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ABSTRACT

Two cases of dryline convection initiation (CI) over north Texas have been simulated (3 April 2012 and

15May 2013) from a 50-memberWRF-DART ensemble adjustment Kalman filter (EAKF) ensemble. In this

study, ensemble sensitivity analysis (ESA) is applied to a convective forecast metric, maximum composite

reflectivity (referred to as the response function), as a simple proxy for CI to analyze dynamic mesoscale

sensitivities at the surface and aloft. Analysis reveals positional and magnitude sensitivities related to the

strength and placement of important dynamic features. Convection initiation is sensitive to the evolving

temperature and dewpoint fields upstream of the forecast response region in the near-CI time frame (0–12 h),

prior to initiation. The sensitivity to thermodynamics is also manifest in the magnitude of dewpoint gradients

along the dryline that triggers the convection. ESA additionally highlights the importance of antecedent

precipitation and cold pool generation that modifies the pre-CI environment. Aloft, sensitivity of CI to a weak

short-wave trough and capping inversion-level temperature is coherent, consistent, and traceable through the

entire forecast period. Notwithstanding the (often) non-Gaussian distribution of ensemble member forecasts

of convection, which violate the underpinnings of ESA theory, ESA is demonstrated to sufficiently identify

regions that influence dryline CI. These results indicate an application of ESA for severe storm forecasting at

operational centers and forecast offices as well as other mesoscale forecasting applications.

1. Introduction

Drylines in the central and southern plains of the

United States are localized mesoscale forcing mecha-

nisms for discrete deep convection (Carlson and Ludlam

1968; Schaefer 1986; Ziegler and Rasmussen 1998). The

along-boundary vertical mesoscale circulations (e.g.,

Atkins et al. 1998; Ziegler and Rasmussen 1998; Weiss

and Bluestein 2002; Weiss et al. 2006) may aid in parcel

lifting within and near the dryline convergence zone, a

primary ingredient for storm initiation (Doswell and

Bosart 2001). Although the importance of drylines in

severe storm development is fairly well understood,

forecasting their position, intensity, and the severe

thunderstorms forced by the boundary remains difficult.

Errors, for example, in the precise location of the parent

synoptic cyclone, the distribution of boundary layer

moisture (e.g., Holt et al. 2006), the intensity of capping

inversions, and the strength of vertical mixing processes

are critical components that contribute to the lack of

predictability of drylines and subsequent severe storm

development. Over the last few decades, computing

capabilities have drastically improved, allowing re-

searchers to produce higher-resolution simulations that

more accurately capture dryline structure, movement,

and the initiation of deep convection.

Deterministic convection allowing models on the

order of 1-km horizontal grid spacing have proven

valuable in improving the forecasts of deep moist con-

vection, as outlined byKain et al. (2013). As grid spacing

is reduced, smaller-scale phenomena (e.g., convection

physics) are explicitly computed and high-resolution

simulations have been shown to provide more accurate

forecasts than their coarser counterparts that may

parameterize convective processes (Clark et al. 2009).

Even with convection-allowing resolutions, determinis-

tic models remain imperfect (Coffer et al. 2013; Bryan
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2005; Clark et al. 2015; Schumacher 2015) and further

understanding of forecast variability can be gained

through the use of ensemble prediction systems. En-

semble modeling and forecasting have provided the

means to estimate forecast uncertainty by computing a

larger suite of deterministic model solutions, valuable to

understanding the predictability limitations of dryline

convection initiation (CI). Additionally, ensemble as-

similation systems, such as the ensemble Kalman filter

(EnKF; Evensen 1994), are capable of spreading ob-

servational information through covariances between

model state variables, enhancing the analyses of model

forecasts. The coupling of ensemble systems and high-

resolution models has the potential to greatly improve

the predictability of dryline CI, including the location,

timing, and severity of severe thunderstorms.

A plethora of predictability studies have focused on

the advantages of performing sensitivity tests to de-

termine how forecast features evolve within numerical

models to influence chosen responses. Sensitivity studies

using various methods (e.g., singular vectors, Kalman

filter, adjoint, explicit perturbing) have highlighted the

impact of model-state perturbations on forecast error

(e.g., Liu and Kalnay 2008; Kalnay et al. 2012; Kang and

Xu 2012; Ancell 2013), ensemble spread (e.g., Hamill

and Snyder 2002; Qin andMu 2011), and dynamics (e.g.,

Martin and Xue 2006; Melhauser and Zhang 2012).

Adjoint sensitivity, for example, maps the gradient of a

chosen forecast metric with respect to the forecast state

back to an initial time to obtain a measure of sensitivity

of the forecast metric to arbitrary perturbations in the

initial conditions (LeDimet and Talagrand 1986). Ad-

joint sensitivity reveals dynamic links between pertur-

bations in the initial state and the chosen forecast aspect.

However, adjoint sensitivity is a time consuming and

computationally expensive effort that involves the ad-

joint model. Adjoint sensitivity also requires that the

nonlinear model be differentiable and it becomes less

accurate for larger perturbations and longer forecast

windows due to its inherent linearity assumption. Even

with these limitations, a variety of adjoint studies have

shown utility in producing identifiable features that may

be associated with the propagation and growth of fore-

cast error (e.g., Errico and Vukićević 1992; Rabier et al.

1996; Errico 1997; Errico et al. 2003).

Other studies have evaluated sensitivity of forecasts to

initial condition perturbations by varying initial condi-

tion inputs for ensemble members (Melhauser and

Zhang 2012) and explicitly perturbing state variables

(Martin and Xue 2006). Melhauser and Zhang (2012)

showed that forecast sensitivity of convective mode re-

lated to a bow echo was primarily attributable to small-

scale differences in the initial conditions related to moist

processes. By filtering good and poor ensemblemembers,

and running subsequent forecasts with varying initial

conditions weighted by the good and poormembers, they

discovered a limited predictability in forecasting con-

vection because of such initial condition sensitivities.

Previously, Zhang et al. (2003) illustrated that moist

processes (e.g., through convective and microphysical

parameterizations) create a limitation to mesoscale pre-

dictability, enhancing the Melhauser and Zhang (2012)

findings. Furthermore, Martin and Xue (2006) utilized a

large ensemble to carry out perturbation experiments on

water vapor mixing ratio, soil moisture, and meridional

wind near the surface to forecasts of precipitation. They

showed strong dynamic links of precipitation develop-

ment along a dryline to the employed perturbations with

strong nonlinear precipitation responses.

Here the authors explore a technique that requires

minimal computational expense and a capability to re-

veal dynamic features in the initial conditions that may

impact CI timing forecasts. Ensemble-based sensitivity

analysis (ESA; Ancell and Hakim 2007; Hakim and

Torn 2008; Torn and Hakim 2008) develops linear re-

lationships between a scalar forecast metric and initial

conditions strictly through ensemble statistics. Com-

pared to adjoint sensitivity, minimal computations are

required once ensemble forecasts have been created.

ESA has been extensively applied to synoptic-scale

features related to extratropical cyclones (e.g., Ancell

and Hakim 2007; Torn and Hakim 2008; Garcies and

Homar 2009, 2010; Chang et al. 2013; McMurdie

andAncell 2014), extratropical transition (e.g., Torn and

Hakim 2009), and tropical cyclones (e.g., Torn 2010; Ito

andWu 2013; Torn and Cook 2013; Xie et al. 2013; Torn

2014). The linear relationships between forecasts and

initial conditions on the synoptic scale have been thor-

oughly investigated with ESA. On the mesoscale, the

utility of ESA has been investigated, for example, for

wind power forecasting (Zack et al. 2010a,b,c, 2011a,b)

as well as more recently for convection-permitting

forecasts in the southern plains (Bednarczyk and

Ancell 2015) and in the Mesoscale Predictability Ex-

periment (MPEX; Torn and Romine 2015; Weisman

et al. 2015). Bednarczyk and Ancell (2015) were the first

to illustrate the utility of ESA for normally distributed

convection forecasts and highlighted forecast sensitiv-

ities of convective variables (e.g., spatially averaged

reflectivity, vertical velocity, and precipitation) to the

upstream synoptic flow pattern and low-level thermo-

dynamic characteristics. MPEX utilized ESA for the

targeting of dropsonde deployments upstream of me-

soscale convective forecasts and discovered synoptic-

scale sensitivities to potential vorticity anomalies for

precipitation forecasts.
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The purpose of this study is to determine whether

ESA is useful when applied to a discontinuous, binary

forecast metric—the initiation of convection. We pro-

pose that ESA applied to CI forecasts can effectively

identify features influencing the timing of severe con-

vection along drylines. Two case studies are presented

here that consist of dryline-initiated convection in north-

central Texas with ESA applied to a forecast metric

designated as a simple proxy to diagnose the initiation of

deep moist convection. Previously, Bednarczyk and

Ancell (2015) evaluated the sensitivity of convection

after initiation, once the ensemble developed a normally

distributed forecast metric among ensemble members.

At that point ESA was able to reveal positional (e.g.,

east–west location of the parent 500-hPa trough) or

magnitude (e.g., moisture content of plumes feeding the

convection) signals in the sensitivity field. The current

study suggests that even a bimodal distribution of a

forecast response may be appropriately assessed with

linear-based ESA techniques to improve and un-

derstand mesoscale predictability of severe convection.

The paper is outlined as follows: a brief overview of

ESA and the modeling system is presented in section 2;

section 3 provides an overview of the two cases; sensi-

tivity fields are evaluated for both case studies, at the

surface and aloft, in section 4; and a summary and dis-

cussion are presented in section 5.

2. Methodology

a. Ensemble sensitivity

A relationship between a chosen scalar forecast met-

ricR and the model forecast state xt at an earlier time t is

developed through a linear regression of ensemble

forecast metric estimates to the earlier model state. This

relationship is described by Ancell and Hakim (2007) as

›R

›x
t

5
cov(R, x

t
)

var(x
t
)

, (1)

where cov and var denote the covariance and variance of

the given variables, respectively. The sensitivity value

›R/›xt is the slope of the linear regression between the

ensemble estimates of R and earlier-time model state

(e.g., see Fig. 1). Readers are referred to Ancell and

Hakim (2007) for the full derivation of ensemble sensi-

tivity and its relationship to adjoint sensitivity.

Statistical significance is applied to the estimate of the

sample distribution regression slope coefficient (i.e.,

sensitivity) with a 90% confidence interval (see Wilks

2011, section 7.2.5). In other words, there is 90% confi-

dence that the true population sensitivity is contained

within the sample distribution and the null hypothesis,

that changes to the initial conditions will not affect the

response metric, may be rejected with the same confi-

dence interval. All sensitivity displayed hereafter meets

this statistical significance threshold. This approach ad-

ditionally mitigates sampling-error impacts that are

introduced by estimating the sample variance and co-

variance from a relatively small ensemble compared to

the degrees of freedom (Torn 2010).

Maximum composite reflectivity (MDBZ) computed

in a region of CI (i.e., response region) is chosen as the

forecast variable of interest. MDBZ is computed for the

three-dimensional space within the response region.

The forecast region was chosen based on the ensemble

representation of CI in model reflectivity as well as ob-

servational information from archived WSR-88D data,

including which storms produced the most severe

FIG. 1. Scatter (blue circles) of maximum reflectivity (dBZ) in

a defined response region against 850-hPa geopotential height

(m) at a grid point and associated linear regression (green line).

Calculated slope of the regression function represents the value of

sensitivity at the grid point.

FIG. 2. WRF domain configuration with 36-, 12-, and 4-km grid

spacing for d01, d02, and d03 domains, respectively. Modeled after

the former Texas Tech University real-time ensemble system.
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weather. MDBZ represents an instantaneous measure

of convective vigor, in contrast to Bednarczyk and

Ancell (2015), who used spatially averaged forecast

metrics that relate to convection (e.g., composite re-

flectivity, precipitation) in their analysis of convective

sensitivity, which are more likely to be normally dis-

tributed. By using maximum values, the signal of con-

vection initiation is not washed out from averaging and

the nonlinear forecast evolution is more likely captured

within the forecast metric resulting in a non-Gaussian

response. In extreme cases as will be presented in this

study, the resulting distribution may become bimodal.

With a bimodal forecast distribution, one objective

approach to compare and evaluate sensitivity fields is to

compute subset mean differences (SMDs); differencing

the sets of convection initiating and noninitiating

ensemble member forecast fields. Bednarczyk and

Ancell (2015) demonstrate the utility of this differencing

technique by using single ensemble members and dis-

cover that differences between individual members are

consistent with the regression slope calculated across all

members. This approach alleviates the computational

cost of explicit perturbation approaches in evaluating

sensitivity fields and it will be used in this study to vali-

date sensitivities both at the surface and aloft. A

threshold of 20 dBZ is subjectively chosen as a cutoff

value between members that are producing convection

(.20dBZ) and those that do not (,20dBZ). This value

was chosen based on the forecast distributions of each

case, which will be discussed in the next section. Means

of the separate distribution modes are then calculated,

differenced, and compared against the sensitivity fields

FIG. 3. (a) Ensemble mean 500-hPa geopotential height (m, contoured every 20m), temperature (8C, shaded),
and vector wind (kt, barbs). (b) Ensemble mean sea level pressure (hPa, contoured every 2 hPa), 2-m temperature

(8C, shaded), and 10-m vector wind (kt, barbs). (c) Ensemble mean 2-m dewpoint temperature (8C, shaded and

contoured every 28C). (d) Ensemblemean composite reflectivity (dBZ, shaded). All fields are valid at forecast hour

19 for APR3 (1900 UTC 3 Apr 2012). The orange line in (c) and (d) represents the subjectively analyzed dryline

placement discussed in the text.
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to analyze how differences in the forecast evolution and

resulting distribution are highlighted by the sensitivity.

b. Model and assimilation configuration

A 50-member ensemble is generated by perturbing

boundary and initial conditions from the National

Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS) using theWRF three-dimensional

variational data assimilation (Barker et al. 2004) and fixed

covariance boundary perturbation technique (Torn et al.

2006). The initial conditions are interpolated to a domain

with 36-km horizontal grid spacing centered over the

FIG. 4. Composite reflectivity (dBZ, shaded) of ensemble members (a) 23 and (b) 30 at forecast hour 19 for APR3.

FIG. 5. 1-km radar reflectivity (dBZ) at (left) 1853 UTC 3 Apr 2012 and (right) 2359 UTC 15 May 2013 from the

University Corporation for Atmospheric Research (UCAR) image archive of composite WSR-88D data. Orange

boxes note areas of convection discussed in the text.
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western United States. Two one-way nested domains with

12- and 4-km horizontal grid spacing reside over the West

Coast and southernUnited States (Fig. 2). The ensemble is

integrated forward in time with version 3.3.1 (Skamarock

et al. 2008) of the Advanced Research version of the

Weather Research and Forecasting (WRF-ARW) meso-

scale model with 38 vertical model levels.

Data assimilation is completed using an ensemble ad-

justmentKalmanfilter (EAKF;Anderson 2001)within the

Data Assimilation Research Testbed (DART; Anderson

et al. 2009) utility. The outermost domain is run on a

6-hourly update cycle for 24 h. Observations from the

following platforms are assimilated on all domains: sur-

face temperature, winds, moisture (i.e., specific and rela-

tive humidity), and pressure; Aircraft Communications

Addressing and Reporting System (ACARS) tempera-

ture, winds, andmoisture; radiosonde temperature, winds,

and moisture; marine temperature, winds, moisture, and

pressure; and satellite-derived winds obtained from the

MeteorologicalDataAcquisition System (MADIS).Once

this first day of cycling is completed, the inner-nested

domains are initialized through the WRFModel one-way

nest-down procedure and assimilation is completed on all

three domains every 6h for an additional 24h with re-

spective parent domains providing boundary and initial

conditions for the nests. This 48-h spinup period is run to

ensure flow-dependent relationships within the ensemble

that were originally initialized with static climatological

covariances. Only analyses and forecasts from the in-

nermost 4-km domain will be evaluated in this study.

Because of underdispersion within the ensemble, a

spatially and temporally adapting inflation algorithm

(Anderson 2007, 2009) is utilized to promote more re-

alistic spread. The need for inflation is based upon the

principle that sampling error is high when the ensemble

size is significantly smaller than the degrees of freedom.

Additionally, to reduce spurious covariances during as-

similation, covariance localization (Houtekamer and

Mitchell 1998; Hamill et al. 2001) is employed to reduce

the impact of observations at large distances from the

FIG. 6. As in Fig. 3, but at forecast hour 24 for MAY15 (0000 UTC 16 May 2013).
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observation location. A Gaspari–Cohn localization

function (Gaspari and Cohn 1999) is used at each ob-

servation location with horizontal half-widths of 600 and

300km, and vertical half-widths of 0.075 and 0.025 km

for the outermost and nested domains, respectively, so

that observations have no influence at distances of

2 times the half-width from the observation location and

beyond. Furthermore, boundary conditions on the out-

ermost domain are perturbed about GFS forecasts as

outlined by Torn et al. (2006) to maintain spread.

All domains utilize the Yonsei University (YSU)

boundary layer (Hong et al. 2006), Noah land surface

model (Chen and Dudhia 2001), Rapid Radiative

Transfer Model longwave radiation (Mlawer et al. 1997),

Dudhia shortwave radiation (Dudhia 1989), and

Thompson microphysical (Thompson et al. 2004) pa-

rameterization schemes to model subgrid-scale phe-

nomena. The 4-kmdomain provides enough resolution to

explicitly simulate convective processes (Kain et al. 2013)

with a sufficient number of ensemble members (Schwartz

et al. 2014), alleviating the use of a cumulus parameteri-

zation scheme. On the coarser domains, the Kain–Fritsch

cumulus parameterization (Kain 2004) is employed.

3. Case descriptions

a. April 2012

Ensemble forecasts are generated for two cases of CI

along drylines in north-central Texas. The first case is

3 April 2012 (hereafter APR3) with CI observed at

1800 UTC as determined from archived WSR-88D data

(not shown). Forecasts from EAKF-generated analyses

are initialized at 0000 UTC 3 April 2012 (after the 48-h

spinup period described above) and run 24h. Ensemble

mean fields at forecast hour 19 show a midtropospheric

trough at 500 hPa progressing eastward through New

Mexico and into west Texas as the convective event was

unfolding, with strong southwesterly wind speeds

greater than 50kt (1 kt 5 0.5144m s21) downstream of

the trough axis (Fig. 3a). At the surface, cyclonic flow is

evident over the domain associated with an inverted

trough (Fig. 3b). Weak southerly to southeasterly sur-

face flow attendant to north-central Texas, coupled with

the aforementioned trough and jet aloft, provided suf-

ficient deep-layer shear to promote discrete supercells

within the modest warm sector. A dryline and strong

confluence axis are positioned in central Texas at this

time (Fig. 3c) collocated with the developed convection

within the ensemble (Fig. 3d).

Multicellular clustered convection was present along

the dryline (e.g., Figs. 4a,b) initially in ensemble mem-

ber simulations. Observations indicated a similar de-

piction along with supercells developing out ahead of

the dryline (Fig. 5a, area in orange rectangle). The single

cell development was observed in model-simulated re-

flectivity in a subset of ensemble members, an example

of two in Fig. 4, and is the focus of our sensitivity analysis

as these storms produced the most severe weather. It

should be noted that the timing of CI in the majority of

ensemble members that produced convection in the

response region lagged observations of CI by 1 h; a few

members produced convection at later times, which will

be discussed in a following section. Additionally, while

FIG. 7. Composite reflectivity (dBZ, shaded) and 2-m dewpoint

temperature (8C, positive values solid and negative values dashed)

at forecast hour 24 from an individual ensemble member from

MAY15. Orange lines indicate position of the primary (D1) and

secondary (D2) drylines discussed in the text.

FIG. 8. Histogram distribution of the forecast metric (MDBZ)

for APR3 (red) and MAY15 (tan) at the initiation time that the

forecast metric is defined (1900 UTC and 0000 UTC for APR3 and

MAY15, respectively).
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the position of convection in north-central Texas was

reasonably represented in the model, the forecast

missed convection that had been present and intensified

in central and southern Oklahoma (not shown). The

Oklahoma convection provided a secondary forcing

from a southward-propagating outflow boundary, aiding

in storm-scale organization and initiation within north-

central Texas. While differences do exist between the

model fields and observations, these differences do not

detract from the sensitivity results presented as the ob-

served event is captured within the ensemble distribu-

tion scope. Thus, the investigation of sensitivity still

reveals how the forecast is sensitive to reoccurring and

important forcing mechanisms (i.e., dryline) in the

southern plains. The differences, however, are impor-

tant to note since there will be no sensitivity signals to

unforecasted forcing mechanisms, a limitation of ESA

with poor initial conditions and forecasts.

b. May 2013

The second case presented in this study occurred

15 May 2013 (hereafter MAY15) in central Texas with

convection initiating at ~2300 UTC, as indicated by

archived radar data (not shown). The ensemble forecasts

were initialized 0000 UTC 15 May 2013 and again in-

tegrated forward 24h after a 48-h spinup period. Aloft, a

positively tilted trough at 500 hPa is positioned over

Oklahoma and extending southwestward into southern

Texas at forecast hour 24 (Fig. 6a). The strongest winds

aloft were east of the trough axis at ~40kt from the west-

southwest. The coldest temperatures at 500 hPa existed

over the Oklahoma–Texas border, extending into

FIG. 9. Composite reflectivity (dBZ, shaded) of ensemblemembers (a) 48 and (c) 31 at forecast hour 19 forAPR3

and members (b) 13 and (d) 3 at forecast hour 24 for MAY15. Orange lines indicate the analyzed dryline locations

for both cases discussed in the text.
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FIG. 10. Sensitivity of MDBZ at forecast hour 19 to 2-m temperature (dBZ 8C21, shaded) at hours (a) 12, (c) 14,

and (e) 16 and sensitivity to 2-m dewpoint temperature (dBZ 8C21, shaded) at forecast hours (b) 12, (d) 14, and

(f)16 for APR3. The ensemble means of the respective background fields are contoured every 28C. Green arrow

points to the location of the response region (green rectangle). Red rectangle and blue arrow highlight sensitive

regions discussed in the text.
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FIG. 11. As in Fig. 10, but for sensitivities of MDBZ at forecast hour 24 to initial conditions at forecast hours

(a),(b) 16; (c),(d) 18; and (e),(f) 20 in MAY15. Red and blue arrows and blue rectangles highlight sensitive

regions discussed in the text.
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central Texas. Strong surface heating is evident over

west Texas (Fig. 6b) south of a developing surface cy-

clone in the region. Strong southerly winds were present

in central Texas with a long fetch extending toward the

Gulf of Mexico, providing ample near-surface moisture.

Considerable spread exists in the forecast of dryline

position within the ensemble, thus the mean field of 2-m

dewpoint exhibits weaker gradients compared to indi-

vidual members (Figs. 6c and 7). In general, a primary

dryline is in central Texas (D1 in Fig. 7) with the

southern extent bending back toward the west. A sec-

ondary dryline exists in far western Texas extending

southward into Mexico and the higher terrain of south-

west Texas (D2 in Fig. 7). Focus will be placed on the

primary dryline hereafter.

Similar to APR3, the ensemble forecast of CI lagged

observation-indicated initiation by 1 h. Although a ro-

bust CI signal is not evident in the ensemble mean

composite reflectivity (Fig. 6d), a considerable number

of ensemble members had initiated with a generally

correct location of convection by forecast hour 24 (e.g.,

Fig. 5b) in central Texas. However, the ensemble failed

again to initialize convection that existed for the latter

half of the forecast period in northern Texas and

southernOklahoma. In this case, however, no additional

boundaries were present to influence the developing

convection in central Texas. Furthermore, no members

developed convection along the secondary dryline in

west Texas, which was not an observed signal (Fig. 5b).

c. Response metric distributions

The distributions of MDBZ generalize the non-

Gaussian and bimodal nature of the CI forecast for

each case. When evaluating the MDBZ forecast of all

ensemble members, it is clear that both cases exhibit a

non-Gaussian, bimodal forecast distribution of convec-

tion (Fig. 8) with a clear distribution separation at

20 dBZ at their respective prescribed CI times of 19 and

24 h, respectively for APR3 and MAY15.

In APR3, a subset of ensemble members had

developed robust convection at forecast hour 19 in the

response region (one member example in Fig. 9a), but

another, smaller subset had not (one member example

in Fig. 9c). Within the group that had not developed

convection in the response region, a handful of members

produced convection that was displaced westward.

An investigation into the evolution of these ‘‘non-

convecting’’ labeledmembers at forecast hour 20 revealed

that, while some members began to produce MDBZ

greater than 20dBZ, most convective cells were anchored

along the dryline, continuously producing new updrafts,

indicating a poor environment for sustaining and in-

tensifying storms. This would suggest similar convective-

failure mechanisms of discrete supercells propagating off

the dryline for members that may have produced weak

cells along the dryline to the west and members that did

not produce any convection within the central Texas re-

gion. Therefore, the grouping of these nonconvecting

members into the small subset is appropriate.

Similarly, MAY15 has a two-mode distribution with a

majority of members producing discrete supercells in

central Texas (one member example in Fig. 9b) and a

smaller subset producing weak or no simulated re-

flectivity (one member example in Fig. 9d) at forecast

hour 24. Examination of the noninitiating members at

forecast hour 25 shows one additional member that lag-

ged significant CI along the dryline with a few other

members producing isolated, small cells in the response

region. It is important to understand how ESA can be

utilized to identify features and environmental influences

FIG. 12. Model forecast skew T–logp diagrams from (a) APR3 at forecast hour 18 and (b) MAY15 at forecast hour 23. Each profile is an

area average over the response region. The red line denotes temperature (8C) and the green line denotes dewpoint temperature (8C).
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between these two ensemble subsets that lead to differ-

ences inCI timing, evenwhen those differences are small.

4. Results

ESA has been applied to near-surface and midtropo-

spheric variables to assess the sensitivity of CI forecasts to

select thermodynamic and model pressure fields. These

sensitivity fields are then compared to differences be-

tween mean fields of convecting and nonconvecting en-

semble subsets from the respective response-distribution

modes to highlight the dynamic signal present in the

sensitivity analysis.

a. Ensemble sensitivity analysis

Ensemble sensitivity highlights dynamic features in

the initial conditions or earlier forecast times that are

relevant to the predictability of the forecast variable of

interest. The forecast of MDBZ within the response

region at forecast hour 19 in the APR3 simulation

(Fig. 3d) is sensitive to near-surface thermodynamic

characteristics upstream of the response region (green

rectangle in Fig. 10), east of the dryline over central and

southern Texas (red rectangle, Fig. 10b), beginning 7

hours prior to model CI. The forecast is positively sen-

sitive to 2-m temperature (Fig. 10, left column) and 2-m

dewpoint temperature (Fig. 10, right column) indicating

that an increase in moisture and warming of the ad-

vected air mass would produce a higher maximum sim-

ulated reflectivity in the green box at hour 19.

Additionally, a narrow region of significant negative

sensitivity to 2-m temperature is evident west of the

response region at forecast hour 16 (blue arrow,

Fig. 10e). This signal is a result of convection-producing

FIG. 13. Sensitivity of MDBZ at forecast hour 19 to 700-hPa temperature (dBZ 8C21, shaded) at forecast hours (a) 9,

(b) 12, (c) 15, and (d) 18 forAPR3. Ensemblemean 700-hPa temperature andwind speed are contoured every 28C (solid

black) and 5 kt (dashed green), respectively. The black circle labeled ‘‘A’’ is described and referenced in the text.
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members developing weak simulated reflectivity in this

region at earlier forecast lead times, producing a slightly

cooler surface temperature (not shown).While the weak

model-simulated reflectivitymay not play a direct role in

subsequent convection development, the sensitivity

formulation captures the trend that members producing

more robust convection a few hours later also have weak

convection at earlier forecast times.

Similarly, the forecast of MDBZ at forecast hour 24

for MAY15 is positively sensitive in a broad region to

upstream low-level temperature and dewpoint (red ar-

rows, Fig. 11) at least 8 hours prior to CI. Positive sen-

sitivity to 2-m temperature develops to the south of the

response region at forecast hour 16 (Fig. 11a) and in-

tensifies over the next 4 hours. Negative sensitivity to

temperature within the Texas Panhandle (blue arrow,

Fig. 11a) is also shown to be statistically significant, al-

though coherency between successive model times is

weaker. It is unclear how this area may directly impact

the reflectivity response, which is tied to the dryline.

Explicit perturbation experiments may provide a clearer

understanding of the dynamic relevance of the negative

sensitivity, which is beyond the scope of this study.

Robust positive sensitivity to 2-m dewpoint (Fig. 11,

right column) is also present over southern Texas along

and east of the developing dryline (blue rectangle,

Fig. 11f). Higher near-surface moisture content east

of the developing moisture gradient would be consistent

with stronger horizontal confluence, and thus increa-

sed vertical lift. Furthermore, frontogenetical, ther-

mally direct secondary circulations (e.g., Ziegler and

Rasmussen 1998; Weiss and Bluestein 2002; Weiss et al.

FIG. 14. As in Fig. 13, but for sensitivities ofMDBZ at forecast hour 24 inMAY15 to initial conditions at forecast

hours (a) 12, (b) 15, (c) 18, and (d) 21. Ensemble mean 700-hPa temperature and wind speed are contoured every

28C (solid black) and 2 kt (dashed green), respectively. The black circle labeled ‘‘B’’ is described and referenced in

the text.
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2006) can develop in response to the tighteningmoisture

gradient, which further drives gradient intensification

and potential for vertical mixing processes to initiate

convection.

At forecast hour 20, clear negative 2-m dewpoint

sensitivity develops south of the response region and

appears tied to the swath of adjacent positive sensitivity

along the dryline (blue rectangle, Fig. 11f). Previous

studies have shown that localized areas with a coupled-

sensitivity dipole are associated with positional sensi-

tivities to boundary or synoptic system placement

(Bednarczyk and Ancell 2015). In this case, however,

there is no local maximum in dewpoint sensitivity at-

tendant to the localized minimum, the latter of which

was well out in front of the mean moisture gradient and

developed only a few hours prior to CI. The authors

speculate the sensitivity is related to antecedent cold

pool generation, discussed further in the next section.

Moreover, sensitivities to the near-surface thermody-

namic characteristics develop temporal and spatial co-

herency within a 12-h time window before CI in both

cases (see the animations in the online supplemental

material). This coherency develops as a result of the

dynamic link between the forecast and influential me-

soscale kinematic and thermodynamic regions, which is

revealed by SMDs discussed further in the next section.

Another major component to CI forecasting is the

strength of midlevel capping inversions and their even-

tual deterioration through the forcing of upward vertical

velocity and/or a sufficient amount of boundary layer

heating to promote initiation. Averaged forecast

soundings from the response region just prior to CI in

FIG. 15. Ensemble mean 700-hPa geopotential height (m, contoured every 5m), temperature (8C, shaded), and
wind speeds (kt, barbs) at forecast hours (a) 12, (b) 15, (c) 18, and (d) 21 for MAY15. The black line denotes the

position of an analyzed short-wave trough.
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each case show an inversion located between 800 and

700hPa (Fig. 12). InAPR3, an area of sensitivity to 700-hPa

temperatures emanates from southwest Texas at fore-

cast hour 9 and moves toward the response region

by the time of CI (Fig. 13), presumably inhibiting po-

tential convective development. There would be a pos-

itive response inMDBZ if temperatures were lowered in

this region (labeled A in Fig. 13), corresponding to a

weakening inversion. A noticeable thermal ridge (solid

contours) is present with this highlighted area, which

may be a reason for the presence of the negative sensi-

tivity signal. A weaker thermal ridge (short-wave ridge)

in this region would correspond to a positive response in

MDBZ and the potential for more ensemble members

to simulate storms.

In addition, the forecast of MDBZ in MAY15 has a

negative sensitivity to 700-hPa temperatures in a local-

ized mesoscale region that moves eastward from west

Texas (Fig. 14). The sensitivity signal present at 700 hPa

(labeled B in Fig. 14), collocated or west of a small re-

gion of greater than 20-kt winds, may be ultimately tied

to forcing mechanisms helping to initiate convection. A

weak 700-hPa short-wave trough moves with the sensi-

tivity signal through the same temporal window (black

line, Fig. 15). A short-wave trough would be associated

with stronger winds and cooler air, thus this feature is

consistent with the sensitivity signal and localized max-

imum in wind speeds. Therefore, ESA is valuable in

identifying localized, dynamic, and influential areas on

FIG. 16. Differences in (a) 2-m temperature (8C, shaded) and

(b) 2-m dewpoint temperature (8C, shaded) at forecast hour 16 in

APR3 between the convecting and nonconvecting ensemble

subsets.

FIG. 17. As in Fig. 16, but at forecast hour 20 for MAY15.
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the CI forecast, even when the CI forecast metric is dis-

tributed nonnormally. The sensitivity feature is also co-

herent from early forecast times through the end of the

forecast period where it resides over the response region.

Sensitivity of CI to the presence of a capping inversion and

upper-level forcing mechanisms is well understood and

ESA has sufficiently highlighted these relationships.

b. Subset differences

A better dynamical understanding of the sensitivity

fields may be gleaned from differencing subsets of en-

semble members that are producing convection and

those that are not. In APR3, areas of significant positive

and negative sensitivity to 2-m temperature at hour 16

overlap regions where the subset members disagree the

most (cf. Figs. 10e and 16a). Similar correlations exist

between sensitivities of MDBZ to 2-m dewpoint and

the subset mean differences of dewpoint (SMDTD2;

cf. Figs. 10f and 16b). Subsets differ considerably east of the

dryline in central Texas and west of the dryline toward

the New Mexico border, collocated with areas of posi-

tive sensitivity. Meaningful SMDs also occur along the

dryline in central Texas with negative and positive

dewpoint differences exceeding 28C.
Similar statements can be made for the MAY15 sim-

ulation, where areas of ensemble sensitivity discussed

previously are well correlated to positions of consider-

able differences between convecting and nonconvecting

subset surface thermodynamic fields. Large SMDT2 in

central Texas is coincident with statistically significant

sensitivity to 2-m temperature (cf. Figs. 17a and 11c)

seen at forecast hour 20. It is important to note that the

largest differences between members are not always

strongly correlated with areas of largest statistically

significant sensitivity, as manifested from the statistical

formulation of sensitivity, whereby the variance of the

FIG. 18. Sensitivity of MDBZ at forecast hour 24 to (a) 2-m temperature (dBZ 8C21, shaded) and (b) sea level

pressure (dBZ hPa21, shaded) at forecast hour 18 for MAY15. Ensemble mean fields are contoured every 28C and

3 hPa, respectively. Differences of (c) 2-m temperature (8C, shaded) and (d) sea level pressure (hPa, shaded)

between the convecting and nonconvecting ensemble subsets at forecast hour 18.
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ensemble is in the denominator of (1). The opposite is

also true in this case; the largest positively sensitive areas

to 2-m temperature correspond to weakly positive

SMDs. Less clarity is obtained by comparing the

SMDTD2 and sensitivity of MDBZ to dewpoint (cf. Figs

17b and 11f). Positively and negatively sensitive areas

south and southwest of the response region correspond

to weak positive and negative SMDs, respectively.

Closer comparison between the subset and sensitivity

methods for mesoscale phenomena reveals further

similarities. In instances where prior precipitation may

be influencing the CI forecast, the objective differencing

technique is valuable in assessing how ensemble sensi-

tivity highlights the differences in cold pool formation

and propagation among ensemble members. Sensitiv-

ities of MDBZ to 2-m temperature and sea level pres-

sure at forecast hour 18 (Fig. 18, top row) in MAY15 are

compared to SMDs of temperature (SMDT2) and pres-

sure (SMDSLP) (Fig. 18, bottom row). At forecast hour

14, convection-producing members have a warmer air

mass over central Texas than nonconvection members

(Fig. 19a), associated with a displacement of antecedent

precipitation east and southeastward (Fig. 19b). As this

modified thermodynamic environment is advected

northwestward through the low-level southeasterly

flow, a positive signal in sensitivity to 2-m temperature

develops in central Texas (Fig. 18a) and is confirmed by

the SMDT2 (Fig. 18c). In other words, ensemble mem-

bers producing convection benefit from a southeastward

displacement of the cold pool that does not adversely

affect the response region prior to CI. Analyzing the

SMDSLP within southeast Texas illustrates the hydro-

static relationship between pressure and temperature;

a colder and more moist thermodynamic environment is

collocated with higher pressure (Fig. 18d), indicative of

the relationship of cold pool strength and pressure

responses.

Moreover, a negative sensitivity to dewpoint tem-

perature, induced by the cold pool, should be advected

with the positive temperature sensitivity. As mentioned

in the previous section, a signal of dewpoint sensitivity

originates a few hours prior to initiation out in front of

the dryline (Fig. 11f), collocated with positive temper-

ature sensitivities in southeast Texas. A cooler andmoist

outflow from the antecedent convection will overrun the

favorable thermodynamic environment in the response

region, hindering convective development. Thus, we see

that members not producing convection have a cooler

and more moist environment and ESA has captured the

impact that a precipitation-modified thermodynamic

environment has on the initiation of convection through

multiple surface-based forecast variables.

Furthermore, high visual correlations also exist be-

tween SMDs and sensitivities to 700-hPa temperatures.

As was discussed previously, an area of negative sensi-

tivity at 700 hPa emanating from southwest Texas is

present at early forecast lead times, which moves

northeastward toward the response region in APR3.

This feature was hypothesized to be important in re-

ducing the strength of a capping inversion that was im-

peding convective development. The SMDT700 clearly

highlights this feature (Fig. 20) as a location where

convecting members are much cooler than non-

convecting members. Positive sensitivity downstream of

the negative sensitivity region is also well correlated

with positive 700-hPa temperature differences (cf.

Figs. 13 and 20), i.e., members producing convection are

FIG. 19. (a) The 2-m temperature (8C, shaded) and (b) hourly

rainfall (mm h21, shaded) differences at forecast hour 14 be-

tween the convecting and nonconvecting ensemble subsets

for MAY15.
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warmer downstream. It is also fairly clear that the

sensitivity feature highlighted in MAY15 tracks with

the SMDT700 (cf. Figs. 14 and 21). Members produc-

ing convection are cooler in this region, where a

stronger short-wave troughmay be aiding in convective

development.

The correlation and collocation of sensitivity features

and SMDs between members producing convection and

members that do not validate the dynamic relationship

ESA builds between the CI forecast and variables that

may inhibit or promote convection. The underpinning

feature of ESA is a simple linear regression, which even

when applied to complicated non-Gaussian distribu-

tions, can capture the dynamics revealed by SMDs. In

these two cases, linear regressions of bimodal distribu-

tions sufficiently identified dynamic influences on the CI

forecasts. Thus, the application of ESA is useful well

beyond linearly evolving and normally distributed

forecast metrics.

5. Summary and discussion

Two ensemble forecasts of dryline convection initia-

tion are analyzed in this study to determine if ensemble

sensitivity analysis is able to identify features that may

impact the initiation of storms. Forecasts are produced

through a 48-h cycling WRF-EAKF modeling and data

assimilation system. A simple proxy for convection ini-

tiation is chosen as the forecast metric, maximum com-

posite reflectivity, valid in regions that exhibited

convective development by some ensemble members.

By choosing a time that not all ensemble members

produced convection, a bimodal forecast distribution

was produced, providing a stringent test for ESA in the

FIG. 20. Differences in 700-hPa temperature (8C, shaded) at forecast hours (a) 9, (b) 12, (c) 15, and (d) 18 in APR3

between the convecting and nonconvecting ensemble subsets.
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presence of substantial nonlinearity andwith nonnormal

response function distributions. ESA was applied to the

metric and regressed back to all model times so that the

temporal and spatial coherency of sensitivity features

could help identify the utility of ESA at various forecast

lead times. Sensitivities to initial conditions at the sur-

face and aloft identified features that are well known to

influence dryline CI including thermodynamic proper-

ties of the upstream air mass, dryline placement, and the

strength of the capping inversion. In both cases, ESA

also identified the location of mesoscale features aloft

(e.g., 700-hPa short-wave trough) that potentially had a

direct impact on CI during the forecast period. It was

also discovered that sensitivity of CI to surface fields is

important at much shorter lead times than sensitivities to

variables aloft, which existed through the entire forecast

period. These differences are simply tied to the evolution

of synoptic features versus mesoscale influences. For

instance, in MAY15, precipitation ahead of the dryline

modified the upstream air mass during the early afternoon

hours, which moved into the response region by the time

initiation was occurring. ESA was able to identify the sen-

sitivity of CI to the thermodynamics with a few hours lead

time.On the other hand, amesoscale feature at 700hPawas

present at early forecast times and ESA identified and

tracked the feature through the entire forecast period.

Comparisons between ESA and ensemble member

differences at various forecast lead times were in-

vestigated to address how ESA highlights the progres-

sion of the nonlinear forecast evolution and resulting

non-Gaussian response of storm initiation. Two en-

semble subsets were created that consisted of members

producing convection at the response time andmembers

that did not, with a threshold of 20 dBZ to delineate the

subsets. Model fields from the subset of nonconvection-

producingmembers were then subtracted from the fields

FIG. 21. As in Fig. 20, but for MAY15 at forecast hours (a) 12, (b) 15, (c) 18, and (d) 21.
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of convection-producing members. Statistically signifi-

cant positive and negative sensitivities were strongly

correlated with the same sign of SMDs. In other words,

positively sensitive areas where an increase in the model

state variable would promote initiation were correlated

to areas where convecting members had a higher mean

magnitude of that state variable (positive difference).

This finding was true across surface and midtropo-

spheric variables analyzed.

While it has been shown in this study that ESA can be

successfully applied to non-Gaussian forecasts of me-

soscale convection initiation, limitations likely still exist

with this method. Sampling error as a result of limited

ensemble members, although addressed partially with

statistical significance testing in this study, may inhibit

the proper identification of important small-scale sen-

sitivity features (Wile et al. 2015). It has been suggested

that deficiencies in properly identifying and treating

sampling error may lead to an overestimation of the

sensitivity values (Hacker and Lei 2015). A more ob-

jective approach to validating the sensitivity estimations

through explicit perturbation experiments may be used

to account for sampling error as well as the use of in-

flation, localization of observations, and model error.

These evaluations are beyond the scope of the current

study but will be the focus of future investigations into

the utility of ESA. ESA also may be utilized for fore-

casts of wind ramps, winter precipitation types, and

storm-scale simulations of individual thunderstorms.

Enhancements to the current methodology may be re-

quired to account for increasing nonlinearity as ESA is

applied at smaller and smaller scales.

Extensions of ESA parallel previous studies regarding

observation targeting, applying the technique on meso-

scale features thatmay influence severe convection.What

has been demonstrated in this study is that ESA is useful

for bimodal forecasts of CI. It would be reasonable then

to suggest that ESA-based targeting methods might be a

benefit to forecasts when applied to non-Gaussian fore-

cast responses. ESA-based targetingmethods outlined by

Ancell and Hakim (2007) combine information from the

sensitivity fields and ensemble variance to coordinate

where additional observations should be gathered to re-

duce uncertainty in the forecast. Investigating this tar-

geting techniquemight bring value to understanding how

mesoscale predictability of CI could be improved, and is a

planned next step in this work.
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CORRIGENDUM

AARON J. HILL,a CHRISTOPHER C. WEISS,a AND BRIAN C. ANCELL
a

aDepartment of Geosciences, Texas Tech University, Lubbock, Texas

(Manuscript received 12 May 2020, in final form 16 February 2021)

In Hill et al. (2016), there were errors in the reporting of covariance localization half-widths, both in

the horizontal and vertical. The horizontal half-widths were reported as 600 and 300 km and the vertical

half-widths were reported as 0.075 and 0.025 km for the outermost and inner domains, respectively.

These half-width values of the Gaspari–Cohn localization function (Gaspari and Cohn 1999) come

from a Data Assimilation Research Testbed (Anderson et al. 2009) namelist, which was incorrectly

interpreted. The horizontal half-widths should have been calculated as the product of the namelist

cutoff value (e.g., 0.05) and radius of Earth in kilometers. The vertical localization half-widths should

have been calculated as the product of the cutoff value and normalization distance, which in this in-

stance was 10 000 m. Therefore, the horizontal localization half-widths should be 950 and 320 km, and

the vertical half-widths 1.5 and 0.5 km, for the outer and nested domains, respectively. These reporting

errors were only typographical in nature and in no way impacted the results therein.
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