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ABSTRACT: High-fidelity analyses and forecasts of integrated vapor transport (VT) are central to the study of Earth’s
hydrological cycle as well as high-impact phenomena such as monsoons and atmospheric rivers. The impact of the in-line
analysis correction-based additive inflation (ACAI) on IVT biases and forecast errors is examined within the Navy Earth
System Prediction Capability (Navy ESPC) global coupled system. The ACAI technique uses atmospheric analysis correc-
tions from the data assimilation system to approximate model bias and as a representation of stochastic model error to
simultaneously reduce systematic and random errors and improve ensemble performance. ACAI reduces the global aver-
age magnitude of the 7- and 14-day IVT bias by 16%–17% during Northern Hemisphere summer, reaching 70% reductions
in some tropical regions. The global average IVT bias reduction is similar to the bias reduction for low-level wind speed
bias and considerably smaller than the bias reduction in total precipitable water. The localized regions where ACAI
increases IVT bias occur where the control IVT biases change sign and structure with increasing forecast lead time, such as
the South Asian monsoon region. Substituting analyzed wind or moisture fields for the forecast fields when calculating the
forecast IVT confirms that, on average, wind errors dominate the IVT error calculation in the tropics, although wind and
moisture error contributions are comparable in the extratropics. The existence of regions where using either analyzed
winds or analyzed moisture increases IVT bias or mean absolute error reveals areas with compensating errors.

KEYWORDS: Atmospheric river; Monsoons; Coupled models; Ensembles; Model errors; Numerical weather
prediction/forecasting

1. Introduction

The horizontal transport of moisture in the atmosphere,
integrated vapor transport (IVT), is central to the concept
and study of Earth’s hydrological cycle as well as high-impact
phenomena such as monsoons and atmospheric rivers (ARs).
IVT and related quantities are used, for example, to analyze
the global energy and hydrological cycles (e.g., Peixoto and
Oort 1992; Trenberth et al. 2011), meridional latent heat
transport in the general circulation (e.g., Shaw and Pauluis
2012), moisture flux convergence in El Niño precipitation
anomalies (Mo and Higgins 1996), decadal trends in tropical
circulations (Sohn and Park 2010), and the west African Mon-
soon (WAM) cycle and variability (Thorncroft et al. 2011;
Lélé et al. 2015). IVT is also used to define ARs (Shields et al.
2018; Rutz et al. 2019; Ralph et al. 2019). ARs are long

filaments of horizontal moisture vapor transport (Zhu and
Newell 1998; Ralph et al. 2017; Gimeno et al. 2014) that are
associated with both beneficial and hazardous impacts (e.g.,
Ralph et al. 2006; Dettinger et al. 2011; Lavers et al. 2011;
Neiman et al. 2011; Ramos et al. 2015).

Given the central role that IVT plays in these high-impact
phenomena, previous studies investigate model errors and
biases in simulating and forecasting IVT and its wind and mois-
ture components on a range of time scales and applications. In
a comparison of the National Centers for Environmental Pre-
diction (NCEP) and NASA Data Assimilation Office (DAO)
reanalyses, discrepancies in tropical moisture transport are
largely due to differences in the divergent wind (Mo and
Higgins 1996). Humidity contributes more than wind to IVT
differences between the European Centre for Medium-range
Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5;
Hersbach et al. 2020) and AR reconnaissance (Ralph et al.
2020) dropsondes above 800 hPa, while winds contribute more
than humidity at lower levels (Cobb et al. 2021). Examination
of the ECMWF Integrated Forecast System (IFS) shows that the
largest contributor to northeastern Pacific IVT uncertainty in
analyses and short forecasts is 850-hPa winds, and that dry biases
and low wind speed biases contribute to a low bias in water vapor
flux (Lavers et al. 2018, 2020). Nardi et al. (2018) find IVT bias of
over 15% over portions of the northeastern Pacific over the first
3 days of the forecast when both forecast and verifying analysis
had a strong AR (with IVT . 500 kg m21 s21). Studies have
also looked at moisture transport errors in monsoon regions,
with the WAM receiving considerable attention as part of the
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African Monsoon Multidisciplinary Analysis (AMMA; Redel-
sperger et al. 2006). In an intercomparison of water budgets from
ECMWF Interim reanalyses and NCEP Reanalysis I and II,
Meynadier et al. (2010) use operational forecast models to show
that significant biases in the Saharan heat low–driven meridional
circulations contribute to errors in the representation of the
WAM water cycle. In general circulation model seasonal fore-
casts there are substantial biases and inter-model differences in
the 900-hPa moisture fluxes and winds associated with the June–
September WAM (Xue et al. 2010). Likewise, moisture flux over
the western Indian Ocean is shown to contribute to the precipita-
tion deficits in NCEP coupled forecast system model version 2
(CFSv2) Indian monsoon simulations (Sahana et al. 2019).

Forecast errors in IVT and other fields are due to initial
state and model errors, and an ensemble forecast system that
accounts for model uncertainty can result in improved proba-
bilistic forecasts and reduced forecast biases on many differ-
ent time scales (Berner et al. 2017). Improved stochastic
forcing in the NCEP Global Ensemble Forecast System
(GEFS) increases the extent of skillful forecast lead times by
about 4 days (Li et al. 2019). The new stochastic forcing has a
significant impact on both the amplitude and phase errors of
the MJO. The new schemes also reduce the model forecast
biases in tropical zonal winds, temperature, and humidity.
Stochastically perturbed parameterization tendencies (SPPTs)
improve the ECMWF seasonal forecasting system through
reducing overly strong convection in the Maritime Continent
area, in turn reducing biases in outgoing longwave radiation
(OLR), cloud cover, precipitation, and lower-tropospheric
winds (Weisheimer et al. 2014). There is also an improvement
in the realism of the frequency and amplitude of the MJO.
Given these previous results, we may expect that accounting
for model uncertainty in an ensemble system will likewise
improve forecasts of IVT.

Crawford et al. (2020) evaluate the impact of analysis cor-
rection-based additive inflation (ACAI) on the performance
of the uncoupled Navy Global Environmental Model (NAV-
GEM) for a variety of deterministic and ensemble metrics.
The in-line ACAI method, based on the earlier work of
Piccolo and Cullen (2016), Bowler et al. (2017) and Piccolo
et al. (2019), has both a systematic component (here con-
structed from a seasonal mean) and a random component,
and is designed to both correct model biases and enhance
ensemble spread. In the uncoupled system study of Crawford
et al. (2020), the addition of ACAI improves bias and RMSE
for lower-tropospheric temperature and 500-hPa height,
although ACAI leads to a degradation of some biases at long
lead times. ACAI also improves the match between squared
ensemble spread and the bias-corrected ensemble mean
squared error (or ensemble calibration) in an ensemble for-
mulation in which the initial perturbations are produced using
an ensemble of data assimilation (EDA) method.

Given how central IVT is to the general circulation and
hydrological cycles and certain types of high-impact weather,
such as monsoons and ARs, and given the success of stochastic
methods in improving forecasts, here we evaluate the impact of
ACAI on IVT forecasts using the new Navy Earth System Pre-
diction Capability (Navy ESPC; Barton et al. 2021) global

coupled system. As IVT has both a wind and moisture compo-
nent, we use an evaluation of the impact of ACAI on these indi-
vidual components to understand the impact of ACAI on IVT.
To confirm hypotheses based on this component analysis, we
use a technique following Camargo et al. (2007), Lavers et al.
(2018), and Cobb et al. (2021) in which we recalculate IVT fore-
cast bias and error substituting in reanalysis winds or moisture
for the forecast fields to quantify the impacts of each compo-
nent on IVT biases and errors.

The methodology, including a description of the forecast
system, ensemble design, and experimental design, is pre-
sented in section 2. The results described in section 3 include
an analysis of the impact of ACAI on the prediction of IVT
and an analysis of the wind and moisture components of the
IVT errors. A brief summary and conclusions are presented
in section 4.

2. Methodology

a. Forecast system

The Navy ESPC (Barton et al. 2021) is the U.S. Navy’s first
global coupled forecast system, which became operational at
the Fleet Numerical Meteorology and Oceanography Center
in August 2020. The system comprises NAVGEM (Hogan
et al. 2014) for the atmosphere and the Global Ocean Fore-
casting System version 3.1 (GOFS 3.1; Metzger et al. 2014) for
the ocean and cryosphere. GOFS comprises the Hybrid Coor-
dinate Ocean Model (HYCOM; Chassignet et al. 2003) and
the Los Alamos–developed Community ICE model (CICE;
Hunke and Lipscomb 2015). The system is coupled using the
Earth System Modeling Framework (ESMF; Theurich et al.
2016), using a 1-h coupling time step. The system currently
uses a loosely coupled data assimilation (DA) methodology in
which the NAVGEM and GOFS systems are initialized with
increments from their own data assimilation systems, but use
the Navy ESPC coupled forecast for the model background
information. For NAVGEM, the DA system is the Naval
Research Laboratory (NRL) Atmospheric Variational Data
Assimilation System Accelerated Representer (NAVDAS-
AR), a hybrid four-dimensional variational system (Rosmond
and Xu 2006; Kuhl et al. 2013). GOFS is initialized through
the Navy Coupled Ocean Data Assimilation (NCODA) system,
a full three-dimensional multivariate DA system (Cummings
and Smedstad 2014). The NAVGEM resolution is T359
(approximately 37 km) with 60 levels. In the operational config-
uration, HYCOM and CICE are run at 1/128 resolution, but in
order to save computational resources, the ensemble forecasts
examined here use 1/48 resolution in HYCOM with 41 layers
and 1/48 CICE with four ice categories. Another difference
from the operational configuration is that in these experiments,
CICE version 5 is used, while in the operational configuration,
CICE version 4 is used. Differences in the configuration of the
experimental setup used here and that of the operational system
are provided to the reader primarily for the sake of reference.
While evaluation of different model configurations do show
marginal impacts on the skill of the forecasts, we do not antici-
pate any dependence of the findings presented here on these
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system formulation differences, as the settings and model ver-
sions are consistent for all experiments discussed here. For an
in-depth description of the Navy ESPC system see Barton et al.
(2021), Barton et al. (2019), and Ruston et al. (2019).

b. Ensemble design

Initial perturbations are created using an EDA (Houtekamer
et al. 1996; Kucukkaraca and Fisher 2006), i.e., adding random
errors to the observations, consistent with observation error sta-
tistics, in both NCODA and NAVDAS-AR data assimilation
update cycles. Sixteen parallel update cycles are run, with mem-
ber 0 using the unperturbed observations, and the remaining
15 members using observations with independent random per-
turbations. These perturbed initial conditions are created using
the operational version of Navy ESPC with 1/128 HYCOM and
CICE, which are then truncated to the 1/48 resolution for the
ensembles considered here. The 16-member 45-day ensemble
forecasts are produced once per week (every Wednesday) from
1 February 2017 to 24 January 2018 (a total of 52 ensemble
forecasts), although for a fair comparison with other experi-
ments, only 7 of the 16 ensemble forecasts are considered here.
Members 1–7 have been selected from the 16 available mem-
bers in the CTL experiment. As each perturbed member differs
only by the specific noise added to the observations in the
EDA, there is no expected dependence of the results on the
sub-selection of members. These control (CTRL) ensembles
are produced without using any methods that account for model
uncertainty.

ACAI has been tested in the stand-alone NAVGEM sys-
tem (Crawford et al. 2020) and is currently being tested in
Navy ESPC as a way to decrease model bias, increase ensem-
ble spread, and improve forecast performance. The ACAI
perturbations are created from the atmospheric component of
the Navy ESPC loosely coupled update cycle from a prior
year (2011). This may be suboptimal as the model biases may
be a function of the large-scale environmental initial condi-
tions (e.g., ENSO phase), and tests are ongoing to use analysis
increments from an update cycle that immediately precedes
the forecasts. The in-line ACAI perturbations are added to
the atmospheric forecast tendencies as they are integrated
forward in time and include both a mean (systematic) and
random (stochastic) component taken from an archive of
analysis increments. In our current experimental design, the
ACAI increments are not added to the short forecasts used in
the data assimilation update cycle, such that the initial states
for the ACAI and control ensemble forecasts are identical.
As mentioned in the introduction, in tests with uncoupled
NAVGEM, Crawford et al. (2020) demonstrate significant
improvements in both model bias and ensemble mean RMSE
overall, although there are some degradations in bias at later
lead times. ESPC ensemble forecasts are repeated with the
addition of ACAI during the forecast integration, and these
forecasts are referred to as ACAI. For computational reasons,
the ACAI ensembles contain only seven members, so, as
mentioned above, only seven members of the CTL ensemble
are considered here for a fair comparison.

c. Diagnostics

IVT is defined as

IVT 5 2
1
g

�300

1000
qVdp, (1)

where g is gravity, q is specific humidity, V is wind velocity,
and p is pressure. We integrate IVT from 1000 to 300 hPa.
Errors in IVT can come from both errors in moisture and
errors in wind. We therefore examine errors in total precipita-
ble water (TPW) and low-level winds. In our diagnostics, we
focus on bias, but also consider mean absolute error (MAE).
Both biases and MAE are calculated for the forecast ensem-
ble means.

For verification, we use the ERA5 global reanalysis (Hersbach
et al. 2020). We also use this data to diagnose the relative impor-
tance of winds and moisture to IVT biases. For example, to
examine the influence of winds on IVT biases, we compute IVT
in Eq. (1) using humidity from the ERA5 verifying analysis and
winds from our model forecast experiments (CTL_ERAMOIST
and ACAI_ERAMOIST). Conversely, to examine the influence
of moisture on IVT biases, we use winds from ERA5 and spe-
cific humidity from our model forecast in the IVT calculation
(CTL_ERAWIND and ACAI_ERAWIND). This diagnostic
method follows that of Camargo et al. (2007) in which they use a
genesis potential index to diagnose the effects of ENSO on tropi-
cal cyclone genesis. They assess the importance of four individual
variables that comprise the genesis potential index by using long-
term climatological values for three of the genesis potential vari-
ables, and interannually varying values for the other variable.
Lavers et al. (2018) use a similar diagnostic technique in which
they assess the impact of IVT analysis and forecast uncertainty
in the ECMWF IFS by substituting in specific humidity or winds
in the lower troposphere with unperturbed analysis values or
observations using AR Reconnaissance dropsondes in the east-
ern North Pacific. They find that the 850-hPa winds are the dom-
inant contribution to IVT forecast uncertainty in the analysis and
at the 48- and 96-h forecast times. Cobb et al. (2021) also use this
technique of substituting in AR Reconnaissance dropwindsonde
observations of winds or moisture in the vapor transport calcula-
tion in the representation of AR conditions in three reanalyses.
They find that humidity differences contribute more than wind
differences to moisture transport biases above 800 hPa, while
winds dominate at lower levels. While biases do exist in the
ERA5 reanalysis IVT (Cobb et al. 2021), they are small (on
average less than 13 kg m21 s21) as compared to the 7- and
14-day forecast errors in this study, so it is reasonable to use the
ERA5 reanalysis for verification. In a similar manner, our substi-
tution of the ERA5 moisture or ERA5 winds into the error cal-
culations will allow us to determine the relative contributions of
wind and moisture errors to IVT error. We emphasize that this
technique specifically identifies the contributions of the wind and
moisture errors to the instantaneous calculated IVT errors, not
sources of that error. Likely sources of model error, such as the
parameterization of deep convection, will result in related errors
in the winds, moisture, and temperature fields. The different
experiments and IVT component attribution analyses using
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ERA5 data substituted for forecast fields are summarized in
Table 1.

3. Results

a. Impact of ACAI on IVT and component biases

ACAI results in a decrease in the globally averaged magni-
tude (absolute value) of the IVT ensemble mean bias at all
leads times for all seasons, but the reduction is largest for JJA
(Fig. 1). These results are consistent with the general bias
reductions noted by ACAI in atmosphere-only tests with
NAVGEM (Crawford et al. 2020). The biases reach approxi-
mate saturation values from around 10 days to 2 weeks into
the forecast, when ACAI reduces the global average control

bias by 16.4%, 12.8%, 11.2% and 12.6% during JJA, SON,
DJF, and MAM, respectively. At forecast day 7, the reduc-
tions are 17.7%, 10.3%, 9.5%, and 11.4% for JJA, SON, DJF,
and MAM, respectively.

The magnitude and sign of the JJA 14-day IVT biases show
considerable spatial variability (Fig. 2a). The largest negative
IVT biases occur over the tropical Atlantic, Arabian Sea, and
Bay of Bengal. The largest positive biases are over the western-
central tropical Pacific and over the Sahel and western Africa
just north of the equator in the WAM region, and the Indian
Ocean just south of the equator. ACAI generally reduces the
magnitude of these biases, as illustrated by a reduction in the
saturation of the colors over most regions in Fig. 2b as com-
pared to Fig. 2a. Figure 2c shows the absolute value of the CTL
IVT biases subtracted from the absolute value of the ACAI

TABLE 1. Configuration of the ensemble experiments and diagnostic calculations.

Model uncertainty Winds used in error calculations Specific humidity used in error calculations

CTL None Navy ESPC Navy ESPC
CTL_ERAMOIST None Navy ESPC ERA5
CTL_ERAWIND None ERA5 Navy ESPC
ACAI ACAI Navy ESPC Navy ESPC
ACAI_ERAMOIST ACAI Navy ESPC ERA5
ACAI_ERAWIND ACAI ERA5 Navy ESPC

FIG. 1. Global average of the magnitude of the IVT bias (kg m21 s21) for CTL (blue) and ACAI (red) for (a) JJA,
(b) DJF, (c) MAM, and (d) SON as a function of forecast lead time.
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IVT biases; cool colors indicate regions where ACAI
reduces the magnitude of the bias and warm colors indicate
regions where ACAI increases the magnitude of the bias.
ACAI is particularly effective at reducing biases in the west-
ern-central Pacific, the Atlantic, and the WAM region,
where significant biases in vapor transport have been identi-
fied in other systems as well (e.g., Meynadier et al. 2010;
Xue et al. 2010). In some regions of the tropical Pacific and

over Africa just north of the Gulf of Guinea, ACAI reduces
IVT biases by up to 70%. However, there are some regions,
including central Indian and the northern Arabian Sea, and
the eastern Bay of Bengal, in the South Asian summer mon-
soon region, where ACAI increases the IVT bias. Precipita-
tion biases may result from coupled processes and SST cold
biases (Wang et al. 2018) and therefore ACAI in the atmo-
sphere may not be sufficient to address them. Some of the

FIG. 2. JJA IVT bias (kg m21 s21) for (a) CTL, (b) ACAI, and (c) the absolute value of the
IVT bias for ACAI minus the absolute value of the IVT bias for CTL (kg m21 s21) for forecast
day 14. The solid, dotted, and dashed boxes denote the western and central tropical Pacific,
Indian Ocean, and northern tropical and subtropical African regions referred to in the text.
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noisy patterns in the midlatitudes, particularly over the
Southern Ocean and extratropical western Pacific, probably
indicate that the relatively small sample size and smaller
bias to variance ratio result in the biases being ill defined.
Synoptic eddies play a relatively larger role in the meridio-
nal transport of moisture in the extratropical storm tracks
than in tropical and subtropical regions (Newman et al.
2012), and this is consistent with sampling issues limiting the
effectiveness of ACAI in the storm track regions more than
in the tropics.

The large JJA IVT over western Africa and the Arabian
Sea and India, associated with the WAM and South Asian
Monsoon (Fig. 2), are replaced by much smaller biases during
DJF in those regions (Fig. 3), when the boreal summer mon-
soon is no longer active. The IVT biases in regions associated
with the boreal winter monsoon, such as northern Australia,
southern Africa and southern Brazil, are weaker and not as
spatially coherent as those associated with the boreal summer
monsoon. There is still a positive IVT bias over the tropical
western and central Pacific, but the bias itself, as well as the

FIG. 3. As in Fig. 2, but for DJF.
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ACAI correction of the bias, are smaller in DJF than in JJA.
Because the biases and the IVT corrections are largest in the
tropics during JJA, we focus on tropical regions during this
season when interpreting ACAI’s impact. However, for the
sake of completeness, we include the results for other seasons
in the supplemental figures (Figs. S1–S6).

As described in Crawford et al. (2020), the systematic com-
ponent of ACAI based on a time average of analysis incre-
ments is designed to counteract model biases (although the
stochastic component is also effective at reducing biases). The
design of ACAI is based on the concept that the short-term
biases diagnosed in the update cycle are representative of the
model biases that develop later in the forecast integration and
that bias characteristics remain similar through the forecast
integration time. Maps of the 7-, 14-, and 21-day IVT biases
(Figs. 4a,c,e) indicate that in general the bias patterns remain
similar during the integration time, particularly for the large
biases over the western-central tropical Pacific, tropical

Atlantic, and WAM region. This tendency for many model
systematic errors to stabilize early in the forecast, especially
those associated with convection, is also found in other mod-
els (e.g., Xie et al. 2012). These are regions where ACAI is
particularly effective at reducing biases at all three forecast
times (Figs. 4b,d,f). In contrast, over regions where the IVT
bias changes with time, such as over India and the Bay of
Bengal, ACAI does not reduce the biases at all lead times.
The band of weak IVT bias over the Arabian Sea moves
northward in time, which may indicate that this particular bias
is associated with the evolution of the South Asian monsoon,
or perhaps with the boreal summer intraseasonal oscillation
(BSISO; Lawrence and Webster 2002; Lee et al. 2013). The
inability for analysis increment-based correction schemes to
represent state-dependent error statistics is noted in Piccolo
et al. (2019) as a potential reason that these schemes may
increase ensemble mean RMSE for some fields, despite over-
all promising performance.

FIG. 4. (left) JJA IVT bias (kg m21 s21) for CTL and (right) the absolute value of the ACAI IVT bias minus the
absolute value of the CTL IVT bias (kg m21 s21) for forecast days (a),(b) 7; (c),(d) 14; and (e),(f) 21. Panels (c) and
(d) are the same as Figs. 2a and 2c and are repeated to facilitate comparison. The solid, dotted, and dashed boxes
denote the western and central tropical Pacific, Indian Ocean, and northern tropical and subtropical African regions
referred to in the text.
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As both wind and moisture biases and errors may contrib-
ute to IVT biases and errors, we consider the impact of ACAI
on TPW and 850-hPa wind speed separately (Fig. 5). We
focus on the 850-hPa level for the winds based on the Lavers
et al. (2018) result that the winds at that level contribute more
to 2- and 4-day forecast uncertainty in IVT than winds at 925
or 700 hPa. Preliminary analysis indicated that the results for
winds at the 925-hPa level were very similar. ACAI is very
effective at reducing the TPW bias (by 29.1% and 28.3% at
forecast day 7 for JJA and DJF, respectively, and by 33.2%
and 31.1% at forecast day 14 for JJA and DJF, respectively).
ACAI also reduces 850-hPa wind speed biases, but the per-
cent reduction is about half of that for the TPW bias reduc-
tion (by 16.3% and 14.5% at forecast day 7 for JJA and DJF,
respectively, and by 14.3% and 15.3% at forecast day 14 for
JJA and DJF, respectively). TPW bias reductions in MAM
are similar to JJA and those in SON are similar to DJF, while
the wind speed bias reductions are smaller in MAM and SON
than in JJA or DJF (Fig. S1). The larger impact of ACAI on
TPW than on low-level wind speed is also apparent in the
maps of the 14-day biases (Fig. 6). ACAI reduces the magni-
tude of the large TPW biases over the Sahel and most of the
subtropics (cf. Figs. 6a,c,e), but results in larger biases in some
regions such as the tropical Indian Ocean. ACAI effectively
increases TPW over most tropical and subtropical oceanic

regions, and this results in a decrease in TPW bias over the
regions where CTL is too dry, but can result in an increase in
TPW bias over regions where CTL is too moist, such as the
near-equatorial Indian Ocean. During DJF (Fig. S2), ACAI
is likewise effective at reducing TPW bias over many
regions of the tropics, particularly over the tropical Atlantic
and southern Indian Ocean, but it results in increased biases
in other tropical areas, including the tropical eastern Pacific
and the northern Indian Ocean and Bay of Bengal. For 850-
hPa wind speed, the impact of ACAI is more mixed, with
significant bias reductions over the western Pacific tropical
region and northern tropical Africa, but increases in bias
over parts of India, the eastern Indian Ocean, and regions
of the extratropics. As with the IVT biases, the regions
where ACAI has the largest positive impact on wind speed
tend to be where the sign of the bias in the CTL forecast
stays the same over different lead times (e.g., the western
tropical Pacific and northern equatorial Africa, not shown).
The regions where ACAI has a negative impact tend to be
regions where the CTL bias changes with forecast lead time.
As mentioned above, this may be due to the model bias
changing with the evolution of the South Asian summer
monsoon, or perhaps with the BSISO. ACAI will also be
less effective in regions where the model biases are a func-
tion of large-scale environmental anomalies (e.g., ENSO),

FIG. 5. (a),(b) Global average bias magnitude for CTL (blue) and ACAI (orange) for TPW (mm) and (c),(d) 850-hPa
wind speed (m s21) for (left) JJA and (right) DJF as a function of forecast lead time in days.
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and where the anomalies differ between the time period
used to create the analysis increment archive and the fore-
cast time period.

The percent reduction in IVT bias (Fig. 1) gained through
the addition of ACAI is similar to that seen in the percent
reduction in wind speed bias (Figs. 5c,d), but substantially
smaller than the percent reduction in TPW (Figs. 5a,b), which
suggests that winds may be having a bigger impact on IVT
biases than moisture. Comparing the 14-day CTL IVT bias
(Fig. 2a) with the CTL TPW and CTL 850-hPa wind speed
biases (Figs. 6a,b) suggests that the dominant term (either
moisture or winds) is regionally dependent. In the western
and central tropical Pacific, the positive IVT bias appears
related to the positive wind bias, while the TPW bias in that
region is less spatially coherent. Over Africa, the positive IVT
bias is related to a positive wind speed bias directly north of
the Gulf of Guinea, over the Ivory Coast, Ghana, Nigeria,
and neighboring countries, in a region where the TPW bias is
near zero. Conversely, the positive IVT bias directly north of
this region, over the Sahel, corresponds to a region of positive

TPW bias, but near neutral to slightly negative wind speed
biases.

The impact of ACAI on IVT biases can likewise be inter-
preted through evaluation of the impact of ACAI on TPW
and wind speed biases. The spatial patterns of the impact of
ACAI on 14-day IVT biases (Fig. 2c) is more similar to corre-
sponding plots for wind speed (Fig. 6f) than for TPW (Fig. 6e).
For example, the large reduction in IVT bias over the tropical
western Pacific corresponds to a large reduction in wind speed
bias in that region. The same is true for northern equatorial
Africa, particularly over Ghana and the Ivory Coast. In both
of these regions, ACAI has either a small or slight positive
impact on the TPW biases. ACAI also results in an increase in
IVT bias over regions of the Arabian Sea and parts of India,
and a similar increase is shown for the wind speed biases.
Again the Sahel is a contrasting region, where ACAI results in
reduced IVT and TPW biases, but has negligible impact on
wind speed biases. However, overall, a comparison of IVT
biases with wind speed and TPW biases indicates that the
wind speed biases dominate IVT biases in most regions. We

FIG. 6. JJA 14-day TPW bias (mm) for (a) CTL, (c) ACAI, and (e) the absolute value of the TPW bias for ACAI
minus the absolute value of the TPW bias for CTL (mm). JJA 14-day 850-hPa wind speed bias (m s21) for (b) CTL,
(d) ACAI, and (f) the absolute value of the wind speed bias for ACAI minus the absolute value of the wind speed
bias for CTL (m s21). The solid, dotted, and dashed boxes denote the western and central tropical Pacific, Indian
Ocean, and northern tropical and subtropical African regions referred to in the text.
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test this hypothesis directly in the next section where we con-
sider the impact of substituting either analyzed winds or ana-
lyzed moisture in the IVT calculation and then recalculating
the forecast biases and errors.

b. Component evaluation of IVT bias and error

Substituting either ERA5 winds or ERA5 moisture into the
IVT calculations confirms that for the global average, the
wind errors are the dominant factor in IVT bias calculations
for the first month of forecast lead time (Fig. 7). For JJA,
substituting in the ERA5 specific humidity while using the
forecast winds results in a 17.5% and 16.6% reduction in IVT
bias for the 14-day forecasts for CTL and ACAI simulations,
respectively (Figs. 7a,b). The percent bias reduction is over
twice as large (42.4% and 42.1%) when substituting in the
ERA5 winds while using the forecasted moisture. Similar
results are found for DJF, where using the ERA5 moisture
reduces the 14-day IVT bias by 17.3% for CTL and 20.5% for
ACAI, and using the ERA5 winds reduces the bias by 30.7%
in CTL and 33.7% in ACAI. The fractional reductions when
using the ERA5 winds are even larger for the 7-day IVT bias
than the 14-day bias (reaching 48.6% and 36.3% in JJA and
DJF, respectively, for the CTL case), although as lead time
increases, the impact of using the ERA5 winds is gradually

reduced, particularly in the DJF CTL case. The impact of
using analyzed winds and analyzed moisture on the IVT
biases during SON are very similar to the results for DJF,
while the impacts during MAM are qualitatively similar to the
results for JJA, but of smaller magnitude (Fig. S3).

The maps of the JJA 14-day IVT bias (Fig. 8) show that the
overall magnitude of the impact on the bias is greater when using
the ERA5 winds than when using the ERA5 moisture. In the
western-central tropical Pacific, the positive IVT bias in CTL
(Fig. 8a) remains basically unchanged in CTL_ERAMOIST
(Fig. 8b), and the magnitude of the biases in CTL and CTL_
ERAMOIST (Fig. 8d) are comparable (slightly increased in
some parts of this region). In contrast, CTL_ERAWIND
reduces this IVT bias to near zero (Fig. 8c). This confirms the
hypotheses developed in the previous section based on the low-
level wind speed and moisture biases (Figs. 6a,b) that the IVT
biases in this region are primarily due to wind biases. Similar
examination of northern tropical and subtropical Africa indicates
that CTL_ERAWIND reduces the IVT bias over the whole
region, but is particularly effective at reducing the biases in the
southern portion of that region, just north of the Gulf of Guinea.
CTL_ERAMOIST on the other hand reduces the biases over
the Sahel (and actually increases the biases along the coast). This
is again consistent with the large positive moisture biases over

FIG. 7. Global average of the absolute value of the IVT bias (kg m21 s21) for CTL (blue), CTL_ERAMOIST
(gold), and CTL_ERAWIND (green) for (a) JJA and (c) DJF; and for ACAI (red), ACAI_ERAMOIST (purple),
and ACAI_ERAWIND (brown) for (b) JJA and (d) DJF as a function of forecast lead time in days.
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the Sahel (Fig. 6a), and significant positive wind speed biases
immediately north of the Gulf of Guinea (Fig. 6b).

Substituting the analyzed winds or analyzed moisture for
the forecast fields does not reduce the IVT bias everywhere,
as indicated by the regions with warm colors in Figs. 8d and
8e. This points to compensating errors between the wind and
moisture fields. This effect is most pronounced over the
extreme northern Bay of Bengal and northern India. The neg-
ative moisture biases in the regions (Fig. 6a) are counteracted
by the positive wind speed biases (Fig. 6b), such that replace-
ment of either with the analyzed fields actually increases the
IVT biases. This also explains why ACAI actually results in
an increase of IVT bias in this region (Fig. 2c) despite the fact
that ACAI reduces wind biases here (and increases the wind
biases just to the south of this region, Fig. 6f) and has a near
neutral impact on the dry moisture biases here. Another
example is the southern Pacific region off the coast of Peru
and Chile. Here the dry bias and the positive wind speed bias
compensate each other, such that removal of the bias in either
component actually increases the IVT bias. Analogous plots
to Fig. 8 for DJF instead of JJA (Fig. S4) likewise show a

larger contribution to error reduction by the winds as com-
pared to moisture in most areas, while also showing regions
(e.g., the equatorial Atlantic or western Pacific just north of
the equator) were compensating errors lead to increased error
in IVT when using either analyzed winds or analyzed
moisture.

In addition to examining the nature of the IVT biases, we
also examine the IVT mean absolute error (MAE) of the
ensemble mean. Similar to the bias calculation (Fig. 7),
substituting in the ERA5 winds reduces the IVT MAE
about twice as much as the reduction obtained by substitut-
ing in the ERA moisture (Fig. 9). We separate the CTL and
ACAI sets of curves in Fig. 7 because the different sets of
curves overlap for the absolute value of the bias, which
decreases visual clarity. In contrast, the MAE CTL and
ACAI sets of curves do not overlap such that we can include
them on the same plot without sacrificing visual clarity in
Fig. 9. CTL_ERAWIND and ACAI_ERAWIND MAE is
approximately 50% smaller than CTL and ACAI MAE,
respectively, during JJA for 7- and 14-day forecasts,
(43.3%–45.0% smaller during DJF). The reductions for

FIG. 8. JJA 14-day IVT bias (kg m21 s21) for (a) CTL, (b) CTL_ERAMOIST, (c) CTL_ERAWIND, (d) absolute
value of CTL bias minus absolute value of CTL_ERAMOIST bias, and (e) absolute value of CTL bias minus absolute
value of CTL_ERAWIND bias (kg m21 s21). The solid, dotted, and dashed boxes denote the western and central
tropical Pacific, Indian Ocean, and northern tropical and subtropical African regions referred to in the text.
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CTL_ERAMOIST and ACAI_ERAMOIST are between
18.5% and 20.1% for JJA and between 18.1% and 25.5%
for DJF. Note that ACAI also reduces the MAE (out to 5
weeks for JJA, and out past two weeks in DJF), although
the percent reductions (6.5% and 5.7% at day 7 for JJA and
DJF, respectively, and 4.6% and 2.2% at day 14 for JJA and
DJF, respectively), are considerably smaller than the ACAI-
induced reductions to the IVT bias (Fig. 1). Comparable plots
for MAM and SON (Fig. S5) show similar results. Maps of the
JJA MAE for CTL and CTL_ERAWIND at forecast day 7
(Figs. 10a,d) show that using the ERA5 winds reduces the
MAE in all tropical regions to very small values. Using ERA5
winds also reduces the IVT MAE in DJF substantially (Fig.
S6), though not to the same degree as is seen during JJA. The
reduction in IVT MAE from using ERA5 moisture is smaller
than using ERA5 winds (cf. Figs. 10e,f) in the subtropics and
tropics. There are some regions where CTL_ERAMOIST has
slightly larger MAE than CTL, indicating compensating wind
and moisture errors. However, in many extratropical regions,
it appears that the moisture and winds make similar contribu-
tions to the IVT MAE. This is also true in DJF (Fig. S6),
where moisture makes similar or larger contributions to the
IVT MAE as compared to the wind errors in both the South-
ern Hemisphere and Northern Hemisphere storm tracks. The
ACAI (Fig. 10b) and CTL (Fig. 10a) MAE values are similar,
and the difference between the two (Fig. 10g) indicates that
ACAI reduces MAE over many areas of the tropics, while the
impact on extratropics is mixed.

The largest biases in IVT in the control simulation, along
with the largest impact of ACAI, are mostly in the tropics and
subtropics (Fig. 2). The impact of ACAI on the IVT biases in
the extratropics are smaller or less spatially cohesive. How-
ever, the IVT MAE can be substantial in the storm tracks in
both hemispheres in JJA (Fig. 10) and DJF (Fig. S6). Given
the impact of ARs in the extratropics from both a hydrologi-
cal and hazards perspective (e.g., Lavers and Villarini 2013;
Albano et al. 2020; Viale et al. 2018), it is of interest to look
specifically at IVT errors in the extratropics. Due to the

relatively small sample size, particularly in the storm track
regions where a substantial amount of meridional vapor trans-
port is associated with synoptic scale variability (Newman
et al. 2012), we consider the bias reduction over the full year,
rather than breaking the results down by season.

CTL_ERAMOIST and CTL_ERAWIND result in sub-
stantial reductions in 7-day forecast MAE over the storm
tracks in both the Northern and Southern Hemispheres
(Fig. 11). For example, the MAE in CTL and ACAI off the
mid-Atlantic region and New England, and just south of the
Canadian Maritimes, reaches values above 200 kg m21 s21.
Both CTL_ERAMOIST and CTL_ERAWIND reduce
these errors by over 100 kg m21 s21. In the eastern North
Pacific off the U.S. West Coast, the CTL and ACAI MAE
values are between 100 and 150 kg m21 s21. In this region
the CTL_ERAMOIST actually results in a larger error
reduction than CTL_ERAWIND. This indicates that wind
and moisture errors make comparable contributions to the
IVT errors in the midlatitudes. A similar situation is found
in the Southern Hemisphere, where the error reduction in
CTL_ERAMOIST is larger than in CTL_ERAWIND over
the South Atlantic and India Ocean storm tracks. This is in
contrast to the situation over most tropical and subtropical
regions, where the IVT errors are dominated by the wind
errors. The impact of ACAI in these extratropical regions
on MAE is relatively small, usually less than 30 kg m21 s21,
and spatially noisy, indicating that a larger sample size
would be needed to tease out any systematic impacts. To
look at the impacts of ACAI specifically on ARs, one would
need a larger sample size and should consider cases where
IVT is above a certain threshold (e.g., Cordeira and Ralph
2021), or use specific AR forecast skill metrics (e.g., Nardi
et al. 2018; DeFlorio et al. 2018; DeFlorio et al. 2019).

4. Summary and conclusions

We examine the impact of an atmospheric in-line bias cor-
rection system (ACAI) on the IVT biases in the Navy ESPC

FIG. 9. Global average of the IVT mean absolute error (MAE; kg m21 s21) for (a) JJA and (b) DJF for CTL
(blue), CTL_ERAMOIST (yellow), CTL_ERAWIND (green), ACAI (red) ACAI_ERAMOIST (purple), and
ACAI_ERAWIND (brown) as a function of forecast lead time in days.
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global coupled system, decomposing the separate contribu-
tions of moisture and winds to interpret the results. Overall,
ACAI is effective at reducing biases in several, but not all,
regions. In a globally averaged sense, ACAI is about twice as
effective at reducing TPW bias (by over 30% at forecast day
14), than reducing IVT or 850-hPa wind speed biases (by
about 15% at forecast day 14). Locally the reductions in bias
may be much larger, such as over the western-central tropical
Pacific and northern tropical Africa where ACAI reduces the
14-day JJA IVT biases by as much as 70%. There are also
localized regions where ACAI increases the bias, and this

may be due to sampling issues (where the bias signal is noisy,
such as east of Japan). It may also be due to the fact that for
this set of experiments, the analysis increment archive from
which the ACAI forcing is derived is a different year from
when the forecasts were run, resulting in state-dependent
errors in the bias estimate. Biases may be more appropriately
defined if ACAI samples a set of analysis increments valid
during the months immediately preceding the forecasts. Test-
ing ACAI with a “trailing” training period is currently ongo-
ing. ACAI is most effective where the biases are fairly stable
with increasing forecast lead time. The regions associated

FIG. 10. JJA 7-day IVT mean absolute error (MAE; kg m21 s21) for (a) CTL, (b) ACAI, (c) CTL_ERAMOIST,
(d) CTL_ERAWIND, (e) CTL_ERAMOIST2 CTL, (f) CTL_ERAWIND2 CTL, and (g) ACAI2 CTL.
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with the Indian Monsoon where ACAI actually increases the
bias are also regions where the sign and structure of the IVT
bias changes with forecast lead time.

Examination of the impact of ACAI on TPW and low-level
wind speed indicates that the largest reductions in IVT bias,
which occur over the western and central tropical Pacific and
over Africa just north of the Gulf of Guinea, are due to reduc-
tions in the wind speed biases. ACAI has little impact on the
moisture biases in these regions. The increase in IVT bias
over the Arabian Sea and India is also driven by an increase
in wind speed bias in this region. While the ACAI-induced

wind speed bias reductions tend to dominate the IVT bias
reductions, there are regions where the reduction in TPW
bias plays a dominant role, including the tropical Atlantic and
the Sahel.

Recalculating the IVT forecast biases and errors when we
substitute in ERA5 analyzed moisture or ERA5 analyzed
winds for the forecast fields confirms the dominance of the
wind errors over moisture errors in the tropics and subtropics.
Using ERA5 winds reduces the global average magnitude of
the bias and MAE calculation by about twice as much as using
the ERA5 moisture. The dominance of the winds in the bias

FIG. 11. Year-round 7-day IVT mean absolute error (MAE; kg m21 s21) for (a) CTL, (b) ACAI, (c) CTL_ERAMO-
IST, (d) CTL_ERAWIND, (e) CTL_ERAMOIST2 CTL, (f) CTL_ERAWIND2 CTL, and (g) ACAI2 CTL.
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calculation is particularly large in the tropics. This explains
why the relative reduction in IVT bias by ACAI is closer to
the more modest low-level wind bias reductions than the larger
moisture bias reductions. There are regions where using either
the ERA5 moisture or ERA5 winds increases the bias, revealing
areas of compensating errors between the wind and moisture
fields.

The extratropical storm tracks are of particular interest,
as ARs here have substantial impacts on western North
America, western Europe, and other midlatitude regions. In
the storm tracks of both hemispheres, wind and moisture
errors have comparable contributions to the IVT MAE.
This stands in contrast to most of the tropical and subtropi-
cal regions, where wind errors dominate IVT errors. The
impact of ACAI on IVT is relatively small in these regions
and spatially noisy, indicative of sampling issues. Future
work should consider the impact on ARs by considering a
larger sample size and employing metrics specific to AR
forecast skill (e.g., Nardi et al. 2018; DeFlorio et al. 2018,
2019; Cordeira and Ralph 2021).

We have demonstrated utility in using analyzed winds and
TPW to understand the dominant components in the IVT
error calculations. However, we emphasize that the wind and
moisture errors are not independent. For example, errors in
tropical rainfall patterns due to the limitations of parameter-
ized convection will drive circulation errors. While our focus
has been on IVT biases in this paper, ACAI does reduce the
global average MAE by up to 5%, and it also increases the
ensemble spread, resulting in improved ensemble calibration.
A manuscript focusing on the general performance of ACAI
in the Navy ESPC model on a variety of deterministic and
probabilistic metrics is in preparation. The results presented
here show the promise of ACAI but also show the limitations
of the method in regions where the model bias is not rela-
tively stable with forecast time. While decisions on upgrades
to operational ensemble systems will be based on a holistic
view of the costs and impacts of the proposed changes on an
extensive suite of metrics, ideally most shortcomings would
be addressed before implementation. In the future, more
sophisticated methods of estimating the forecast bias, for
example, as a function of forecast lead time, or perhaps
including some state dependency, particularly in monsoon
regions, would be worth investigating in order to mitigate
some of these limitations.
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Lélé, M. I., L. M. Leslie, and P. Lamb, 2015: Analysis of low-level
atmospheric moisture transport associated with the West
African monsoon. J. Climate, 28, 4414–4430, https://doi.org/
10.1175/JCLI-D-14-00746.1.

Li, W., and Coauthors, 2019: Evaluating the MJO prediction skill
from different configurations of NCEP GEFS extended fore-
casts. Climate Dyn., 52, 4923–4936, https://doi.org/10.1007/
s00382-018-4423-9.

Metzger, J., and Coauthors, 2014: U.S. Navy operational global
ocean and Arctic ice prediction systems. Oceanography, 27,
32–43, https://doi.org/10.5670/oceanog.2014.66.

Meynadier, R., O. Bock, S. Gervois, F. Guichard, J.-L. Redelsperger,
A. Agust́ı-Panareda, and A. Beljaars, 2010: West African

monsoon water cycle: 2. Assessment of numerical weather pre-
diction water budgets. J. Geophys. Res., 115, D19107, https://doi.
org/10.1029/2010JD013919.

Mo, K., and R. W. Higgins, 1996: Large-scale atmospheric mois-
ture transport as evaluated in the NCEP/NCAR and the
NASA/DAO reanalyses. J. Climate, 9, 1531–1545, https://doi.
org/10.1175/1520-0442(1996)009,1531:LSAMTA.2.0.CO;2.

Nardi, K. M., E. A. Barnes, and F. M. Ralph, 2018: Assessment of
numerical weather prediction model reforecasts of the occur-
rence, intensity, and location of atmospheric rivers along the
west coast of North America. Mon. Wea. Rev., 146, 3343–
3362, https://doi.org/10.1175/MWR-D-18-0060.1.

Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A.
Wick, 2011: Flooding in western Washington: The connection
to atmospheric rivers. J. Hydrometeor., 12, 1337–1358, https://
doi.org/10.1175/2011JHM1358.1.

Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and
D. Sardeshmukh, 2012: Relative contributions of synoptic
and low-frequency eddies to time-mean atmospheric moisture
transport, including the role of atmospheric rivers. J. Climate,
25, 7341–7361, https://doi.org/10.1175/JCLI-D-11-00665.1.

Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American
Institute of Physics, 520 pp.

Piccolo, C., and M. J. P. Cullen, 2016: Ensemble data assimilation
using a unified representation of model error. Mon. Wea.
Rev., 144, 213–224, https://doi.org/10.1175/MWR-D-15-0270.1.

}}, }}, W. J. Tennant, and A. T. Semple, 2019: Comparison
of different representations of model error in ensemble fore-
casts. Quart. J. Roy. Meteor. Soc., 145, 15–27, https://doi.org/
10.1002/qj.3348.

Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D.
Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on
California’s Russian River: Role of atmospheric rivers.
Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/
2006GL026689.

}}, and Coauthors, 2017: Dropsonde observations of total inte-
grated water vapor transport within North Pacific atmo-
spheric rivers. J. Hydrometeor., 18, 2577–2596, https://doi.org/
10.1175/JHM-D-17-0036.1.

}}, J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D.
Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to
characterize the strength and impact of atmosphere rivers.
Bull. Amer. Meteor. Soc., 100, 269–289, https://doi.org/10.
1175/BAMS-D-18-0023.1.

}}, and Coauthors, 2020: West Coast forecast challenges and
development of atmospheric river reconnaissance. Bull.
Amer. Meteor. Soc., 101, E1357–E1377, https://doi.org/10.
1175/BAMS-D-19-0183.1.

Ramos, A. M., R. M. Trigo, M. L. R. Liberato, and T. Ricardo,
2015: Daily precipitation extreme events in the Iberian Penin-
sula and its association with atmospheric rivers. J. Hydrome-
teor., 16, 579–597, https://doi.org/10.1175/JHM-D-14-0103.1.

Redelsperger, J. L., C. D. Thorncroft, A. Diedhiou, T. Lebel,
D. J. Parker, and J. Polcher, 2006: African Monsoon Multi-
disciplinary Analysis: An international research project and
field campaign. Bull. Amer. Meteor. Soc., 87, 1739–1746,
https://doi.org/10.1175/BAMS-87-12-1739.

Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR:
Non-linear formulation and outer loop tests. Tellus, 58A, 45–
58, https://doi.org/10.1111/j.1600-0870.2006.00148.x.

Ruston, B., C. A. Reynolds, T. Whitcomb, M. Janiga, E. J.
Metzger, J. Shriver, M. Cobb, and J. Feldmeier, 2019: Earth
system prediction capability initial operational capability

MONTHLY WEATHER REV I EW VOLUME 1501112

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:59 PM UTC

https://doi.org/10.3389/feart.2014.00002
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5670/oceanog.2014.73
https://doi.org/10.5670/oceanog.2014.73
https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
https://doi.org/10.21957/36n2z0p1p
https://doi.org/10.1175/MWR-D-12-00182.1
https://doi.org/10.1175/MWR-D-12-00182.1
https://doi.org/10.1002/grl.50636
https://doi.org/10.1002/grl.50636
https://doi.org/10.1029/2011GL049783
https://doi.org/10.1029/2011GL049783
https://doi.org/10.1029/2018GL079019
https://doi.org/10.1175/WAF-D-20-0049.1
https://doi.org/10.1175/WAF-D-20-0049.1
https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2
https://doi.org/10.1007/s00382-012-1544-4
https://doi.org/10.1007/s00382-012-1544-4
https://doi.org/10.1175/JCLI-D-14-00746.1
https://doi.org/10.1175/JCLI-D-14-00746.1
https://doi.org/10.1007/s00382-018-4423-9
https://doi.org/10.1007/s00382-018-4423-9
https://doi.org/10.5670/oceanog.2014.66
https://doi.org/10.1029/2010JD013919
https://doi.org/10.1029/2010JD013919
https://doi.org/10.1175/1520-0442(1996)009<1531:LSAMTA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<1531:LSAMTA>2.0.CO;2
https://doi.org/10.1175/MWR-D-18-0060.1
https://doi.org/10.1175/2011JHM1358.1
https://doi.org/10.1175/2011JHM1358.1
https://doi.org/10.1175/JCLI-D-11-00665.1
https://doi.org/10.1175/MWR-D-15-0270.1
https://doi.org/10.1002/qj.3348
https://doi.org/10.1002/qj.3348
https://doi.org/10.1029/2006GL026689
https://doi.org/10.1029/2006GL026689
https://doi.org/10.1175/JHM-D-17-0036.1
https://doi.org/10.1175/JHM-D-17-0036.1
https://doi.org/10.1175/BAMS-D-18-0023.1
https://doi.org/10.1175/BAMS-D-18-0023.1
https://doi.org/10.1175/BAMS-D-19-0183.1
https://doi.org/10.1175/BAMS-D-19-0183.1
https://doi.org/10.1175/JHM-D-14-0103.1
https://doi.org/10.1175/BAMS-87-12-1739
https://doi.org/10.1111/j.1600-0870.2006.00148.x


deterministic system. NRL Memo. NRL/MR/7531-19-9935,
124 pp., https://apps.dtic.mil/sti/citations/AD1090615.

Rutz, J. J., and Coauthors, 2019: The Atmospheric River
Tracking Method Intercomparison Project (ARTMIP):
Quantifying uncertainties in atmospheric river climatol-
ogy. J. Geophys. Res. Atmos., 124, 13 777–13 802, https://
doi.org/10.1029/2019JD030936.

Sahana, A. S., A. Pathak, M. K. Roxy, and S. Ghosh, 2019:
Understanding the role of moisture transport on the dry bias
in Indian Monsoon simulations by CFSv2. Climate Dyn., 52,
637–651, https://doi.org/10.1007/s00382-018-4154-y.

Shaw, T. A., and O. Pauluis, 2012: Tropical and subtropical merid-
ional latent heat transport by disturbances to the zonal mean
and their role in the general circulation. J. Atmos. Sci., 69,
1872–1889, https://doi.org/10.1175/JAS-D-11-0236.1.

Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking
Method Intercomparison Project (ARTMIP): Project goals
and experimental design. Geosci. Model Dev., 11, 2455–2474,
https://doi.org/10.5194/gmd-11-2455-2018.

Sohn, B. J., and S.-C. Park, 2010: Strengthened tropical circula-
tions in past three decades inferred from water vapor trans-
port. J. Geophys. Res., 115, D15112, https://doi.org/10.1029/
2009JD013713.

Theurich, G., and Coauthors, 2016: The Earth system prediction
suite: Toward a coordinated U.S. modeling capability. Bull.
Amer. Meteor. Soc., 97, 1229–1247, https://doi.org/10.1175/
BAMS-D-14-00164.1.

Thorncroft, C. D., H. Nguyen, C. Zhang, and P. Peyrille, 2011:
Annual cyclone of the West African monsoon: Regional cir-
culations and associated water vapor transport. Quart. J. Roy.
Meteor. Soc., 137, 129–147, https://doi.org/10.1002/qj.728.

Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmo-
spheric moisture transports from ocean to land and global
energy flows in reanalyses. J. Climate, 24, 4907–4924, https://
doi.org/10.1175/2011JCLI4171.1.

Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018:
Impacts of atmospheric rivers on precipitation in southern
South America. J. Hydrometeor., 19, 1671–1687, https://doi.
org/10.1175/JHM-D-18-0006.1.

Wang, Z., G. Li, and S. Yang, 2018: Origin of Indian summer
monsoon rainfall biases in CMIP5 multimodel ensemble.
Climate Dyn., 51, 755–768, https://doi.org/10.1007/s00382-017-
3953-x.

Weisheimer, A., S. Corti, T. N. Palmer, and F. Vitart, 2014:
Addressing model error through atmospheric stochastic phys-
ical parameterizations: Impact on the coupled ECMWF sea-
sonal forecasting system. Philos. Trans. Roy. Soc. London,
A372, 2013029, https://doi.org/10.1098/rsta.2013.0290.

Xue, Y., and Coauthors, 2010: Intercomparison and analyses of the
climatology of West African Monsoon in the West African
Monsoon Modeling and Evaluation project (WAMME) first
model intercomparison experiment. Climate Dyn., 35, 3–27,
https://doi.org/10.1007/s00382-010-0778-2.

Xie, S., H. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On
the correspondence between short- and long-time-scale sys-
tematic errors in CAM4/CAM5 for the year of tropical con-
vection. J. Climate, 25, 7937–7955, https://doi.org/10.1175/
JCLI-D-12-00134.1.

Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture
fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725–735,
https://doi.org/10.1175/1520-0493(1998)126,0725:APAFMF.2.0.
CO;2.

R E Y NO LD S E T A L . 1113MAY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:59 PM UTC

https://apps.dtic.mil/sti/citations/AD1090615
https://doi.org/10.1029/2019JD030936
https://doi.org/10.1029/2019JD030936
https://doi.org/10.1007/s00382-018-4154-y
https://doi.org/10.1175/JAS-D-11-0236.1
https://doi.org/10.5194/gmd-11-2455-2018
https://doi.org/10.1029/2009JD013713
https://doi.org/10.1029/2009JD013713
https://doi.org/10.1175/BAMS-D-14-00164.1
https://doi.org/10.1175/BAMS-D-14-00164.1
https://doi.org/10.1002/qj.728
https://doi.org/10.1175/2011JCLI4171.1
https://doi.org/10.1175/2011JCLI4171.1
https://doi.org/10.1175/JHM-D-18-0006.1
https://doi.org/10.1175/JHM-D-18-0006.1
https://doi.org/10.1007/s00382-017-3953-x
https://doi.org/10.1007/s00382-017-3953-x
https://doi.org/10.1098/rsta.2013.0290
https://doi.org/10.1007/s00382-010-0778-2
https://doi.org/10.1175/JCLI-D-12-00134.1
https://doi.org/10.1175/JCLI-D-12-00134.1
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

