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ABSTRACT

Idealized ensemble simulations of isolated convective initiation (CI) are analyzed to identify storm-scale

features in surface weather fields that precede initiation in a variety of background environments and the

observations that would be needed to resolve these features. Precipitating storms are identified with an

object-based method and composites of surface anomalies are generated for the variables of interest sur-

rounding times and locations of initiation. Correlation length scales and anomaly magnitudes throughout the

CI process are examined in detail with the latter comparing favorably to anomaly estimates obtained from

previous observational and modeling studies. Negative temperature anomalies due to cloud shadowing are

found to be the most prominent storm-scale feature prior to initiation. Significant spatial correlations are

shown to extend from the surface throughout the boundary layer and even into the cloud-bearing layer once

deep convective clouds become established. The findings are discussed in the context of data assimilation,

particularly with respect to current assumptions about surface observation error. It is shown that, to resolve

the storm-scale anomalies in these simulations, the minimum necessary temperature and wind observation

densities would likely be limited by spatial correlation length scale while moisture and pressure observations

are more limited by observation error.

1. Introduction

The prediction of exactly when and where precipi-

tating convective storms will develop within an unstable

air mass [i.e., convective initiation (CI)] remains a

challenging problem. This is particularly true for the

prediction of ‘‘airmass-type’’ thunderstorms that can

develop within a broad region of instability without

significant large-scale forcing or where local, boundary

layer processes are the primary driver of CI. Numerous

studies ascribe failure to skillfully predict storm-scale

convective development to a lack of spatially and tem-

porally dense observations (e.g., Stensrud and Fritsch

1994; Dabberdt and Schlatter 1996; Mass et al. 2002;

Roebber et al. 2002; Fowle andRoebber 2003; Dabberdt

et al. 2005; Gallus et al. 2005; Snook et al. 2015). Of

current observation platforms, only Doppler radars and

some satellite products are able to produce observations

on a temporal and spatial scale consistent with these

requirements. As such, these platforms have received

the majority of research attention. However, these ob-

servations provide limited utility in assessing the pre-

convective environment, essential for the prediction

of CI.

Surface weather observations have received more

limited attention for describing storm-scale features in

the preconvective environment, chiefly due to their

relatively poor spatial density (e.g., Mass et al. 2002; Sun

et al. 2014). Recent studies have demonstrated that

frequent, dense surface observations can contribute to

improved CI forecasts (e.g., Liu and Xue 2008; Sobash

and Stensrud 2015). To date, this forecast improvement

has mostly been attributed to improved representation

of broader mesoscale forcings (e.g., fronts or drylines)

and reducing near-surface model biases (Sobash and

Stensrud 2015). Here we wish to expand these findings

by examining the potential for dense surface observa-

tions to describe structures on the scale of individual

thunderstorms.

Surface observations are available at subhourly,

kilometer-scale density or better in many locations from
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extant, yet underutilized networks such as private citizen

weather stations (Madaus et al. 2014) and smartphone

barometers (Mass and Madaus 2014). Exploiting these

observations and enhancing existing surface observation

networks may provide a storm-scale surface network ca-

pable of satisfying the requirements for CI forecasting.

Yet, there has been little work to date describing how

surface weather fields are represented in numerical sim-

ulations of CI, particularly for isolated convection where

local, boundary layer processes are dictating the evolu-

tion. As such, there is little description of which surface

variables aremost relevant to observe, how sensitive these

observations would need to be, or the requisite density of

these observations in time and space. To assess these

questions, the surface evolution of the CI process in

modern, kilometer-scale numerical modelsmust be better

documented. This work uses idealized simulations of lo-

cally forced CI to investigate if there are observable

storm-scale features in surface weather fields that precede

isolated CI in light of current observation limitations.

The remainder of this paper is outlined as follows. A

review of previous attempts to quantify the relationship

between surface characteristics and convective initiation

is given in section 2. Our methods, including the model

configuration and analysis techniques, are given in sec-

tion 3. The results are presented in section 4 with a

discussion of the implications of these results in section 5.

We conclude by summarizing our findings and their

limitations in section 6.

2. Background

a. Role of the surface in convective initiation

The process of CI has typically been viewed in the

parcel model context. Surface (or near surface) obser-

vations of atmospheric properties (temperature, mois-

ture, wind, and pressure) are connected to the CI

process from the parcel model in the following ways:

d Temperature—Relativelywarm regions have greater free

energy, and therefore an increased potential for positive

buoyancy and reduced convective inhibition (CIN).
d Moisture—For parcels with the same temperature,

moister rising parcels reach their lifted condensation

level (LCL) at a lower altitude. Once the LCL is

reached, latent heat release from condensation con-

tributes to positive buoyancy and reduced CIN.
d Wind—Areas of convergence near the surface lead to

upward vertical motion through mass conservation,

sustaining rising parcels against CIN.
d Pressure—Areas of lower pressure near the surface

can promote low-level convergence and can indicate

rising motion above.

Characterizing the variability in these fields is crucial

for successful CI forecasting. Near-surface temperature

and moisture may vary for a number of reasons, but

surface fluxes strongly influence local variability. Sev-

eral studies note that surface heat and moisture flux

variations can impact when and where convection will

develop (e.g., Koch 1984; Yan and Anthes 1988; Childs

et al. 2006; Holt et al. 2006). However, the relative im-

portance of heat and moisture fluxes remains uncertain.

Crook (1996) and Kang and Bryan (2011) find, through

observation and idealized modeling studies, that local

surface temperature variations exert stronger control

over CI occurrence than moisture variability. However,

other modeling studies based on specific cases (e.g.,

Droegemeier and Wilhelmson 1985; Clark et al. 2004;

Martin and Xue 2006; Zhang et al. 2015) suggest that CI

is most sensitive to moisture variability. Furthermore,

Kang and Bryan (2011) note that with more homoge-

neous temperature distributions the variability in sur-

face moisture plays a greater role in controlling CI

occurrence. These studies collectively indicate that both

temperature and moisture variability can potentially be

important to capture for CI prediction. The relative

importance of these variables has implications for which

surface observations are more likely to discriminate lo-

cations of CI, and a better characterization of the mag-

nitudes of variability in these surface fields relative to

the potential observation error is needed.

There are additional ways for storm-scale variability

in surface fields to locally enable or inhibit CI. Varia-

tions in cloudiness can create gradients in diabatic

heating at the surface (and, consequently, surface tem-

perature and moisture) due to cloud ‘‘shadowing’’

(Koch 1984; Lohou and Patton 2014; Rieck et al. 2015).

Observational studies show that diabatic heating dif-

ferences can change local pressure distributions, gener-

ating areas of increased convergence and vertical

motion (e.g., Benjamin and Carlson 1986; Bluestein

et al. 1988). Once convective storms develop, significant

downdrafts due to evaporative cooling can contribute to

cold pool formation at the surface, regardless of whether

or not precipitation actually reaches the ground. Cold

pool boundaries have frequently been examined as focal

points for CI (e.g., Droegemeier andWilhelmson 1985).

Here we are more interested in quantifying the initial

development of convection in a previously undisturbed

environment, as subsequent forecasts of new initiation

are likely affected by errors in the initial outbreak.

b. Estimates of localized surface variability in the
preconvective environment

Observational studies suggest that meso-b- and meso-

g-scale variations in boundary layer fields preceding CI
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can be very subtle.Weckwerth et al. (1999) estimate that

convergence due to only 1–2ms21 variability in winds

may promote sustained upward motion. Arnott et al.

(2006) observe convergent regions near the surface

preceding CI as small as 2–5 km in extent during the

International H2O Project (IHOP; Weckwerth and

Parsons 2006). Using IHOP radar refractivity measure-

ments, Fabry (2006) shows that moisture variability in

the convective boundary layer (CBL) can be as small as

0.25 kgm23 over a 5-km length scale. Furthermore,

model-based estimates suggest that local variations in

moisture of as little as 1 gkg21 are enough to support or

discourage CI (Crook 1996; Martin and Xue 2006).

Simulations suggest that observations on a spatial den-

sity of at least the CBL height are necessary to capture

horizontal variability (Jonker et al. 1999). Evaluation of

these sensitivities and variability in model simulations of

CI is critical for evaluating the utility of a potential dense

observing network.

c. Scope of this study

As noted above, it is well established that synoptic and

broad mesoscale forcing (e.g., fronts, drylines, cold pool

boundaries) can act as a focal point for CI (e.g., Owen

1966; Ziegler et al. 1997). Dense surface observa-

tions have already been shown to improve forecasts

of broader mesoscale features (e.g., Wheatley and

Stensrud 2010; Madaus et al. 2014), which has, in turn,

led to more accurate CI forecasts (Sobash and Stensrud

2015). Therefore, the practical predictability of CI (and

the near-surface properties of the preconvective envi-

ronment) can immediately be enhanced bymore accurate

analyses of these features. Here, we wish to examine the

surface storm-scale variability in the preconvective en-

vironment absent these effects.While it is unlikely that CI

in the real atmosphere will be completely removed from

larger-scale effects, this underlying storm-scale variability

still exists and can play a critical role in dictating CI; here

we will examine that contribution to CI in detail.

More generally, studies have repeatedly demonstrated

that small, storm-scale forecast errors surrounding CI can

rapidly propagate upscale, limiting predictability to a

matter of hours (e.g., Brooks et al. 1992; Zhang et al. 2003;

Hohenegger and Schaar 2007). Though the downscale

propagation of small errors on broad meso- and synoptic

scales also constrains and ultimately limits CI pre-

dictability (e.g., Durran andWeyn 2016; Torn andRomine

2015), for short-term CI forecasts (less than 6h) storm-

scale errors have great importance. Therefore, this study

numerically simulates idealized, isolated CI in the absence

of prescribed dynamic forcing to examine how surface

observationsmight constrain these errors, and what quality

and quantity of observations might be required.

3. Methods

a. Convective environments

To examine CI in idealized simulations without

imposing a large-scale forcingmechanism, it is necessary

to choose appropriate environments. Specifically, we

seek realistic thermodynamic environments where CI

may occur only due to local, boundary layer processes.

A total of 23 observed soundings are subjectively chosen

to provide environmental conditions in our simulations

(Fig. 1). These soundings span the continental United

States east of the Rocky Mountains during June–

October 2014. Synoptic charts, radar data, and storm

reports are scrutinized to identify times and locations

where

d precipitating convection developed within 12 h after

the sounding time, and
d large-scale forcing (e.g., fronts, upper-level short-

waves) was distant or appeared absent from the event.

The soundings at locations shown in Fig. 1 cover a

variety of warm-season environments in the United

States. Figure 2a shows the soundings from three par-

ticular environments that will be discussed in greater

detail later in this paper. (Soundings from all environ-

ments used in this work are shown in Fig. S1 in the online

supplemental material.) Figure 2b shows the surface-

based convective available potential energy (CAPE)

and CIN computed from these soundings, both for the

initial time and the forecast surface-based values based

on the original sounding. Initial CAPE ranges over

0–2500 J kg21 and CIN over 0–600 Jkg21. The forecasted

surface-based values show CIN reduced to zero or near

zero in all but one environment as the day evolves,

permitting CI to occur. We expect that the environ-

mental diversity captured by these soundings provides

an estimate of the variability and broader applicability

of the findings. Two of the environments provided by

these soundings failed to produce deep convection in

our simulations (including the one with forecast surface-

based CIN of 120 J kg21 in Fig. 2b); we will discuss these

environments further at the beginning of section 4.

b. Forecast model

For idealized simulations, we use Cloud Model 1,

revision 17 (CM1; Bryan and Fritsch 2002), which has

enjoyed widespread use in the severe storms com-

munity. From each sounding identified in Fig. 1, ho-

mogeneous initial conditions are generated for a

104 km 3 104 km domain. There is no topography

included. Land surface properties are uniform and

match the U.S. Geological Survey (USGS) land-use

category that is most prevalent within a 100-km radius
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of the sounding site. Boundary conditions are doubly

periodic and the only external forcing is diurnal ra-

diation. Simulations are run for 15 h from the time of

the sounding launch.

In many idealized convective simulations, deep con-

vection is ‘‘forced’’ to initiate by the inclusion of some

storm-scale perturbation, often a ‘‘warm bubble’’ or

prescribed convergence. Here we wish to examine a free

FIG. 2. (a) Temperature andmoisture profiles from three specific soundings (KMPX1200UTC 29 Jul 2014, mpx_

0729; KLBF 1200UTC 9Aug 2014, lbf_0809; andKBMX1200UTC 8Aug 2014, bmx_0808) that will be referred to

in more detail throughout this study. (b) CIN (J kg21) and CAPE (J kg21) for a surface-based parcel at both the

initial sounding time (black circles) and for a forecast surface parcel in the initial sounding (blue circles) for all

environments.

FIG. 1. Locations and dates of the soundings chosen as initial conditions for simu-

lations. Soundings from 1200 UTC on each date are used. All soundings are from the

year 2014.
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process of CI without prescribing an initial lifting

mechanism. In these simulations, we only impose ran-

dom, white-noise, gridpoint perturbations to the initial

potential temperature field at all model levels with a

maximum magnitude of 0.2K to promote random spa-

tial variability. We experimented with different initial

maximum perturbation magnitudes ranging from 0.05 to

0.5K, but the results were insensitive to this magnitude.

The environments chosen have sufficient conditional

instability that convection initiates on its own after di-

urnal heating and convective mixing have developed a

sufficiently deep convective boundary layer. In each

environment examined, the first convective clouds ap-

pear between 2 and 8h after the beginning of the sim-

ulation and are uncorrelated with the initial noise

perturbations. While this ‘‘unforced’’ CI method limits

the possible environments that can be evaluated, these

simulations allow assessment of the CI process absent a

prescribed, forced initiation.

For each sounding environment, a 25-member ensem-

ble is produced at 1-km horizontal grid spacing. Ensem-

ble diversity is solely due to different initial random

potential temperature perturbations. There is debate

over the horizontal resolution required to adequately

simulate deep convection (e.g., Mass et al. 2002; Bryan

et al. 2003; VandenBerg et al. 2014). While higher

resolution [O(100)m] may be required to adequately

simulate boundary layer convective rolls common to

conditionally unstable environments (Weckwerth et al.

2014; Nowotarski et al. 2014), 1-km grid spacing is

chosen as it can provide acceptable forecasts of indi-

vidual convective storms and more closely matches

what current and near-future operational forecasting

systems may hope to achieve (e.g., Skamarock 2004;

Schwartz et al. 2009; VandenBerg et al. 2014). Future

studies may wish to examine simulations at multiple

resolutions to compare how the scale and magnitude of

observed features may change going from realistic,

observation-like (higher resolution) to operational

forecasts (lower resolution).

Model vertical grid spacing is 80m in the lowest 3.2 km

and linearly increases to 500m from 9km to the model

top at 18 km. Rayleigh damping of vertical motions is

applied above 15km. Parameterizations used include

the Yonsei University (YSU) planetary boundary layer

(PBL) scheme (Hong et al. 2006) and the NASA God-

dard longwave and shortwave radiation (Chou and

Suarez 1999, 2001). The NASA Goddard Lin–Farley–

Orville (LFO) microphysics scheme is used, as in the

CM1model the radiation scheme is specifically designed

to be used with this microphysics scheme.

The land surface scheme used in these simulations is

CM1’s sfcmodel5 2, which is adapted from theWeather

Research and Forecasting (WRF) similarity theory

scheme and includes a thermal diffusion soil model

(Skamarock et al. 2008). The skin temperature is prog-

nostic in this model but soil moisture availability is held

fixed over time and is based on the land-usage category

as described above. The skin temperature and deep-

layer soil temperature are set to the surface temperature

from the original environmental sounding. We ex-

perimented with varying the deep-layer soil tempera-

ture value by up to 5K from the surface temperature,

but this did not appear to change our results.

c. Analysis methods

1) COMPOSITING ANALYSIS

To examine the typical characteristics of surface fields

surrounding the CI process, we employ a compositing

method centered on times and locations where CI occurs.

To determine these times and locations, we use an object-

basedmethod of identifying and tracking cloud and storm

objects loosely based on the Method for Object-based

Diagnostic Evaluation (MODE; Davis et al. 2006). Spe-

cifically, for each ensemble member forecast, the simu-

lated composite reflectivity field (CREF) is scrutinized at

5-min intervals to find areas where CREF . 20dBZ.

While this isolates candidate storm ‘‘objects’’ from the

background, additional processing is needed to separate

storm objects in close proximity. Within each identified

area, all localmaxima ofCREFare identified and, if there

is more than one, a watershed algorithm is applied to

separate the region into unique objects surrounding each

maxima.All objects in this set with a spatial area less than

9km2 are discarded. The remaining objects are consid-

ered to be the set of deep ‘‘clouds’’ present in the model

at that time.

The weighted centroids of these CREF cloud objects

are tracked through time using the Python TrackPy

package (Allan et al. 2014) at 5-min intervals. Only

objects successfully tracked for at least 20min are con-

sidered candidate storms. At each time, we examine the

accumulated surface precipitation field within the

boundaries of each cloud object. The cloud object is

labeled a ‘‘precipitating storm’’ if the precipitation has

increased within the object boundaries since the pre-

vious time. We identify times and locations where CI

occurs by noting the time and centroid of any object

when and where precipitation first reaches the ground in

that object. We find that this definition of CI, requiring a

minimum CREF of 20dBZ and observed precipitation

at the ground, provides consistent and reliable detection

of storm objects from simulations of different environ-

ments. Furthermore, as will be shown in section 4, the

time when precipitation is first observed at the ground
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coincides with a fundamental change in the patterns

observed in the surface fields, marking a natural differ-

entiator between pre- and postinitiation periods.

For our compositing analysis, we select the first four

precipitating storm objects that form in each ensemble

member. Preliminary analysis showed that storms that

form later in the simulations tended to form along the

edges of cold pools produced by earlier storms, and the

signals of these cold pools dominated our analysis of

preconvective surface features. While cold pools are an

important potential focal point for CI, surface observa-

tions have already been seen to improve cold pool rep-

resentation in models (e.g., Wheatley and Stensrud

2010; Dong et al. 2011). As noted in section 2, here we

want to focus on surface features surrounding the initial

wave of CI in the model, absent more organized forc-

ing. With 25-member ensembles, selecting the first

four precipitating storms in each member gives a sample

size of 100 storms in each composite, for each sounding

environment.

To create composites, for each storm the entire dou-

bly periodic domain is translated to center on the time

and location when CI occurred (by our definition

above). Anomalies are computed in the fields of interest

at that time by subtracting the domainwide horizontal

mean of those fields in the full simulation domain. This

process is repeated at 5-min intervals for times up to

180min before and 60min after CI, with the domain

remaining centered on the location of CI. No accom-

modation is made for variations in stormmotion vectors;

for the initial wave of CI the storm motion from the

cells examined is generally parallel. The anomaly fields

from all storms at each time relative to CI are then av-

eraged together to form a composite. The sample size of

storms (100) is large enough that the signatures of any

additional storms surrounding each contributor to the

composite mostly cancel out. An analysis of these com-

posites follows in sections 4b and 4c.

2) CORRELATION LENGTH SCALES

When developing an observing network to sample the

preconvective environment, it is important to consider

the average spatial extent of the impact for a given ob-

servation, as this has implications for the necessary ob-

servation density. To investigate this, average correlation

length scales for relevant surface variables are computed

for each environment’s ensemble simulation. Specifically,

for a given variable, at each point in the domain the en-

semble correlation of that point to each other point in the

doubly periodic domain (of the same variable) is com-

puted. The correlation magnitude is then binned by dis-

tance from that point to the nearest kilometer, and a

binwise average is computed, again for each point. By

averaging this correlation-by-distance profile across all

points at each time in the simulation, the spatial scale of

correlation at a given time in the simulation may be ex-

amined.A discussion of the results of this analysis is given

in section 4d.

In addition to horizontal correlation length scales,

average vertical correlations as a function of time are

also computed for selected variables. These correlations

illustrate the potential impact of a surface observation

on atmospheric properties aloft. We discuss one such

correlation analysis in section 4e.

4. Results

a. CI simulation evolution and comparisons to CI
‘‘failure’’ environments

In the ensemble simulations for all environments, the

boundary layer depth is observed to grow throughout

the first several hours of integration in response to in-

creasing heat flux from the surface as solar radiation

increases. For most environments simulated, cloud for-

mation is observed between 2 and 8h into the simula-

tions, with precipitation first occurring between 5 and 13h

into the simulations (Fig. 3; squares). For all but two of

the environments, the deepest convective clouds reach

the tropopause level inferred from the initial environ-

ment sounding, indicating that deep convection occurs.

For the remaining two environments (9 July 2014

KLBF and 29 July 2014 KMPX; profiles shown in

Fig. 2a), deep CI does not occur in the simulations. In

the KLBF environment, the simulations produce scat-

tered shallow cumulus clouds but no precipitation at the

surface, and it was noted from Fig. 2b that this envi-

ronment had nonzero forecast surface-based CINH. In

the KMPX environment, shallow-to-towering cumulus

clouds are produced but, though some of these clouds do

produce weak precipitation, the size and duration of

tracked reflectivity objects in most of the ensemble

members does not meet the requirements for storm

objects with successful CI outlined in section 3c. Nev-

ertheless, these two environments provide examples of

CI failure to compare with successful CI environments.

We briefly consider the differences between the evo-

lution of the two CI failure environments and the

remaining 21 successful CI environments with respect to

variability in temperature at the surface. Figure 3 shows

the ensemble-averaged spatial variance in the simulated

2-m temperature fields as a function of time for all the

environments simulated. The two CI failure environ-

ments are highlighted in red and gold. The variance in

the surface temperature field, while initially small, be-

gins increasing once clouds are present in the domain for
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reasons that will be described in the following sections.

This variance grows as convection deepens andmatures,

being augmented by the development of cold pools once

precipitation has begun. Variance in the timing of pre-

cipitation (and, consequently, cold pool) development

between ensemble members may contribute somewhat

to a rapid increase in 2-m temperature variance in ad-

dition to horizontal inhomogeneity. However, for most

environments, the time of precipitation onset in various

ensemble members differed from the mean by no more

than 10min. The variance reduces toward the ends of

the simulations as the environment stabilizes and ac-

tive convection diminishes. The magnitude of the

variance differs between environments, depending on

the number of clouds that form and the depth of the

convective clouds.

It is encouraging to see in Fig. 3 that many of the

environments where deep CI occurs show an hour or

more of increasing spatial variance in 2-m temperature

prior to the onset of precipitation (shown by squares),

suggesting a window prior to CI where surface obser-

vations may operate to help constrain the variability. In

contrast to this variance growth in deep CI simulations,

the two CI failure simulations with shallower clouds

have relatively low spatial variance in surface tempera-

ture throughout their evolution. While it appears that

deep convective clouds can be associated with greater

surface temperature variability, there are some envi-

ronments where deep CI does occur, based on our cri-

teria, which have similar variance magnitudes to the CI

failure simulations for extended periods. Thus, while it

seems likely that a dense surface observing network will

be able to contribute to constraining robust, deep CI,

such a network may not be sufficient to separate CI

success and failure for more marginal cases.

Furthermore, in our experiment setup, the back-

ground environment is tightly constrained without

large-scale variability. Therefore, it is difficult with these

experiments to address how surface observations may

constrain broader variability, particularly above the

boundary layer, for processes like entrainment that are

likely promoting or discouraging CI in the real world.

For the remainder of our analysis we will focus specifi-

cally on the storm-scale variability surrounding those

storms that do develop. As such, the two CI failure en-

vironments will not be included in the subsequent

analysis.

b. Compositing analysis

We now focus on specific features in surface fields

surrounding developing storm objects by examining the

CI-relative composites of surface anomalies. Figure 4

FIG. 3. Ensemble-averaged spatial variance in the 2-m temperature field as a function of time

for all environments simulated. The ensemble-averaged time when precipitation is first ob-

served at the surface for each environment is shown by squares. The two CI failure environ-

ments (mpx_0729, red; and lbf_0709, gold) are highlighted, as well as the 8 Aug 2014 KBMX

environment (bmx_0808; blue). All other environments simulated are shown in gray.
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shows an example of the CI-relative composites of

composite reflectivity (CREF), 2-m temperature (T2),

2-m mixing ratio (Q2), 10-m y-wind component (V10),

and surface pressure (PSFC) for the 8 August 2014

KBMX environment (highlighted in Figs. 2 and 3). The

composites from this environment exemplify the salient

features seen in composites from the other environ-

ments. Below is a description of these features for each

variable. Discussion of the magnitudes of these features

follows in section 4c.

1) COMPOSITE REFLECTIVITY

TheCREF composites in Fig. 4 (top row) illustrate the

reliability of the object-based compositing technique. No

signal is present until approximately 30–40min before CI

(again, here defined as the onset of precipitation), after

FIG. 4. Composited anomalies from the 8 Aug 2014 KBMX environment simulations relative to the location (black squares) and time

(columns) of CI for (from top to bottom) composite reflectivity [CREF (dBZ)], 2-m temperature [T2 (K)], 2-mmixing ratio [Q2 (g kg21)],

10-m y-wind component [V10 (m s21)], and surface pressure [PSFC (Pa)]. The column at the time of CI (0min) is boxed. For scale, the gray

dashed grid shows 10 km2 squares. Though the composite anomalies are generated using the entire simulation domain, only the 60 3
60 km2 region surrounding the location of initiation is shown for clarity.
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which a smoothed CREF maximum grows, passing over

the location of CI (black square) at the time of CI (0min,

fifth column) before moving off. This affirms that the

composite is reliably collocating simulated storm objects.

2) SURFACE TEMPERATURE

In composite 2-m temperature (T2) (Fig. 4, second

row), a warm anomaly appears as early as 120min be-

fore CI for this particular environment; in other envi-

ronments the time of the first discernible warm anomaly

varies from 90 to 170min prior to CI. The ultimate

source for this anomaly varies across environments. In

some environments, the deepening CBL organizes into

horizontal convective rolls (Weckwerth et al. 1999) with

alternating warm and cold anomalies collocated with

rising and sinking branches of these rolls. Stochastic

variability can also promote anomalously warm tem-

peratures in certain regions.

In simulation of environments like KBMX in Fig. 4,

cumulus development prior to the formation of pre-

cipitating storms also contributes to surface temperature

variability. This is suggested in the horizontal T2 vari-

ance evolution (Fig. 3; blue line) where T2 variance

grows from the first appearance of clouds (at 6 h)

through the average time of CI (at 8.5 h). Given the

presence of clouds 2.5 h prior to CI, the deep pre-

cipitating clouds, that are the components of these

composites, form within a preexisting cloud field. The

left column of Fig. 5 shows that the warm T2 anomaly

present 60min prior to CI (T2; bottom row) is collocated

with a relative minimum in the surrounding cloud field,

shown in the composited column-integrated cloud water

(CLOUD; top row). The lack of deep clouds yields a

positive downward shortwave radiation anomaly at the

surface (RADSW) and corresponding upward heat flux

anomaly (HFX) that promote the positive T2 anomaly.

This composited warm anomaly propagates toward the

location of CI, attaining amaximummagnitude between

45 and 60min before CI. The anomaly area greater than

0.1K is broad, extending some 30km in its widest di-

mension, but the area of .0.5K is very localized—only

2 km in diameter.

Approximately 30min prior to CI, a cold anomaly

develops, collocated with the CREF maximum. Exam-

ination of the surface heat fluxes and column cloud

water (Fig. 5) relates this anomaly to cloud shadowing:

the reduction of incoming shortwave radiation at the

surface due to the cloud overhead. In Fig. 5, the com-

posite column-integrated frozen and liquid water

(CLOUD; first row) shows a distinct cloud object ap-

proximately 40min prior to CI. This cloud object is

collocated with a negative shortwave radiation anomaly

at the surface (RADSW), reduced upward heat flux at

the surface (HFX) and the negative T2 anomaly de-

scribed above. These anomalies grow and propagate in

tandem as the cloud object evolves toward initiation. A

cloud-shadowed T2 anomaly is observed in all of the

simulated environments. We note that since the NASA

Goddard radiation scheme uses a two-stream approxi-

mation (where only the vertical component of radiation

is evaluated, regardless of the solar zenith angle), this

cloud shadow always occurs directly underneath the

developing cloud. Further discussion of the cloud-

shadowing effect follows in the discussion of Fig. 6 and

with respect to vertical correlations in section 4e.

In the 30min prior to CI, the cloud-shadowed cool

temperature anomaly grows in size while the warm

anomaly reduces in both magnitude and extent. After

precipitation begins, the area of the cold anomaly rap-

idly expands and the magnitude continues to increase.

However, at this point the cloud shadowing is aug-

mented by cool downdraft air descending in the now-

precipitating storm and this cold anomaly could be

better characterized as a cold pool.

3) SURFACE MOISTURE

Anomalies in the surfacemoisture field (Fig. 4; Q2) do

not become noticeable until about 60min prior to CI. A

distinct dipole structure is apparent during the hour

before precipitation begins, with a negative moisture

anomaly preceding a positive anomaly with respect to

their motion. The center of the dipole tends to remain

directly underneath the cloud object (cf. CREF in top

row) with the positive moisture anomaly collocated with

the negative temperature anomaly at 30min prior to CI.

The warm anomaly at the surface is associated with lo-

cally enhanced PBL mixing, which contributes to re-

duced moisture in the PBL and a negative Q2 anomaly.

In contrast, locally reduced sensible heat flux in the

cloud-shadowed region weakens PBL mixing, which

results in higher moisture in that area. The moisture

anomaly is slightly smaller in extent than the tempera-

ture anomaly, but the area of .0.1 g kg21 still becomes

20 km across at its widest dimension in the 30min prior

to CI. After CI, the positive moisture anomaly is quickly

replaced by an expanding negative anomaly as the cold

pool develops. While the air in the developing cold pool

is nearly saturated, the saturation mixing ratio in the

cold pool is lower than the ambient environmental

mixing ratio, yielding a negative anomaly.

4) 10-M WINDS

Near-surface winds can be considered in vector form

(both u- and y-wind components) or by examining each

component individually; here we select the y-wind

component (V10) as it showed the strongest signal given
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the background wind profile of the 8 August 2014 KBMX

environment and for ease of comparison with the other

variables shown. Note that the mean storm motion has

not been subtracted from these winds. The expected sig-

nature of low-level convergence first becomes apparent

by 60min prior to CI. The convergence strengthens

through the following 30min, with the y extrema sepa-

rated by 7km, on average. Immediately prior to CI, the

convergent anomalies weaken and are rapidly replaced by

diverging wind anomalies. These diverging winds again

represent cold pool generation with the now-precipitating

downdraft spreading out as it reaches the surface.

5) SURFACE PRESSURE

The surface pressure (PSFC) anomalies compliment

the 10-m wind and 2-m temperature anomalies in the

hour leading up to CI. A negative pressure anomaly is

apparent beginning at 60min prior to CI and is visible

through 20min prior to CI (not shown), consistent with

the concurrent positive temperature anomaly and con-

vergent winds. By 10min prior to CI, the negative

anomaly has been replaced with a growing positive

anomaly, likely in response to a developing down-

draft aloft (as pressure responds to the integrated

mass above a point) and the persistent cooling due to

cloud shadowing. This positive anomaly grows rapidly

following initiation—another symptom of cold pool

development.

c. Composite anomaly magnitudes

The above descriptions (particularly the magnitudes

and scales) apply specifically to the 8 August 2014

KBMX environment, but the analyses are performed on

all environments and show similar evolution. Figure 6

shows time series of the maximum and minimum

anomalymagnitude in the entire composited domain for

the variables described above (except for CREF) and

for each environment simulated.

FIG. 5. Composited features from the 8 Aug 2014 KBMX environment simulations relative to the location (black squares) and time

(columns) of CI for (from top to bottom) column-integrated frozen and liquid water [CLOUD (kgm22)], shortwave radiation flux

anomaly at the surface [RADSW (Wm22)], upward surface heat flux anomaly [HFX (Wm22)], and 2-m temperature [T2 (K)]. The

column at the time of CI (0min) is boxed. For scale, the gray dashed grid shows 10 km2 squares. Though the composite anomalies are

generated using the entire simulation domain, only the 60 3 60 km2 region surrounding the location of initiation is shown for clarity.
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For T2 (Fig. 6, top left), the positive anomalies reach a

mean magnitude of 0.3K, which, on an environment-by-

environment basis, generally remains larger than the

mean negative magnitude until 40–60min prior to CI.

During this time, the cloud-shadowing effect becomes

apparent in all environments, generating increasingly

negative temperature anomalies to about 2K in mag-

nitude. From observations, Lohou and Patton (2014)

note negative 2-m air temperature anomalies of about

1-Kmagnitude and skin surface temperatures anomalies

of up to 4K in association with the passage of shallow

cumulus clouds. Thus, the cloud-shadowed cold tem-

perature anomalies simulated here appear reasonable,

particularly for deeper convective clouds. A slight kink

in the negative T2 temperature anomalies at the time

of CI highlights the transition from cloud shadowing to

cold pool generation as the primary source of the

anomalies.

Surface humidity (Q2) has much more variability

between environments. A general increase in both the

FIG. 6. Maximum and minimum composite anomaly magnitudes as a function of time relative to precipitation

onset (CI) for 2-m temperature (T2), 2-m mixing ratio (Q2), 10-m y-wind component (V10), and surface pressure

(PSFC) for each simulated environment (colors). The solid black lines for each panel show the meanmaximum and

minimum anomaly magnitude across all environments.
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positive and negative anomaly magnitude over time

follows the strengthening dipole as shown in Fig. 4. The

mean anomaly magnitudes increase from 0.1 to

0.5 g kg21 during the 2h prior to CI. In some environ-

ments, there are rapid increases in the positive or neg-

ative moisture anomaly beginning 30–40min before CI.

The maximum positive moisture anomaly during the

30min prior to CI is well correlated (r5 0.54, p 5 0.01)

to the ensemble mean, domain-averaged LCL in each

environment 30min prior to CI (Fig. 7). We note that

the high confidence in this correlation comes mostly

due to one environment (KDNR 29 July 2014) with a

particularly high LCL height and maximum pre-CI

moisture anomaly magnitude. Removing this environ-

ment still yields a positive correlation (r 5 0.22), but

the correlation is no longer statistically significant.

Regardless, a positive correlation suggests that in en-

vironments with higher LCLs, a larger moisture

anomaly is required for successful CI, agreeing with the

parcel model. Negative moisture anomalies become

more dominant after CI, but with a great deal of vari-

ance as the moisture properties of the cold pool are

highly dependent on the environment throughout the

depth of the precipitating cloud.

For surface winds (V10), another slow increase in both

positive and negative anomaly magnitude is apparent

throughout the 2h prior to CI. These positive and nega-

tive anomalies as shown here do not necessarily imply

convergence by themselves; however, an analysis of each

environment’s anomalies indicates that this is indeed the

case. The average positive and negative anomalies are

generally symmetric for each environment, reaching an

average magnitude of 61ms21 from 240min through

the time of CI. A rapid increase in anomaly magnitude

after CI (to 64ms21 on average) shows the strong di-

vergence with cold pool development.

Surface pressure anomalies remain very weak until

30min prior to CI, with a mean amplitude of60.02 hPa.

As the deep convective cloud begins developing (230

to 240min), positive pressure anomalies slowly in-

crease to 0.1 hPa 10min prior to CI. The average pos-

itive anomaly sharply increases around the time of CI

to 0.5–0.6 hPa as the convective downdrafts become

established.

d. Correlation length scales

To suitably observe the preconvective environment, it

is important to consider the area over which a given

observation may be able to provide useful information

about the state. The spatial variance at the initial time is

very small, but this grows during the cloud formation

period and through eventual precipitation and cold pool

generation. As such, it is expected that spatial extent of

an observation’s utility will vary over time. Further-

more, this area may vary among different variables, in-

dicating that particular observation types may be more

efficient at providing state information over a larger

area with fewer observations.

For each environment simulated, we use the

25-member ensemble for that environment to compute

the ensemble correlation magnitudes as they evolve

throughout the simulations. Specifically, at every 5min

during the simulations, for T2, Q2, V10, and PSFC we

compute the ensemble correlation between each vari-

able at every grid point and the same variable at all

surrounding grid points as a function of distance across

the entire domain. This is averaged across all points in

the domain to derive an average decorrelation length

scale at a given time.We choose a correlationmagnitude

of 0.2 as a threshold for decorrelation, as estimates of

statistical significance using a standard t test indicated

that, on average, this was the largest correlation mag-

nitude that maintained statistical significance with 95%

confidence.1 We also examined cross correlations

FIG. 7. Themaximum positive composite Q2 anomaly during the

30min prior to CI for each environment shown in Fig. 6 (colors) vs

the ensemble mean, domain-averaged LCL height (km) 30min

prior to CI. A linear regression is shown for these points with

a correlation coefficient of 0.54 and p value of 0.01 for a null hy-

pothesis of the slope equaling zero in the regression.

1We note that using correlations at allN points in the domain has

fewer degrees of freedom (DOF) than the total number of points in

the domain, and compute our significance assuming DOF 5 0.2N,

which is more appropriate given the relatively short correlation

length scales that we observe.
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between different combinations of these variables (not

shown), and while these correlations do exist they were

generally smaller in spatial scale and lower in magnitude

than correlations between the same variable. For two

environments we also conducted limited simulations at

higher (200m) resolution and found that the correlation

length scales were similar (not shown).

Figure 8 shows the evolution of these decorrelation

length scales as a function of time relative to the

ensemble-averaged time of the first CI event in each

environment. For T2, Q2, and V10, the mean corre-

lation length scale is 3–4 km throughout the pre-

convective period, ranging from 2 to 7 km depending

on the environment. There is a slow decrease in the

length scale as the time of CI approaches, reaching a

minimum as clouds begin to populate the domain

during the 100min before CI. Correlation length

scales increase for all three variables after pre-

cipitation begins, as the domain begins to be domi-

nated by large, well-defined cold pools. Surface

temperature increases in correlation length scale

about 90min before CI, which appears related to the

cloud-shadowing effect, separating the domain into

one of two regimes (underneath a cloud or not), sim-

ilar to cold pools. We note that, at any given time,

there is some variability in the correlation length scale

depending on the point chosen and its proximity to

coherent features like cold pools, but the mean cor-

relation length scale gives the best estimate for the

potential spatial scale of observational impacts.

Surface pressure correlation length scales (Fig. 8,

lower right) are generally broader in extent throughout

the simulations, with mean length scales between 4 and

7km but a range of 2–12km in the hours prior to CI.

Like T2, PSFC also sees amarked increase in correlation

length scale in the 100min prior to CI, which is likely

related to the development and deepening of clouds.We

note that this coincides with the growing positive pres-

sure anomaly seen in Figs. 4 and 6.

e. Vertical correlations

Here we briefly consider the ability of surface obser-

vations to constrain not just the boundary layer, but

features of the free atmosphere. As noted above, the

largest surface anomalies we detect—the cold anomalies

in T2—appear closely related to the presence of clouds

above. This suggests that, absent other larger-scale

variability, in the time prior to CI there could exist a

correlation between surface cold anomalies and water

vapor or cloud water above. Figure 9 shows the domain-

averaged ensemble correlation between T2 and the sum

of water vapor and cloud water (Qv1Qc) in the column

above each point as a function of time for the same

8August 2012 KBMX ensemble as in Fig. 4. Note that in

this ensemble, the average time when precipitation first

occurred is at 520min (about 8.6 h) into the simulation,

or about 1540 local time.

The growth of the CBL is clearly seen as the depth

of nonzero correlations increases during the first

360min of the simulations. During this time, hori-

zontal bands of higher (lower) correlation just above

the boundary layer correspond reasonably well with

layers of higher (lower) relative humidity in the initial

sounding profile (Fig. 9, left panel). During the latter

half of this period, the horizontal bands appear to

transition to vertical bands of correlation within

the boundary layer as time progresses. As the CBL

deepens in the ensemble, the estimated depth of the

boundary layer is positively correlated with the tem-

perature at the surface (not shown). Thus, areas of

warmer surface temperatures tend to have a locally

deeper CBL, which entrains air from a higher height.

In the presence of a varying vertical profile of mois-

ture, the humidity of the entrained air will vary de-

pending on the depth of the CBL. In our idealized

setting, this illustrates how observations of surface

temperature may provide information about moisture

within and just above the CBL. At present, it is un-

clear whether more realistic simulations that include

larger-scale variability can be constrained enough to

fully realize these correlations.

After 360min, clouds begin forming in the ensemble

and the character of the correlation patterns in Fig. 9

changes. At 360–400min, rapidly deepening cumulus

clouds appear in the simulations. The area of negative

correlation between surface temperature and moisture

aloft deepens with cloud development from a base at

4 km up to over 14 km during 400–600min, affirming the

connection between a cold, ‘‘shadowed’’ temperature at

the surface and higher moisture in a cloud aloft over a

relatively deep layer. Below 4km, cold pools become

the dominant feature after the onset of precipitation

(here, again, at 520min), showing a positive correlation

between colder air at the surface and drier (with a lower

saturation mixing ratio than the ambient environment

mixing ratio) downdraft air populating the boundary

layer. These correlation patterns illustrate the potential

for surface observations to inform the moisture field

throughout the CI process over a large depth of the

troposphere.

Again, it is unclear whether more realistic simulations

may have strong enough constraints on the background

environment and larger-scale variability to realize corre-

lations of the magnitudes shown here. However, in envi-

ronments where local, boundary layer variability exerts

a primary control on CI predictability—environments
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where CI is much harder to predict—these correlations

illustrate the potential for dense surface observations

to constrain variability in moisture throughout a deep

layer of the troposphere and to capture the initiation

and maturation of convective storms, extending pre-

dictability. Further discussion of this finding, including

the limitations of these idealized experiments, follows

in section 6.

5. Implications for surface observations of CI

a. Comparing observation effectiveness for buoyancy
and convergence

As noted in section 1, there remains an open question

about which surface variable is more important for

constrainingCI, particularly with respect to temperature

and moisture, which primarily describe the buoyancy of

FIG. 8. Average distance from a given point where the magnitude of the ensemble correlation to that point decreases to below 0.2 as

a function of time relative to the average initial time of CI. Each environment simulation is shown in gray with distances binned to the

nearest kilometer. The mean decorrelation distance is shown in solid black. The average time of the first precipitating storm (time 0) is

highlighted by the vertical black line.
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parcels. From Fig. 6, the largest anomalies relative to the

background variance occur in T2, which are also the

earliest to appear in composites and the largest in spatial

extent, more than 1h before CI. Moisture anomaly

magnitudes are highly dependent on the environment,

suggesting in some cases local moisture variability may

be more important (e.g., when LCL levels are high) for

discriminating locations of CI. The average maximum

moisture magnitudes seen in the preconvective envi-

ronment (0.5 g kg21) are consistent with observational

studies (Crook 1996; Fabry 2006; Martin and Xue 2006)

that suggest moisture variability of 1 g kg21 or less.

Surface winds and pressure largely serve as potential

indicators of convergence as a precursor for CI. A con-

vergent wind signal is apparent in all the composited

pre-CI environments, with the maximum average ve-

locity extrema (61ms21) consistent with previous ob-

servational studies of preconvective environments

(Weckwerth et al. 1999; Arnott et al. 2006). The surface

pressure anomalies are extremely weak (,0.1 hPa),

which would require very well-calibrated and sensitive

instruments to detect. Thus, it appears surface wind

observations would be most beneficial for describing

convergence prior to CI.

b. Observation accuracy and density requirements

To further consider the practical effectiveness of

surface observations to capture the anomalies described

above, we consider these anomalies in the context of the

data assimilation problem. Specifically, we compute the

number of independent observations that would be re-

quired to produce an analysis with an error variance

sufficiently small to resolve an anomaly of a given

magnitude with a specified degree of confidence. We

employ the Kalman filter update equation to update the

analysis error variance upon assimilating a single ob-

servation. Since the number of observations that will be

required is not known a priori, we use the ensemble

square root filter variant, which is formulated for serial

observation processing (Whitaker andHamill 2002). For

each single, scalar variable that is directly observed, the

analysis error variance is given by

s2
a 5 [12bs2

b(s
2
b 1 r2)21]s2

b , (1)

where s2
a is the analysis error variance, s2

b is the back-

ground (prior) error variance, r2 is the observation error

variance, and b is the ‘‘square root factor,’’ given below,

that accounts for observation sampling error and is a

function of r2 and s2
b (Whitaker and Hamill 2002):

b5

"
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

s2
b 1 r2

s #21

. (2)

For each observation assimilated, the analysis error

variance is reduced. We iterate this equation for multi-

ple independent observations with uncorrelated errors

until a target variance is reached.

Figure 10 illustrates the objective of this exercise. The

variance of a background distribution (‘‘prior’’) is re-

duced by serial assimilation of observations until the

analysis error variance (‘‘posterior’’), which is also the

ensemble variance, is small enough to constrain the er-

ror in the ensemble mean with a specified degree of

confidence to within 6n. The number of independent

observations required to achieve this is recorded. Here,

confidence levels of 70% and 90% will be considered.

There are three free parameters to consider in this

analysis: the observation error variance r2, the back-

ground (prior) error variance s2
b, and the magnitude of

the anomaly to resolve n. Figure 11 illustrates the ob-

servation counts required to resolve a range of different

anomaly magnitudes. In Figs. 11a and 11b, several ob-

servation error variances are examined while assuming

an initial background error variance (s2
b) of 1 unit

2 in all

cases. In Figs. 11c and 11d, a range of different initial

background error variances are considered while

keeping a fixed observation error variance of 1 unit2.

In most operational data assimilation systems, surface

observation error variances are prescribed to be about

1 unit2 for T2 (K), PSFC (hPa), 10-mwind (ms21), andQ2

(gkg21) (e.g., Burton 2014; Hu et al. 2013). We consider

an observation error variance of 1unit2 in the top row of

Fig. 11a and in all of Figs. 11c and 11d. Recall the mean

positive preconvective environment T2 anomalies of

FIG. 9. (left) Relative humidity as a function of height and (right)

average ensemble correlation of surface temperature to the sum of

water vapor and cloud water (Qv 1 Qc) in the column above as

a function of time (x axis) and height (y axis) for the 8 Aug 2014

KBMX environment. Thin (thick) black contours show correlation

t-test statistical significance at the 90% (95%) confidence level.
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0.5-K magnitude shown in Fig. 6. Assuming an initial

background error variance of 1K2 and an observation

error variance of 1K2 (Fig. 11c, top row), for variations

of 0.5K to be resolved with 90% confidence, approxi-

mately 15 independent observations are required (top-

right corner). However, to resolve with only 70%

confidence, only one observation is required (Fig. 11d).

By reducing the background error variance to ,0.2K2,

only 1–4 observations would be required to resolve this

anomaly with 90% confidence (bottom-right corner,

Fig. 11c). This indicates that it is likely to be correlation

length scale and not observation error that would most

constrain the number of temperature observations re-

quired. For 10-m wind anomalies of 1m s21, a similar

conclusion may be drawn.

However, forQ2 and PSFC, the preconvective anomaly

magnitudes are smaller (0.25gkg21Q2;, 0.1-hPa PSFC),

and with the observation error variance suggested above

(1unit2) a much larger number of independent observa-

tions would be required to resolve these magnitudes. In

particular, for PSFC, over 300 (100) observations would

be required to resolve these magnitudes with 90% (70%)

confidence (Fig. 11). Though PSFC has a slightly longer

correlation length scale (Fig. 8), an observation error

variance of 1hPa2 is too large for even an extremely dense

PSFC observing network to resolve anomalies of this

magnitude. In Figs. 11a and 11b, we see that even reducing

the observation error variance to 0.1hPa2 would still re-

quire about 40 (8) independent observations to resolve a

0.1-hPa anomaly with 90% (70%) confidence.

In general, as the initial background error variance is

reduced (Figs. 11c and 11d), the required number of

independent observations becomes more tractable. One

way to maintain a small background error variance

would be to cycle an ensemble forecast more frequently,

not allowing time for ensemble member forecasts to

diverge far from observations (e.g., Sobash and Stensrud

2015). This is one way to possibly make PSFC and Q2

observations more relevant to storm-scale assimilation

in the pre-CI environment.

It is also possible that these observation error vari-

ances may be overestimates. Hacker and Rostkier-

Edelstein (2007) estimate observation error variance

from instruments at the Oklahoma Atmospheric Radi-

ation Measurement (ARM) site and suggest tempera-

ture and moisture observation error variances may be

as small as 0.08K2 and 0.077 g2 kg22, respectively. Even

barometric pressure measurements from modern smart-

phone sensors have a specified relative error variance of

0.04 hPa2 (Mass and Madaus 2014). While sensor error is

only one component of the total observation error, it

suggests that a network of well-calibrated barometers

may be capable of resolving smaller anomalies than

presently assumed.

We also note that this analysis assumes that the model

background estimate and the observation values are un-

biased, which is not true for most model forecasts and

observations. For instance, Hu et al. (2010) find thatWRF

simulations tend to consistently underpredict temperature

and overpredict moisture over the south-central United

States, though the biases do vary depending on the spe-

cifics of the PBL scheme used, and this method does not

take these biases into account. Nevertheless, this idealized

perspective is still useful for evaluating observation ef-

fectiveness even within a ‘‘perfect’’ scenario.

6. Summary and conclusions

In this study, we examined isolated, locally driven CI

in a variety of different environments with idealized

ensemble simulations. A CI-relative compositing method

revealed coherent features in all surface fields examined

throughout the CI process. Warm 2-m temperature

anomalies were present from 90–170min prior to the

onset of precipitation, with moisture, wind, and pressure

anomalies also detectable about 1h before CI. Wind and

moisture anomalies were found to be consistent with

observational studies of preconvective environments.

The strongest anomalies prior to CI were related to cloud

shadowing, creating a cold anomaly of 1–2K as the con-

vective cloud deepens. Surface pressure anomalies re-

mained relatively weak (,0.1hPa) throughout the CI

process.

FIG. 10. Schematic of error variance reduction by observation

assimilation. The ensemble mean error is shown on the x axis. The

variance of a background distribution (prior) is reduced by as-

similating observations until the magnitude of the error in the

ensemblemean is constrained to be less than nwith 70% (posterior

70%) or 90% (posterior 90%) confidence.
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In general, all surface fields (except surface pressure)

showed horizontal correlation length scales of 3–4km

prior to CI, with surface pressure having a slightly longer

length scale of 4–7 km. These suggest an upper bound of

about one observation every 5km for a storm-scale ob-

serving network, neglecting temporal correlations. Strong

vertical correlations were also observed, particularly

between surface temperature anomalies and moisture

anomalies aloft. This further suggests that surface ob-

servations may help constrain storm-scale features

throughout the troposphere, given a well-constrained

background environment.

The feasibility of resolving pre-CI surface anomalies

was examined in the context of variance reduction

FIG. 11. Number of independent observations required to reduce the analysis error variance such that it resolves a given anomaly

magnitude (x axes). (a),(b) A range of observation error variances are examined (y axes) with an initial background error variance of

1 unit2. (c),(d)A range of initial background error variances are examined (y axes) with the observation error variance fixed at 1 unit2. The

number of observations is computed to resolve the given anomaly magnitudes with (a),(c) 90% confidence and (b),(d) 70% confidence.

White regions already have a background error variance small enough to resolve the specified anomaly magnitude with the expected

confidence prior to any observation assimilation.
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through data assimilation. We show that the necessary

temperature and wind anomalies would most easily be

resolved using current assumptions about observation

error variance, given a realistically feasible observation

density. Capturing moisture and pressure anomalies

would require either an extremely dense network, fre-

quent assimilation cycling, or observations with much

smaller error variances than currently assumed.

One limitation to these results is the use of a single PBL

scheme. The surface fields examined here are chiefly

outputs of this scheme, and using a different scheme may

yield different results. However, Hacker and Rostkier-

Edelstein (2007) suggest that the ability of surface ob-

servations to constrain the PBL is not dependent on the

PBL parameterization used, given sufficiently frequent

assimilation cycling. Future studies may wish to compare

these results with other PBL schemes; here we were

limited by the single YSU PBL option available in the

CM1 model.

In all environments simulated, the same pattern of

anomalies is present during the hours preceding CI,

suggesting that there are indeed robust surface features

that an appropriate observing network could sample.

While these results are encouraging, they must be con-

sidered within the context of this idealized modeling

setup. For instance, though there are strong patterns of

vertical correlation between surface temperature and

the moisture in the troposphere aloft (section 4e), much

of this correlation strength is likely due to the nearly

identical vertical moisture profiles in all ensemble

members without synoptic and broad mesoscale vari-

ability. It is unlikely that a real-world ensemble would

have such a tightly constrained background environ-

ment, and that could lessen the correlation magnitude.

Indeed, the role of entrainment in promoting or in-

hibiting CI is largely ignored in this experiment, as

clouds forming in all ensemble members encounter

similar conditions aloft. Likewise, the horizontal cor-

relation length scales in more realistic settings could

vary more substantially than shown here due to in-

homogeneities in the land surface characteristics not

represented here.

The correlation length scale evolution and the small

variance in the anomaly growth time scale is also likely

due to all ensemble members producing clouds and

eventually precipitation at about the same time; in a

real-world ensemble with greater variance there is likely

to be more diversity in the time and spatial locations

where CI is favorable. However, these results suggest a

more rigorous condition for successful storm-scale CI

prediction: even with a tightly constrained background

state, the exact location and timing of CI still is subject to

the small-scale variability seen here.

While this work has considered simulations of multi-

ple environments to specifically characterize the varia-

tions in surface fields surrounding successful convective

initiation, our approach provides a framework for fur-

ther examination of the CI process. For instance, the

storm tracking algorithm used here could be modified to

track developing cloud objects and identify specific dif-

ferences between clouds that deepen and produce

precipitation and those that fail to do so within an en-

vironment with little to no mesoscale or synoptic-scale

variability. This could suggest additional observation

platforms that may be useful in successfully discrimi-

nating CI successes and failures on the storm scale.

Finally, we note that this study does not explicitly

connect improved resolution of surface features to ac-

tual improved forecasts of CI. Important questions re-

main about translating better surface representation to

CI forecast improvement, particularly when faced with a

more varied background environment and complicating

factors such as entrainment. Future work involving ob-

serving system simulation experiments (OSSEs) with

these and other simulations is planned to test hypothe-

sized observation densities as suggested by this research,

examining whether resolving these anomalies actually

leads to improved forecasts of CI.
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