), the NCEP Global Forecast System (GFS), and the Met Office’s global model (UKMET).

Results show select global model output variables are good discriminators between successful and un-

successful TC genesis forecasts. Independent verification of the regression-based probabilistic genesis fore-

casts during 2014 and 2015 are presented. Brier scores and reliability diagrams indicate that the forecasts

generally are well calibrated and can be used as guidance for NHC’s Tropical Weather Outlook product. The

regression-based TC genesis forecasts are available in real time online.

1. Introduction

Although considerable progress has been made, many

aspects of tropical cyclones (TCs), including their devel-

opment and intensification, remain insufficiently un-

derstood and represent a continuing challenge to both the

research and operational communities (Emanuel 1986;

Rappaport et al. 2009). Researchers historically have fo-

cused on improving TC track and intensity forecast guid-

ance (e.g., Rappaport et al. 2012; Gall et al. 2013). The

resulting forecast improvements generally have been at-

tributed to better operationalmodel guidance and forecast

tools available to forecasters (Rappaport et al. 2012). As

the forecast guidance has become more reliable, opera-

tional centers such as the National Hurricane Center

(NHC) have increased their forecast lead times, which

in turn, require more accurate genesis forecasts. For

example, a tropical disturbance can develop near land,

intensify,make landfall, and dissipate all within the current

5-day forecast window (e.g., Humberto in 2007). NHC’s

Tropical Weather Outlook (TWO), a product that pro-

vides categorical and probabilistic forecasts of TC genesis,

also was extended from 2 to 5 days in August 2013

(Cangialosi and Franklin 2014). Thus, the ability to accu-

rately predict TC genesis is an important operational need.

The goal of the present study is to develop reliable prob-

abilistic TC genesis forecasts based on globalmodel output

to serve as skillful guidance for NHC forecasters in pre-

paring the TWO.

Several TC genesis guidance products have already

been developed. DeMaria et al. (2001) used 5-day

running averages of vertical wind shear, instability,

and midlevel moisture over the tropical Atlantic to

produce genesis probabilities relative to climatology.

Their Tropical Cyclone Formation Probability (TCFP)
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product exhibited skill relative to climatology. Schumacher

et al. (2009) described updates to the TCFP, employing

screening and linear discriminant analysis of predictors

averaged over 58 3 58 areas to provide a 24-h proba-

bility of genesis. Both the TCFP and its revision use

environmental conditions averaged over various spa-

tial and temporal scales; they are not disturbance spe-

cific. They also do not use model forecast fields,

although model analyses are included. Further updates

to the TCFP (Schumacher et al. 2014) extended the

product to 48 h and included information from model

forecast fields. Cossuth et al. (2013) developed 48- and

120-h TC genesis probabilities using a climatology of

pregenesis Dvorak classifications. The tropical cyclone

genesis index (Dunion et al. 2013) is a statistical guid-

ance tool that employs observations and GFS forecast

fields to provide 48- and 120-h probabilistic genesis

forecasts for NHC-designated invest areas over the

North Atlantic (NATL) basin. Zhang et al. (2015)

demonstrated the use of a decision tree to predict

whether western North Pacific (WNP) tropical distur-

bances present in Navy Operational Global Atmo-

spheric Prediction System (NOGAPS) analyses would

develop into a TC within 24–48 h. Others have used

global model ensembles to generate probabilistic gen-

esis forecasts (e.g., Marchok 2002; Gall et al. 2013;

Majumdar and Torn 2014), where the uncalibrated

percentage of ensemble members that exceed specified

genesis criteria defines the genesis probability. The cur-

rent study is unique in that it presents the development of

calibrated, disturbance-specific TC genesis probabilities

for the 48- and 120-h forecast periods over theNATL and

eastern North Pacific (EPAC) basins that rely solely on

deterministic global model output. For some distur-

bances, both the proposed and previously developed

products will provide TC genesis guidance. However,

there are instances when the proposed products will be

one of the only sources of TC genesis guidance (e.g., when

the models forecast genesis at 120h for a disturbance that

does not yet exist at the initial time).

Global model forecasts provide important guidance

for the TWO (R. Pasch 2012, personal communication).

This begs the question, ‘‘How well do global models

predict TC genesis?’’ Early studies (e.g., Beven 1999)

showed that the models predicted too many spurious

vortices to skillfully forecast TC genesis. Schumacher

et al. (2009) suggested that global model forecasts have

limited application in TC genesis forecasting because of

uncertainties associated with their forecast skill and

biases. However, multiyear, multimodel investigations

of model-indicated TC genesis forecasts by Halperin

et al. (2013, 2016, hereafter H13 and H16, respectively)

revealed that the models’ ability to predict TC genesis

has improved in recent years. Additionally, Komaromi

and Majumdar (2015) used European Centre for

Medium-Range Weather Forecasts (ECMWF) ensem-

bles to demonstrate that TC genesis events exhibit some

predictability out to 1 week. Furthermore, Elsberry et al.

(2014) showed that the ECMWF ensembles were able to

capture the genesis of some TCs during 2012 at 1–4-

week lead times. The present study explores whether

there is untapped predictability in the global model TC

genesis forecasts that can be exploited by bias correc-

tion. For example, H13 and Cossuth et al. (2013) showed

that genesis predictability varies regionally. Elsberry et al.

(2014) found differences in model performance between

TCs that formed fromAfrican easterly waves versus those

that formed from baroclinic origins. H13 also showed that

model performance varies by forecast hour (lead time)

and month. The present study expands on H13 by using

multiple logistic regression to bias correct global model–

indicated TC genesis forecasts. The regression-based

probabilistic TC genesis forecasts are produced in real

time to provide objective genesis guidance to theHurricane

Specialist Unit at NHC. Please refer to appendix A for a

description of the available products.

2. Methodology

The statistically derived TC genesis guidance products

developed here are based on output from three numerical

models: Environment Canada’s Global Environmental

Multiscale Model (CMC; Côté et al. 1998a,b), the Na-

tional Centers for Environmental Prediction’s (NCEP)

Global Forecast System (GFS; Kanamitsu 1989), and the

Met Office’s global model (UKMET, also referred to as

UKM; Cullen 1993). TC genesis guidance products were

developed from the ECMWF (ECMWF 2016) model

output. However, ECMWF-based statistical models are

not discussed here because the real-time model output

needed to test the guidance products was not available.

Since NOGAPS (Rosmond 1992) was decommissioned

in 2013, it was not included. The Navy Global Environ-

mental Model (NAVGEM; Hogan et al. 2014), the re-

placement for NOGAPS, is not included since the sample

size of archived forecasts currently is too small.

Operational global model data were available from a

local archive during 2004–13, providing a sufficient

sample of model genesis forecasts to construct a de-

velopmental/training dataset for the statistical analysis.

The appendixes of H13 and H16 list select model up-

grades that occurred during the period of study (e.g.,

resolution increases, changes in data assimilation,

changes to convective parameterizations, etc.). Output

for each global model was available for the 0000 and

1200 UTC initialization cycles. The present study used
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the definition of TC genesis given in H13 and H16 to

identify TC genesis events in the forecast fields out to

120h. Each TC genesis forecast is verified against the

best-track dataset (Jarvinen et al. 1984; McAdie et al.

2009; Torn and Snyder 2012; Landsea and Franklin

2013) and is classified as a ‘‘hit’’ or ‘‘false alarm’’ for the

48- and 120-h forecast windows according to the verifi-

cation criteria in H16.

H13 tested numerous sets of TC genesis criteria and

selected the set of criteria that optimized the probability

of detection and the false alarm ratio. H13 and H16

found notable differences in model performance. On

average, CMC had the smallest success ratio, but the

greatest probability of detection compared to the other

models. In contrast, ECMWF had the greatest mean

success ratio, but the smallest mean probability of de-

tection. All four models exhibited critical success index

values near 0.2 over the NATL, indicating a trade-off

between the success ratio and the probability of de-

tection. Mean values of the critical success index over

the EPAC generally were greater than over the NATL

because of comparable success ratios and larger proba-

bilities of detection (H16). The larger false alarm ratio

exhibited by CMC does not hinder the performance of

its regression equation. Smaller forecast probabilities

occur more frequently, but the probabilities are fairly

well calibrated (shown in section 5). However, smaller

probabilities of detection may negatively impact the

forecast products since they will result in a smaller de-

velopmental dataset and will reduce the number of cases

for which the product will provide guidance. For ex-

ample, GFS misses many best-track TCs poleward of

258N (according to the H13 and H16 criteria), usually

as a result of not exceeding the thickness threshold.

Thus, theGFS-based regressionmodel often is unable to

provide guidance for Invests in that region. Future ver-

sions of this guidance product will examine the impact of

altering the genesis criteria threshold values.

Theoretical and observational TC genesis studies

have provided physically relevant variables and pro-

cesses that are associated with TC genesis (e.g., Charney

and Eliassen 1964; Gray 1968, 1979; Emanuel 1986;

Ritchie and Holland 1997; Simpson et al. 1997; Bister

and Emanuel 1997; Emanuel and Nolan 2004; Nolan

2007; Dunkerton et al. 2009). We use logistic regression

to test whether these variables, when obtained from

global models at the time of forecast genesis, are good

discriminators between successful (i.e., hit) and un-

successful (i.e., false alarm) forecasts. Some predictors

that have not been discussed in the aforementioned lit-

erature also were considered. An averaged predictor

refers to values averaged over the box area extending

658 from the model-indicated TC center and is denoted

by an overbar (e.g., RH). A perturbation refers to the

maximum value of a predictor within 58 of the model-

indicated TC center minus the average value in that

area and is denoted by the prime (0) symbol [e.g.,

RH0 5max(RH)2RH]. Appendix B provides a list of

symbols used in this paper. The multiple logistic

regression (MLR) model is given by

E(yjx) 5 eg(x)

11 eg(x)
, (1)

whereE(yj x) is the expected probability of the outcome

variable y (i.e., TC genesis), given a value of x, and

g(x)5b
1
x
1
1b

2
x
2
1 . . . 1b

n
x
n
. (2)

Equation (2) is the logit transformation, xn is the value of

the nth predictor, and bn is the regression coefficient of the

nth predictor (Hosmer et al. 2013). Peng et al. (2012) andFu

et al. (2012) found differences in the relative importance of

various parameters in distinguishing between developing

and nondeveloping tropical disturbances over the NATL

andWNP. Given their results and the model-to-model and

basin-to-basin differences revealed in H13 and H16, sepa-

rateMLRequationswere developed for each globalmodel,

each basin, and each forecast window (0–48 and 0–120h).

Development of the regression equationswas limited by the

data archive. For example, nearly all GFS output variables

were available to test as predictors, but far fewer UKMET

variables were available locally.

3. Univariable logistic regression equations and TC
genesis theories

The first objective is to determine whether statistically

significant relationships exist between individual environ-

mental and storm-centered variables and the probability of

genesis. The findings then are compared to theoretically

proposed physical relationships based on the prior literature.

This comparisonwill determinewhether conditions found to

be important for TC genesis in established theories also are

good discriminators for genesis in the global models. Single-

variable logistic regression equations are used to facilitate

this comparison.This use of univariable equations provides a

clear interpretation of the coefficients without having to

consider potential interactions between predictors.

Tables 1 and 2 provide the list of predictors that are

statistically significant (p value , 0.05) for at least one

univariable regression equation (i.e., at least one global

model, basin, and forecast window). Some physically rel-

evant variables (e.g., wind shear) generally are not found

to be significant predictors. These variables may be im-

portant in the genesis process, but simply are not good

discriminators between the hit and false alarm outcomes.
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There are several notable similarities among the sig-

nificant predictors for the univariable regression equa-

tions (Tables 1 and 2). Forecast hour is significant in each

case and has a negative coefficient. The 250–850-hPa

layer thickness DZ is significant for all regression equa-

tions except for the UKM 120-h NATL and exhibits the

theoretically consistent positive coefficient. Latitude

is significant with a positive coefficient for all EPAC

forecasts. The NATL GFS and CMC regression equa-

tions all have negative coefficients for the following pre-

dictors: 850-hPa z, Okubo–Weiss (OW) parameter, and

925-hPa maximum wind speed. The negative sign is

counterintuitive, suggesting that false alarms in these two

models may be exaggerated because of erroneous posi-

tive feedback. For the EPAC forecasts, these same pre-

dictors only are significant at 120h.

There are also several interesting differences in

the significant predictors among the global models

(Tables 1 and 2). For NATL forecasts, latitude has a

positive coefficient for GFS, but is negative for CMC.

This highlights some of the model biases: GFS pro-

duces a large number of false alarms equatorward of

108N, while CMC produces numerous false alarms at

higher latitudes. Both models agree that the 200-hPa

divergence is statistically significant only at 120 h,

but the signs of the coefficients are opposite. CMC’s

positive coefficient is consistent with theory: greater

upper-tropospheric divergence is related to greater

outflow and a developing disturbance, which leads to a

greater probability of genesis. However, GFS exhibits a

counterintuitive negative coefficient.

There are also several notable differences in the co-

efficients between the NATL and EPAC basins (Tables

1 and 2). Fewer predictors are significant over the EPAC

compared to the NATL, especially for 48-h forecasts.

If a GFS 48-h predictor is significant over the NATL, it is

also significant (with the same coefficient sign) at 120 h.

Over the EPAC, nearly all meteorological predictors

(i.e., not latitude, longitude, etc.) are significant at either

48 or 120h, but not at both times.

Perhaps the most intriguing relationships are be-

tween RH and genesis probability. CMC over both

basins exhibits a positive coefficient for the 600- and

700-hPa RH, but a negative coefficient for 600- and

700-hPa RH0. This implies that greater environmental

RH is associated with a greater probability of genesis

[consistent with Gray (1968, 1979), Nolan (2007), and

Helms and Hart (2015)]. However, GFS exhibits the

opposite relationship over the NATL, with a positive

coefficient for RH0 and a negative coefficient for RH.

One would expect that greater RH would lead to

greater genesis probability. However, in a study of the

NASA GEOS-5 climate model, Lim et al. (2015) sug-

gests that enhanced entrainment of dry environmental

TABLE 1. List of significant predictors ( p , 0.05) for each NATL univariable regression equation using 2004–13 genesis events as the

developmental set. The plus (1) and minus (2) symbols indicate the sign of a significant predictor coefficient. Exclamation points (!)

indicate that the predictor was not in the data archive and significance testing was not possible. No symbol indicates that the predictor was

tested, but not significant. Unless denoted with a prime (0) or a double asterisk (**), all variables are averaged over the box area extending

658 from the model-indicated TC center. A prime denotes a perturbation, which refers to the maximum value of the variable within 58 of
the model-indicated TC center minus the average value in that area. A double asterisk denotes a value used for defining TC genesis in the

models, as in H13 and H16.

Predictor CMC48 CMC120 GFS48 GFS120 UKM48 UKM120

Forecast hour 2 2 2 2 2 2
Year 1 1 1
Lat (8) 2 2 1 1
Lon (8) 2 2 2
925-hPa Vmax (m s21)** 2 2 2
250–850-hPa DZ (m)** 1 1 1 1 1
850-hPa z(31025 s21) 2 2 2 2
850-hPa z0 (31025 s21) 2 2 2 2
850-hPa OW (s22) 2 2 2 2
700-hPa RH (%) 1 2 2 ! !

700-hPa RH0 (%) 2 2 1 1 ! !

600-hPa RH (%) 1 1 2 2 ! !

600-hPa RH0 (%) 2 2 1 1 ! !

200-hPa =h �V (31025 s21) 1 2 ! !

V200 2 V850 (m s21) 2 ! !

PWAT (kgm22) ! ! 1 ! !

CAPE (J kg21) ! ! 1 1 ! !

CIN (J kg21) ! ! 1 1 ! !

Surface LH flux (Wm22) ! ! 1 1 ! !

Skin temp (K) ! ! 1 1 ! !
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air can lead to drying of the midlevels and a positive

latent heat (LH) flux in the lower levels. They found

this scenario to be more conducive to TC genesis. This

scenario also may be occurring in the GFS forecasts

and might explain the observed statistical relationships

between midlevel RH, surface LH flux, and genesis

probability. It also may explain GFS’s frequent TC

genesis forecasts off the coast of Africa, where dry air

may be entrained into the TC. Another possibility is

that when the RH values are recorded (at the forecast

genesis time), the model’s TC secondary circulation is

sufficiently established to produce subsidence sur-

rounding the TC that results in smaller RH. Regard-

less, this is an interesting disagreement that highlights

the differences in how successful genesis forecasts are

simulated in each model. Over the EPAC, GFS is not

temporally consistent regarding the RH relationships.

For 48-h forecasts, only 700-hPa RH is statistically sig-

nificant (same coefficients as over the NATL). However,

for the 120-h forecasts, only 600-hPa RH is significant,

and the coefficient signs are opposite, such that they

now agree with CMC.

Vertical wind shear between 200 and 850 hPa is sig-

nificant only for CMC 120-h NATL forecasts. This

does not mean that shear is unimportant for model-

derived genesis. Rather, shear simply is not a good

discriminator between the hit and false alarm out-

comes for most of the models investigated.

To summarize, the models exhibit some of the ex-

pected statistical relationships between predictors and

genesis probability. However, there are also some sur-

prising and counterintuitive relationships and notable

differences among the models.

4. Multivariable logistic regression equation
development

a. Regression equations for each individual global
model

The univariable regression equations offered insight

as to whether the statistical relationships between the

various parameters and genesis probability are consis-

tent with theory. Conversely, they showed which theo-

retically relevant variables are not useful discriminators

between the hit and false alarm outcomes. This section

develops multivariable regression equations to produce

probabilistic genesis forecasts. The proper combination

of multiple variables is expected to yield better-

calibrated forecasts than any univariable regression

equation. Separate MLR equations are developed for

each global model, basin, and forecast window (0–48

and 0–120h).

Details of developing the regression equations are

presented using the GFS 120-h NATL forecast dataset

as an example. Hosmer et al. (2013) recommend iden-

tifying the MLR equation predictors using the method

of purposeful selection. This approach typically is used

when it is well known which predictors have physically

meaningful relationships to the outcome variable.While

the literature points to several such predictors, section 3

TABLE 2. As in Table 1, but for the EPAC basin.

Predictor CMC48 CMC120 GFS48 GFS120 UKM48 UKM120

Forecast hour 2 2 2 2 2 2
Year 2 1 1 1
Month 2
Lat (8) 1 1 1 1 1 1
Lon (8) 2 2 2
925-hPa Vmax (m s21)** 1 2
250–850-hPa DZ (m)** 1 1 1 1 1 1
850-hPa z (31025 s21) 1 2
850-hPa z’ (31025 s21) 2
850-hPa OW (s22) 1 2
700-hPa RH (%) 1 1 2 ! !

700-hPa RH0 (%) 2 2 1 ! !

600-hPa RH (%) 1 1 1 ! !

600-hPa RH0 (%) 2 2 2 ! !

850-hPa =h �V (31025 s21) 2
200-hPa =h �V (31025 s21) 1 ! !

1000–700-hPa G (K km21) 1 2 ! !

PWAT (kgm22) ! ! 1 ! !

CAPE (J kg21) ! ! 1 ! !

CIN (J kg21) ! ! 2 ! !

Surface LH flux (Wm22) ! ! 1 ! !

Skin temp (K) ! ! 1 ! !
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showed that not all of these physically relevant vari-

ables are statistically significant predictors in the global

models. Therefore, predictors were selected using the

method of backward elimination combined with a

multiple fractional polynomial analysis (Sauerbrei

et al. 2006; Hosmer et al. 2013). The multiple fractional

polynomial analysis assesses if the relationship be-

tween a predictor and the outcome variable is linear or

if an exponential transformation of the predictor

provides a better fit. This method makes no a priori

assumptions about which predictors have physical

relevance to the outcome variable. However, it does

require that one specify the statistical significance level

at which a predictor is to be removed from the re-

gression model during the backward elimination step

(p . 0.15) as well as the significance level for

selecting a nonlinear transform (p , 0.05). All vari-

ables in Tables 1 and 2 are tested for significance

while creating the MLR equations.

To ensure that the selected predictors are robust,

cross validation (Wilks 2011) was performed. Specifi-

cally, the historical cases were split into a developmental

set, which consisted of a randomly selected 95% of the

events (N 5 679), and a verification set, which com-

prised the remaining 5% (N5 36). A logistic regression

equation is fit using the developmental set, and the sig-

nificant predictors are recorded. This process is repeated

for 20 iterations. Each time, a different, randomly se-

lected set of events is used as the verification set. Thus,

each case is used once in the verification set. This cross

validation reveals in howmany iterations each predictor

is statistically significant. The predictors that are signif-

icant in at least 15 of the 20 iterations are denoted as the

initial predictor set.

Once the initial predictor set is developed (Table 3),

it is refined based on how well the predictors fit an

independent/verification dataset. It is desirable to re-

move any predictors that do not impact the goodness of

fit. Because of the potential interactions between the

predictors, it is possible that a predictor may be statis-

tically significant on its own, but is no longer significant

when included with other covariates.

In an operational setting, the independent/verification

set would be the current season’s genesis forecasts (not a

random 5% sample as used above). Thus, to refine the

initial predictor set, the historical cases were split using

2004–10 cases (N 5 498) as the developmental set and

2011–13 cases (N 5 217) as the verification set. Three

years’ worth of data were chosen for the verification set

to ensure a sufficient sample size. A regression equation

using the initial predictors (Table 3) is fit based on the

developmental dataset. This equation is tested on the

events in the verification set. A reliability diagram

reveals how well the regression equation fits the data.

The regression-based probabilities ideally will lie along

the line y5 x (i.e., where the forecast probability equals

the verification probability). If the forecast probabilities

are above (below) the line y5 x, the regression equation

underpredicts (overpredicts) the probability of TC

genesis. Figure 1a shows that the initial predictor set fits

the verification dataset reasonably well. Predictors with

p values. 0.05 are removed from the regression model,

one at a time, and a new model is fit and evaluated. This

occurs until all remaining predictors have a p value ,
0.05, and the goodness of fit suffers from removing any

additional predictors. For example, Fig. 1b shows the

reliability diagram after CAPE and the relative Julian

day1 were removed from the model. Since their removal

has little negative impact on the goodness of fit, they

were deleted from the final predictor set. Thus, Table 4

and Fig. 1b describe the final set of predictors for the

GFS-based 120-h NATL regression equation. This

process was conducted for each model (CMC, GFS, and

UKMET), for each basin, and for each forecast time

period (0–48 and 0–120h).

The final set of predictors and their coefficients for each

regression equation used in 2014’s operational testing are

presented in Table 5. While the predictors were selected

using 2004–10 as the developmental set as described

above, the predictor coefficients are recalibrated using

2004–13 as the developmental set for 2014 testing. The

impact of adding 2011–13 to the developmental set is

evident by comparing Table 4 with the GFSNATL 120-h

column in Table 5. The coefficient values change slightly,

but the equations are quite similar overall.

There are a number of interesting similarities and

differences among the regression equations (Table 5).

TABLE 3. Initial predictor set for the GFS 120-h NATL re-

gression equation listed in order of increasing p value (except the

intercept term).

Predictor bn p value

(Intercept) 2581.9 5.31 3 1026

Forecast hour 20.028 1.68 3 10211

Year 10.283 8.55 3 1026

Surface LH flux 10.148 1.43 3 1025

600-hPa RH0 10.089 2.58 3 1024

PWAT 10.274 2.68 3 1024

Lon (8) 20.015 0.011

Relative Julian day 10.001 0.697

CAPE 11.72 3 1024 0.706

1 Relative Julian day is defined here as the difference between

the current Julian day and the Julian day of the climatological peak

of the TC season.
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Forecast hour is a significant predictor in each of the

regression equations. While not a physical covariate, it

does have predictive power in determining whether a

given model genesis forecast is more likely to result in a

hit or a false alarm. It also may suggest when physical

biases become more pronounced. The negative co-

efficient indicates that as genesis is predicted later in

the forecast cycle, the probability of genesis actually

occurring decreases. This trend is confirmed by results

shown in H13 and H16. Latitude and/or longitude are

also included in most of the regression equations. Again,

while these location covariates are not physically based,

they do fit the data and may act as proxies for other

variables. For example, longitude in the GFS-based

NATL regression equations captures the large number

of GFS false alarms over the main development region

(MDR). Although some regression equations contain

no physically based covariates, most regression equa-

tions contain at least one. For example, surface LH flux

is significant in most of the GFS-based regressions. For

the CMC-based EPAC 120-h regression, an increased

1000–700-hPa lapse rate and 850-hPa convergence

yield a greater genesis probability. This is consistent

with the upward vertical motion that is needed for TC

development. As noted earlier, the limited archive of

UKM model forecast fields reduces the number of pre-

dictors that are available for testing.

b. Regression equation for consensus of global
models

H13 indicated that when multiple global models

predict the same TC genesis event, the probability of

actual genesis increases. Thus, in addition to the indi-

vidual global model–based regression equations de-

scribed in the previous section, a consensus-based

regression equation (denoted CON) was developed.

For the individual global model–based regression

equations, the g(x) term in (2) consisted of predictor

values from that global model’s forecast fields. How-

ever, the g(x) term for the CON regression [(3)] is

based on the appropriately weighted genesis proba-

bilities from each of the three individual regression

equations. That is,

g(x)5b
1
[P(CMC)]1b

2
[P(GFS)]1b

3
[P(UKM)]. (3)

If a global model does not predict genesis, the

regression-based probability for that individual model

term is zero. The TC genesis probabilities from all of the

aforementioned multiple logistic regression equations,

including CON, were generated in real time during 2014

and 2015. These probabilities were made available to

NHC forecasters for evaluation. The verification of the

regression equations is presented next.

TABLE 4. As in Table 3, except for the final predictor set.

Predictor bn p value

(Intercept) 2588.5 1.16 3 1026

Forecast hour 20.028 5.29 3 10212

Year 10.286 2.14 3 1026

Surface LH flux 10.015 1.44 3 1025

600-hPa RH0 10.093 5.34 3 1025

PWAT 10.284 5.75 3 1025

Lon (8) 20.014 0.012

FIG. 1. Reliability diagram of GFS-based regression equation probabilities for 0–120-h forecasts over the NATL

for the (a) initial and (b) final predictor sets. Results are from the independent data (2011–13 cases). Perfect

reliability is given by the gray, diagonal line; above (below) this line indicates underprediction (overprediction).
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5. Verification

a. 2014

Verification of each regression equation first is

presented for the 2014 hurricane season. For the re-

mainder of the paper, when referencing a global

model (e.g., GFS), the text discusses the regression

equation developed from that model’s output (unless

specified otherwise). NHC’s verification is obtained

from Cangialosi and Franklin (2015). The nonhomo-

geneous2 results are presented first using the Brier

score. The Brier score is the mean of the square of the

difference between the regression-based forecast

genesis probability and the outcome, which equals 1

for a hit and 0 for a false alarm (Wilks 2011). It is

expressed as

Brier Score5
1

n
�
n

k51

(y
k
2 o

k
)2 , (4)

where n is the number of forecast pairs, yk is the forecast

genesis probability for the kth forecast, and ok is the

outcome for the kth forecast (Wilks 2011, his Eq. 8.36).

Given that the forecast probabilities range from 0 to 1

and the outcome values are either 0 or 1, the Brier score

values here will range from 0 to 1. A Brier score of

0 indicates a perfect forecast.

Wilks (2011) also shows that the Brier score can be

expressed as the sum of three components: reliability,

resolution, and uncertainty. The reliability term in-

dicates how well calibrated the forecast probabilities

are. As with the full Brier score, a reliability value of

0 is desirable and indicates a perfectly calibrated re-

gression equation. The resolution term indicates how

well the forecasts can distinguish between the hits and

false alarms. For example, if the verification proba-

bility is 50% for all forecast probability bins, the re-

gression equation has poor resolution. Finally, the

amount of uncertainty in the forecast is given by the

uncertainty term. This term depends on the climato-

logical probability of the hit outcome. For models

with a smaller success ratio (e.g., CMC), the un-

certainty term is smaller. The uncertainty term ranges

from 0 to 0.25; it is minimized when the success ratio

is either 0 or 1 and maximized when the success ratio

is 0.5. The Brier score can be calculated from these

three terms as

Brier Score5 reliability2 resolution

1 uncertainty.
(5)

Wilks (2011) provides a more detailed description of

each of theBrier score components, but it is evident here

TABLE 5. Final predictor list with coefficients (bn) for 2014 regression equations. Predictors are listed in order of decreasing significance

based on their p values (except the intercept term).

NATL 48 h NATL 120 h EPAC 48 h EPAC 120 h

CMC

2174.6 (intercept) 17.57 (intercept) 22.81 (intercept) 25.33 (intercept)

20.04 3 forecast hour 20.03 3 forecast hour 20.03 3 forecast hour 20.01 3 forecast hour

10.023 250–850-hPa DZ 20.07 3 lat 10.24 3 lat 10.22 3 lat

20.04 3 lat 20.02 3 lon 11.12 3 1000–700-hPa G
20.01 3 lon 21.08 3 850-hPa =h �V

GFS

2110.8 (intercept) 2623.3 (intercept) 23.98 (intercept) 23.21 (intercept)

20.04 3 forecast hour 20.03 3 forecast hour 20.04 3 forecast hour 20.02 3 forecast hour

10.013 250–850-hPa DZ 10.30 3 yr 10.29 3 lat 10.24 3 lat

20.03 3 lon 20.02 3 lon 10.01 3 surface LH flux 10.01 3 surface LH flux

10.40 3 PWAT 20.02 3 850-hPa z0

10.01 3 surface LH flux

10.12 3 600-hPa RH0

UKM

18.13 (intercept) 13.71 (intercept) 20.90 (intercept) 21.13 (intercept)

20.03 3 forecast hour 20.02 3 forecast hour 20.04 3 forecast hour 20.02 3 forecast hour

20.02 3 lon 20.02 3 lon 10.21 3 lat 10.22 3 lat

24224 3 lat22

11898 3 lat22 3 ln (lat)

2 This refers to all available results from each technique. For

example, cases where NHC was issuing probabilities on a given

disturbance that the models did not detect and vice versa are

included.
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that small values of reliability and uncertainty and a

large value of resolution are needed for the desirable

small Brier score. Table 6 gives the Brier score values

with each of its components for all 2014 forecasts. For

the NATL 48-h forecasts, NHC and CON have the

smallest Brier scores, due in part to their smaller re-

liability and uncertainty values. Among the individual

regression equations, CMC has the smallest Brier

score because of its superior reliability, compared to

GFS and UKM. At 120 h, NHC again exhibits the

smallest Brier score. NHC’s reliability is comparable

to CON and CMC, and its resolution is comparable to

those of GFS and UKM, but its uncertainty value is

smaller than those of all the regression models. The

uncertainty terms for the regression models are near

the maximum value of 0.25, indicating that the success

ratio is near 0.5. This contributes to the relatively large

Brier scores for the regression equations.

CON exhibits the smallest Brier score for the EPAC

48-h forecasts. NHC is a close second, but suffers a bit

from larger uncertainty values. CMC again has the

smallest Brier score among the individual model re-

gression equations. At 120 h, CMC has the smallest Brier

score overall because of its good reliability and relatively

smaller uncertainty. UKM, CON, and NHC all exhibit the

maximum uncertainty value of 0.25, which largely causes

the total Brier scores near 0.2.

The reliability and resolution components of the

Brier score are also provided graphically using re-

liability diagrams (Fig. 2) that show the verification for

each single-model regression equation (color coded),

the CON regression equation (black line), and NHC

TWO forecasts (red line). Breaks in the lines indicate

that five or fewer cases are available in a given forecast

bin, yielding a sample size that is too small to draw

meaningful conclusions. The 48-h NATL verifica-

tion (Fig. 2a) shows well-calibrated forecasts in the

0%–20% probability bins for CMC, GFS, and NHC

TWO. However, at probabilities $ 30%, CMC and

NHC TWO underpredict genesis, while UKM and

CON overpredict genesis. For the 120-h NATL

(Fig. 2b), CMC is well calibrated, while CON exhibits

some overprediction bias. GFS and UKM generally

overpredict genesis. NHC’s TWO forecasts are very

reliable in the 0%–40% forecast probability bins, but

genesis is underpredicted in the higher forecast

probability bins.

Verification of the guidance was mixed for the 48-h

EPAC forecasts (Fig. 2c). While CMC, CON, and NHC

perform fairly well in the 0%–40% range, they stray from

the perfect reliability line at the higher forecast probability

bins, with CMC, GFS, and NHC (CON and UKM) un-

derpredicting (overpredicting) genesis. For the 120-hEPAC

forecasts (Fig. 2d), GFS and NHC generally underpredict

genesis. CMC and UKM are fairly well calibrated.

Overprediction by UKM (Figs. 2a,b) may be due in

part to a new global model configuration that was

implemented during July 2014. Heming (2014) noted

that reforecasts of TCs using the new UKM global

model configuration generally yielded stronger fore-

cast intensities of mature TCs compared to the prior

configuration. While the impact to genesis forecasts

was not explicitly discussed, it is possible that the new

configuration of the UKM global model also may

produce more intense disturbances or early-stage TCs,

thus causing the UKM-based regression equation to

overpredict genesis during 2014. Upgrades to all

global models in the guidance suite undoubtedly im-

pact the reliability of the regression equations. The

UKM global model upgrade is the most obvious ex-

ample during 2014.

The 120-h NATL GFS regression equation exhibits

especially poor reliability during 2014 (Fig. 2b). The use

of ‘‘year’’ as a predictor was a contributing factor. While

the developmental dataset did indicate an improvement

in GFS global model TC genesis forecasts over time, there

was no guarantee that these improvements would continue

during 2014. Indeed, the GFS global model success ratio

during 2014 was less than during 2010–13. Thus, it became

apparent in the postseason verification that the GFS-based

TABLE 6. Brier score and its components for each set of 2014

forecasts.

Model Brier score Reliability Resolution Uncertainty

NATL 48 h

CMC 0.156 0.032 0.026 0.150

GFS 0.295 0.176 0.032 0.151

UKM 0.281 0.205 0.098 0.174

CON 0.096 0.017 0.039 0.118

NHC 0.089 0.008 0.041 0.121

NATL 120 h

CMC 0.181 0.010 0.057 0.228

GFS 0.249 0.089 0.080 0.240

UKM 0.217 0.045 0.078 0.250

CON 0.210 0.011 0.042 0.241

NHC 0.126 0.014 0.083 0.195

EPAC 48 h

CMC 0.135 0.028 0.058 0.165

GFS 0.187 0.026 0.079 0.240

UKM 0.233 0.112 0.057 0.178

CON 0.104 0.011 0.062 0.155

NHC 0.117 0.008 0.074 0.184

EPAC 120 h

CMC 0.179 0.005 0.056 0.230

GFS 0.215 0.053 0.059 0.221

UKM 0.221 0.008 0.037 0.250

CON 0.200 0.019 0.069 0.250

NHC 0.200 0.026 0.075 0.250
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regression probabilities were inflated by including year as a

predictor. The operational GFS-based regression equation

for the NATL at 120 h was compared to a regression

equation that excluded year as a predictor. While still far

from perfect, removing year as a predictor would have

prevented the notable overprediction (not shown).

It is encouraging that the CMC-based regression

equations performed well for both basins and forecast

windows (Fig. 2). While historical verification indicates

that the false alarm ratio for the CMC global model is

greater than for the other global models (H16), it ap-

pears that the regression equations are able to correct

FIG. 2. Reliability diagram comparing the nonhomogeneous set of regression and NHC TWO probabilities

for the (a) NATL 48-h, (b) NATL 120-h, (c) EPAC 48-h, and (d) EPAC 120-h forecasts during 2014. Verifi-

cation is based on the best track. Perfect reliability is given by the gray, diagonal line; above (below) this line

indicates underprediction (overprediction). Breaks in the lines indicate forecast probability bins with five or

fewer cases.

36 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 08:04 PM UTC



for the global model’s biases and provide well-calibrated

probabilistic forecasts.

To provide amore direct comparison of the verification

results, a set of homogeneous3 NHC TWO and CON

regression forecasts was constructed, with the associated

reliability diagrams presented in Fig. 3. The verification

of the NATL 48-h forecasts in the 10% and 30% forecast

probability bins is comparable between CON and NHC

(Fig. 3a). For probabilities exceeding 30%, the sample

size—given by the black (CON) and red (NHC TWO)

text—is too small. Using probability bins with a 20% in-

terval reveals underprediction in the NHC forecasts and

overprediction from the CON forecasts (not shown).

However, the sample size still is fairly small even when

using the 20% probability interval. Sample size is not an

issue at 120h (Fig. 3b). NHC TWO outperforms CON in

the 0%–30% forecast probability range. However, at the

higher probability bins, CON is better calibrated. Over

the EPAC at 48h (Fig. 3c), NHC TWO (CON) under-

predicts (overpredicts) genesis. At 120h, CON struggles

in the 20%–50% forecast probability range, but is fairly

well calibrated in the 70%–100% range (Fig. 3d). NHC

TWO generally underpredicts genesis.

The sample sizes of the NHC TWO and CON prob-

abilities are not equal. There are a few instances where

FIG. 3. Reliability diagram comparing the homogeneous set of 2014 NHC TWO (red line) and CON regression

(black line) probabilities for the (a) NATL 48-h, (b) NATL 120-h, (c) EPAC 48-h, and (d) EPAC 120-h forecasts.

The number of cases in each forecast probability bin is given in the corresponding red and black text. Verification is

based on the best track.

3 This indicates that only cases where both NHC and the CON

regression were issuing probabilities for the same genesis event are

included.
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the global models disagree on the timing and location of

genesis for a particular disturbance. This causes the

automated tracking algorithm to assume that these are

forecasts of two or three different TC genesis events.

However, because each model genesis forecast occurs

within the TWO-shaded potential genesis region, all

three forecasts are included in the homogeneous verifi-

cation. This issue generally causes the lower forecast

probability bins to contain more cases and to under-

predict genesis and causes the higher forecast probability

bins to have fewer cases and potentially overpredict

genesis. Since it does not occur frequently, however,

this issue likely is not significant.

b. 2015

All regression equations were recalibrated prior to

operational testing during 2015 to determine whether

any predictors should be added or removed when the

2014 forecasts were added to the developmental dataset

that originally consisted of the years 2004–13. The pre-

dictors used in 2015 are given in Table 7. The predictors

for all CMC-based equations are unchanged (Tables 5

and 7), although the coefficients are slightly different in

2015 compared with 2014. The 2015 UKM-based pre-

dictors are similar to the 2014 predictors (Tables 5 and 7),

except that longitude has been added to or removed

from some equations. The greatest differences between

the 2014 and 2015 versions of the regression equations

occur with the GFS-based equations for the NATL

(Tables 5 and 7). Regardless of potential significance,

year was removed from the GFS-based regression

model since there was no guarantee that improved GFS

genesis forecasts would occur during 2015. In fact, ret-

rospective TC genesis forecasts for 2012–14 using the

2015 version of GFS reveals that the 2015 version of

GFS exhibits a greater false alarm ratio and smaller

probability of detection over the NATL compared with

the 2012–14 operational versions of GFS (not shown).

Nonhomogeneous Brier scores with their three com-

ponents for 2015 forecasts are given in Table 8. NHC

exhibits the smallest Brier scores with CON generally a

close second. NHC and CON have comparable re-

liability, but NHC produces better resolution. CMC has

smaller Brier scores than GFS and UKM. The smaller

success ratio for CMC provides it less uncertainty than

GFS and UKM, especially at 120 h.

Nonhomogeneous verification of the 2015 regression

equations was conducted using the best-track files4

(Fig. 4). NHC’s verification is obtained from Cangialosi

and Franklin (2016). The 48-h NATL NHC verification

(Fig. 4a) shows some well calibrated forecasts; however,

CMC, UKM, and CON overpredict genesis. Meanwhile

GFS underpredicts genesis in the 0%–20% forecast

probability range. There are small sample sizes in the

higher forecast probability bins of all regression equa-

tions. NHC’s forecasts for the NATL at 120 h (Fig. 4b)

are well calibrated in the 0%–40% range but under-

predict genesis at the higher forecast probabilities.

CON is reliable in the 10%–40% and 90% bins, but

TABLE 7. As in Table 5, but for 2015 regression equations.

NATL 48 h NATL 120 h EPAC 48 h EPAC 120 h

CMC

2174.58 (intercept) 18.70 (intercept) 23.25 (intercept) 26.61 (intercept)

20.04 3 forecast hour 20.03 3 forecast hour 20.03 3 forecast hour 20.016 3 forecast hour

10.02 3 250–850-hPa DZ 20.07 3 lat 10.28 3 lat 10.24 3 lat

20.04 3 lat 20.02 3 lon 11.35 3 1000–700-hPa G
20.01 3 lon 21.08 3 850-hPa =h �V

GFS

2245.01 (intercept) 2285.7 (intercept) 24.02 (intercept) 24.70 (intercept)

20.04 3 forecast hour 20.03 3 forecast hour 20.04 3 forecast hour 20.02 3 forecast hour

10.03 3 250–850-hPa DZ 20.20 3 200–850-hPa shear 10.32 3 lat 10.27 3 lat

20.02 3 lon 10.03 3 250–850-hPa DZ 10.01 3 surface LH flux 10.01 3 surface LH flux

10.01 3 surface LH flux 20.02 3 850-hPa z0 20.02 3 850-hPa z0

20.04 3 850-hPa z0 10.02 3 surface LH flux 10.001 3 CAPE

UKM

18.28 (intercept) 13.71 (intercept) 23.30 (intercept) 21.13 (intercept)

20.03 3 forecast hour 20.02 3 forecast hour 20.0003 3 forecast hour2 20.02 3 forecast hour

20.02 3 lon 20.02 3 lon 263.9 3 lat21 10.22 3 lat

24224 3 lat22 10.04 3 lon

11897 3 lat22 3 ln (lat)

4 Best-track file for EP042015 is preliminary as of 9 Aug 2016.
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overpredicts genesis in the 50%–60%and 100% forecast

probability bins. UKM (GFS) generally overpredicts

(underpredicts) genesis, similar to that at 48 h.

The regression equations generally are better cali-

brated over the EPAC than the NATL. All guidance

except GFS performs well in the 0%–30% forecast

range for the 48-h EPAC forecasts (Fig. 4c). NHC and

GFS (CMC and CON) generally underpredict (over-

predict) genesis at the higher forecast probabilities.

UKM is well calibrated, except for overprediction in the

40%–50% range. At 120h, UKM and CON are well

calibrated, especially in the 30%–60% range (Fig. 4d).

GFS (CMC) underpredicts (overpredicts) genesis. NHC’s

forecasts generally are reliable, with underprediction in

some probability bins.

Verification of the homogeneous set of NHC TWO

and CON forecasts also was conducted (Fig. 5). With

NHC’s increased use of the guidance products

experimentally during 2015 compared with 2014

(E. Blake 2016, personal communication), this compari-

son becomes less independent, and it is increasingly dif-

ficult for the CON forecasts to outperform the NHC

TWO forecasts. Small sample sizes preclude meaningful

conclusions for the 48-h NATL forecasts (Fig. 5a), except

in the 10%–30% forecast probability range, where CON

exhibits slight underprediction. CON generally under-

predicts genesis, with the best reliability in the 40%–60%

forecast probability range for the 120-h NATL forecasts

(Fig. 5b). Unlike 2014, the NHC TWO forecasts are

better calibrated than CON at the high forecast proba-

bilities. The NHC TWO 48-h EPAC forecasts also are

very reliable in the 80%–90% forecast probability range

(Fig. 5c). Otherwise, NHC (CON) generally under-

predicts (overpredicts) genesis for this time period. The

verification for the 120-h EPAC forecasts (Fig. 5d) is

fairly similar for both sets of forecasts, with a general

underprediction bias.

c. Combined 2014–15

Given the relatively small sample size for some of the

verification comparisons—possibly due in part to rela-

tively quiet TC seasons over the NATL—results for the

combined 2014–15 seasons are presented. Figure 6

shows the homogeneous NHC and CON verification

for the combined 2014–15 period. The probabilities are

comparable in the 10%–40% forecast probability range

for the NATL 48-h forecasts (Fig. 6a). NHC (CON)

tends to underpredict (overpredict) genesis at the larger

forecast probabilities. At 120 h, CON is fairly well cali-

brated in the medium-to-high forecast probabilities,

while NHC tends to underpredict genesis (Fig. 6b).

NHC’s forecasts in the 0%–40% probability range are

quite reliable. NHC (CON) generally underpredicts

(overpredicts) genesis for the EPAC 48-h forecasts

(Fig. 6c). NHCunderpredicts genesis at 120 h, with CON

exhibiting good reliability in the 60%–90% forecast

probability range.

The spatial distribution of the genesis forecasts is also

of interest. Figure 7 shows the forecast genesis location,

120-h regression-based probability (color coded), and

whether the forecast verified as a hit (filled circle) or

false alarm (open circle) for each model. It also shows

the best-track genesis locations during 2014–15 [black

plus signs (1)]. For all of the models, the only clear

spatial bias over the EPAC is that more false alarms

occur at the more equatorward latitudes. Since latitude

is a predictor in the EPAC regression equations, the

probabilities for low-latitude genesis forecasts tend to

be relatively small.

There are different spatial biases over the NATL. For

example, the CMC forecast probabilities over the

NATL are greatest over the MDR between 258 and

458W (Fig. 7a). Meanwhile, there are many small fore-

cast probability events over the northwest and north-

central Atlantic. Appropriately, most of those forecasts

are false alarms. The majority of GFS forecast genesis

events occur over the MDR. There appears to be a shift

in predictability over the MDR near 308W. East (west)

of that longitude there are numerous (fewer) false

alarms. UKM also forecasts many genesis events over

TABLE 8. As in Table 6, but for 2015.

Model Brier score Reliability Resolution Uncertainty

NATL 48 h

CMC 0.115 0.047 0.028 0.096

GFS 0.142 0.033 0.030 0.139

UKM 0.268 0.132 0.041 0.177

CON 0.108 0.007 0.026 0.127

NHC 0.087 0.002 0.066 0.150

NATL 120 h

CMC 0.151 0.009 0.044 0.186

GFS 0.265 0.069 0.054 0.250

UKM 0.247 0.040 0.041 0.248

CON 0.190 0.010 0.044 0.224

NHC 0.145 0.007 0.077 0.215

EPAC 48 h

CMC 0.138 0.042 0.018 0.114

GFS 0.222 0.011 0.034 0.245

UKM 0.223 0.082 0.041 0.182

CON 0.111 0.008 0.036 0.139

NHC 0.110 0.004 0.085 0.191

EPAC 120 h

CMC 0.181 0.008 0.023 0.196

GFS 0.223 0.073 0.024 0.174

UKM 0.220 0.010 0.040 0.250

CON 0.169 0.008 0.073 0.234

NHC 0.166 0.012 0.095 0.249
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theMDR.Most of its genesis forecasts poleward of 258N
verify as false alarms.

6. Summary and conclusions

The goal of this study was to develop a set of reliable

operational TC genesis probability guidance products

based on global model output. A decade’s worth of his-

torical model–indicated TC genesis forecasts was used as

the developmental dataset for deriving multiple logistic

regression equations. These equations attempt to bias

correct the model genesis forecasts and provide proba-

bilistic TC genesis forecasts within 48 and 120 h over the

North Atlantic and eastern North Pacific basins.

Univariable logistic regression equations were de-

veloped to determine the significance of various pre-

dictors in discriminating between the hit and false alarm

outcomes for global model TC genesis forecasts. The

FIG. 4. As in Fig. 2, but for 2015 forecasts.
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signs of the regression coefficients were used to de-

termine whether the statistical relationships be-

tween a predictor and the probability of genesis were

consistent with proposed genesis theories. Results

showed that the models exhibited some of the ex-

pected statistical relationships. For example, a greater

250–850-hPa thickness (i.e., stronger warm core) re-

sulted in greater genesis probabilities. However,

several counterintuitive relationships were noted. For

example, larger values of 850-hPa relative vorticity

were associated with smaller genesis probabilities,

contrary to the expected enhanced cyclonic relative

vorticity being needed for genesis (Gray 1968, 1979).

The statistical relationships between midlevel rela-

tive humidity and genesis probability were intriguing.

CMC exhibited a positive coefficient for the 600- and

700-hPa environmental relative humidity and a negative

coefficient for 600- and 700-hPa relative humidity pertur-

bation. This implies that greater environmental relative

humidity was associated with a greater probability of gen-

esis [consistent with Gray (1968, 1979), Nolan (2007), and

Helms and Hart (2015)]. However, GFS exhibited the op-

posite relationship over the NATL, indicating that smaller

average relative humidity was associated with greater

genesis probability. This could be due to enhanced en-

trainment [similar to findings from Lim et al. (2015)] or the

GFS’s TC secondary circulation being sufficiently estab-

lished at the genesis time to cause subsidence and reduced

relative humidity in the TC environment. Regardless, it is

an interesting disagreement among the models.

Multivariable logistic regression equations then were

developed to provide probabilistic TC genesis guidance.

Separate equations were developed for each global model,

basin, and forecast window. Predictors were selected using

FIG. 5. As in Fig. 3, but for 2015 forecasts.
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backward elimination combined with a multiple frac-

tional polynomial analysis. Cross validation was con-

ducted to ensure that the predictor pool was robust.

Verification of the regression-based forecasts during

the 2014 season revealed that some were well calibrated

(Fig. 2). However, it appears that an upgrade to the

UKM global model configuration caused the regression

equations to overpredict genesis over the NATL. The

GFS-based 120-h NATL regression equation also suf-

fered from overprediction. A retrospectively developed

regression equation with year removed as a predictor

exhibited somewhat better reliability (not shown). The

CMC-based regression equations were quite reliable.

Although the CMC global model exhibited more false

alarms compared toGFS andUKM, it appears that CMC

had more consistent biases than the other models. Thus,

the regression technique was able to correct for the biases

and providewell-calibrated probabilistic genesis forecasts.

However, one should not solely rely on the CMC, since it

does not often produce probabilities . 70%. The con-

sensus forecast benefits from information from all three

individual models and is able to capture the high genesis

probability events. Homogeneous comparisons between

the consensus regression equation and NHC TWO

probabilities (Fig. 3) showed that NHC performed best

in the 0%–30% forecast probability range at 120h.

However, the 120-h consensus regression equationswere

more reliable in the higher forecast probability ranges.

Verification during the 2015 season revealed some

results similar to those from 2014. The GFS- (UKM-)

based regression equations underpredicted (over-

predicted) genesis over the EPAC (NATL). In contrast

to 2014, the 120-h NATL GFS-based regression equa-

tion underpredicted genesis during 2015. The CON re-

gression equation had a slight overprediction bias in both

basins. NHC’s forecasts generally were well calibrated,

FIG. 6. As in Fig. 3, but for 2014–15 forecasts.
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FIG. 7. Plot showing the locations of model-indicated genesis events, the regression-

based 120-h genesis probability (color coded), and whether the forecast verified as a hit

(filled circle) or false alarm (open circle) for (a) CMC, (b) GFS, (c) UKM, and

(d) CON.
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with some underprediction bias. The homogeneous com-

parison between the NHC and CON forecasts revealed

that NHC’s underprediction bias at the higher forecast

probability bins was reduced in 2015 compared with

2014. NHC tested and evaluated these guidance

products during 2014 and 2015 to determine whether

they showed promise as an operational guidance tool.
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APPENDIX A

Real-Time Guidance Products

Since this research was sponsored by the Joint Hur-

ricane Testbed, the major goal was to create real-time

FIG. A1. Example graphics from the Tropical CycloneGenesis Portal website. (a) Overview page of TC genesis forecasts for theNATL.

(b) Graphic of GFS-indicated TC genesis events. The ex (3) indicates the forecast genesis location (colored by categorical genesis

probability) and the filled circles (d) give the model-indicated forecast track. The ‘‘154 hr’’ indicates the time with respect to model

initialization at which the genesis criteria were met. This time is provided for situational awareness, but the probability of genesis is valid

for the 0–120-h forecast window. The genesis probability is calculated from the multiple logistic regression equation for the GFS 120-h

NATL forecasts. (c) Graphic of the consensus-based TC genesis events. The3 gives the average genesis location (colored by categorical

genesis probability). The genesis probability is calculated from the consensus-based logistic regression equation. The letters under the

probability indicate the models that are predicting genesis to occur.
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TC genesis guidance products that could be used by the

Hurricane Specialist Unit at the National Hurricane

Center. The multiple logistic regression equations de-

veloped in section 4 were used to determine 48- and

120-h genesis probabilities for each model-indicated

TC genesis event. The process was fully automated,

and output was displayed on a locally hosted website

(http://moe.met.fsu.edu/modelgen) that was accessible by

NHC and the general public. A suite of guidance

products was provided.

An overview graphic of the current model initializa-

tion cycle (e.g., Fig. A1a) is shown on thewebsite’s home

page. This graphic indicates whichmodels are predicting

genesis and the categorical genesis probability for each

model-generated TC. The user can gain more detailed

information by selecting an individual model on the left

toolbar. For example, Fig. A1b shows the forecast gen-

esis location, track, and genesis probability for each

GFS-indicated genesis event. Multiple models some-

times predict the same genesis event. In those cases, the

consensus product (Fig. A1c) provides a single genesis

probability for each forecast TC.

Several text products also are available. All graphics

have a corresponding text product that gives the genesis

forecast time, location, and probability in a tabular

format. A more detailed table provides the values of the

genesis criteria and the predictors used in the regression

equations at each 6-h model output time. Finally, a

history file of each forecast TC displays how the

forecast genesis time, location, and probabilities

have changed with each model initialization cycle. This

gives the forecasters trend information and allows them

to see how consistently a given TC has been forecast.

APPENDIX B

Definition of Symbols

Table B1 provides the definitions of the symbols used

in this paper.
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