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ABSTRACT

An ensemble-based linearized forecast model has been developed for data assimilation applications for
numerical weather prediction. Previous studies applied this local ensemble tangent linear model (LETLM) to
various models, from simple one-dimensional models to a low-resolution (~2.5°) version of the Navy Global
Environmental Model (NAVGEM) atmospheric forecast model. This paper applies the LETLM to
NAVGEM at higher resolution (~1°), which required overcoming challenges including 1) balancing the
computational stencil size with the ensemble size, and 2) propagating fast-moving gravity modes in the upper
atmosphere. The first challenge is addressed by introducing a modified local influence volume, introducing
computations on a thin grid, and using smaller time steps. The second challenge is addressed by applying
nonlinear normal mode initialization, which damps spurious fast-moving modes and improves the LETLM
errors above ~100 hPa. Compared to a semi-Lagrangian tangent linear model (TLM), the LETLM has su-
perior skill in the lower troposphere (below 700 hPa), which is attributed to better representation of moist
physics in the LETLM. The LETLM skill slightly lags in the upper troposphere and stratosphere (700-2 hPa),
which is attributed to nonlocal aspects of the TLM including spectral operators converting from winds to
vorticity and divergence. Several ways forward are suggested, including integrating the LETLM in a hybrid
4D variational solver for a realistic atmosphere, combining a physics LETLM with a conventional TLM for
the dynamics, and separating the LETLM into a sequence of local and nonlocal operators.

1. Introduction (DA) systems used for numerical weather prediction
(NWP) (e.g., Rabier et al. 2000; Rosmond and Xu 2006;
Gauthier and Thépaut 2001; Gauthier et al. 2007,
Rawlins et al. 2007; JMA 2019; Zhang et al. 2019). Initial
conditions are obtained by minimizing a cost function
that quantifies the combined error-weighted differ-
#Current affiliation: Cooperative Institute for Research in  ences between the forecast and observations and be-
Environmental Sciences, Boulder, Colorado. tween the forecast and a control background forecast.
The minimization requires the cost function gradient rel-

Corresponding author: D. R. Allen, douglas.allen@nrl.navy.mil  ative to the state vector, which has millions of elements.

Tangent linear models (TLMs) and their adjoints
play a key role in generating optimal initial conditions in
four-dimensional variational (4DVar) data assimilation
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TLM:s are used to determine this gradient and to prop-
agate initial conditions forward over the DA time win-
dow. Ideally, TLMs incorporate all features of the
nonlinear forecast model. In practice, development and
maintenance of TLMs of physical parametizations can
be difficult; therefore, operationally they only approxi-
mate the ideal linear model (Janiskova and Lopez 2012;
Zhang et al. 2019). In some circumstances, this limita-
tion is not serious [e.g., when neglected processes are
too slow to noticeably impact the state on the DA time
scale (6-12h)]. In other cases, the limitation may be
crucial and may even disallow certain observations
from being assimilated (Geer et al. 2017). While certain
DA approaches avoid TLMs, variational DA based on
TLMs continues to exhibit superior forecast accuracy
(e.g., Lorenc et al. 2015; Poterjoy and Zhang 2015;
Bowler et al. 2017).

One alternative approach to conventional TLMs is the
local ensemble tangent linear model (LETLM), in which
the forecast is determined from nonlinear ensemble
forecasts within a ‘“local influence volume,” which we
define as a specified geometric shape surrounding a grid
point. This statistical approach has been tested in a hi-
erarchy of cases, starting with simple models in Frolov
and Bishop (2016) and Bishop et al. (2017). The latter
proved that when the time evolution of each model
variable over a single LETLM time step At depends only
on variables within the local influence volume, then the
LETLM is guaranteed to be accurate when the ensem-
ble size exceeds the size of the ‘““computational stencil,”
which we define here as the number of grid points con-
tained within the local influence volume multiplied by
the number of variables used for the LETLM. Bishop
et al. (2017) also demonstrated how the LETLM and
its adjoint can be applied to 4DVar in strongly nonlin-
ear regimes where multiple outer loops are required
to achieve convergence. Allen et al. (2017) then dem-
onstrated an accurate LETLM-based hybrid 4DVar
system using a global shallow-water model. The first
LETLM demonstration using an NWP forecast model
(Frolov et al. 2018, hereafter F18) showed that, when
low resolution was used (triangular truncation of T47 or
~2.5°), the LETLM successfully forecasted realistic
analysis perturbations, with skill exceeding the conven-
tional TLM in the troposphere, but slightly worse in the
stratosphere and mesosphere. Considerable attention
was paid to the sensitivity of the LETLM to model pa-
rameters and tuning of the system for optimal results.

This paper furthers LETLM development for NWP
using simulations at 1° (~100km) resolution, which is
the inner-loop resolution currently employed in the U.S.
Navy’s operational global NWP system. A central as-
sertion is that a precise LETLM approximation to the
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true TLM is possible if the ensemble size exceeds the
computational stencil size. For a fixed LETLM At,
the required influence volume remains the same (due to
the speed of wave propagation), but the computational
stencil size increases with increased model resolution.
Hence, to maintain the same approximate LETLM ac-
curacy the ensemble size used to construct the LETLM
should increase. F18 used a large ensemble size (up to
400); larger ensembles would be highly undesirable due
to computational constraints. To cope with this problem,
Yaremchuk et al. (2020) developed an extension of the
LETLM that relaxes the locality assumption, allowing
accurate (nonlocal) ETLMs for semi-implicit operators.
This development may help avoid substantial increases
of the ensemble size in future ETLM applications (more
details in section 6).

Here we investigate several approaches to increase
LETLM accuracy. First, we modify the geometry of the
local influence volume to better account for physics
processes that use a vertical column. Second, we switch
from full Gaussian grid to a thin grid to avoid a 10-fold
increase in density from equator to pole. And third, we
attempt a reduced Az, which should in principle lead to
the reduction in the optimal computational stencil size.

In addition, the F18 results suggested that the LETLM
was struggling to compete with the TLM in the upper
stratosphere and lower mesosphere (USLM). This arti-
cle investigates a potential cause of the degradation:
rapidly propagating large-scale gravity waves, or so-
called normal modes. The conventional TLM captures
these using nonlocal operators associated with semi-
implicit time stepping and global spectral transforms.
The LETLM, however, is limited by the finite local in-
fluence volume. We will examine the effects of these
waves on USLM performance by applying nonlinear
normal mode initialization, while retaining the local
nature of the LETLM.

The paper is organized as follows. Descriptions of the
forecast model and LETLM are provided in section 2.
Section 3 discusses normal mode initialization and its
potential impact on LETLM forecast skill. Section 4
compares LETLM and TLM errors for a test case in
November 2014. Sections 5 and 6 give a summary and
discussion, respectively.

2. Model description
a. NAVGEM forecast model

The NAVGEM atmospheric forecast model employs
a semi-Lagrangian/semi-implicit integration of the hy-
drostatic dynamical equations, the first law of thermo-
dynamics, and conservation of moisture and ozone
(Hogan et al. 2014). The configuration used here has a
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horizontal resolution of T119 (Gaussian grid of
360 longitudes X 180 latitudes), which is the current inner-
loop operational resolution. Vertically, the model uses
60 levels (top at 0.05hPa, ~65km) with a hybrid-sigma
coordinate (Eckermann 2009). The model is run with a
15 min time step and the model state is saved every time
step. The predicted variables are vorticity, divergence,
virtual potential temperature, specific humidity (Q), and
surface pressure. In addition, the zonal (U) and merid-
ional (V) wind, temperature (7)), geopotential height
(Z), m (vertical motion, where 7 represents the hybrid
model levels), and 3D pressure (P) are derived fields.
As in F18, the LETLM variables include U, V, T, P, Z,
7, and Q. NAVGEM incorporates several stochastic
physics packages, including stochastic kinetic energy
backscatter, nonorographic gravity wave drag, and a
stochastic mass flux parameterization in the boundary
layer. Stochastic processes are difficult to model from
a linear perspective, since there is no deterministic
process that results in the random physics change.
For LETLM development, we therefore turned off these
stochastic processes. One additional change is the tim-
ing of when the model fields are output. As coded,
NAVGEM calculates the dynamics followed by the
physics for each time step. Operationally, wind and
temperature fields are saved before the physics calcu-
lation, while the water and ozone are saved after the
physics. To synchronize all model variables, we modified
the code to save all fields after the physics to complete
the time step.

The NAVGEM DA solver is a hybrid 4DVar system
(Kuhl et al. 2013) that employs a strong-constraint ap-
proach using the ensemble transform (ET) method
(McLay et al. 2008) with 80 members. The 6-h cycling
window is centered at 0000, 0600, 1200, and 1800 UTC.
The background includes the last 6h of a 9-h forecast
from the middle of the previous window. The solver
employs the accelerated representer method described
by Xu et al. (2005) and Rosmond and Xu (2006). The
original NAVGEM TLM and adjoint models, described
in Rosmond (1997), were based on the earlier Navy
Global Atmospheric Prediction System (NOGAPS).
While this NOGAPS TLM is currently operational, we
use a newly developed semi-Lagrangian (SL) TLM,
which is expected to become operational in 2020. The SL
TLM has simplified boundary layer physics, including
vertical diffusion, simplified gridscale precipitation, and
simplified convection. It neglects several other physical
processes including gravity wave drag, radiation, and
ozone photochemistry. Note that the preoperational
version of the SL TLM used for this study did not yet
include moist physics (precipitation and convection).
Also, for this study, several of the SL. TLM settings were
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adjusted to match the nonlinear forecast model, in-
cluding the same horizontal and vertical resolution, time
step, horizontal diffusion, and sponge layer levels.

b. LETLM description

The LETLM is described in F18. Here we summarize
the formulation and highlight new aspects used in this
paper. We note here that since the LETLM is still in the
development state, it has not yet been optimized for
timing tests, so we do not present efficiency comparisons
with the TLM. However, discussions of computational
requirements and sensitivities in section 8 of F18 are still
relevant to this study.

The LETLM is a sparse matrix M approximating the
evolution of the deviations 6X of the ensemble X of n
model states from their mean:

X, ., =MSX +¢, . 1)

Here n is ensemble size, N is the size of the model state
vector, and X,,,+; and X,, are N X n matrices repre-
senting ensemble states listed columnwise at time indi-
cesm + 1 and m, and &, is the ensemble of Taylor series
truncation errors. For large ensembles (n = N) spanning
the entire state space, M can be retrieved by minimizing
the norm of &, with respect to the elements of M. For
realistic ensemble sizes (n ~ 100), the retrieval can also
be performed if the nonlinear model operators driving
the ensemble are local (i.e., the approximating matrix M
is sparse and has at most # nonzero elements in a set of
rows associated with a given grid point). Under this lo-
cality assumption the number of unknowns does not
exceed the number (N X n) of linear constraints in
Eq. (1), and the respective solution for the rows of M
associated with the pth grid point can be represented by

M = (S7<6X . )[(S"8X ) (878X )] '(8"=8X )",
2

where o stands for the Schur (elementwise) product, S”
is an N X n selection matrix whose (identical) columns
contain ones in the grid points where the elements of M
are expected to influence the model state at the pth point
and zeros elsewhere, while SPselects only the ensemble
variables in the pth grid point. The action of M on a state
vector x,,, can then be computed as

Ngrid

X, = ; [, (s, ox,,)], (3)

where Ngriq is the number of modgl grid points, and s,
and §, are the columns of S” and $”. In LETLM com-
putations, the ensemble members are also normalized
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(Eq. (3) in F18) to improve the condition numbers of the
matrices in Eq. (2).

Equation (3) exposes two major challenges for
LETLM implementation. The first is the necessity to
know the exact structure of S” [locations of the nonzero
elements within the LETLM local influence volume,
referenced by the symbol w,,, involved on the right-hand
side of Eq. (2)]. F18 used the cylindrical vicinity sur-
rounding the pth point. As we will show, further refining
of w,, based on physical considerations may substantially
improve the LETLM.

The second challenge is the assumption of locality.
Most NWP models, including NAVGEM, contain non-
local operators, such as integrals for pressure computa-
tion or semi-implicit solvers for filtering fast gravity
waves. As a consequence, the locality assumption |s,| <
n is violated for manageable (n ~ 100) ensemble sizes,
and the LETLM loses accuracy in representing the TLM
with increasing model resolution. To deal with this
problem, one has to either increase the ensemble size to
satisfy the solvability condition for Eq. (1), or augment
the equation with additional constraints by replacing
the inverse of the local ensemble correlation matrix
in Eq. (2) by a pseudoinverse (see the appendix of
F18 for details on applying the pseudoinverse). In the
latter case, the major difficulty is correctly defining the
pseudoinverse metric.

One possibility to mitigate the problem of nonlocality
is to compute the LETLM on a thinner grid followed by
reinterpolation to the grid of the parent model. Another
option is to reduce the size of At for the LETLM in order
to shrink w,. A third option is to alter the shape of w,
to account for physical processes with known spatial
locality, such as physics parameterizations acting in a
vertical column. In what follows, we will explore the
impact of these approaches using a fine-resolution (1°)
NAVGEM model that was used for low-resolution
LETLM tests in F18.

c¢. Changes from the previous formulation of
the LETLM

Moving to higher resolution increases the number of
grid points in the computational stencil, which grows
as the inverse square of the model grid spacing. In ad-
dition to the increased computational expense, the
computational stencil size should be roughly equivalent
to the ensemble size. It is undesirable that increases in
resolution should require more ensemble members. To
ameliorate this behavior, we followed traditional nu-
merical methods where increasing horizontal resolution
results in decreasing At. We will compare results using
At = 15 and 30min to the 60-min Af used in F18. We
expect that smaller Ar will lead to smaller local influence
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Zeolumn

Zeolumn

FIG. 1. The LETLM local influence volume w, (colored regions)
is composed of a central cylindrical region of radius L (yellow),
with the number of vertical levels equal to 2 X zj,, + 1. In addi-
tion, a vertical column (green) is included that extends Zcojumn
levels above and below the highest and lowest layers of the cylin-
der. This figure illustrates the configuration used in this study
(Zhalo = 2 and Zeopumn = 6). The computational stencil, as defined in
this paper, includes all of the grid points (dots) that are located
within the local influence volume, multiplied by the number of
variables. Here the computational stencil size is (13 X 5 + 6 X 2) X
7 variables = 539.

volumes, increased skill, and reduced computational
time of LETLM forecasts. We test these expectations in
section 4b.

We also modified the shape of the local influence
volume w, that is used to determine the computational
stencil (the total of all model grid points that lie inside
o, multiplied by the number of variables). Following
the observation that dynamical processes often operate
in a horizontal plane, while physics processes operate
in a vertical 1D column, we designed a w), that combines
a cylinder (as in F18) with an additional vertical column.
The cylinder (yellow region in Fig. 1) has a radius L and
encompasses all model levels within *z;,, of the central
level. Away from the upper and lower boundaries, the
computational stencil includes 2 X zp,.;, + 1 levels, while
near the boundaries the computational stencil is limited
to the number of available levels (e.g., the lowest model
layer will include only zp,, + 1 levels in the stencil). The
new component of w, is a single vertical column that
extends beyond the cylinder directly above and below
the central point (green regions in Fig. 1). The integer value
Zeolumn 1S chosen so that an additional 2 X zZ.ojumn pOInts
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are added to the computational stencil away from the
boundaries (this quantity is similarly limited near the
boundaries). The additional expense of using Zcojumn 1S
small, but provides a noticeable benefit (about a few
percent). For the LETLM tests performed in this study,
we use fixed Zpa1o = 2 and Zeoumn = 6, based on several
tuning tests.

In addition to the new w,, we implemented the
LETLM on a reduced grid. In F18, we used the full
Gaussian grid, which has the same longitude grid at each
latitude (Fig. 2a, black line), so the density of grid points
varies greatly with latitude. NAVGEM can be run on a
“thin grid,” where the longitude grid varies with latitude
to better match the inherent resolution of the spectral
model (red line on Fig. 2a). The number of grid points
for a single NAVGEM T119 level is 64 800 for full grid
and 42 984 for the thin grid, resulting in ~33 % reduction
in total points. The benefit to the LETLM is significant
in that for fixed L, the computational stencil size as a
function of latitude is more uniform. Figure 2b compares
the number of horizontal points included in the com-
putational stencil for the NAVGEM T119 full and thin
grids for L = 500km, showing that while the full-grid
ranges from 69 to 1552, the thin grid ranges from 63 to
135. The thin grid speeds up the LETLM calculations by
an order of magnitude without reducing forecast skill.
AIINAVGEM LETLM tests are now run with the T119
thin grid. Note, however, that the nonlinear forecasts
and the TLM forecast were actually made with the full
T119 grid, and the output from these was converted to
the T119 thin grid in postprocessing.

Finally, we also introduced minor changes to the cal-
ibration protocol. F18 examined sensitivity to several
model parameters, but the main ones were the local
influence volume cylindrical radius L and the unitless
pseudoinverse cutoff parameter B (see the appendix of
F18 for more details on the parameter ). Here we also
tune these two parameters, but change the values used;
L varies from 50 to 1250km, in 50 km increments, and
for B we use values of 109~ where i ranges from 0 to
10 by increments of 1.0 (exact values of B8 are 0.100,
0.158,0.251,0.398,0.631,1.000, 1.585,2.511, 3.981, 6.301,
and 10.0). Using all combinations of L and 3, we per-
form 220 offline calibration forecasts for each full tuning
experiment. As in F18, optimal values of L and 8 are
determined for each model level k. To select these op-
timal profiles Lopi(k) and Bop(k), we compare the 3-h
(i.e., at the center of the NAVGEM analysis window)
normalized error (k) (section 2e describes error cal-
culations) for U, V, and T against the known truth for the
perturbation forecast, which is computed using a pair of
nonlinear model forecasts. For each level, we select the
combinations of L(k) and Bopi(k) that minimize &(k)
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FI1G. 2. (a) The number of longitudes at each latitude associated
with the full (black) and thin (red) grid for triangular truncation
T119. (b) The number of horizontal points in the computational
stencil as a function of latitude at 0° longitude for radius of 500 km
and for the full (black) and thin (red) grid.

resulting in the optimal error profile &qp(k). The
LETLM configuration used in this study is summarized
in Table 1.

d. Experimental design

The basic experimental design is similar to F18, except
for higher horizontal resolution (T119, ~1.0° rather than
T47, ~2.5°). In addition, while F18 assimilated conven-
tional observations and AMSU-A radiances, here we
use a more realistic observation suite that includes these
observations along with radiances from CrIS, AMSU-B,
Aqua, TASI, MHS, SSMIS, and ATMS, ozone from
SBUV and OMPS, and GPS radio occultations. The
number of observations accepted in the 6-h cycle used
for this study was ~3.4 million. As in F18, we use the
climatological covariance for cycling and for calculat-
ing the analysis perturbations. For the LETLM, rather
than using the standard ET ensembles, we initialize
ensembles using random samples from archived T425
(downscaled to T119 for this study) analysis perturba-
tions from 0000 UTC 21 November 2014 to 1800 UTC
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TABLE 1. Parameters used for the reference configuration of the LETLM and additional sensitivity tests.

Parameter

Reference configuration value

Additional sensitivity tests

Date time group
Time step

Forecast time 3h

0000 UTC 17 Nov 2014
60 min

15 and 30 min

Zhalo 2 (i.e., 5 vertical levels)

Zcolumn 6 (i.e., 12 additional points)

Variables UV, T,P,Z o, Q

B 104795 =0,1,2,...,10

Ensemble size 400 50, 100, 200, and 300
L 50, 100, ..., 1250 km

Ensemble initialization

Archived analysis perturbations

2 March 2015. To generate a test perturbation, we cycled
at T119 from 0000 UTC 15 November to 0000 UTC
17 November 2014, and used the perturbation for
0000 UTC 17 November 2014 for the LETLM tests.
Operationally, the TLM runs over the analysis time
+3h. To accommodate the initial condition time we
shift the time sequence to run the TLM (and LETLM)
from the analysis time to +6h. The nonlinear forecasts
used for calculating the truth are also run over this
time window.

Maps of initial U, V, and T perturbations at four levels
are provided in Fig. 3. The perturbation sizes increase
with altitude from the surface (bottom row) up to the
stratopause (top row). Finer spatial scales are seen at
the surface and middle troposphere (493 hPa) than in the
middle stratosphere (10.5hPa) and at the stratopause
(1hPa), where perturbations are quite broad, reflecting
larger-scale dynamics. Vertical profiles of perturbation
size will be shown in section 4d. We note that in this pa-
per, we only examine forecasts from one representative
perturbation rather than performing statistical analyses
over many perturbations. Our goal is to understand the
LETLM mechanics and sensitivities, rather than ex-
haustive validation. The true test for NWP will come
when the LETLM is fully integrated into a cycling hy-
brid 4DVar system.

e. Error metrics

We use similar error metrics to F18 to quantify the
LETLM and TLM skill. Globally averaged root-mean-
square errors (RMSEs) are calculated for each variable
as follows:

pthin

12
URMSE(k) = {nthm§ |:UTRUTH(i’ k) - ULETLM(i’ k)]z} ’
(4)

where i and k are indices for model grid point and level,
respectively, and n'™™ is the number of points on the
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thin grid. Next, a normalized error metric combines U,
V, and T errors:

Urmse (k) . Vause(K) | Truse (k)
e(k) = Upgrr(k) V12>E1§T(k) TI%ERT(k)_ (5)

Here PERT indicates the size of the TRUTH per-
turbation, and UpgrT(k) is obtained from Eq. (4) by
zeroing out Upgtpm(i, k). Finally, (k) is integrated
vertically to give a single metric:

nlev

1
nlevkz“ S(k) .

(6)

Here we equally weight all model levels. Since the
NAVGEM levels are more closely spaced near the
surface (e.g., half are below 200 hPa), this metric favors
the troposphere.

3. Normal mode initialization
a. Normal modes in NAVGEM

NAVGEM can be run with normal mode initializa-
tion (NMI) applied to any nonlinear forecast. The NMI
code is discussed in the NOGAPS reference manual
(Hogan et al. 1992) and generally follows Machenhauer
(1977). NMI uses a nonlinear iterative approach to en-
sure that the time tendencies of the coefficients of the
selected inertio-gravity modes are approximately zero.
The NOGAPS NMI uses the hybrid vertical coordinate,
which differs from Zagar et al. (2015), who use the pure
sigma formulation of Kasahara and Puri (1981). We
initialize three vertical normal modes (NM), associated
with equivalent depths of 10.147, 5.959, and 2.787 km
(the leading eigenvalues of the vertical structure equa-
tion). All three NM peak in the lower mesosphere
(above 1.0hPa) and are large throughout the USLM
(~10hPa to the top of the model), but are small in the
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FIG. 3. The initial perturbations at 0000 UTC 17 Nov 2014 for U, V, and T at four model levels specified by a nominal pressure associated
with a standard profile over the ocean. (top row) The stratopause (1.1 hPa, ~50km), (second row) the middle stratosphere (10.5 hPa,
~30km), (third row) the middle troposphere (493 hPa, ~6 km), and (bottom row) the boundary layer (998.2 hPa).

troposphere (below ~100 hPa). The horizontal structures  examine these solutions in section 3b. For this study, we
of the normal modes are solutions of the shallow-water set the cutoff frequency for initialized modes to 1.0 day .
model equations with mean depth equal to the equiva- To analyze the NM structures, Figs. 4a—d provide
lent depths associated with each vertical mode. We will ~ vertical cross sections in longitude and pressure of the
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FIG. 4. (a)—~(d) Difference between NAVGEM forecasts of 7 with and without normal mode initialization, starting from 0000 UTC 17 Nov
2014. Plots show longitude—pressure cross sections at the equator for forecast times 0, 4, 8, and 12 h. In all plots, the vertical dotted line identifies
the approximate location of a trough in 7, the movement of its location from one panel to the next corresponds to westward motion with a phase
speed of 500ms L. (e)-(h) Difference maps at 10.5 hPa (~32km) for the same NAVGEM forecasts of T with and without normal mode
initialization. (i)-(1) Shallow-water model forecast of the height for the WG(2, 2) normal mode associated with a mean depth equal to the first
eigenvalue of the NAVGEM T119L60. The SWM is run at T119 (~1° resolution) with a mean depth of ~10km and basic state at rest.

equatorial 7 difference between 12-h deterministic fore-
casts from a 4DVar analysis with and without NMI. At
Oh, a zonal wave 2 structure exists at high altitude.
Horizontal maps of the T difference at 10.5 hPa (Figs. 4e-h)
show a wave 2 structure superposed with smaller-scale
features. Forecasts with and without model physics (not
shown) indicate the wave 2 structure is largely forced by
radiation at upper levels combined with tropical con-
vective processes that affect geopotential heights above.
Similar mechanisms force the migrating semidiurnal tide
(Hagan and Forbes 2003), but these freely propagat-
ing NM are distinct from the forced semidiurnal tide.
NAVGEM forecasts without physics indicate this wave
persists for at least 5 days, although at reduced amplitude.
The wave 2 structure propagates ~180° westward over
11h, for an equatorial phase speed (c) of ~500ms~!
(dotted lines in Fig. 4 mark ¢ = 500ms ™).

b. LETLM sensitivity to c using the SWM

Calculations of the horizontal NM were computed
using the shallow-water model (SWM) described in
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Allen et al. (2015), with mean depth equal to the gravest
equivalent depth of 10.147km. The westward gravity
(WG) mode with total wavenumber n = 2 and zonal
wavenumber m = 2 [i.e., the WG(2, 2) mode], has a
similar structure to that observed here, with ¢
504ms ! (period of 11.1 days), consistent with the fea-
tures in NAVGEM. Figures 4i-1 provides global maps of
the SWM height (Z) from a forecast initialized with the
WG(2, 2) mode upon a basic state at rest, showing uni-
form westward propagation with ¢ ~ 500ms~'. There
are other waves present in NAVGEM (Figs. 4e-h), but
this WG(2, 2) mode plays a large role.

Fast-moving large-scale modes may cause problems
for the LETLM, since it is requires localization due to
finite ensemble size. For each Ar = 36005, the WG(2, 2)
mode travels ~1800 km, similar to the optimal LETLM
localization lengths ~1750km obtained in F18 (see
Fig. 3a of F18). The sensitivity of LETLM errors to c is
tested with the SWM experimental design of Allen et al.
(2016), using T21 (~5.6°) resolution and mean depth of
10km. First, a 100-member ensemble was created with
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FI1G. 5. Shallow-water model simulations at T21 (~5.6°) of the (top) WG(2, 2) and (bottom) WG(17, 2) modes using the system
described in Allen et al. (2016). The WG(2, 2) mode moves westward with a phase speed of 501 ms ™' and the WG(17, 2) mode moves
westward at 2750 ms L. (a),(e) Z perturbations at initialization. (b),(f) 6-h forecasts of Z from the TLM (the true perturbation at 6 h,
not shown, is nearly identical to the TLM). (c),(g) 6-h forecasts of Z from the LETLM with 100 members and time step of 1 h. (d),(h)
The Z globally averaged errors for the TLM (black line, near zero), LETLM (green line), persistence (red line), and size of the

perturbation (blue line).

an ensemble Kalman filter that assimilated 6 days of fabri-
cated observations from a SWM forecast with topographic
forcing to generate realistic Northern Hemisphere
(NH) wintertime dynamics. In Allen et al. (2016), this
ensemble was used to propagate the subsequent analysis
perturbation in order to tune the pseudoinverse pa-
rameter for the LETLM with a fixed local influence
volume radius L = 2000km and At = 1h. Here we use
the same tuned LETLM parameters, but substitute the
analysis perturbation with single NM structures having
¢ ranging from 500 to 3362ms ' (these are the WG
modes for the T21 system with fixed zonal wave-
number (m = 2), and total wavenumber (n) from 2 to
21. The truth was calculated for each NM as the dif-
ference between the background and background plus
NM nonlinear forecasts. Note that the background is
not at rest in these calculations, so the wave structures
become distorted, unlike the ideal structures shown in
Figs. 4i-1.

Figure 5 (top row) shows Z maps for the WG(2, 2)
mode. Initial perturbations are plotted in Fig. 5a, and
TLM and LETLM 6-h forecasts are plotted in Figs. 5b
and Sc, respectively. The truth forecasts are nearly
identical to the TLM forecasts and are therefore not
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shown. Both the TLM and LETLM accurately forecast
this mode out to 6h, as seen in the error time series
(Fig. 5d). Results for the WG(17, 2) mode (bottom row),
which has a westward phase speed of 2750ms ™, are
provided in Figs. Se-h. While the TLM accurately
forecasts this wave, the LETLM has essentially no skill
at 6 h, since the errors are larger than the perturbation.

A summary of 6-h forecast errors is provided in Fig. 6,
using the metric of Eq. (5). While the TLM propagates
all modes with high accuracy (¢ < 0.003), LETLM errors
increase sharply with c, particularly beyond ~1000ms ",
and the LETLM has virtually no skill (i.e., e > 1) for ¢ >
~2500ms . We infer that applying NMI to nonlinear
forecasts used in the LETLM and the truth will lead to
error reductions. This was previously tested by Allen
et al. (2017), who showed that applying NMI signifi-
cantly reduces the LETLM forecast errors (see Fig. 7 of
Allen et al. 2017). In the next section, we will examine
LETLM forecasts with NAVGEM by running the sys-
tem with NMI (denoted NMIT, where 7 stands for true)
and without NMI (denoted NMIF, where F stands for
false). In the NMIT experiments, NMI is applied to both
the control and the ensemble forecasts, while in NMIF,
there is no application of NMI.
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F1G. 6. LETLM and TLM errors for the propagation of a single
normal mode with specified phase speed over a 6-h period using a
shallow-water model system with resolution T21 and mean depth
of 10 km. The modes are all westward gravity modes with zonal
wavenumber 2 and total wavenumbers from 2 to 21.

4. Detailed comparison of LETLM and TLM
errors for NAVGEM

a. Sensitivity to ensemble size

We now examine LETLM and TLM errors for
NAVGEM. We first illustrate the sensitivity of LETLM
skill to ensemble size to motivate the use of ensembles
larger than the currently operational NAVGEM en-
semble (80 members). Errors for 3-h LETLM forecasts
were calculated using a modified tuning procedure in
which we fix Bop(k) = 1.0 and only tune L(k). We use
Ar = 60min and ensemble sizes of 50, 100, 200, 300,
and 400. The g values are plotted in Fig. 7a. In both
NMIF and NMIT, there is strong sensitivity to ensemble
size, with monotonic improvements out to 400 members.
These tests suggest that 80 members are likely too few
for an accurate LETLM, but additional improvement
beyond 400 members may not be worth the addi-
tional computational cost. We therefore limited the tests
to 400 members as an upper realistic limit given current
computational requirements for NWP. Also, we note
that NMIT errors are smaller than NMIF errors for all
ensemble sizes. A detailed comparison of NMIT and
NMIF will be provided below.

b. Sensitivity to At

With a fixed ensemble size of 400, we next examined
the LETLM sensitivity to At. For both NMIF and NMIT,
we calculated 3-h errors using At = 15, 30, and 60 min
(900, 1800, and 3600s), using full tuning for L and B for
each case. Resulting errors are presented in Fig. 7b.
While previous tests with the SWM showed LETLM
errors increasing monotonically with Ar (Fig. 16f of
Allen et al. 2017), here the errors are similar for NMIF
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at Ar = 15, 30, and 60min (g = 0.305, 0.300, 0.305).
For NMIT, errors are also similar (2 = 0.264, 0.254,
0.255), but have a sharper drop from 15 to 30 min.
Larger errors for smaller At may be due to noise
in the LETLM forecast that becomes amplified with
the recursive application of the LETLM operator.
Further tests are needed to determine the exact cause
of the error behavior, but it is clear that our expec-
tation that smaller Ar would result in smaller errors
was not true.

We also expected that smaller Af would be associated
with smaller local influence volumes, which would re-
quire less computational expense, since the computa-
tional cost varies with the square of Ly (as shown
in F18). We tested this by comparing the mean Loy
values versus At for three vertical ranges: troposphere
(1000-100 hPa), stratosphere (100-1hPa), and meso-
sphere (<1hPa). Figure 7c shows that a doubling of At
from 900 to 1800 results in a 15% increase in the me-
sospheric Loy for NMIF (700 to 800km), and in the
troposphere, Ly only increases slightly with Az. To
compensate for the doubling of At (thereby halving
number of time steps), Lop must increase by at least
44% to offset the increase in the overall cost. Therefore,
running the optimal cases actually takes less computa-
tional time for larger At, since the decreased number of
time steps is not entirely compensated by the increase in
Lopi. So our expectation of reduced LETLM execution
time with reduced At is also not true. Since smaller At
does not result in improved skill or reduction in com-
putation time, we decided to use Ar = 60 min results in
the detailed comparisons with the TLM. This also allows
comparison with results in F18, which used A¢ = 60 min,
but with lower resolution.

We also note that L, is highly sensitive to NMI,
particularly in the stratosphere and mesosphere (Fig. 7c).
The mesospheric values of L for NMIF are ~200km
higher than NMIT and the stratospheric values are
~100km higher. The tropospheric values are similar, as
expected, since the NM have only a small contribution at
lower altitudes (see Fig. 4). We also note in Fig. 7d that
Bopt increases with At and B,y is generally larger for
NMIF than for NMIT. B, also decreases with increased
altitude, with tropospheric values exceeding those in the
stratosphere and mesosphere.

c. Globally and vertically averaged errors for
reference configuration

We next examine the globally and vertically averaged
errors € of the optimally tuned LETLM with At =
60 min. We note that the LETLM was tuned at 3 h, but
single 6-h forecasts were subsequently made using the 3-h
values of Lop(k) and Bop(k). The 3-h errors computed
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FIG. 7. (a) Vertically integrated 3-h forecast errors € as a function of ensemble size for NMIF (solid) and
NMIT (dotted). (b) £ as a function of time step for NMIF (solid) and NMIT (dotted). (c) Vertically integrated
optimal radius as a function of time step for three vertical ranges: mesosphere (1-0.05 hPa), blue lines; stratosphere
(100-1 hPa), red lines; troposphere (1000-100 hPa), black lines. Solid (dotted) lines are for NMIF (NMIT). (d) Asin

(c), but for B.

from these single forecasts (0.304 and 0.255 for NMIF
and NMIT, respectively) are very close to the errors
computed using the full-tuning method with 220 fore-
casts (0.305 and 0.255 for NMIF and NMIT, respec-
tively). For comparison, the TLM gives € = 0.262
for 3-h forecasts, so the NMIT version of the LETLM
provides smaller overall errors.

Figure 8 shows £ for LETLM (green), TLM (black),
“persistence” forecast using TLM = | (red), and per-
turbation size in normalized units (blue). The solid
(dashed) lines indicate NMIT (NMIF). The persistence
errors grow to nearly the perturbation size after 6 h. The
TLM and LETLM have considerable skill compared to
the persistence. The LETLM skill for NMIF is worse
than the TLM beyond 1h, but NMIT shows better
LETLM skill from 1 to 3h and similar skill from 4 to
6 h. These results provide encouragement that at the
operational inner loop resolution, the LETLM is on
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par with the TLM in propagating a realistic analysis
perturbation.

d. Globally averaged vertical error profiles for
reference configuration

Figure 9 shows vertical profiles of tuning parameters
and 3-h forecast errors. As discussed above, we fixed
Zhalo and Zcolumn, and only tune L and B, but all four
parameters are included for illustration. Additional
forecast improvements could eventually be achieved by
simultaneously tuning all four parameters. The second
and third rows show &(k) and errors for each model
variable. Figure 10 is similar to Fig. 9, but emphasizes
the lower troposphere (500-1000 hPa).

Figure 10a shows that Ly,(k) ~250-300km near the
surface for both NMIF and NMIT. Figure 10b shows
Bopi(k) is large near the surface, but decreases over
the boundary layer, and is larger for NMIF than NMIT.
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FIG. 8. Vertically integrated errors (g) for the propagation of a
4DVar perturbation over 6 h. Lines indicate the magnitude of the
propagated perturbation in normalized units (blue), errors under
the assumption of a trivial “‘persistence” TLM = | (identity ma-
trix), equivalent to the 3DVar case where the increments are not
propagated in time (red), errors for propagation of the perturba-
tion using the LETLM (green), and errors for the propagation of
the perturbation using the TLM (black). The solid (dashed) lines
are for NMIT (NMIF). The LETLM experiments are run with
400 ensemble members, a time step of 60 min, and full tuning of
L and B.

At higher altitudes (Fig. 9a), Lop(k) increases from
~100 to ~0.5hPa to values of up to 1100 km (1000 km)
for NMIF (NMIT). This indicates faster processes at
higher levels, so the LETLM needs a wider local influ-
ence volume. The L, (k) profiles determined in F18
were significantly larger than those seen here (~750 km
in the troposphere and ~1750km at higher levels). This
indicates that Ly (k) is not solely determined by phys-
ical processes, but also depends on model resolution
(the denser T119 grid may allow optimization with
smaller lengths due to more available points for fixed L).
Figure 9a shows that L,(k) in the USLM is smaller for
NMIT than for NMIF. At 2hPa, for example, Lp(k)
decreases from 1000 to 700 km when NMI is applied;
Bopt(k) is also sensitive to NMI in the USLM with lower
values occurring for NMIT. We also attempted tuning
Loy as a function of latitude and level. Error profiles
(not shown) indicate the additional latitudinal tuning
does not significantly affect the overall errors (~2%-3%
error reduction).

The wind and T errors show LETLM skill at all levels,
exceeding TLM skill up to ~700 hPa (Figs. 10f-h). This
suggests the LETLM physics provides additional infor-
mation not captured in the TLM’s simplified physics.
Tropospheric U, V, and T errors are not very sensitive to
NMI. At altitudes above ~700hPa, LETLM errors for
NMIF are generally larger than TLM errors, but still
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show considerable skill. The NMIT results show sharply
decreased errors in U, V, and T relative to NMIF, with
g(k) on par with the TLM above ~2 hPa. Note that TLM
errors for NMIT (dotted black lines in Figs. 9, 10) are
similar for U, V, and T, suggesting the TLM accu-
rately propagates the fast-moving modes, as discussed in
section 3.

LETLM errors for Q, Z, P, and 7 also show skill, and
these are generally similar to TLM errors (due to strong
variation with altitude we show these errors as per-
centage errors relative to the perturbation size). Note
that P is horizontally constant for hybrid vertical
levels above 87 hPa, so P errors are not shown above
this level. The NMIT errors are reduced relative to
NMIF for these variables as well, with a very large
reduction (~50%) for Z at high altitudes (Fig. 9j).
The LETLM does generally better with these vari-
ables than the TLM throughout the troposphere as
well (Figs. 10i-1).

e. Zonal mean error cross sections for reference
configuration

The globally averaged errors show the LETLM is
competitive with the TLM, particularly for NMIT. As a
final comparison, we examine latitude—pressure error
cross sections. Figures 1la-d and 12a-c show error
standard deviations for all model variables for the
LETLM with NMIF. U, V, and T show enhanced errors
in the tropical tropopause and the lower mesosphere,
particularly in the NH; T errors are also large in the
tropical troposphere, likely associated with convection;
Z errors are very large throughout the USLM region;
P errors maximize in the tropics as well, while 7 errors
are large over a broad range of latitudes and altitudes;
and Q errors are largest in the troposphere and smaller
in the stratosphere and mesosphere. Localized regions
of larger Q errors occur in the polar regions of both
hemispheres.

For NMIT (Figs. 11e-h), errors are moderately re-
duced relative to NMIF at high altitudes for U, V,and T
and strongly reduced for Z, due to the NM having a large
Z signal in the USLM. For NMIT, there are still elevated
Z errors in the equatorial region from the troposphere to
the top. This appears to be associated with the tropo-
spheric T errors in the convective regions, which affects
the entire column due to the hydrostatic relationship
between T and Z. There are also error reductions in
P, Q, and 7 (Figs. 12d—f) in NMIT relative to NMIF,
but these are not as dramatic as for Z.

The conventional TLM errors for U, V, T, and Z are
provided in Figs. 11i-1. While the TLM is better over
large regions of the atmosphere, the LETLM does
slightly better overall at 3h (Fig. 8). This is because the
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FI1G. 9. Optimally tuned profiles of (a) the horizontal influence volume radius L and (b) the pseudoinverse cutoff 8. (c),(d) Profiles of the
prescribed vertical parameters Zpajo and Zcomn- (€)—(1) Globally averaged profiles of 3-h forecast error € and the 7 model state variables:
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Solid (dotted) lines are for NMIT (NMIF).

vertical weighting used for £ (which gives each model the lower troposphere (700-1000 hPa) and in the lower
level equal weight) favors the lower atmosphere, where  mesosphere (above ~2hPa), but is slightly worse from
model levels are more closely spaced and where the 700 to 2hPa.

LETLM does better. The TLM error structures are
similar to NMIF errors for all variables, with maximum
U, V, and T errors in the tropical troposphere and the
mesosphere and large Z errors in the tropics. TLM er- In this study, we increased the LETLM resolution to
rorsin P, Q, and 7 (Figs. 12g—i) are also similar to NMIF.  that of the currently operational NAVGEM inner loop
One noticeable difference is smaller stratospheric (T119). One key hypothesis was that increasing resolu-
Q errors in NMIF than in the TLM, which may be due tion would require maintaining balance between en-
to parameterized water chemistry in the stratosphere semble size and LETLM computational stencil size.
and mesosphere (details in McCormack et al. 2008), To avoid increasing the ensemble size, we reduced the
which is modeled in the LETLM, but not modeledinthe LETLM time step, suspecting that smaller optimal
TLM. Overall, these error comparisons provide a con- lengths would result and therefore smaller ensembles
sistent picture. 1) Both the LETLM and TLM have would be needed. We found that while optimal lengths
consistent skill relative to persistence for all model were smaller for smaller time step, they did not offset
variables. 2) The LETLM with NMI has generally the computational need of more iterations for fixed
smaller errors than the LETLM without NMI. 3) The length forecasts. Errors also increased slightly with
LETLM with NMI is equal to or better than the TLM in reduced time step, so there was not a clear benefit.

5. Summary
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FIG. 10. As in Fig. 9, but with vertical axis that is linear in pressure from 500 to 1000 hPa in order to emphasize the lower troposphere.

Other proposed improvements included an enhanced
local influence volume and using a thin grid. These
changes yielded a factor of ~20 reduction in computa-
tional time and slightly increased the LETLM skill.
Comparisons with the traditional TLM (which in-
cludes boundary layer physics and vertical diffusion, but
neglects moist physics, radiation, gravity wave drag, and
ozone photochemistry) showed that the LETLM
provides a viable alternative to the TLM, although
currently requiring ~400 members to match overall
TLM skill. However, if we focus on the troposphere
(e.g., the lowest 30 model layers up to ~200 hPa), then
the LETLM skill with NMI actually matches the TLM
skill with ~200 members. We attribute the superior
tropospheric skill to physical processes (e.g., moist
physics) in the LETLM that are excluded from the TLM
used in this study. The LETLM performed slightly
worse in the upper troposphere and stratosphere. One
cause was the presence of fast-moving gravity waves,
which are difficult for the LETLM, but not for the TLM.
We mitigated this problem by NMI application to the
first three vertical normal modes. This improved LETLM
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errors, such that the LETLM compared better with the
TLM in the upper stratosphere, and matched the TLM
skill in the lower mesosphere.

6. Discussion

LETLM performance at higher resolution exceeds the
performance of the traditional TLM in the lower tro-
posphere, while in the upper troposphere and strato-
sphere the LETLM performance continues to lag. While
the performance lag in the stratosphere might be toler-
ated in practical applications (especially when mitigated
using the NMI filtering), this is unsatisfactory from a
theoretical perspective. Since the LETLM is better
adapted to local operators, in order to understand these
limitations we explore the computational stencils
employed by NAVGEM. The forecast model can be
decomposed into a sequence of local and nonlocal op-
erators (see the appendix). The nonlocal operators in-
clude forward and inverse Fourier spectral transforms,
implicit solvers, and some aspects of the physics such as
deep convection and parameterized gravity wave drag.
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Fi1G. 11. Latitude—pressure cross sections of 3-h LETLM NMIF forecast error standard deviations for (a) U, (b) V, (c) T, and (d) Z.
(e)-(h) As in (a)—(d), but for NMIT. (i)-(1) As in (a)-(d), but for the TLM.

The fact that the semi-implicit time step is performed
in the coefficient space of global spherical harmonics
means the computational stencil is global. Bishop et al.
(2017) showed that the LETLM is precisely equal to the
true TLM whenever (i) the ensemble size exceeds the
degrees of freedom of the actual computational stencil,
and (ii) ensemble perturbations are small enough to
neglect the nonlinear terms affecting their evolution.
Obviously, condition (i) cannot be satisfied for O(100)
member ensembles when the actual computational
stencil is global. Thus, the global aspect of the semi-
implicit time step in NAVGEM fundamentally limits
the accuracy of the NAVGEM LETLM as currently
configured, since the LETLM always operates in the
grid space and incorrectly assumes a local computa-
tional stencil.

These insights motivated Yaremchuk et al. (2020,
hereafter Y20) to transform the LETLM technique to
ETLM (i.e., nonlocal) by removing the locality as-
sumption. The approach represents an ETLM as a se-
quence of operations on sparse matrices constructed in
parallel with the process of nonlinear ensemble propa-
gation. The underlying idea is that most geophysical
fluid dynamics (GFD) models (including NAVGEM,
see the appendix) can be factored into a product of
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linear (not necessarily local) and local nonlinear oper-
ations on a state vector. The linear operators (such as
Fourier transforms and implicit solvers) are coded in
the parent model, and therefore can be readily used
in coding the ETLM application to a state vector.
Furthermore, since implicit solvers in GFD models are
usually applied to sparse matrices arising from dis-
cretization of the differential operators, the structure of
these matrices can be obtained via the LETLM tech-
nique applied to auxiliary ensembles produced during
the parent ensemble propagation. In principle, these
retrievals can be performed in parallel with the parent
ensemble, providing an accurate ETLM model by the
end of integration. To demonstrate the feasibility of this
approach, Y20 reconstructed the ETLM operator with
machine accuracy for a SWM featuring a semi-implicit
solver. Y20 also showed that additional computational
saving can be achieved by assuming the ETLM operator
evolves slowly compared to the model time step and,
therefore, costly LETLM retrievals of the ETLM can be
conducted less frequently, and the respective sparse
matrices can be linearly interpolated and applied on
every time step of the parent model.

Our diagnostics suggest that the component of the
perturbation that the NAVGEM LETLM fails to capture
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FIG. 12. Latitude—pressure cross sections of 3-h LETLM NMIF forecast error standard deviations for (a) P, (b) 9, and (c) Q. (d)-(f) Asin
(a)-(c), but for NMIT. (g)-(i) As in (a)—(c), but for the TLM.

is very large scale in both the horizontal and the vertical.
This raises the possibility of introducing a separate
global ETLM for the very large-scale part of the per-
turbation. In theory this could be accurate provided the
number of basis modes used to describe the large scale
was smaller than the ensemble size. The result of this
global ETLM time step for the very largest scales could
then be blended with the results of an LETLM as de-
scribed in this paper. We also note that the global
computational stencil associated with semi-implicit nu-
merical methods is not present in some operational en-
vironmental models such as ICON (Zingl et al. 2015)
and MPAS (Klemp et al. 2018). In these models, only
vertically propagating sound waves are handled implic-
itly; therefore, the entire computational stencil is hori-
zontally localized. Hence, in some future study it would
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be interesting to test whether the LETLM configuration
presented here would yield a more accurate TLM for
models like ICON and MPAS than it does for a semi-
implicit model like NAVGEM.

Given the results from this paper and the insights
from Y20, we suggest several routes for further
development:

1) Testing the LETLM in hybrid-4DVar: Given the
close agreement between the TLM and LETLM,
LETLM integration in the hybrid 4DVar solver is
warranted. Several practical considerations need to
be addressed, including precomputing and storing
the LETLM as a sparse matrix operator for the it-
erative hybrid 4DVar computation. The local nature
of the LETLM might warrant implementation on
massively parallel graphical processing units (GPUs).
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We note the LETLM has been demonstrated with a
hybrid 4DVar solver in the SWM framework (Allen
et al. 2017).

2) Development of hybrid TLM methods: As shown in
the appendix, a typical GFD numerical model can be
represented as a sequence of linear operations that
can be handled by the method proposed in Y20, and
local nonlinear operators. The nonlinear operators
may either have easily derivable TLM and adjoint
(ADJ) codes (e.g., semi-Lagrangian advection) or
lack precise TLM interpretation (e.g., discontinuous
physical processes and vertical mixing). Given this
decomposition, it might be beneficial to construct a
hybrid TLM model that combines traditional nu-
merical methods to derive the TLM and ADJ of the
differentiable nonlinearities with ETLM techniques
for approximation of discontinuous and linear op-
erators. As a practical example, a hybrid NAVGEM
TLM could be constructed using the semi-Lagrangian
TLM for the model dynamics and an ETLM to
handle the physics. Since NAVGEM physics is cal-
culated in a vertical column, the ETLM computa-
tional stencil size could simply be the number of
vertical levels (~60) multiplied by the number of
variables, which could be balanced with realistic
ensemble sizes. A major benefit of this approach is
that changes to the physics would be automatically
be included in the LETLM, thereby avoiding the
difficult tasks involved with linearization.

3) Apply the LETLM to other NWP models: As dis-
cussed above, the LETLM may better approximate
the linearized versions of models that have inherently
localized computational stencils.
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APPENDIX

Decomposition of the NAVGEM Forecast Model
into a Sequence of Local and Nonlocal Operators

The forecast model execution over one time step can
be decomposed in a sequence of operations:

x,,, =PF'E"'DED,FSx , (A1)
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where the variables are defined as the following:

X,, and x,,,+1: model states in grid space at time index
mand m + 1;

S:semi-Lagrangian operator that calculates backward
trajectories and interpolates state variables and
forcing terms to the departure points. This opera-
tion is nonlinear (trajectory computations and a
fixed-point iteration for computing departure points),
and mildly nonlocal (interpolation as far as several
grid points);

F (F'): spectral transform (and its inverse) from 2D
gridded U, V fields to spectral harmonics of vorticity
and divergence. This operation is strongly nonlocal
because it performs both the global Fourier decom-
position and computes derivatives in the spectral
coefficient space. However, due to unitarity of the
Fourier transform and availability of the respective
code in NAVGEM, the TLM and ADJ code devel-
opment is not required.

E (E™'): eigenvector transform (and its inverse) in the
vertical. This is a global computation in the vertical
but local horizontally;

D and D,: diagonal diffusion operators in spectral
harmonic space. Development of TLM and ADJ
codes is not required; and

P: the physics tendency operator, which is mildly non-
local because it operates in the vertical only. P can
further be decomposed in the action of local and
mildly nonlocal (implicit diffusion) operators. Since
number of levels is comparable with ensemble size,
the structure of P could be accurately retrieved by
the LETLM technique.
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