JUNE 2016 MADAUS AND HAKIM 2265

Observable Surface Anomalies Preceding Simulated Isolated Convective Initiation?

LUKE E. MADAUS AND GREGORY J. HAKIM

University of Washington, Seattle, Washington

(Manuscript received 18 September 2015, in final form 29 February 2016)

ABSTRACT

Idealized ensemble simulations of isolated convective initiation (CI) are analyzed to identify storm-scale
features in surface weather fields that precede initiation in a variety of background environments and the
observations that would be needed to resolve these features. Precipitating storms are identified with an
object-based method and composites of surface anomalies are generated for the variables of interest sur-
rounding times and locations of initiation. Correlation length scales and anomaly magnitudes throughout the
CI process are examined in detail with the latter comparing favorably to anomaly estimates obtained from
previous observational and modeling studies. Negative temperature anomalies due to cloud shadowing are
found to be the most prominent storm-scale feature prior to initiation. Significant spatial correlations are
shown to extend from the surface throughout the boundary layer and even into the cloud-bearing layer once
deep convective clouds become established. The findings are discussed in the context of data assimilation,
particularly with respect to current assumptions about surface observation error. It is shown that, to resolve
the storm-scale anomalies in these simulations, the minimum necessary temperature and wind observation
densities would likely be limited by spatial correlation length scale while moisture and pressure observations
are more limited by observation error.

1. Introduction current observation platforms, only Doppler radars and
some satellite products are able to produce observations
on a temporal and spatial scale consistent with these
requirements. As such, these platforms have received
the majority of research attention. However, these ob-
servations provide limited utility in assessing the pre-
convective environment, essential for the prediction
of CIL.

Surface weather observations have received more
limited attention for describing storm-scale features in
the preconvective environment, chiefly due to their
relatively poor spatial density (e.g., Mass et al. 2002; Sun
et al. 2014). Recent studies have demonstrated that
frequent, dense surface observations can contribute to
improved CI forecasts (e.g., Liu and Xue 2008; Sobash
and Stensrud 2015). To date, this forecast improvement
has mostly been attributed to improved representation

) ) ) ] ) of broader mesoscale forcings (e.g., fronts or drylines)
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at the Journals Online website: http://dx.doi.org/10.1175/MWR-D- and reducing near-surface.model biases (Sobash .and
15-0332.s1. Stensrud 2015). Here we wish to expand these findings

by examining the potential for dense surface observa-
tions to describe structures on the scale of individual

The prediction of exactly when and where precipi-
tating convective storms will develop within an unstable
air mass [i.e., convective initiation (CI)] remains a
challenging problem. This is particularly true for the
prediction of ‘“‘airmass-type” thunderstorms that can
develop within a broad region of instability without
significant large-scale forcing or where local, boundary
layer processes are the primary driver of CI. Numerous
studies ascribe failure to skillfully predict storm-scale
convective development to a lack of spatially and tem-
porally dense observations (e.g., Stensrud and Fritsch
1994; Dabberdt and Schlatter 1996; Mass et al. 2002;
Roebber et al. 2002; Fowle and Roebber 2003; Dabberdt
et al. 2005; Gallus et al. 2005; Snook et al. 2015). Of
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extant, yet underutilized networks such as private citizen
weather stations (Madaus et al. 2014) and smartphone
barometers (Mass and Madaus 2014). Exploiting these
observations and enhancing existing surface observation
networks may provide a storm-scale surface network ca-
pable of satistying the requirements for CI forecasting.
Yet, there has been little work to date describing how
surface weather fields are represented in numerical sim-
ulations of CI, particularly for isolated convection where
local, boundary layer processes are dictating the evolu-
tion. As such, there is little description of which surface
variables are most relevant to observe, how sensitive these
observations would need to be, or the requisite density of
these observations in time and space. To assess these
questions, the surface evolution of the CI process in
modern, kilometer-scale numerical models must be better
documented. This work uses idealized simulations of lo-
cally forced CI to investigate if there are observable
storm-scale features in surface weather fields that precede
isolated CI in light of current observation limitations.

The remainder of this paper is outlined as follows. A
review of previous attempts to quantify the relationship
between surface characteristics and convective initiation
is given in section 2. Our methods, including the model
configuration and analysis techniques, are given in sec-
tion 3. The results are presented in section 4 with a
discussion of the implications of these results in section 5.
We conclude by summarizing our findings and their
limitations in section 6.

2. Background
a. Role of the surface in convective initiation

The process of CI has typically been viewed in the
parcel model context. Surface (or near surface) obser-
vations of atmospheric properties (temperature, mois-
ture, wind, and pressure) are connected to the CI
process from the parcel model in the following ways:

o Temperature—Relatively warm regions have greater free
energy, and therefore an increased potential for positive
buoyancy and reduced convective inhibition (CIN).

o Moisture—For parcels with the same temperature,
moister rising parcels reach their lifted condensation
level (LCL) at a lower altitude. Once the LCL is
reached, latent heat release from condensation con-
tributes to positive buoyancy and reduced CIN.

» Wind—Areas of convergence near the surface lead to
upward vertical motion through mass conservation,
sustaining rising parcels against CIN.

o Pressure—Areas of lower pressure near the surface
can promote low-level convergence and can indicate
rising motion above.
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Characterizing the variability in these fields is crucial
for successful CI forecasting. Near-surface temperature
and moisture may vary for a number of reasons, but
surface fluxes strongly influence local variability. Sev-
eral studies note that surface heat and moisture flux
variations can impact when and where convection will
develop (e.g., Koch 1984; Yan and Anthes 1988; Childs
et al. 2006; Holt et al. 2006). However, the relative im-
portance of heat and moisture fluxes remains uncertain.
Crook (1996) and Kang and Bryan (2011) find, through
observation and idealized modeling studies, that local
surface temperature variations exert stronger control
over CI occurrence than moisture variability. However,
other modeling studies based on specific cases (e.g.,
Droegemeier and Wilhelmson 1985; Clark et al. 2004;
Martin and Xue 2006; Zhang et al. 2015) suggest that CI
is most sensitive to moisture variability. Furthermore,
Kang and Bryan (2011) note that with more homoge-
neous temperature distributions the variability in sur-
face moisture plays a greater role in controlling CI
occurrence. These studies collectively indicate that both
temperature and moisture variability can potentially be
important to capture for CI prediction. The relative
importance of these variables has implications for which
surface observations are more likely to discriminate lo-
cations of CI, and a better characterization of the mag-
nitudes of variability in these surface fields relative to
the potential observation error is needed.

There are additional ways for storm-scale variability
in surface fields to locally enable or inhibit CI. Varia-
tions in cloudiness can create gradients in diabatic
heating at the surface (and, consequently, surface tem-
perature and moisture) due to cloud ‘‘shadowing”
(Koch 1984; Lohou and Patton 2014; Rieck et al. 2015).
Observational studies show that diabatic heating dif-
ferences can change local pressure distributions, gener-
ating areas of increased convergence and vertical
motion (e.g., Benjamin and Carlson 1986; Bluestein
et al. 1988). Once convective storms develop, significant
downdrafts due to evaporative cooling can contribute to
cold pool formation at the surface, regardless of whether
or not precipitation actually reaches the ground. Cold
pool boundaries have frequently been examined as focal
points for CI (e.g., Droegemeier and Wilhelmson 1985).
Here we are more interested in quantifying the initial
development of convection in a previously undisturbed
environment, as subsequent forecasts of new initiation
are likely affected by errors in the initial outbreak.

b. Estimates of localized surface variability in the
preconvective environment

Observational studies suggest that meso-f- and meso-
vy-scale variations in boundary layer fields preceding CI
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can be very subtle. Weckwerth et al. (1999) estimate that
convergence due to only 1-2ms ™! variability in winds
may promote sustained upward motion. Arnott et al.
(2006) observe convergent regions near the surface
preceding CI as small as 2-5km in extent during the
International H,O Project (IHOP; Weckwerth and
Parsons 2006). Using IHOP radar refractivity measure-
ments, Fabry (2006) shows that moisture variability in
the convective boundary layer (CBL) can be as small as
0.25kgm > over a 5-km length scale. Furthermore,
model-based estimates suggest that local variations in
moisture of as little as 1 gkg ™" are enough to support or
discourage CI (Crook 1996; Martin and Xue 2006).
Simulations suggest that observations on a spatial den-
sity of at least the CBL height are necessary to capture
horizontal variability (Jonker et al. 1999). Evaluation of
these sensitivities and variability in model simulations of
Clis critical for evaluating the utility of a potential dense
observing network.

c. Scope of this study

As noted above, it is well established that synoptic and
broad mesoscale forcing (e.g., fronts, drylines, cold pool
boundaries) can act as a focal point for CI (e.g., Owen
1966; Ziegler et al. 1997). Dense surface observa-
tions have already been shown to improve forecasts
of broader mesoscale features (e.g., Wheatley and
Stensrud 2010; Madaus et al. 2014), which has, in turn,
led to more accurate CI forecasts (Sobash and Stensrud
2015). Therefore, the practical predictability of CI (and
the near-surface properties of the preconvective envi-
ronment) can immediately be enhanced by more accurate
analyses of these features. Here, we wish to examine the
surface storm-scale variability in the preconvective en-
vironment absent these effects. While it is unlikely that CI
in the real atmosphere will be completely removed from
larger-scale effects, this underlying storm-scale variability
still exists and can play a critical role in dictating CI; here
we will examine that contribution to CI in detail.

More generally, studies have repeatedly demonstrated
that small, storm-scale forecast errors surrounding CI can
rapidly propagate upscale, limiting predictability to a
matter of hours (e.g., Brooks et al. 1992; Zhang et al. 2003;
Hohenegger and Schaar 2007). Though the downscale
propagation of small errors on broad meso- and synoptic
scales also constrains and ultimately limits CI pre-
dictability (e.g., Durran and Weyn 2016; Torn and Romine
2015), for short-term CI forecasts (less than 6h) storm-
scale errors have great importance. Therefore, this study
numerically simulates idealized, isolated CI in the absence
of prescribed dynamic forcing to examine how surface
observations might constrain these errors, and what quality
and quantity of observations might be required.
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3. Methods
a. Convective environments

To examine CI in idealized simulations without
imposing a large-scale forcing mechanism, it is necessary
to choose appropriate environments. Specifically, we
seek realistic thermodynamic environments where CI
may occur only due to local, boundary layer processes.
A total of 23 observed soundings are subjectively chosen
to provide environmental conditions in our simulations
(Fig. 1). These soundings span the continental United
States east of the Rocky Mountains during June—
October 2014. Synoptic charts, radar data, and storm
reports are scrutinized to identify times and locations
where

e precipitating convection developed within 12h after
the sounding time, and

e large-scale forcing (e.g., fronts, upper-level short-
waves) was distant or appeared absent from the event.

The soundings at locations shown in Fig. 1 cover a
variety of warm-season environments in the United
States. Figure 2a shows the soundings from three par-
ticular environments that will be discussed in greater
detail later in this paper. (Soundings from all environ-
ments used in this work are shown in Fig. S1 in the online
supplemental material.) Figure 2b shows the surface-
based convective available potential energy (CAPE)
and CIN computed from these soundings, both for the
initial time and the forecast surface-based values based
on the original sounding. Initial CAPE ranges over
0-2500J kg~ ' and CIN over 0-600J kg~ '. The forecasted
surface-based values show CIN reduced to zero or near
zero in all but one environment as the day evolves,
permitting CI to occur. We expect that the environ-
mental diversity captured by these soundings provides
an estimate of the variability and broader applicability
of the findings. Two of the environments provided by
these soundings failed to produce deep convection in
our simulations (including the one with forecast surface-
based CIN of 120J kg ' in Fig. 2b); we will discuss these
environments further at the beginning of section 4.

b. Forecast model

For idealized simulations, we use Cloud Model 1,
revision 17 (CM1; Bryan and Fritsch 2002), which has
enjoyed widespread use in the severe storms com-
munity. From each sounding identified in Fig. 1, ho-
mogeneous initial conditions are generated for a
104km X 104km domain. There is no topography
included. Land surface properties are uniform and
match the U.S. Geological Survey (USGS) land-use
category that is most prevalent within a 100-km radius
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FIG. 1. Locations and dates of the soundings chosen as initial conditions for simu-
lations. Soundings from 1200 UTC on each date are used. All soundings are from the
year 2014.

of the sounding site. Boundary conditions are doubly In many idealized convective simulations, deep con-
periodic and the only external forcing is diurnal ra- vection is ‘“forced” to initiate by the inclusion of some
diation. Simulations are run for 15h from the time of storm-scale perturbation, often a ‘“‘warm bubble” or
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FIG. 2. (a) Temperature and moisture profiles from three specific soundings (KMPX 1200 UTC 29 Jul 2014, mpx_
0729; KLBF 1200 UTC 9 Aug 2014, Ibf_0809; and KBMX 1200 UTC 8 Aug 2014, bmx_0808) that will be referred to
in more detail throughout this study. (b) CIN (Jkg ') and CAPE (J kg™ !) for a surface-based parcel at both the
initial sounding time (black circles) and for a forecast surface parcel in the initial sounding (blue circles) for all
environments.
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process of CI without prescribing an initial lifting
mechanism. In these simulations, we only impose ran-
dom, white-noise, gridpoint perturbations to the initial
potential temperature field at all model levels with a
maximum magnitude of 0.2K to promote random spa-
tial variability. We experimented with different initial
maximum perturbation magnitudes ranging from 0.05 to
0.5K, but the results were insensitive to this magnitude.
The environments chosen have sufficient conditional
instability that convection initiates on its own after di-
urnal heating and convective mixing have developed a
sufficiently deep convective boundary layer. In each
environment examined, the first convective clouds ap-
pear between 2 and 8h after the beginning of the sim-
ulation and are uncorrelated with the initial noise
perturbations. While this “unforced” CI method limits
the possible environments that can be evaluated, these
simulations allow assessment of the CI process absent a
prescribed, forced initiation.

For each sounding environment, a 25-member ensem-
ble is produced at 1-km horizontal grid spacing. Ensem-
ble diversity is solely due to different initial random
potential temperature perturbations. There is debate
over the horizontal resolution required to adequately
simulate deep convection (e.g., Mass et al. 2002; Bryan
et al. 2003; VandenBerg et al. 2014). While higher
resolution [O(100) m] may be required to adequately
simulate boundary layer convective rolls common to
conditionally unstable environments (Weckwerth et al.
2014; Nowotarski et al. 2014), 1-km grid spacing is
chosen as it can provide acceptable forecasts of indi-
vidual convective storms and more closely matches
what current and near-future operational forecasting
systems may hope to achieve (e.g., Skamarock 2004;
Schwartz et al. 2009; VandenBerg et al. 2014). Future
studies may wish to examine simulations at multiple
resolutions to compare how the scale and magnitude of
observed features may change going from realistic,
observation-like (higher resolution) to operational
forecasts (lower resolution).

Model vertical grid spacing is 80 m in the lowest 3.2 km
and linearly increases to 500 m from 9 km to the model
top at 18 km. Rayleigh damping of vertical motions is
applied above 15km. Parameterizations used include
the Yonsei University (YSU) planetary boundary layer
(PBL) scheme (Hong et al. 2006) and the NASA God-
dard longwave and shortwave radiation (Chou and
Suarez 1999, 2001). The NASA Goddard Lin-Farley-
Orville (LFO) microphysics scheme is used, as in the
CM1 model the radiation scheme is specifically designed
to be used with this microphysics scheme.

The land surface scheme used in these simulations is
CM1’s sfemodel = 2, which is adapted from the Weather
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Research and Forecasting (WRF) similarity theory
scheme and includes a thermal diffusion soil model
(Skamarock et al. 2008). The skin temperature is prog-
nostic in this model but soil moisture availability is held
fixed over time and is based on the land-usage category
as described above. The skin temperature and deep-
layer soil temperature are set to the surface temperature
from the original environmental sounding. We ex-
perimented with varying the deep-layer soil tempera-
ture value by up to SK from the surface temperature,
but this did not appear to change our results.

c. Analysis methods

1) COMPOSITING ANALYSIS

To examine the typical characteristics of surface fields
surrounding the CI process, we employ a compositing
method centered on times and locations where CI occurs.
To determine these times and locations, we use an object-
based method of identifying and tracking cloud and storm
objects loosely based on the Method for Object-based
Diagnostic Evaluation (MODE; Davis et al. 2006). Spe-
cifically, for each ensemble member forecast, the simu-
lated composite reflectivity field (CREF) is scrutinized at
5-min intervals to find areas where CREF > 20dBZ.
While this isolates candidate storm ‘“‘objects” from the
background, additional processing is needed to separate
storm objects in close proximity. Within each identified
area, all local maxima of CREF are identified and, if there
is more than one, a watershed algorithm is applied to
separate the region into unique objects surrounding each
maxima. All objects in this set with a spatial area less than
9km? are discarded. The remaining objects are consid-
ered to be the set of deep ““clouds” present in the model
at that time.

The weighted centroids of these CREF cloud objects
are tracked through time using the Python TrackPy
package (Allan et al. 2014) at 5-min intervals. Only
objects successfully tracked for at least 20 min are con-
sidered candidate storms. At each time, we examine the
accumulated surface precipitation field within the
boundaries of each cloud object. The cloud object is
labeled a “precipitating storm” if the precipitation has
increased within the object boundaries since the pre-
vious time. We identify times and locations where CI
occurs by noting the time and centroid of any object
when and where precipitation first reaches the ground in
that object. We find that this definition of CI, requiring a
minimum CREF of 20dBZ and observed precipitation
at the ground, provides consistent and reliable detection
of storm objects from simulations of different environ-
ments. Furthermore, as will be shown in section 4, the
time when precipitation is first observed at the ground
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coincides with a fundamental change in the patterns
observed in the surface fields, marking a natural differ-
entiator between pre- and postinitiation periods.

For our compositing analysis, we select the first four
precipitating storm objects that form in each ensemble
member. Preliminary analysis showed that storms that
form later in the simulations tended to form along the
edges of cold pools produced by earlier storms, and the
signals of these cold pools dominated our analysis of
preconvective surface features. While cold pools are an
important potential focal point for CI, surface observa-
tions have already been seen to improve cold pool rep-
resentation in models (e.g., Wheatley and Stensrud
2010; Dong et al. 2011). As noted in section 2, here we
want to focus on surface features surrounding the initial
wave of CI in the model, absent more organized forc-
ing. With 25-member ensembles, selecting the first
four precipitating storms in each member gives a sample
size of 100 storms in each composite, for each sounding
environment.

To create composites, for each storm the entire dou-
bly periodic domain is translated to center on the time
and location when CI occurred (by our definition
above). Anomalies are computed in the fields of interest
at that time by subtracting the domainwide horizontal
mean of those fields in the full simulation domain. This
process is repeated at 5-min intervals for times up to
180 min before and 60min after CI, with the domain
remaining centered on the location of CI. No accom-
modation is made for variations in storm motion vectors;
for the initial wave of CI the storm motion from the
cells examined is generally parallel. The anomaly fields
from all storms at each time relative to CI are then av-
eraged together to form a composite. The sample size of
storms (100) is large enough that the signatures of any
additional storms surrounding each contributor to the
composite mostly cancel out. An analysis of these com-
posites follows in sections 4b and 4c.

2) CORRELATION LENGTH SCALES

When developing an observing network to sample the
preconvective environment, it is important to consider
the average spatial extent of the impact for a given ob-
servation, as this has implications for the necessary ob-
servation density. To investigate this, average correlation
length scales for relevant surface variables are computed
for each environment’s ensemble simulation. Specifically,
for a given variable, at each point in the domain the en-
semble correlation of that point to each other point in the
doubly periodic domain (of the same variable) is com-
puted. The correlation magnitude is then binned by dis-
tance from that point to the nearest kilometer, and a
binwise average is computed, again for each point. By
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averaging this correlation-by-distance profile across all
points at each time in the simulation, the spatial scale of
correlation at a given time in the simulation may be ex-
amined. A discussion of the results of this analysis is given
in section 4d.

In addition to horizontal correlation length scales,
average vertical correlations as a function of time are
also computed for selected variables. These correlations
illustrate the potential impact of a surface observation
on atmospheric properties aloft. We discuss one such
correlation analysis in section 4e.

4. Results

a. CI simulation evolution and comparisons to CI
“failure” environments

In the ensemble simulations for all environments, the
boundary layer depth is observed to grow throughout
the first several hours of integration in response to in-
creasing heat flux from the surface as solar radiation
increases. For most environments simulated, cloud for-
mation is observed between 2 and 8h into the simula-
tions, with precipitation first occurring between 5 and 13 h
into the simulations (Fig. 3; squares). For all but two of
the environments, the deepest convective clouds reach
the tropopause level inferred from the initial environ-
ment sounding, indicating that deep convection occurs.

For the remaining two environments (9 July 2014
KLBF and 29 July 2014 KMPX; profiles shown in
Fig. 2a), deep CI does not occur in the simulations. In
the KLBF environment, the simulations produce scat-
tered shallow cumulus clouds but no precipitation at the
surface, and it was noted from Fig. 2b that this envi-
ronment had nonzero forecast surface-based CINH. In
the KMPX environment, shallow-to-towering cumulus
clouds are produced but, though some of these clouds do
produce weak precipitation, the size and duration of
tracked reflectivity objects in most of the ensemble
members does not meet the requirements for storm
objects with successful CI outlined in section 3c. Nev-
ertheless, these two environments provide examples of
CI failure to compare with successful CI environments.

We briefly consider the differences between the evo-
lution of the two CI failure environments and the
remaining 21 successful CI environments with respect to
variability in temperature at the surface. Figure 3 shows
the ensemble-averaged spatial variance in the simulated
2-m temperature fields as a function of time for all the
environments simulated. The two CI failure environ-
ments are highlighted in red and gold. The variance in
the surface temperature field, while initially small, be-
gins increasing once clouds are present in the domain for
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FIG. 3. Ensemble-averaged spatial variance in the 2-m temperature field as a function of time
for all environments simulated. The ensemble-averaged time when precipitation is first ob-
served at the surface for each environment is shown by squares. The two CI failure environ-
ments (mpx_0729, red; and 1bf_0709, gold) are highlighted, as well as the 8 Aug 2014 KBMX

environment (bmx_0808; blue). All other environments simulated are shown in gray.

reasons that will be described in the following sections.
This variance grows as convection deepens and matures,
being augmented by the development of cold pools once
precipitation has begun. Variance in the timing of pre-
cipitation (and, consequently, cold pool) development
between ensemble members may contribute somewhat
to a rapid increase in 2-m temperature variance in ad-
dition to horizontal inhomogeneity. However, for most
environments, the time of precipitation onset in various
ensemble members differed from the mean by no more
than 10 min. The variance reduces toward the ends of
the simulations as the environment stabilizes and ac-
tive convection diminishes. The magnitude of the
variance differs between environments, depending on
the number of clouds that form and the depth of the
convective clouds.

It is encouraging to see in Fig. 3 that many of the
environments where deep CI occurs show an hour or
more of increasing spatial variance in 2-m temperature
prior to the onset of precipitation (shown by squares),
suggesting a window prior to CI where surface obser-
vations may operate to help constrain the variability. In
contrast to this variance growth in deep CI simulations,
the two CI failure simulations with shallower clouds
have relatively low spatial variance in surface tempera-
ture throughout their evolution. While it appears that
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deep convective clouds can be associated with greater
surface temperature variability, there are some envi-
ronments where deep CI does occur, based on our cri-
teria, which have similar variance magnitudes to the CI
failure simulations for extended periods. Thus, while it
seems likely that a dense surface observing network will
be able to contribute to constraining robust, deep CI,
such a network may not be sufficient to separate CI
success and failure for more marginal cases.

Furthermore, in our experiment setup, the back-
ground environment is tightly constrained without
large-scale variability. Therefore, it is difficult with these
experiments to address how surface observations may
constrain broader variability, particularly above the
boundary layer, for processes like entrainment that are
likely promoting or discouraging CI in the real world.
For the remainder of our analysis we will focus specifi-
cally on the storm-scale variability surrounding those
storms that do develop. As such, the two CI failure en-
vironments will not be included in the subsequent
analysis.

b. Compositing analysis

We now focus on specific features in surface fields
surrounding developing storm objects by examining the
Cl-relative composites of surface anomalies. Figure 4
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FIG. 4. Composited anomalies from the 8 Aug 2014 KBMX environment simulations relative to the location (black squares) and time
(columns) of CI for (from top to bottom) composite reflectivity [CREF (dBZ)], 2-m temperature [T2 (K)], 2-m mixing ratio [Q2 (gkg )],
10-m v-wind component [V10 (ms~')], and surface pressure [PSFC (Pa)]. The column at the time of CI (0 min) is boxed. For scale, the gray
dashed grid shows 10 km? squares. Though the composite anomalies are generated using the entire simulation domain, only the 60 X
60 km? region surrounding the location of initiation is shown for clarity.

shows an example of the Cl-relative composites of
composite reflectivity (CREF), 2-m temperature (T2),
2-m mixing ratio (Q2), 10-m v-wind component (V10),
and surface pressure (PSFC) for the 8 August 2014
KBMX environment (highlighted in Figs. 2 and 3). The
composites from this environment exemplify the salient
features seen in composites from the other environ-
ments. Below is a description of these features for each
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variable. Discussion of the magnitudes of these features
follows in section 4c.

1) COMPOSITE REFLECTIVITY

The CREF composites in Fig. 4 (top row) illustrate the
reliability of the object-based compositing technique. No
signal is present until approximately 30—40 min before CI
(again, here defined as the onset of precipitation), after
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which a smoothed CREF maximum grows, passing over
the location of CI (black square) at the time of CI (O min,
fifth column) before moving off. This affirms that the
composite is reliably collocating simulated storm objects.

2) SURFACE TEMPERATURE

In composite 2-m temperature (T2) (Fig. 4, second
row), a warm anomaly appears as early as 120 min be-
fore CI for this particular environment; in other envi-
ronments the time of the first discernible warm anomaly
varies from 90 to 170min prior to CI. The ultimate
source for this anomaly varies across environments. In
some environments, the deepening CBL organizes into
horizontal convective rolls (Weckwerth et al. 1999) with
alternating warm and cold anomalies collocated with
rising and sinking branches of these rolls. Stochastic
variability can also promote anomalously warm tem-
peratures in certain regions.

In simulation of environments like KBMX in Fig. 4,
cumulus development prior to the formation of pre-
cipitating storms also contributes to surface temperature
variability. This is suggested in the horizontal T2 vari-
ance evolution (Fig. 3; blue line) where T2 variance
grows from the first appearance of clouds (at 6h)
through the average time of CI (at 8.5h). Given the
presence of clouds 2.5h prior to CI, the deep pre-
cipitating clouds, that are the components of these
composites, form within a preexisting cloud field. The
left column of Fig. 5 shows that the warm T2 anomaly
present 60 min prior to CI (T2; bottom row) is collocated
with a relative minimum in the surrounding cloud field,
shown in the composited column-integrated cloud water
(CLOUD; top row). The lack of deep clouds yields a
positive downward shortwave radiation anomaly at the
surface (RADSW) and corresponding upward heat flux
anomaly (HFX) that promote the positive T2 anomaly.
This composited warm anomaly propagates toward the
location of CI, attaining a maximum magnitude between
45 and 60 min before CI. The anomaly area greater than
0.1K is broad, extending some 30km in its widest di-
mension, but the area of >0.5K is very localized—only
2km in diameter.

Approximately 30min prior to CI, a cold anomaly
develops, collocated with the CREF maximum. Exam-
ination of the surface heat fluxes and column cloud
water (Fig. 5) relates this anomaly to cloud shadowing:
the reduction of incoming shortwave radiation at the
surface due to the cloud overhead. In Fig. 5, the com-
posite column-integrated frozen and liquid water
(CLOUD:; first row) shows a distinct cloud object ap-
proximately 40min prior to CI. This cloud object is
collocated with a negative shortwave radiation anomaly
at the surface (RADSW), reduced upward heat flux at

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:45 PM UTC

MADAUS AND HAKIM

2273

the surface (HFX) and the negative T2 anomaly de-
scribed above. These anomalies grow and propagate in
tandem as the cloud object evolves toward initiation. A
cloud-shadowed T2 anomaly is observed in all of the
simulated environments. We note that since the NASA
Goddard radiation scheme uses a two-stream approxi-
mation (where only the vertical component of radiation
is evaluated, regardless of the solar zenith angle), this
cloud shadow always occurs directly underneath the
developing cloud. Further discussion of the cloud-
shadowing effect follows in the discussion of Fig. 6 and
with respect to vertical correlations in section 4e.

In the 30min prior to CI, the cloud-shadowed cool
temperature anomaly grows in size while the warm
anomaly reduces in both magnitude and extent. After
precipitation begins, the area of the cold anomaly rap-
idly expands and the magnitude continues to increase.
However, at this point the cloud shadowing is aug-
mented by cool downdraft air descending in the now-
precipitating storm and this cold anomaly could be
better characterized as a cold pool.

3) SURFACE MOISTURE

Anomalies in the surface moisture field (Fig. 4; Q2) do
not become noticeable until about 60 min prior to CI. A
distinct dipole structure is apparent during the hour
before precipitation begins, with a negative moisture
anomaly preceding a positive anomaly with respect to
their motion. The center of the dipole tends to remain
directly underneath the cloud object (cf. CREF in top
row) with the positive moisture anomaly collocated with
the negative temperature anomaly at 30 min prior to CIL.
The warm anomaly at the surface is associated with lo-
cally enhanced PBL mixing, which contributes to re-
duced moisture in the PBL and a negative Q2 anomaly.
In contrast, locally reduced sensible heat flux in the
cloud-shadowed region weakens PBL mixing, which
results in higher moisture in that area. The moisture
anomaly is slightly smaller in extent than the tempera-
ture anomaly, but the area of >0.1 gkg " still becomes
20km across at its widest dimension in the 30 min prior
to CIL. After CI, the positive moisture anomaly is quickly
replaced by an expanding negative anomaly as the cold
pool develops. While the air in the developing cold pool
is nearly saturated, the saturation mixing ratio in the
cold pool is lower than the ambient environmental
mixing ratio, yielding a negative anomaly.

4) 10-M WINDS

Near-surface winds can be considered in vector form
(both u- and v-wind components) or by examining each
component individually; here we select the v-wind
component (V10) as it showed the strongest signal given
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FIG. 5. Composited features from the 8 Aug 2014 KBMX environment simulations relative to the location (black squares) and time
(columns) of CI for (from top to bottom) column-integrated frozen and liquid water [CLOUD (kgm™2)], shortwave radiation flux
anomaly at the surface [RADSW (W m~?)], upward surface heat flux anomaly [HFX (W m™2)], and 2-m temperature [T2 (K)]. The
column at the time of CI (0 min) is boxed. For scale, the gray dashed grid shows 10 km? squares. Though the composite anomalies are
generated using the entire simulation domain, only the 60 X 60 km? region surrounding the location of initiation is shown for clarity.

the background wind profile of the 8 August 2014 KBMX
environment and for ease of comparison with the other
variables shown. Note that the mean storm motion has
not been subtracted from these winds. The expected sig-
nature of low-level convergence first becomes apparent
by 60min prior to CI. The convergence strengthens
through the following 30 min, with the v extrema sepa-
rated by 7km, on average. Immediately prior to CI, the
convergent anomalies weaken and are rapidly replaced by
diverging wind anomalies. These diverging winds again
represent cold pool generation with the now-precipitating
downdraft spreading out as it reaches the surface.

5) SURFACE PRESSURE

The surface pressure (PSFC) anomalies compliment
the 10-m wind and 2-m temperature anomalies in the
hour leading up to CI. A negative pressure anomaly is
apparent beginning at 60 min prior to CI and is visible
through 20 min prior to CI (not shown), consistent with
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the concurrent positive temperature anomaly and con-
vergent winds. By 10min prior to CI, the negative
anomaly has been replaced with a growing positive
anomaly, likely in response to a developing down-
draft aloft (as pressure responds to the integrated
mass above a point) and the persistent cooling due to
cloud shadowing. This positive anomaly grows rapidly
following initiation—another symptom of cold pool
development.

c¢. Composite anomaly magnitudes

The above descriptions (particularly the magnitudes
and scales) apply specifically to the 8 August 2014
KBMX environment, but the analyses are performed on
all environments and show similar evolution. Figure 6
shows time series of the maximum and minimum
anomaly magnitude in the entire composited domain for
the variables described above (except for CREF) and
for each environment simulated.
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FIG. 6. Maximum and minimum composite anomaly magnitudes as a function of time relative to precipitation
onset (CI) for 2-m temperature (T2), 2-m mixing ratio (Q2), 10-m v-wind component (V10), and surface pressure
(PSFC) for each simulated environment (colors). The solid black lines for each panel show the mean maximum and

minimum anomaly magnitude across all environments.

For T2 (Fig. 6, top left), the positive anomalies reach a
mean magnitude of 0.3 K, which, on an environment-by-
environment basis, generally remains larger than the
mean negative magnitude until 40-60 min prior to CL
During this time, the cloud-shadowing effect becomes
apparent in all environments, generating increasingly
negative temperature anomalies to about 2K in mag-
nitude. From observations, Lohou and Patton (2014)
note negative 2-m air temperature anomalies of about
1-K magnitude and skin surface temperatures anomalies
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of up to 4K in association with the passage of shallow
cumulus clouds. Thus, the cloud-shadowed cold tem-
perature anomalies simulated here appear reasonable,
particularly for deeper convective clouds. A slight kink
in the negative T2 temperature anomalies at the time
of CI highlights the transition from cloud shadowing to
cold pool generation as the primary source of the
anomalies.

Surface humidity (Q2) has much more variability
between environments. A general increase in both the
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positive and negative anomaly magnitude over time
follows the strengthening dipole as shown in Fig. 4. The
mean anomaly magnitudes increase from 0.1 to
0.5gkg " during the 2h prior to CL In some environ-
ments, there are rapid increases in the positive or neg-
ative moisture anomaly beginning 30—40 min before CI.
The maximum positive moisture anomaly during the
30 min prior to CI is well correlated (r = 0.54, p = 0.01)
to the ensemble mean, domain-averaged LCL in each
environment 30 min prior to CI (Fig. 7). We note that
the high confidence in this correlation comes mostly
due to one environment (KDNR 29 July 2014) with a
particularly high LCL height and maximum pre-CI
moisture anomaly magnitude. Removing this environ-
ment still yields a positive correlation (r = 0.22), but
the correlation is no longer statistically significant.
Regardless, a positive correlation suggests that in en-
vironments with higher LCLs, a larger moisture
anomaly is required for successful CI, agreeing with the
parcel model. Negative moisture anomalies become
more dominant after CI, but with a great deal of vari-
ance as the moisture properties of the cold pool are
highly dependent on the environment throughout the
depth of the precipitating cloud.

For surface winds (V10), another slow increase in both
positive and negative anomaly magnitude is apparent
throughout the 2h prior to CI. These positive and nega-
tive anomalies as shown here do not necessarily imply
convergence by themselves; however, an analysis of each
environment’s anomalies indicates that this is indeed the
case. The average positive and negative anomalies are
generally symmetric for each environment, reaching an
average magnitude of +1ms~! from —40min through
the time of CI. A rapid increase in anomaly magnitude
after CI (to *4ms™ ' on average) shows the strong di-
vergence with cold pool development.

Surface pressure anomalies remain very weak until
30 min prior to CI, with a mean amplitude of £0.02 hPa.
As the deep convective cloud begins developing (—30
to —40min), positive pressure anomalies slowly in-
crease to 0.1 hPa 10 min prior to CI. The average pos-
itive anomaly sharply increases around the time of CI
to 0.5-0.6hPa as the convective downdrafts become
established.

d. Correlation length scales

To suitably observe the preconvective environment, it
is important to consider the area over which a given
observation may be able to provide useful information
about the state. The spatial variance at the initial time is
very small, but this grows during the cloud formation
period and through eventual precipitation and cold pool
generation. As such, it is expected that spatial extent of
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F1G. 7. The maximum positive composite Q2 anomaly during the
30 min prior to CI for each environment shown in Fig. 6 (colors) vs
the ensemble mean, domain-averaged LCL height (km) 30 min
prior to CI. A linear regression is shown for these points with
a correlation coefficient of 0.54 and p value of 0.01 for a null hy-
pothesis of the slope equaling zero in the regression.

an observation’s utility will vary over time. Further-
more, this area may vary among different variables, in-
dicating that particular observation types may be more
efficient at providing state information over a larger
area with fewer observations.

For each environment simulated, we use the
25-member ensemble for that environment to compute
the ensemble correlation magnitudes as they evolve
throughout the simulations. Specifically, at every 5 min
during the simulations, for T2, Q2, V10, and PSFC we
compute the ensemble correlation between each vari-
able at every grid point and the same variable at all
surrounding grid points as a function of distance across
the entire domain. This is averaged across all points in
the domain to derive an average decorrelation length
scale at a given time. We choose a correlation magnitude
of 0.2 as a threshold for decorrelation, as estimates of
statistical significance using a standard ¢ test indicated
that, on average, this was the largest correlation mag-
nitude that maintained statistical significance with 95%
confidence.!” We also examined cross correlations

! We note that using correlations at all N points in the domain has
fewer degrees of freedom (DOF) than the total number of points in
the domain, and compute our significance assuming DOF = 0.2N,
which is more appropriate given the relatively short correlation
length scales that we observe.
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between different combinations of these variables (not
shown), and while these correlations do exist they were
generally smaller in spatial scale and lower in magnitude
than correlations between the same variable. For two
environments we also conducted limited simulations at
higher (200 m) resolution and found that the correlation
length scales were similar (not shown).

Figure 8 shows the evolution of these decorrelation
length scales as a function of time relative to the
ensemble-averaged time of the first CI event in each
environment. For T2, Q2, and V10, the mean corre-
lation length scale is 3—-4km throughout the pre-
convective period, ranging from 2 to 7km depending
on the environment. There is a slow decrease in the
length scale as the time of CI approaches, reaching a
minimum as clouds begin to populate the domain
during the 100min before CI. Correlation length
scales increase for all three variables after pre-
cipitation begins, as the domain begins to be domi-
nated by large, well-defined cold pools. Surface
temperature increases in correlation length scale
about 90 min before CI, which appears related to the
cloud-shadowing effect, separating the domain into
one of two regimes (underneath a cloud or not), sim-
ilar to cold pools. We note that, at any given time,
there is some variability in the correlation length scale
depending on the point chosen and its proximity to
coherent features like cold pools, but the mean cor-
relation length scale gives the best estimate for the
potential spatial scale of observational impacts.

Surface pressure correlation length scales (Fig. 8,
lower right) are generally broader in extent throughout
the simulations, with mean length scales between 4 and
7km but a range of 2-12km in the hours prior to CIL.
Like T2, PSFC also sees a marked increase in correlation
length scale in the 100 min prior to CI, which is likely
related to the development and deepening of clouds. We
note that this coincides with the growing positive pres-
sure anomaly seen in Figs. 4 and 6.

e. Vertical correlations

Here we briefly consider the ability of surface obser-
vations to constrain not just the boundary layer, but
features of the free atmosphere. As noted above, the
largest surface anomalies we detect—the cold anomalies
in T2—appear closely related to the presence of clouds
above. This suggests that, absent other larger-scale
variability, in the time prior to CI there could exist a
correlation between surface cold anomalies and water
vapor or cloud water above. Figure 9 shows the domain-
averaged ensemble correlation between T2 and the sum
of water vapor and cloud water (Qv + Qc) in the column
above each point as a function of time for the same
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8 August 2012 KBMX ensemble as in Fig. 4. Note that in
this ensemble, the average time when precipitation first
occurred is at 520 min (about 8.6 h) into the simulation,
or about 1540 local time.

The growth of the CBL is clearly seen as the depth
of nonzero correlations increases during the first
360min of the simulations. During this time, hori-
zontal bands of higher (lower) correlation just above
the boundary layer correspond reasonably well with
layers of higher (lower) relative humidity in the initial
sounding profile (Fig. 9, left panel). During the latter
half of this period, the horizontal bands appear to
transition to vertical bands of correlation within
the boundary layer as time progresses. As the CBL
deepens in the ensemble, the estimated depth of the
boundary layer is positively correlated with the tem-
perature at the surface (not shown). Thus, areas of
warmer surface temperatures tend to have a locally
deeper CBL, which entrains air from a higher height.
In the presence of a varying vertical profile of mois-
ture, the humidity of the entrained air will vary de-
pending on the depth of the CBL. In our idealized
setting, this illustrates how observations of surface
temperature may provide information about moisture
within and just above the CBL. At present, it is un-
clear whether more realistic simulations that include
larger-scale variability can be constrained enough to
fully realize these correlations.

After 360 min, clouds begin forming in the ensemble
and the character of the correlation patterns in Fig. 9
changes. At 360-400 min, rapidly deepening cumulus
clouds appear in the simulations. The area of negative
correlation between surface temperature and moisture
aloft deepens with cloud development from a base at
4 km up to over 14 km during 400-600 min, affirming the
connection between a cold, ‘““‘shadowed” temperature at
the surface and higher moisture in a cloud aloft over a
relatively deep layer. Below 4 km, cold pools become
the dominant feature after the onset of precipitation
(here, again, at 520 min), showing a positive correlation
between colder air at the surface and drier (with a lower
saturation mixing ratio than the ambient environment
mixing ratio) downdraft air populating the boundary
layer. These correlation patterns illustrate the potential
for surface observations to inform the moisture field
throughout the CI process over a large depth of the
troposphere.

Again, it is unclear whether more realistic simulations
may have strong enough constraints on the background
environment and larger-scale variability to realize corre-
lations of the magnitudes shown here. However, in envi-
ronments where local, boundary layer variability exerts
a primary control on CI predictability—environments



2278 MONTHLY WEATHER REVIEW VOLUME 144
25 T2 25 Q2
3 AU S VU817 . T Y S WS S N f
5f N N { asb S N I YL R |
10p A I 1 e A CTINYIT 1
Ts AT | Lofin |
E il LI
=3 Wil /1 b
~ llllll\nllnll\wun‘""’.vahI TN et 7 (100
S L A ‘ ; Illllllll ‘
\ L 1
- —0600 —400 —200 0 200 400 —0600 —-400 —200 0 200 400
O
bt V10 PSFC
(O]
3 25 25 T
(o]
k%
(a)
7] E O S 1 o200 b R FL |
150 Y RS | & 1 oashoo M T .
wof A SAN/NLy 8 8 ) R | A B ALV 01 |
Speee \ TN T T 1 S ‘“‘-’A"b' """"""" """"""" 1
T WAL T |
L e ;
: - : : L
—0600 —400 —2‘00 0 260 400 —0600 —4‘-00 —éOO 0 260 400

Time Relative to Precipitation Onset [min]
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where CI is much harder to predict—these correlations
illustrate the potential for dense surface observations
to constrain variability in moisture throughout a deep
layer of the troposphere and to capture the initiation
and maturation of convective storms, extending pre-
dictability. Further discussion of this finding, including
the limitations of these idealized experiments, follows
in section 6.
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5. Implications for surface observations of CI

a. Comparing observation effectiveness for buoyancy
and convergence

As noted in section 1, there remains an open question
about which surface variable is more important for
constraining CI, particularly with respect to temperature
and moisture, which primarily describe the buoyancy of
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FI1G. 9. (left) Relative humidity as a function of height and (right)
average ensemble correlation of surface temperature to the sum of
water vapor and cloud water (Qv + Qc) in the column above as
a function of time (x axis) and height (y axis) for the 8 Aug 2014
KBMX environment. Thin (thick) black contours show correlation
t-test statistical significance at the 90% (95%) confidence level.

parcels. From Fig. 6, the largest anomalies relative to the
background variance occur in T2, which are also the
earliest to appear in composites and the largest in spatial
extent, more than 1h before CI. Moisture anomaly
magnitudes are highly dependent on the environment,
suggesting in some cases local moisture variability may
be more important (e.g., when LCL levels are high) for
discriminating locations of CI. The average maximum
moisture magnitudes seen in the preconvective envi-
ronment (0.5gkg ') are consistent with observational
studies (Crook 1996; Fabry 2006; Martin and Xue 2006)
that suggest moisture variability of 1 gkg ™" or less.

Surface winds and pressure largely serve as potential
indicators of convergence as a precursor for CI. A con-
vergent wind signal is apparent in all the composited
pre-CI environments, with the maximum average ve-
locity extrema (+1ms ') consistent with previous ob-
servational studies of preconvective environments
(Weckwerth et al. 1999; Arnott et al. 2006). The surface
pressure anomalies are extremely weak (<0.1hPa),
which would require very well-calibrated and sensitive
instruments to detect. Thus, it appears surface wind
observations would be most beneficial for describing
convergence prior to CI.

b. Observation accuracy and density requirements

To further consider the practical effectiveness of
surface observations to capture the anomalies described
above, we consider these anomalies in the context of the
data assimilation problem. Specifically, we compute the
number of independent observations that would be re-
quired to produce an analysis with an error variance
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sufficiently small to resolve an anomaly of a given
magnitude with a specified degree of confidence. We
employ the Kalman filter update equation to update the
analysis error variance upon assimilating a single ob-
servation. Since the number of observations that will be
required is not known a priori, we use the ensemble
square root filter variant, which is formulated for serial
observation processing (Whitaker and Hamill 2002). For
each single, scalar variable that is directly observed, the
analysis error variance is given by

o2 =[1-Boi(o} + 1) o3, (1)

where o2 is the analysis error variance, o7 is the back-
ground (prior) error variance, r* is the observation error
variance, and B is the ‘‘square root factor,”” given below,
that accounts for observation sampling error and is a
function of ? and o (Whitaker and Hamill 2002):

-1

ﬁ:{1+ _r ] . 2

2 2
g, t+r

For each observation assimilated, the analysis error
variance is reduced. We iterate this equation for multi-
ple independent observations with uncorrelated errors
until a target variance is reached.

Figure 10 illustrates the objective of this exercise. The
variance of a background distribution (“prior”) is re-
duced by serial assimilation of observations until the
analysis error variance (‘‘posterior’), which is also the
ensemble variance, is small enough to constrain the er-
ror in the ensemble mean with a specified degree of
confidence to within *z. The number of independent
observations required to achieve this is recorded. Here,
confidence levels of 70% and 90% will be considered.

There are three free parameters to consider in this
analysis: the observation error variance r?, the back-
ground (prior) error variance o, and the magnitude of
the anomaly to resolve n. Figure 11 illustrates the ob-
servation counts required to resolve a range of different
anomaly magnitudes. In Figs. 11a and 11b, several ob-
servation error variances are examined while assuming
an initial background error variance (o3) of 1 unit” in all
cases. In Figs. 11c and 11d, a range of different initial
background error variances are considered while
keeping a fixed observation error variance of 1 unit>,

In most operational data assimilation systems, surface
observation error variances are prescribed to be about
1 unit? for T2 (K), PSFC (hPa), 10-m wind (ms~ '), and Q2
(gkg™ ") (e.g., Burton 2014; Hu et al. 2013). We consider
an observation error variance of 1 unit? in the top row of
Fig. 11a and in all of Figs. 11c and 11d. Recall the mean
positive preconvective environment T2 anomalies of
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FIG. 10. Schematic of error variance reduction by observation
assimilation. The ensemble mean error is shown on the x axis. The
variance of a background distribution (prior) is reduced by as-
similating observations until the magnitude of the error in the
ensemble mean is constrained to be less than n with 70% (posterior
70%) or 90% (posterior 90% ) confidence.

0.5-K magnitude shown in Fig. 6. Assuming an initial
background error variance of 1K? and an observation
error variance of 1K? (Fig. 11c, top row), for variations
of 0.5K to be resolved with 90% confidence, approxi-
mately 15 independent observations are required (top-
right corner). However, to resolve with only 70%
confidence, only one observation is required (Fig. 11d).
By reducing the background error variance to <0.2 K>,
only 1-4 observations would be required to resolve this
anomaly with 90% confidence (bottom-right corner,
Fig. 11c). This indicates that it is likely to be correlation
length scale and not observation error that would most
constrain the number of temperature observations re-
quired. For 10-m wind anomalies of 1ms™ ', a similar
conclusion may be drawn.

However, for Q2 and PSFC, the preconvective anomaly
magnitudes are smaller (0.25 gkg ™' Q2; < 0.1-hPa PSFC),
and with the observation error variance suggested above
(1unit®) a much larger number of independent observa-
tions would be required to resolve these magnitudes. In
particular, for PSFC, over 300 (100) observations would
be required to resolve these magnitudes with 90% (70%)
confidence (Fig. 11). Though PSFC has a slightly longer
correlation length scale (Fig. 8), an observation error
variance of 1 hPa? is too large for even an extremely dense
PSFC observing network to resolve anomalies of this
magnitude. In Figs. 11a and 11b, we see that even reducing
the observation error variance to 0.1 hPa® would still re-
quire about 40 (8) independent observations to resolve a
0.1-hPa anomaly with 90% (70%) confidence.
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In general, as the initial background error variance is
reduced (Figs. 11c and 11d), the required number of
independent observations becomes more tractable. One
way to maintain a small background error variance
would be to cycle an ensemble forecast more frequently,
not allowing time for ensemble member forecasts to
diverge far from observations (e.g., Sobash and Stensrud
2015). This is one way to possibly make PSFC and Q2
observations more relevant to storm-scale assimilation
in the pre-CI environment.

It is also possible that these observation error vari-
ances may be overestimates. Hacker and Rostkier-
Edelstein (2007) estimate observation error variance
from instruments at the Oklahoma Atmospheric Radi-
ation Measurement (ARM) site and suggest tempera-
ture and moisture observation error variances may be
as small as 0.08 K? and 0.077 g*kg 2, respectively. Even
barometric pressure measurements from modern smart-
phone sensors have a specified relative error variance of
0.04 hPa? (Mass and Madaus 2014). While sensor error is
only one component of the total observation error, it
suggests that a network of well-calibrated barometers
may be capable of resolving smaller anomalies than
presently assumed.

We also note that this analysis assumes that the model
background estimate and the observation values are un-
biased, which is not true for most model forecasts and
observations. For instance, Hu et al. (2010) find that WRF
simulations tend to consistently underpredict temperature
and overpredict moisture over the south-central United
States, though the biases do vary depending on the spe-
cifics of the PBL scheme used, and this method does not
take these biases into account. Nevertheless, this idealized
perspective is still useful for evaluating observation ef-
fectiveness even within a “perfect’ scenario.

6. Summary and conclusions

In this study, we examined isolated, locally driven CI
in a variety of different environments with idealized
ensemble simulations. A Cl-relative compositing method
revealed coherent features in all surface fields examined
throughout the CI process. Warm 2-m temperature
anomalies were present from 90-170min prior to the
onset of precipitation, with moisture, wind, and pressure
anomalies also detectable about 1 h before CI. Wind and
moisture anomalies were found to be consistent with
observational studies of preconvective environments.
The strongest anomalies prior to CI were related to cloud
shadowing, creating a cold anomaly of 1-2K as the con-
vective cloud deepens. Surface pressure anomalies re-
mained relatively weak (<0.1hPa) throughout the CI
process.
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FI1G. 11. Number of independent observations required to reduce the analysis error variance such that it resolves a given anomaly

magnitude (x axes). (a),(b) A range of observation error variances are examined (y axes) with an initial background error variance of
1 unit?. (c),(d) A range of initial background error variances are examined (y axes) with the observation error variance fixed at 1 unit*. The
number of observations is computed to resolve the given anomaly magnitudes with (a),(c) 90% confidence and (b),(d) 70% confidence.
White regions already have a background error variance small enough to resolve the specified anomaly magnitude with the expected

confidence prior to any observation assimilation.

In general, all surface fields (except surface pressure)
showed horizontal correlation length scales of 3—4km
prior to CI, with surface pressure having a slightly longer
length scale of 4-7 km. These suggest an upper bound of
about one observation every 5 km for a storm-scale ob-
serving network, neglecting temporal correlations. Strong
vertical correlations were also observed, particularly
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between surface temperature anomalies and moisture
anomalies aloft. This further suggests that surface ob-
servations may help constrain storm-scale features
throughout the troposphere, given a well-constrained
background environment.

The feasibility of resolving pre-CI surface anomalies
was examined in the context of variance reduction
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through data assimilation. We show that the necessary
temperature and wind anomalies would most easily be
resolved using current assumptions about observation
error variance, given a realistically feasible observation
density. Capturing moisture and pressure anomalies
would require either an extremely dense network, fre-
quent assimilation cycling, or observations with much
smaller error variances than currently assumed.

One limitation to these results is the use of a single PBL
scheme. The surface fields examined here are chiefly
outputs of this scheme, and using a different scheme may
yield different results. However, Hacker and Rostkier-
Edelstein (2007) suggest that the ability of surface ob-
servations to constrain the PBL is not dependent on the
PBL parameterization used, given sufficiently frequent
assimilation cycling. Future studies may wish to compare
these results with other PBL schemes; here we were
limited by the single YSU PBL option available in the
CM1 model.

In all environments simulated, the same pattern of
anomalies is present during the hours preceding CI,
suggesting that there are indeed robust surface features
that an appropriate observing network could sample.
While these results are encouraging, they must be con-
sidered within the context of this idealized modeling
setup. For instance, though there are strong patterns of
vertical correlation between surface temperature and
the moisture in the troposphere aloft (section 4e), much
of this correlation strength is likely due to the nearly
identical vertical moisture profiles in all ensemble
members without synoptic and broad mesoscale vari-
ability. It is unlikely that a real-world ensemble would
have such a tightly constrained background environ-
ment, and that could lessen the correlation magnitude.
Indeed, the role of entrainment in promoting or in-
hibiting CI is largely ignored in this experiment, as
clouds forming in all ensemble members encounter
similar conditions aloft. Likewise, the horizontal cor-
relation length scales in more realistic settings could
vary more substantially than shown here due to in-
homogeneities in the land surface characteristics not
represented here.

The correlation length scale evolution and the small
variance in the anomaly growth time scale is also likely
due to all ensemble members producing clouds and
eventually precipitation at about the same time; in a
real-world ensemble with greater variance there is likely
to be more diversity in the time and spatial locations
where CI is favorable. However, these results suggest a
more rigorous condition for successful storm-scale CI
prediction: even with a tightly constrained background
state, the exact location and timing of CI still is subject to
the small-scale variability seen here.
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While this work has considered simulations of multi-
ple environments to specifically characterize the varia-
tions in surface fields surrounding successful convective
initiation, our approach provides a framework for fur-
ther examination of the CI process. For instance, the
storm tracking algorithm used here could be modified to
track developing cloud objects and identify specific dif-
ferences between clouds that deepen and produce
precipitation and those that fail to do so within an en-
vironment with little to no mesoscale or synoptic-scale
variability. This could suggest additional observation
platforms that may be useful in successfully discrimi-
nating CI successes and failures on the storm scale.

Finally, we note that this study does not explicitly
connect improved resolution of surface features to ac-
tual improved forecasts of CI. Important questions re-
main about translating better surface representation to
ClI forecast improvement, particularly when faced with a
more varied background environment and complicating
factors such as entrainment. Future work involving ob-
serving system simulation experiments (OSSEs) with
these and other simulations is planned to test hypothe-
sized observation densities as suggested by this research,
examining whether resolving these anomalies actually
leads to improved forecasts of CI.
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