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ABSTRACT

An ensemble-based linearized forecast model has been developed for data assimilation applications for

numerical weather prediction. Previous studies applied this local ensemble tangent linear model (LETLM) to

various models, from simple one-dimensional models to a low-resolution (;2.58) version of the Navy Global

Environmental Model (NAVGEM) atmospheric forecast model. This paper applies the LETLM to

NAVGEM at higher resolution (;18), which required overcoming challenges including 1) balancing the

computational stencil size with the ensemble size, and 2) propagating fast-moving gravity modes in the upper

atmosphere. The first challenge is addressed by introducing a modified local influence volume, introducing

computations on a thin grid, and using smaller time steps. The second challenge is addressed by applying

nonlinear normal mode initialization, which damps spurious fast-moving modes and improves the LETLM

errors above ;100 hPa. Compared to a semi-Lagrangian tangent linear model (TLM), the LETLM has su-

perior skill in the lower troposphere (below 700 hPa), which is attributed to better representation of moist

physics in the LETLM. The LETLM skill slightly lags in the upper troposphere and stratosphere (700–2 hPa),

which is attributed to nonlocal aspects of the TLM including spectral operators converting from winds to

vorticity and divergence. Several ways forward are suggested, including integrating the LETLM in a hybrid

4D variational solver for a realistic atmosphere, combining a physics LETLM with a conventional TLM for

the dynamics, and separating the LETLM into a sequence of local and nonlocal operators.

1. Introduction

Tangent linear models (TLMs) and their adjoints

play a key role in generating optimal initial conditions in

four-dimensional variational (4DVar) data assimilation

(DA) systems used for numerical weather prediction

(NWP) (e.g., Rabier et al. 2000; Rosmond and Xu 2006;

Gauthier and Thépaut 2001; Gauthier et al. 2007;

Rawlins et al. 2007; JMA 2019; Zhang et al. 2019). Initial

conditions are obtained by minimizing a cost function

that quantifies the combined error-weighted differ-

ences between the forecast and observations and be-

tween the forecast and a control background forecast.

The minimization requires the cost function gradient rel-

ative to the state vector, which has millions of elements.
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TLMs are used to determine this gradient and to prop-

agate initial conditions forward over the DA time win-

dow. Ideally, TLMs incorporate all features of the

nonlinear forecast model. In practice, development and

maintenance of TLMs of physical parametizations can

be difficult; therefore, operationally they only approxi-

mate the ideal linear model (Janisková and Lopez 2012;

Zhang et al. 2019). In some circumstances, this limita-

tion is not serious [e.g., when neglected processes are

too slow to noticeably impact the state on the DA time

scale (6–12 h)]. In other cases, the limitation may be

crucial and may even disallow certain observations

from being assimilated (Geer et al. 2017).While certain

DA approaches avoid TLMs, variational DA based on

TLMs continues to exhibit superior forecast accuracy

(e.g., Lorenc et al. 2015; Poterjoy and Zhang 2015;

Bowler et al. 2017).

One alternative approach to conventional TLMs is the

local ensemble tangent linearmodel (LETLM), in which

the forecast is determined from nonlinear ensemble

forecasts within a ‘‘local influence volume,’’ which we

define as a specified geometric shape surrounding a grid

point. This statistical approach has been tested in a hi-

erarchy of cases, starting with simple models in Frolov

and Bishop (2016) and Bishop et al. (2017). The latter

proved that when the time evolution of each model

variable over a single LETLM time stepDt depends only
on variables within the local influence volume, then the

LETLM is guaranteed to be accurate when the ensem-

ble size exceeds the size of the ‘‘computational stencil,’’

which we define here as the number of grid points con-

tained within the local influence volume multiplied by

the number of variables used for the LETLM. Bishop

et al. (2017) also demonstrated how the LETLM and

its adjoint can be applied to 4DVar in strongly nonlin-

ear regimes where multiple outer loops are required

to achieve convergence. Allen et al. (2017) then dem-

onstrated an accurate LETLM-based hybrid 4DVar

system using a global shallow-water model. The first

LETLM demonstration using an NWP forecast model

(Frolov et al. 2018, hereafter F18) showed that, when

low resolution was used (triangular truncation of T47 or

;2.58), the LETLM successfully forecasted realistic

analysis perturbations, with skill exceeding the conven-

tional TLM in the troposphere, but slightly worse in the

stratosphere and mesosphere. Considerable attention

was paid to the sensitivity of the LETLM to model pa-

rameters and tuning of the system for optimal results.

This paper furthers LETLM development for NWP

using simulations at 18 (;100 km) resolution, which is

the inner-loop resolution currently employed in theU.S.

Navy’s operational global NWP system. A central as-

sertion is that a precise LETLM approximation to the

true TLM is possible if the ensemble size exceeds the

computational stencil size. For a fixed LETLM Dt,
the required influence volume remains the same (due to

the speed of wave propagation), but the computational

stencil size increases with increased model resolution.

Hence, to maintain the same approximate LETLM ac-

curacy the ensemble size used to construct the LETLM

should increase. F18 used a large ensemble size (up to

400); larger ensembles would be highly undesirable due

to computational constraints. To copewith this problem,

Yaremchuk et al. (2020) developed an extension of the

LETLM that relaxes the locality assumption, allowing

accurate (nonlocal) ETLMs for semi-implicit operators.

This development may help avoid substantial increases

of the ensemble size in future ETLM applications (more

details in section 6).

Here we investigate several approaches to increase

LETLM accuracy. First, we modify the geometry of the

local influence volume to better account for physics

processes that use a vertical column. Second, we switch

from full Gaussian grid to a thin grid to avoid a 10-fold

increase in density from equator to pole. And third, we

attempt a reduced Dt, which should in principle lead to

the reduction in the optimal computational stencil size.

In addition, the F18 results suggested that the LETLM

was struggling to compete with the TLM in the upper

stratosphere and lower mesosphere (USLM). This arti-

cle investigates a potential cause of the degradation:

rapidly propagating large-scale gravity waves, or so-

called normal modes. The conventional TLM captures

these using nonlocal operators associated with semi-

implicit time stepping and global spectral transforms.

The LETLM, however, is limited by the finite local in-

fluence volume. We will examine the effects of these

waves on USLM performance by applying nonlinear

normal mode initialization, while retaining the local

nature of the LETLM.

The paper is organized as follows. Descriptions of the

forecast model and LETLM are provided in section 2.

Section 3 discusses normal mode initialization and its

potential impact on LETLM forecast skill. Section 4

compares LETLM and TLM errors for a test case in

November 2014. Sections 5 and 6 give a summary and

discussion, respectively.

2. Model description

a. NAVGEM forecast model

The NAVGEM atmospheric forecast model employs

a semi-Lagrangian/semi-implicit integration of the hy-

drostatic dynamical equations, the first law of thermo-

dynamics, and conservation of moisture and ozone

(Hogan et al. 2014). The configuration used here has a

2550 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:52 PM UTC



horizontal resolution of T119 (Gaussian grid of

360 longitudes3 180 latitudes), which is the current inner-

loop operational resolution. Vertically, the model uses

60 levels (top at 0.05 hPa, ;65 km) with a hybrid-sigma

coordinate (Eckermann 2009). The model is run with a

15min time step and the model state is saved every time

step. The predicted variables are vorticity, divergence,

virtual potential temperature, specific humidity (Q), and

surface pressure. In addition, the zonal (U) and merid-

ional (V) wind, temperature (T), geopotential height

(Z), _h (vertical motion, where h represents the hybrid

model levels), and 3D pressure (P) are derived fields.

As in F18, the LETLM variables include U, V, T, P, Z,

_h, and Q. NAVGEM incorporates several stochastic

physics packages, including stochastic kinetic energy

backscatter, nonorographic gravity wave drag, and a

stochastic mass flux parameterization in the boundary

layer. Stochastic processes are difficult to model from

a linear perspective, since there is no deterministic

process that results in the random physics change.

For LETLMdevelopment, we therefore turned off these

stochastic processes. One additional change is the tim-

ing of when the model fields are output. As coded,

NAVGEM calculates the dynamics followed by the

physics for each time step. Operationally, wind and

temperature fields are saved before the physics calcu-

lation, while the water and ozone are saved after the

physics. To synchronize all model variables, wemodified

the code to save all fields after the physics to complete

the time step.

The NAVGEM DA solver is a hybrid 4DVar system

(Kuhl et al. 2013) that employs a strong-constraint ap-

proach using the ensemble transform (ET) method

(McLay et al. 2008) with 80 members. The 6-h cycling

window is centered at 0000, 0600, 1200, and 1800 UTC.

The background includes the last 6 h of a 9-h forecast

from the middle of the previous window. The solver

employs the accelerated representer method described

by Xu et al. (2005) and Rosmond and Xu (2006). The

original NAVGEMTLM and adjoint models, described

in Rosmond (1997), were based on the earlier Navy

Global Atmospheric Prediction System (NOGAPS).

While this NOGAPS TLM is currently operational, we

use a newly developed semi-Lagrangian (SL) TLM,

which is expected to become operational in 2020. The SL

TLM has simplified boundary layer physics, including

vertical diffusion, simplified gridscale precipitation, and

simplified convection. It neglects several other physical

processes including gravity wave drag, radiation, and

ozone photochemistry. Note that the preoperational

version of the SL TLM used for this study did not yet

include moist physics (precipitation and convection).

Also, for this study, several of the SL TLM settings were

adjusted to match the nonlinear forecast model, in-

cluding the same horizontal and vertical resolution, time

step, horizontal diffusion, and sponge layer levels.

b. LETLM description

The LETLM is described in F18. Here we summarize

the formulation and highlight new aspects used in this

paper. We note here that since the LETLM is still in the

development state, it has not yet been optimized for

timing tests, so we do not present efficiency comparisons

with the TLM. However, discussions of computational

requirements and sensitivities in section 8 of F18 are still

relevant to this study.

The LETLM is a sparse matrix M approximating the

evolution of the deviations dX of the ensemble X of n

model states from their mean:

dX
m11

5MdX
m
1 j

m
. (1)

Here n is ensemble size,N is the size of themodel state

vector, and Xm11 and Xm are N 3 n matrices repre-

senting ensemble states listed columnwise at time indi-

cesm1 1 andm, and jm is the ensemble of Taylor series

truncation errors. For large ensembles (n5N) spanning

the entire state space,M can be retrieved by minimizing

the norm of jm with respect to the elements of M. For

realistic ensemble sizes (n ; 100), the retrieval can also

be performed if the nonlinear model operators driving

the ensemble are local (i.e., the approximating matrixM

is sparse and has at most n nonzero elements in a set of

rows associated with a given grid point). Under this lo-

cality assumption the number of unknowns does not

exceed the number (N 3 n) of linear constraints in

Eq. (1), and the respective solution for the rows of M

associated with the pth grid point can be represented by

Mp 5 (Ŝp+dX
m11

)[(Sp+dX
m
)T(Sp+dX

m
)]21(Sp+dX

m
)T ,

(2)

where + stands for the Schur (elementwise) product, Sp

is an N 3 n selection matrix whose (identical) columns

contain ones in the grid points where the elements of M

are expected to influence themodel state at the pth point

and zeros elsewhere, while Ŝpselects only the ensemble

variables in the pth grid point. The action ofM on a state

vector xm can then be computed as

x
m11

5 �
Ngrid

p51

[̂sTpM
p(s

p
+x

m
)] , (3)

where Ngrid is the number of model grid points, and sp
and ŝp are the columns of Sp and Ŝp. In LETLM com-

putations, the ensemble members are also normalized
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(Eq. (3) in F18) to improve the condition numbers of the

matrices in Eq. (2).

Equation (3) exposes two major challenges for

LETLM implementation. The first is the necessity to

know the exact structure of Sp [locations of the nonzero

elements within the LETLM local influence volume,

referenced by the symbol vp, involved on the right-hand

side of Eq. (2)]. F18 used the cylindrical vicinity sur-

rounding the pth point. As we will show, further refining

of vp based on physical considerations may substantially

improve the LETLM.

The second challenge is the assumption of locality.

Most NWP models, including NAVGEM, contain non-

local operators, such as integrals for pressure computa-

tion or semi-implicit solvers for filtering fast gravity

waves. As a consequence, the locality assumption jspj ,
n is violated for manageable (n ; 100) ensemble sizes,

and the LETLM loses accuracy in representing the TLM

with increasing model resolution. To deal with this

problem, one has to either increase the ensemble size to

satisfy the solvability condition for Eq. (1), or augment

the equation with additional constraints by replacing

the inverse of the local ensemble correlation matrix

in Eq. (2) by a pseudoinverse (see the appendix of

F18 for details on applying the pseudoinverse). In the

latter case, the major difficulty is correctly defining the

pseudoinverse metric.

One possibility to mitigate the problem of nonlocality

is to compute the LETLM on a thinner grid followed by

reinterpolation to the grid of the parent model. Another

option is to reduce the size ofDt for the LETLM in order

to shrink vp. A third option is to alter the shape of vp

to account for physical processes with known spatial

locality, such as physics parameterizations acting in a

vertical column. In what follows, we will explore the

impact of these approaches using a fine-resolution (18)
NAVGEM model that was used for low-resolution

LETLM tests in F18.

c. Changes from the previous formulation of
the LETLM

Moving to higher resolution increases the number of

grid points in the computational stencil, which grows

as the inverse square of the model grid spacing. In ad-

dition to the increased computational expense, the

computational stencil size should be roughly equivalent

to the ensemble size. It is undesirable that increases in

resolution should require more ensemble members. To

ameliorate this behavior, we followed traditional nu-

merical methods where increasing horizontal resolution

results in decreasing Dt. We will compare results using

Dt 5 15 and 30min to the 60-min Dt used in F18. We

expect that smaller Dtwill lead to smaller local influence

volumes, increased skill, and reduced computational

time of LETLM forecasts. We test these expectations in

section 4b.

We also modified the shape of the local influence

volume vp that is used to determine the computational

stencil (the total of all model grid points that lie inside

vp multiplied by the number of variables). Following

the observation that dynamical processes often operate

in a horizontal plane, while physics processes operate

in a vertical 1D column, we designed a vp that combines

a cylinder (as in F18) with an additional vertical column.

The cylinder (yellow region in Fig. 1) has a radius L and

encompasses all model levels within6zhalo of the central

level. Away from the upper and lower boundaries, the

computational stencil includes 23 zhalo1 1 levels, while

near the boundaries the computational stencil is limited

to the number of available levels (e.g., the lowest model

layer will include only zhalo1 1 levels in the stencil). The

new component of vp is a single vertical column that

extends beyond the cylinder directly above and below

the central point (green regions in Fig. 1). The integer value

zcolumn is chosen so that an additional 23 zcolumn points

FIG. 1. The LETLM local influence volume vp (colored regions)

is composed of a central cylindrical region of radius L (yellow),

with the number of vertical levels equal to 2 3 zhalo 1 1. In addi-

tion, a vertical column (green) is included that extends zcolumn

levels above and below the highest and lowest layers of the cylin-

der. This figure illustrates the configuration used in this study

(zhalo5 2 and zcolumn5 6). The computational stencil, as defined in

this paper, includes all of the grid points (dots) that are located

within the local influence volume, multiplied by the number of

variables. Here the computational stencil size is (133 51 63 2)3
7 variables 5 539.
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are added to the computational stencil away from the

boundaries (this quantity is similarly limited near the

boundaries). The additional expense of using zcolumn is

small, but provides a noticeable benefit (about a few

percent). For the LETLM tests performed in this study,

we use fixed zhalo 5 2 and zcolumn 5 6, based on several

tuning tests.

In addition to the new vp, we implemented the

LETLM on a reduced grid. In F18, we used the full

Gaussian grid, which has the same longitude grid at each

latitude (Fig. 2a, black line), so the density of grid points

varies greatly with latitude. NAVGEM can be run on a

‘‘thin grid,’’ where the longitude grid varies with latitude

to better match the inherent resolution of the spectral

model (red line on Fig. 2a). The number of grid points

for a single NAVGEM T119 level is 64 800 for full grid

and 42 984 for the thin grid, resulting in;33% reduction

in total points. The benefit to the LETLM is significant

in that for fixed L, the computational stencil size as a

function of latitude is more uniform. Figure 2b compares

the number of horizontal points included in the com-

putational stencil for the NAVGEM T119 full and thin

grids for L 5 500km, showing that while the full-grid

ranges from 69 to 1552, the thin grid ranges from 63 to

135. The thin grid speeds up the LETLM calculations by

an order of magnitude without reducing forecast skill.

All NAVGEMLETLM tests are now run with the T119

thin grid. Note, however, that the nonlinear forecasts

and the TLM forecast were actually made with the full

T119 grid, and the output from these was converted to

the T119 thin grid in postprocessing.

Finally, we also introduced minor changes to the cal-

ibration protocol. F18 examined sensitivity to several

model parameters, but the main ones were the local

influence volume cylindrical radius L and the unitless

pseudoinverse cutoff parameter b (see the appendix of

F18 for more details on the parameter b). Here we also

tune these two parameters, but change the values used;

L varies from 50 to 1250km, in 50km increments, and

for b we use values of 10(i25)/5 where i ranges from 0 to

10 by increments of 1.0 (exact values of b are 0.100,

0.158, 0.251, 0.398, 0.631, 1.000, 1.585, 2.511, 3.981, 6.301,

and 10.0). Using all combinations of L and b, we per-

form 220 offline calibration forecasts for each full tuning

experiment. As in F18, optimal values of L and b are

determined for each model level k. To select these op-

timal profiles Lopt(k) and bopt(k), we compare the 3-h

(i.e., at the center of the NAVGEM analysis window)

normalized error «(k) (section 2e describes error cal-

culations) forU,V, andT against the known truth for the

perturbation forecast, which is computed using a pair of

nonlinear model forecasts. For each level, we select the

combinations of Lopt(k) and bopt(k) that minimize «(k)

resulting in the optimal error profile «opt(k). The

LETLM configuration used in this study is summarized

in Table 1.

d. Experimental design

The basic experimental design is similar to F18, except

for higher horizontal resolution (T119,;1.08 rather than
T47, ;2.58). In addition, while F18 assimilated conven-

tional observations and AMSU-A radiances, here we

use a more realistic observation suite that includes these

observations along with radiances from CrIS, AMSU-B,

Aqua, IASI, MHS, SSMIS, and ATMS, ozone from

SBUV and OMPS, and GPS radio occultations. The

number of observations accepted in the 6-h cycle used

for this study was ;3.4 million. As in F18, we use the

climatological covariance for cycling and for calculat-

ing the analysis perturbations. For the LETLM, rather

than using the standard ET ensembles, we initialize

ensembles using random samples from archived T425

(downscaled to T119 for this study) analysis perturba-

tions from 0000 UTC 21 November 2014 to 1800 UTC

FIG. 2. (a) The number of longitudes at each latitude associated

with the full (black) and thin (red) grid for triangular truncation

T119. (b) The number of horizontal points in the computational

stencil as a function of latitude at 08 longitude for radius of 500 km
and for the full (black) and thin (red) grid.
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2March 2015. To generate a test perturbation, we cycled

at T119 from 0000 UTC 15 November to 0000 UTC

17 November 2014, and used the perturbation for

0000 UTC 17 November 2014 for the LETLM tests.

Operationally, the TLM runs over the analysis time

63 h. To accommodate the initial condition time we

shift the time sequence to run the TLM (and LETLM)

from the analysis time to 16 h. The nonlinear forecasts

used for calculating the truth are also run over this

time window.

Maps of initialU,V, and T perturbations at four levels

are provided in Fig. 3. The perturbation sizes increase

with altitude from the surface (bottom row) up to the

stratopause (top row). Finer spatial scales are seen at

the surface and middle troposphere (493hPa) than in the

middle stratosphere (10.5hPa) and at the stratopause

(1hPa), where perturbations are quite broad, reflecting

larger-scale dynamics. Vertical profiles of perturbation

size will be shown in section 4d. We note that in this pa-

per, we only examine forecasts from one representative

perturbation rather than performing statistical analyses

over many perturbations. Our goal is to understand the

LETLM mechanics and sensitivities, rather than ex-

haustive validation. The true test for NWP will come

when the LETLM is fully integrated into a cycling hy-

brid 4DVar system.

e. Error metrics

We use similar error metrics to F18 to quantify the

LETLM and TLM skill. Globally averaged root-mean-

square errors (RMSEs) are calculated for each variable

as follows:

U
RMSE

(k)5

(
1

nthin�
nthin

i51

[U
TRUTH

(i, k)2U
LETLM

(i, k)]2
)1/2

,

(4)

where i and k are indices for model grid point and level,

respectively, and nthin is the number of points on the

thin grid. Next, a normalized error metric combines U,

V, and T errors:

«(k)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

RMSE(k)

U2
PERT(k)

1
V2

RMSE(k)

V2
PERT(k)

1
T2

RMSE(k)

T2
PERT(k)

3

vuuut
. (5)

Here PERT indicates the size of the TRUTH per-

turbation, and UPERT(k) is obtained from Eq. (4) by

zeroing out ULETLM(i, k). Finally, «(k) is integrated

vertically to give a single metric:

«5
1

nlev�
nlev

k51

«(k) . (6)

Here we equally weight all model levels. Since the

NAVGEM levels are more closely spaced near the

surface (e.g., half are below 200hPa), this metric favors

the troposphere.

3. Normal mode initialization

a. Normal modes in NAVGEM

NAVGEM can be run with normal mode initializa-

tion (NMI) applied to any nonlinear forecast. The NMI

code is discussed in the NOGAPS reference manual

(Hogan et al. 1992) and generally follows Machenhauer

(1977). NMI uses a nonlinear iterative approach to en-

sure that the time tendencies of the coefficients of the

selected inertio-gravity modes are approximately zero.

The NOGAPS NMI uses the hybrid vertical coordinate,

which differs from �Zagar et al. (2015), who use the pure

sigma formulation of Kasahara and Puri (1981). We

initialize three vertical normal modes (NM), associated

with equivalent depths of 10.147, 5.959, and 2.787km

(the leading eigenvalues of the vertical structure equa-

tion). All three NM peak in the lower mesosphere

(above 1.0 hPa) and are large throughout the USLM

(;10hPa to the top of the model), but are small in the

TABLE 1. Parameters used for the reference configuration of the LETLM and additional sensitivity tests.

Parameter Reference configuration value Additional sensitivity tests

Date time group 0000 UTC 17 Nov 2014

Time step 60min 15 and 30min

Forecast time 3 h

zhalo 2 (i.e., 5 vertical levels)

zcolumn 6 (i.e., 12 additional points)

Variables U, V, T, P, Z, _s, Q

b 10(i25)/5, i 5 0, 1, 2, . . . , 10

Ensemble size 400 50, 100, 200, and 300

L 50, 100, . . . , 1250 km
Ensemble initialization Archived analysis perturbations
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troposphere (below;100hPa). The horizontal structures

of the normal modes are solutions of the shallow-water

model equations with mean depth equal to the equiva-

lent depths associated with each vertical mode. We will

examine these solutions in section 3b. For this study, we

set the cutoff frequency for initializedmodes to 1.0day21.

To analyze the NM structures, Figs. 4a–d provide

vertical cross sections in longitude and pressure of the

FIG. 3. The initial perturbations at 0000UTC 17Nov 2014 forU,V, andT at fourmodel levels specified by a nominal pressure associated

with a standard profile over the ocean. (top row) The stratopause (1.1 hPa, ;50 km), (second row) the middle stratosphere (10.5 hPa,

;30 km), (third row) the middle troposphere (493 hPa, ;6 km), and (bottom row) the boundary layer (998.2 hPa).
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equatorial T difference between 12-h deterministic fore-

casts from a 4DVar analysis with and without NMI. At

0h, a zonal wave 2 structure exists at high altitude.

Horizontalmaps of theT difference at 10.5hPa (Figs. 4e–h)

show a wave 2 structure superposed with smaller-scale

features. Forecasts with and without model physics (not

shown) indicate the wave 2 structure is largely forced by

radiation at upper levels combined with tropical con-

vective processes that affect geopotential heights above.

Similarmechanisms force themigrating semidiurnal tide

(Hagan and Forbes 2003), but these freely propagat-

ing NM are distinct from the forced semidiurnal tide.

NAVGEM forecasts without physics indicate this wave

persists for at least 5 days, although at reduced amplitude.

The wave 2 structure propagates ;1808 westward over

11 h, for an equatorial phase speed (c) of ;500m s21

(dotted lines in Fig. 4 mark c 5 500ms21).

b. LETLM sensitivity to c using the SWM

Calculations of the horizontal NM were computed

using the shallow-water model (SWM) described in

Allen et al. (2015), with mean depth equal to the gravest

equivalent depth of 10.147km. The westward gravity

(WG) mode with total wavenumber n 5 2 and zonal

wavenumber m 5 2 [i.e., the WG(2, 2) mode], has a

similar structure to that observed here, with c 5
504ms21 (period of 11.1 days), consistent with the fea-

tures in NAVGEM. Figures 4i–l provides global maps of

the SWM height (Z) from a forecast initialized with the

WG(2, 2) mode upon a basic state at rest, showing uni-

form westward propagation with c ; 500m s21. There

are other waves present in NAVGEM (Figs. 4e–h), but

this WG(2, 2) mode plays a large role.

Fast-moving large-scale modes may cause problems

for the LETLM, since it is requires localization due to

finite ensemble size. For each Dt5 3600 s, the WG(2, 2)

mode travels ;1800km, similar to the optimal LETLM

localization lengths ;1750 km obtained in F18 (see

Fig. 3a of F18). The sensitivity of LETLM errors to c is

tested with the SWM experimental design of Allen et al.

(2016), using T21 (;5.68) resolution and mean depth of

10 km. First, a 100-member ensemble was created with

FIG. 4. (a)–(d) Difference between NAVGEM forecasts of T with and without normal mode initialization, starting from 0000 UTC 17 Nov

2014. Plots show longitude–pressure cross sections at the equator for forecast times 0, 4, 8, and 12 h. In all plots, the vertical dotted line identifies

the approximate location of a trough inT, themovement of its location fromonepanel to the next corresponds towestwardmotionwith a phase

speed of 500m s21. (e)–(h) Difference maps at 10.5 hPa (;32 km) for the same NAVGEM forecasts of T with and without normal mode

initialization. (i)–(l) Shallow-water model forecast of the height for theWG(2, 2) normal mode associated with a mean depth equal to the first

eigenvalue of the NAVGEM T119L60. The SWM is run at T119 (;18 resolution) with a mean depth of ;10 km and basic state at rest.
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an ensemble Kalman filter that assimilated 6 days of fabri-

cated observations froma SWMforecast with topographic

forcing to generate realistic Northern Hemisphere

(NH) wintertime dynamics. In Allen et al. (2016), this

ensemble was used to propagate the subsequent analysis

perturbation in order to tune the pseudoinverse pa-

rameter for the LETLM with a fixed local influence

volume radius L 5 2000km and Dt 5 1 h. Here we use

the same tuned LETLM parameters, but substitute the

analysis perturbation with single NM structures having

c ranging from 500 to 3362m s21 (these are the WG

modes for the T21 system with fixed zonal wave-

number (m 5 2), and total wavenumber (n) from 2 to

21. The truth was calculated for each NM as the dif-

ference between the background and background plus

NM nonlinear forecasts. Note that the background is

not at rest in these calculations, so the wave structures

become distorted, unlike the ideal structures shown in

Figs. 4i–l.

Figure 5 (top row) shows Z maps for the WG(2, 2)

mode. Initial perturbations are plotted in Fig. 5a, and

TLM and LETLM 6-h forecasts are plotted in Figs. 5b

and 5c, respectively. The truth forecasts are nearly

identical to the TLM forecasts and are therefore not

shown. Both the TLM and LETLM accurately forecast

this mode out to 6 h, as seen in the error time series

(Fig. 5d). Results for theWG(17, 2) mode (bottom row),

which has a westward phase speed of 2750ms21, are

provided in Figs. 5e–h. While the TLM accurately

forecasts this wave, the LETLM has essentially no skill

at 6 h, since the errors are larger than the perturbation.

A summary of 6-h forecast errors is provided in Fig. 6,

using the metric of Eq. (5). While the TLM propagates

all modes with high accuracy («, 0.003), LETLMerrors

increase sharply with c, particularly beyond;1000ms21,

and the LETLM has virtually no skill (i.e., «. 1) for c.
;2500ms21. We infer that applying NMI to nonlinear

forecasts used in the LETLM and the truth will lead to

error reductions. This was previously tested by Allen

et al. (2017), who showed that applying NMI signifi-

cantly reduces the LETLM forecast errors (see Fig. 7 of

Allen et al. 2017). In the next section, we will examine

LETLM forecasts with NAVGEM by running the sys-

tem with NMI (denoted NMIT, where T stands for true)

and without NMI (denoted NMIF, where F stands for

false). In the NMIT experiments, NMI is applied to both

the control and the ensemble forecasts, while in NMIF,

there is no application of NMI.

FIG. 5. Shallow-water model simulations at T21 (;5.68) of the (top) WG(2, 2) and (bottom) WG(17, 2) modes using the system

described in Allen et al. (2016). The WG(2, 2) mode moves westward with a phase speed of 501m s21 and the WG(17, 2) mode moves

westward at 2750m s21. (a),(e) Z perturbations at initialization. (b),(f) 6-h forecasts of Z from the TLM (the true perturbation at 6 h,

not shown, is nearly identical to the TLM). (c),(g) 6-h forecasts of Z from the LETLM with 100 members and time step of 1 h. (d),(h)

The Z globally averaged errors for the TLM (black line, near zero), LETLM (green line), persistence (red line), and size of the

perturbation (blue line).
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4. Detailed comparison of LETLM and TLM
errors for NAVGEM

a. Sensitivity to ensemble size

We now examine LETLM and TLM errors for

NAVGEM.We first illustrate the sensitivity of LETLM

skill to ensemble size to motivate the use of ensembles

larger than the currently operational NAVGEM en-

semble (80 members). Errors for 3-h LETLM forecasts

were calculated using a modified tuning procedure in

which we fix bopt(k) 5 1.0 and only tune L(k). We use

Dt 5 60min and ensemble sizes of 50, 100, 200, 300,

and 400. The « values are plotted in Fig. 7a. In both

NMIF and NMIT, there is strong sensitivity to ensemble

size, with monotonic improvements out to 400members.

These tests suggest that 80 members are likely too few

for an accurate LETLM, but additional improvement

beyond 400 members may not be worth the addi-

tional computational cost.We therefore limited the tests

to 400 members as an upper realistic limit given current

computational requirements for NWP. Also, we note

that NMIT errors are smaller than NMIF errors for all

ensemble sizes. A detailed comparison of NMIT and

NMIF will be provided below.

b. Sensitivity to Dt

With a fixed ensemble size of 400, we next examined

the LETLM sensitivity toDt. For bothNMIF andNMIT,

we calculated 3-h errors using Dt 5 15, 30, and 60min

(900, 1800, and 3600 s), using full tuning for L and b for

each case. Resulting errors are presented in Fig. 7b.

While previous tests with the SWM showed LETLM

errors increasing monotonically with Dt (Fig. 16f of

Allen et al. 2017), here the errors are similar for NMIF

at Dt 5 15, 30, and 60min (« 5 0.305, 0.300, 0.305).

For NMIT, errors are also similar (« 5 0.264, 0.254,

0.255), but have a sharper drop from 15 to 30min.

Larger errors for smaller Dt may be due to noise

in the LETLM forecast that becomes amplified with

the recursive application of the LETLM operator.

Further tests are needed to determine the exact cause

of the error behavior, but it is clear that our expec-

tation that smaller Dt would result in smaller errors

was not true.

We also expected that smaller Dt would be associated

with smaller local influence volumes, which would re-

quire less computational expense, since the computa-

tional cost varies with the square of Lopt (as shown

in F18). We tested this by comparing the mean Lopt

values versus Dt for three vertical ranges: troposphere

(1000–100hPa), stratosphere (100–1 hPa), and meso-

sphere (,1 hPa). Figure 7c shows that a doubling of Dt
from 900 to 1800 s results in a 15% increase in the me-

sospheric Lopt for NMIF (700 to 800km), and in the

troposphere, Lopt only increases slightly with Dt. To
compensate for the doubling of Dt (thereby halving

number of time steps), Lopt must increase by at least

44% to offset the increase in the overall cost. Therefore,

running the optimal cases actually takes less computa-

tional time for larger Dt, since the decreased number of

time steps is not entirely compensated by the increase in

Lopt. So our expectation of reduced LETLM execution

time with reduced Dt is also not true. Since smaller Dt
does not result in improved skill or reduction in com-

putation time, we decided to use Dt 5 60min results in

the detailed comparisons with the TLM. This also allows

comparison with results in F18, which used Dt5 60min,

but with lower resolution.

We also note that Lopt is highly sensitive to NMI,

particularly in the stratosphere and mesosphere (Fig. 7c).

The mesospheric values of Lopt for NMIF are ;200km

higher than NMIT and the stratospheric values are

;100 km higher. The tropospheric values are similar, as

expected, since theNMhave only a small contribution at

lower altitudes (see Fig. 4). We also note in Fig. 7d that

bopt increases with Dt and bopt is generally larger for

NMIF than for NMIT.bopt also decreases with increased

altitude, with tropospheric values exceeding those in the

stratosphere and mesosphere.

c. Globally and vertically averaged errors for
reference configuration

We next examine the globally and vertically averaged

errors « of the optimally tuned LETLM with Dt 5
60min. We note that the LETLM was tuned at 3 h, but

single 6-h forecasts were subsequently made using the 3-h

values of Lopt(k) and bopt(k). The 3-h errors computed

FIG. 6. LETLM and TLM errors for the propagation of a single

normal mode with specified phase speed over a 6-h period using a

shallow-water model system with resolution T21 and mean depth

of 10 km. The modes are all westward gravity modes with zonal

wavenumber 2 and total wavenumbers from 2 to 21.
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from these single forecasts (0.304 and 0.255 for NMIF

and NMIT, respectively) are very close to the errors

computed using the full-tuning method with 220 fore-

casts (0.305 and 0.255 for NMIF and NMIT, respec-

tively). For comparison, the TLM gives « 5 0.262

for 3-h forecasts, so the NMIT version of the LETLM

provides smaller overall errors.

Figure 8 shows « for LETLM (green), TLM (black),

‘‘persistence’’ forecast using TLM 5 I (red), and per-

turbation size in normalized units (blue). The solid

(dashed) lines indicate NMIT (NMIF). The persistence

errors grow to nearly the perturbation size after 6 h. The

TLM and LETLM have considerable skill compared to

the persistence. The LETLM skill for NMIF is worse

than the TLM beyond 1h, but NMIT shows better

LETLM skill from 1 to 3 h and similar skill from 4 to

6 h. These results provide encouragement that at the

operational inner loop resolution, the LETLM is on

par with the TLM in propagating a realistic analysis

perturbation.

d. Globally averaged vertical error profiles for
reference configuration

Figure 9 shows vertical profiles of tuning parameters

and 3-h forecast errors. As discussed above, we fixed

zhalo and zcolumn, and only tune L and b, but all four

parameters are included for illustration. Additional

forecast improvements could eventually be achieved by

simultaneously tuning all four parameters. The second

and third rows show «(k) and errors for each model

variable. Figure 10 is similar to Fig. 9, but emphasizes

the lower troposphere (500–1000 hPa).

Figure 10a shows that Lopt(k) ;250–300km near the

surface for both NMIF and NMIT. Figure 10b shows

bopt(k) is large near the surface, but decreases over

the boundary layer, and is larger for NMIF than NMIT.

FIG. 7. (a) Vertically integrated 3-h forecast errors « as a function of ensemble size for NMIF (solid) and

NMIT (dotted). (b) « as a function of time step for NMIF (solid) and NMIT (dotted). (c) Vertically integrated

optimal radius as a function of time step for three vertical ranges: mesosphere (1–0.05 hPa), blue lines; stratosphere

(100–1 hPa), red lines; troposphere (1000–100 hPa), black lines. Solid (dotted) lines are forNMIF (NMIT). (d)As in

(c), but for b.
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At higher altitudes (Fig. 9a), Lopt(k) increases from

;100 to ;0.5 hPa to values of up to 1100km (1000 km)

for NMIF (NMIT). This indicates faster processes at

higher levels, so the LETLM needs a wider local influ-

ence volume. The Lopt(k) profiles determined in F18

were significantly larger than those seen here (;750 km

in the troposphere and;1750km at higher levels). This

indicates that Lopt(k) is not solely determined by phys-

ical processes, but also depends on model resolution

(the denser T119 grid may allow optimization with

smaller lengths due tomore available points for fixedL).

Figure 9a shows that Lopt(k) in the USLM is smaller for

NMIT than for NMIF. At 2 hPa, for example, Lopt(k)

decreases from 1000 to 700km when NMI is applied;

bopt(k) is also sensitive to NMI in the USLM with lower

values occurring for NMIT. We also attempted tuning

Lopt as a function of latitude and level. Error profiles

(not shown) indicate the additional latitudinal tuning

does not significantly affect the overall errors (;2%–3%

error reduction).

The wind and T errors show LETLM skill at all levels,

exceeding TLM skill up to ;700 hPa (Figs. 10f–h). This

suggests the LETLM physics provides additional infor-

mation not captured in the TLM’s simplified physics.

TroposphericU,V, and T errors are not very sensitive to

NMI. At altitudes above ;700 hPa, LETLM errors for

NMIF are generally larger than TLM errors, but still

show considerable skill. The NMIT results show sharply

decreased errors in U, V, and T relative to NMIF, with

«(k) on par with the TLMabove;2 hPa. Note that TLM

errors for NMIT (dotted black lines in Figs. 9, 10) are

similar for U, V, and T, suggesting the TLM accu-

rately propagates the fast-moving modes, as discussed in

section 3.

LETLM errors for Q, Z, P, and _h also show skill, and

these are generally similar to TLM errors (due to strong

variation with altitude we show these errors as per-

centage errors relative to the perturbation size). Note

that P is horizontally constant for hybrid vertical

levels above 87 hPa, so P errors are not shown above

this level. The NMIT errors are reduced relative to

NMIF for these variables as well, with a very large

reduction (;50%) for Z at high altitudes (Fig. 9j).

The LETLM does generally better with these vari-

ables than the TLM throughout the troposphere as

well (Figs. 10i–l).

e. Zonal mean error cross sections for reference
configuration

The globally averaged errors show the LETLM is

competitive with the TLM, particularly for NMIT. As a

final comparison, we examine latitude–pressure error

cross sections. Figures 11a–d and 12a–c show error

standard deviations for all model variables for the

LETLM with NMIF. U, V, and T show enhanced errors

in the tropical tropopause and the lower mesosphere,

particularly in the NH; T errors are also large in the

tropical troposphere, likely associated with convection;

Z errors are very large throughout the USLM region;

P errors maximize in the tropics as well, while _h errors

are large over a broad range of latitudes and altitudes;

and Q errors are largest in the troposphere and smaller

in the stratosphere and mesosphere. Localized regions

of larger Q errors occur in the polar regions of both

hemispheres.

For NMIT (Figs. 11e–h), errors are moderately re-

duced relative to NMIF at high altitudes forU, V, and T

and strongly reduced forZ, due to theNMhaving a large

Z signal in theUSLM. ForNMIT, there are still elevated

Z errors in the equatorial region from the troposphere to

the top. This appears to be associated with the tropo-

spheric T errors in the convective regions, which affects

the entire column due to the hydrostatic relationship

between T and Z. There are also error reductions in

P, Q, and _h (Figs. 12d–f) in NMIT relative to NMIF,

but these are not as dramatic as for Z.

The conventional TLM errors for U, V, T, and Z are

provided in Figs. 11i–l. While the TLM is better over

large regions of the atmosphere, the LETLM does

slightly better overall at 3 h (Fig. 8). This is because the

FIG. 8. Vertically integrated errors («) for the propagation of a

4DVar perturbation over 6 h. Lines indicate the magnitude of the

propagated perturbation in normalized units (blue), errors under

the assumption of a trivial ‘‘persistence’’ TLM 5 I (identity ma-

trix), equivalent to the 3DVar case where the increments are not

propagated in time (red), errors for propagation of the perturba-

tion using the LETLM (green), and errors for the propagation of

the perturbation using the TLM (black). The solid (dashed) lines

are for NMIT (NMIF). The LETLM experiments are run with

400 ensemble members, a time step of 60 min, and full tuning of

L and b.
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vertical weighting used for « (which gives each model

level equal weight) favors the lower atmosphere, where

model levels are more closely spaced and where the

LETLM does better. The TLM error structures are

similar to NMIF errors for all variables, with maximum

U, V, and T errors in the tropical troposphere and the

mesosphere and large Z errors in the tropics. TLM er-

rors inP,Q, and _h (Figs. 12g–i) are also similar to NMIF.

One noticeable difference is smaller stratospheric

Q errors in NMIF than in the TLM, which may be due

to parameterized water chemistry in the stratosphere

and mesosphere (details in McCormack et al. 2008),

which is modeled in the LETLM, but not modeled in the

TLM. Overall, these error comparisons provide a con-

sistent picture. 1) Both the LETLM and TLM have

consistent skill relative to persistence for all model

variables. 2) The LETLM with NMI has generally

smaller errors than the LETLM without NMI. 3) The

LETLMwith NMI is equal to or better than the TLM in

the lower troposphere (700–1000hPa) and in the lower

mesosphere (above ;2hPa), but is slightly worse from

700 to 2 hPa.

5. Summary

In this study, we increased the LETLM resolution to

that of the currently operational NAVGEM inner loop

(T119). One key hypothesis was that increasing resolu-

tion would require maintaining balance between en-

semble size and LETLM computational stencil size.

To avoid increasing the ensemble size, we reduced the

LETLM time step, suspecting that smaller optimal

lengths would result and therefore smaller ensembles

would be needed. We found that while optimal lengths

were smaller for smaller time step, they did not offset

the computational need of more iterations for fixed

length forecasts. Errors also increased slightly with

reduced time step, so there was not a clear benefit.

FIG. 9. Optimally tuned profiles of (a) the horizontal influence volume radiusL and (b) the pseudoinverse cutoffb. (c),(d) Profiles of the

prescribed vertical parameters zhalo and zcolumn. (e)–(l) Globally averaged profiles of 3-h forecast error « and the 7 model state variables:

U, V, T,Q, Z, P, and _h. Color coding is green for the LETLM, black for the TLM, red for persistence, and blue for the perturbation size.

Solid (dotted) lines are for NMIT (NMIF).
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Other proposed improvements included an enhanced

local influence volume and using a thin grid. These

changes yielded a factor of ;20 reduction in computa-

tional time and slightly increased the LETLM skill.

Comparisons with the traditional TLM (which in-

cludes boundary layer physics and vertical diffusion, but

neglects moist physics, radiation, gravity wave drag, and

ozone photochemistry) showed that the LETLM

provides a viable alternative to the TLM, although

currently requiring ;400 members to match overall

TLM skill. However, if we focus on the troposphere

(e.g., the lowest 30 model layers up to ;200 hPa), then

the LETLM skill with NMI actually matches the TLM

skill with ;200 members. We attribute the superior

tropospheric skill to physical processes (e.g., moist

physics) in the LETLM that are excluded from the TLM

used in this study. The LETLM performed slightly

worse in the upper troposphere and stratosphere. One

cause was the presence of fast-moving gravity waves,

which are difficult for the LETLM, but not for the TLM.

We mitigated this problem by NMI application to the

first three vertical normal modes. This improved LETLM

errors, such that the LETLM compared better with the

TLM in the upper stratosphere, and matched the TLM

skill in the lower mesosphere.

6. Discussion

LETLMperformance at higher resolution exceeds the

performance of the traditional TLM in the lower tro-

posphere, while in the upper troposphere and strato-

sphere the LETLMperformance continues to lag.While

the performance lag in the stratosphere might be toler-

ated in practical applications (especially when mitigated

using the NMI filtering), this is unsatisfactory from a

theoretical perspective. Since the LETLM is better

adapted to local operators, in order to understand these

limitations we explore the computational stencils

employed by NAVGEM. The forecast model can be

decomposed into a sequence of local and nonlocal op-

erators (see the appendix). The nonlocal operators in-

clude forward and inverse Fourier spectral transforms,

implicit solvers, and some aspects of the physics such as

deep convection and parameterized gravity wave drag.

FIG. 10. As in Fig. 9, but with vertical axis that is linear in pressure from 500 to 1000 hPa in order to emphasize the lower troposphere.
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The fact that the semi-implicit time step is performed

in the coefficient space of global spherical harmonics

means the computational stencil is global. Bishop et al.

(2017) showed that the LETLM is precisely equal to the

true TLM whenever (i) the ensemble size exceeds the

degrees of freedom of the actual computational stencil,

and (ii) ensemble perturbations are small enough to

neglect the nonlinear terms affecting their evolution.

Obviously, condition (i) cannot be satisfied for O(100)

member ensembles when the actual computational

stencil is global. Thus, the global aspect of the semi-

implicit time step in NAVGEM fundamentally limits

the accuracy of the NAVGEM LETLM as currently

configured, since the LETLM always operates in the

grid space and incorrectly assumes a local computa-

tional stencil.

These insights motivated Yaremchuk et al. (2020,

hereafter Y20) to transform the LETLM technique to

ETLM (i.e., nonlocal) by removing the locality as-

sumption. The approach represents an ETLM as a se-

quence of operations on sparse matrices constructed in

parallel with the process of nonlinear ensemble propa-

gation. The underlying idea is that most geophysical

fluid dynamics (GFD) models (including NAVGEM,

see the appendix) can be factored into a product of

linear (not necessarily local) and local nonlinear oper-

ations on a state vector. The linear operators (such as

Fourier transforms and implicit solvers) are coded in

the parent model, and therefore can be readily used

in coding the ETLM application to a state vector.

Furthermore, since implicit solvers in GFD models are

usually applied to sparse matrices arising from dis-

cretization of the differential operators, the structure of

these matrices can be obtained via the LETLM tech-

nique applied to auxiliary ensembles produced during

the parent ensemble propagation. In principle, these

retrievals can be performed in parallel with the parent

ensemble, providing an accurate ETLM model by the

end of integration. To demonstrate the feasibility of this

approach, Y20 reconstructed the ETLM operator with

machine accuracy for a SWM featuring a semi-implicit

solver. Y20 also showed that additional computational

saving can be achieved by assuming the ETLM operator

evolves slowly compared to the model time step and,

therefore, costly LETLM retrievals of the ETLM can be

conducted less frequently, and the respective sparse

matrices can be linearly interpolated and applied on

every time step of the parent model.

Our diagnostics suggest that the component of the

perturbation that theNAVGEMLETLM fails to capture

FIG. 11. Latitude–pressure cross sections of 3-h LETLM NMIF forecast error standard deviations for (a) U, (b) V, (c) T, and (d) Z.

(e)–(h) As in (a)–(d), but for NMIT. (i)–(l) As in (a)–(d), but for the TLM.
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is very large scale in both the horizontal and the vertical.

This raises the possibility of introducing a separate

global ETLM for the very large-scale part of the per-

turbation. In theory this could be accurate provided the

number of basis modes used to describe the large scale

was smaller than the ensemble size. The result of this

global ETLM time step for the very largest scales could

then be blended with the results of an LETLM as de-

scribed in this paper. We also note that the global

computational stencil associated with semi-implicit nu-

merical methods is not present in some operational en-

vironmental models such as ICON (Zängl et al. 2015)
and MPAS (Klemp et al. 2018). In these models, only

vertically propagating sound waves are handled implic-

itly; therefore, the entire computational stencil is hori-

zontally localized. Hence, in some future study it would

be interesting to test whether the LETLM configuration

presented here would yield a more accurate TLM for

models like ICON and MPAS than it does for a semi-

implicit model like NAVGEM.

Given the results from this paper and the insights

from Y20, we suggest several routes for further

development:

1) Testing the LETLM in hybrid-4DVar: Given the

close agreement between the TLM and LETLM,

LETLM integration in the hybrid 4DVar solver is

warranted. Several practical considerations need to

be addressed, including precomputing and storing

the LETLM as a sparse matrix operator for the it-

erative hybrid 4DVar computation. The local nature

of the LETLM might warrant implementation on

massively parallel graphical processing units (GPUs).

FIG. 12. Latitude–pressure cross sections of 3-h LETLMNMIF forecast error standard deviations for (a) P, (b) _h, and (c)Q. (d)–(f) As in

(a)–(c), but for NMIT. (g)–(i) As in (a)–(c), but for the TLM.
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We note the LETLM has been demonstrated with a

hybrid 4DVar solver in the SWM framework (Allen

et al. 2017).

2) Development of hybrid TLM methods: As shown in

the appendix, a typical GFD numerical model can be

represented as a sequence of linear operations that

can be handled by the method proposed in Y20, and

local nonlinear operators. The nonlinear operators

may either have easily derivable TLM and adjoint

(ADJ) codes (e.g., semi-Lagrangian advection) or

lack precise TLM interpretation (e.g., discontinuous

physical processes and vertical mixing). Given this

decomposition, it might be beneficial to construct a

hybrid TLM model that combines traditional nu-

merical methods to derive the TLM and ADJ of the

differentiable nonlinearities with ETLM techniques

for approximation of discontinuous and linear op-

erators. As a practical example, a hybrid NAVGEM

TLM could be constructed using the semi-Lagrangian

TLM for the model dynamics and an ETLM to

handle the physics. Since NAVGEM physics is cal-

culated in a vertical column, the ETLM computa-

tional stencil size could simply be the number of

vertical levels (;60) multiplied by the number of

variables, which could be balanced with realistic

ensemble sizes. A major benefit of this approach is

that changes to the physics would be automatically

be included in the LETLM, thereby avoiding the

difficult tasks involved with linearization.

3) Apply the LETLM to other NWP models: As dis-

cussed above, the LETLM may better approximate

the linearized versions of models that have inherently

localized computational stencils.
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APPENDIX

Decomposition of the NAVGEM Forecast Model
into a Sequence of Local and Nonlocal Operators

The forecast model execution over one time step can

be decomposed in a sequence of operations:

x
m11

5PF21E21D
y
ED

H
FSx

m
, (A1)

where the variables are defined as the following:

xm and xm11: model states in grid space at time index

m and m 1 1;

S: semi-Lagrangian operator that calculates backward

trajectories and interpolates state variables and

forcing terms to the departure points. This opera-

tion is nonlinear (trajectory computations and a

fixed-point iteration for computing departure points),

and mildly nonlocal (interpolation as far as several

grid points);

F (F21): spectral transform (and its inverse) from 2D

griddedU,V fields to spectral harmonics of vorticity

and divergence. This operation is strongly nonlocal

because it performs both the global Fourier decom-

position and computes derivatives in the spectral

coefficient space. However, due to unitarity of the

Fourier transform and availability of the respective

code in NAVGEM, the TLM and ADJ code devel-

opment is not required.

E (E21): eigenvector transform (and its inverse) in the

vertical. This is a global computation in the vertical

but local horizontally;

DH and Dy: diagonal diffusion operators in spectral

harmonic space. Development of TLM and ADJ

codes is not required; and

P: the physics tendency operator, which is mildly non-

local because it operates in the vertical only. P can

further be decomposed in the action of local and

mildly nonlocal (implicit diffusion) operators. Since

number of levels is comparable with ensemble size,

the structure of P could be accurately retrieved by

the LETLM technique.
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