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ABSTRACT

This paper proposes a procedure based on random walks for testing and visualizing differences in forecast
skill. The test is formally equivalent to the sign test and has numerous attractive statistical properties, in-
cluding being independent of distributional assumptions about the forecast errors and being applicable to a
wide class of measures of forecast quality. While the test is best suited for independent outcomes, it provides
useful information even when serial correlation exists. The procedure is applied to deterministic ENSO
forecasts from the North American Multimodel Ensemble and yields several revealing results, including
1) the Canadian models are the most skillful dynamical models, even when compared to the multimodel
mean; 2) a regression model is significantly more skillful than all but one dynamical model (to which it is
equally skillful); and 3) in some cases, there are significant differences in skill between ensemble members
from the same model, potentially reflecting differences in initialization. The method requires only a few years
of data to detect significant differences in the skill of models with known errors/biases, suggesting that the
procedure may be useful for model development and monitoring of real-time forecasts.

1. Introduction

This paper is concerned with comparing the skill of
two forecasts. One of the most elegant methods of
comparing skill is the sign test. The procedure is simple:
given a criterion for selecting the most skillful forecast
of a single event, count the number of times that forecast
A has more skill than forecast B. If the count is ““large,”
then forecast A is more skillful than forecast B, whereas
if the count is ““small” then A is less skillful than B. To
define large and small, the counts are compared to the
frequency assuming that forecast A has a 50% proba-
bility on any given event of being more skillful than
forecast B. A forecaster can then simply count the
number of times a forecast is more skillful than another,
and reject the “equal skill”” hypothesis if the probability
of obtaining that count, or a more extreme count, is less
than some predefined significance threshold. This
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procedure is equivalent to testing whether a coin is fair
based on the frequency of heads.

Often the criterion for selecting the most skillful
forecast is based on the difference between two skill
measures. In such cases, the sign test depends only on
the sign of this difference (hence its name), not on the
size. Alternative measures like correlation and mean
square error account for the size of the error, but testing
the significance of differences is problematic because
standard tests assume the measures were computed
from independent samples. In practice, skill measures
computed on a common period or with a common set of
observations are not independent (e.g., different fore-
casts tend to bust for the same event). Therefore, such
tests cannot properly compare forecasts, and in fact
applying these tests when the skill measures are not in-
dependent leads to serious biases (DelSole and Tippett
2014). In contrast, the sign test avoids this problem
partially because it ignores the size of the errors.
Moreover, the sign test makes no distributional as-
sumptions about the forecast errors and is valid for a
wide class of criteria for selecting the most skill-
ful forecast. In particular, the forecast errors can be
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non-Gaussian, the skill measure need not be quadratic,
symmetric, or continuous, and the criterion can be based
on categorical measures.

We propose further exploiting the virtues of the sign
test by displaying the results as a random walk. Specifi-
cally, whenever forecast A is more skillful than forecast
B, a step in the positive direction is taken, otherwise a
step in the negative direction is taken. The resulting
random walk displays the time evolution of skill differ-
ences, thereby adding information beyond the mere
decision to accept or reject the null hypothesis. Despite
its simplicity, the procedure gives a revealing and easy-
to-understand assessment of the relative skills of dif-
ferent models, as we will show. The full procedure is
discussed in the next section and illustrated with a
multimodel forecast dataset in sections 3 and 4. We close
with a summary and discussion of our results.

2. Method

We first describe the sign test, which Diebold and
Mariano (1995) proposed for comparing economic
forecasts. The sign test requires a criterion for deciding
the most skillful forecast of a single event. Aside from
measures like correlation, which cannot be evaluated
for a single event, virtually any criterion for judging
forecasts of single events is appropriate, including cat-
egorical criteria. For instance, the criterion could be
defined to focus on strong high-skill cases. More exotic
applications might define “event” based on multiple
forecasts, such as at a few lead times. In this paper, the
forecast closest to the observation is defined to be more
skillful, which is equivalent to using squared error or
absolute error for the criterion. Ties present no special
problems for the sign test: if a criterion implies that
forecasts of a single event are equally skillful, then just
eliminate these events from analysis. We assume below
that no ties occur (which is true for our data).

Suppose forecasts A and B are compared N times. Let
K denote the number of times A is more skillful than B.
A natural null hypothesis is that at each time ¢ forecast A
has 50% probability of being more skillful than forecast
B. If each time step also is independent of the others (an
assumption discussed in more detail shortly), then the
count K should follow a binomial distribution with
p=1/2, in which case the probability that the count
equals K is

1 N!
py(K) = W KN =K 1)

To test the null hypothesis, we compute the probability
of obtaining an observed value Kj, or a more extreme

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:45 PM UTC

MONTHLY WEATHER REVIEW

VOLUME 144

value, from (1). This probability is called the p value and
is given by

p value=2p, (0) +2p, (1) + - + 2p,(min[K ,N — K ]),
2)

where the factor of 2 accounts for the fact that test is two
tailed, since a priori we do not know which forecast is
superior. We reject the null hypothesis if the p value falls
below a prescribed significance level a. This procedure is
called the sign test (Conover 1980) and has been applied
for forecast verification (Diebold and Mariano 1995;
DelSole and Tippett 2014). The sign test is equivalent to
testing the hypothesis that the median measure for de-
ciding the most skillful forecast vanishes. Also, the sign
test is equivalent to testing the hypothesis that the
forecast comparisons are drawn from independent
Bernoulli trials with p = 1/2.

The critical value K™ js the smallest value of K,
such that the p value in (2) is equal to or greater than a.
Critical valuesfor N =1, 2, ..., 45 are shown in Table 1
for @ = 5%. The hypothesis is rejected if K, < Ko™ or
K, >N — Kbn°m_ For large N, the binomial distribution
has an approximately Gaussian distribution with mean
N/2 and variance N/4. If one also invokes a standard
‘““continuity correction” to adjust for the use of a con-
tinuous distribution to approximate a discrete distribu-
tion (Rosner 2000), then the critical value can be
approximated as

Ko™ = [N/2 — N/4—1/2], 3)

Zan
where z, is the value for which a standardized Gaussian
is exceeded with probability «, and [x] denotes the
smallest integer not less than x. The critical values de-
rived from the Gaussian approximation, shown in
Table 1, are mostly identical to the critical values de-
rived from the exact binomial distribution, even for
small N, and hence will be used in the remainder of
this paper.

We propose expressing the counts in terms of a ran-
dom walk. Specifically, whenever A is more skillful than
B, a step in the positive direction is taken; otherwise, a
step in the negative direction is taken (ties are assumed
to never occur). Accordingly, there are K steps in the
positive direction and N — K steps in the negative
direction, so the net distance traveled by the random
walk is

dy=K—(N—K)=2K—N. ()

Using (3), an approximate confidence can be computed
from (4) as
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TABLE 1. The exact (K5™) and Gaussian approximated (Ki$™) lower critical value of the number of trials, out of N, a given forecast can
exceed the skill of another forecast, in order to reject the hypothesis of a binomial distribution with p = 1/2 at the 5% significance level.

N Koos" K3 N Koos" Kogsm N Kogs LSt N Koos" LSt
1 0 0 16 4 4 31 10 10 46 16 16
2 0 0 17 5 4 32 10 10 47 17 17
3 0 0 18 5 5 33 11 11 48 17 17
4 0 0 19 5 5 34 11 11 49 18 18
5 0 0 20 6 6 35 12 12 50 18 18
6 1 1 21 6 6 36 12 12 51 19 19
7 1 1 22 6 6 37 13 13 52 19 19
8 1 1 23 7 7 38 13 13 53 19 19
9 2 2 24 7 7 39 13 13 54 20 20

10 2 2 25 8 8 40 14 14 55 20 20

11 2 2 26 8 8 41 14 14 56 21 21

12 3 3 27 8 8 42 15 15 57 21 21

13 3 3 28 9 9 43 15 15 58 22 22

14 3 3 29 9 9 44 16 15 59 2 2

15 4 4 30 10 10 45 16 16 60 22 22

(1 —a)100% confidence interval for d,,
~z,,(=VN,VN). (5)

The exact upper limit of dy differs from z,,/N by less
than 1.09 for N =1000.

The above test assumes that the forecasts are in-
dependent. In weather and seasonal prediction,
forecast errors often are correlated between consec-
utive events. Diebold and Mariano (1995) review al-
ternative tests of skill differences that account for
serial correlation, including a generalization of the ¢
test that is popular in the economics literature. For
the sign test, however, serial correlation is problem-
atic because large excursions in the counts are more
frequent than those from an independent Bernoulli
process. We have explored various methods of deal-
ing with serial correlation, including skipping across a
fixed number of months, using residuals of autoregressive
model fits, and correcting the p value using Bonferroni
methods. Unfortunately, these methods do not fully
account for serial correlation (e.g., forecast errors re-
main correlated even after 12 months). Also, these
methods lead to conclusions that depend on the
method used to remove serial correlation and on the
models being compared, thereby obscuring the final
conclusion. Instead, we apply the test regardless of
serial correlation. Technically, then, the test is for the
entire null hypothesis of independent Bernoulli trials.
We argue that rejecting the hypothesis of independent
Bernoulli trials is informative even if due to serial
correlation, because if yesterday’s forecast A was
better than B, then tomorrow’s forecast A ought to be
better than B. Therefore, hedging toward forecast A
ought to be better than simply averaging forecasts A
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and B. In this way, a significant difference relative to
independent Bernoulli trials can be useful for im-
proving forecasts, even if the difference is due to serial
correlation. Exactly how much to hedge is a question
that requires separate study. The test provides an
objective basis for deciding whether such study is
warranted.

Note that the above test is free of distributional as-
sumptions regarding the error and is applicable to a wide
class of criteria for selecting the most skillful forecast.
This is in contrast to correlation skill or mean square
error, whose significance tests often are based on the
Gaussian assumption.

3. Data

We illustrate the skill comparison test using hindcasts
of monthly mean Nifio-3.4 from the North American
Multimodel Ensemble (NMME). The NMME, re-
viewed by Kirtman et al. (2014), consists of at least
9-month hindcasts by state-of-the-art coupled
atmosphere—ocean models from the following centers:
the National Centers for Environmental Prediction
(NCEP-CFSv1l and NCEP-CFSv2), the Canadian Cen-
tre for Climate Modeling and Analysis (CMClI-
CanCM3 and CMC2-CanCM4), the Geophysical Fluid
Dynamics Laboratory (GFDL-CM2pl-aer04, GFDL-
CM2p5-FLOR-A06, and GFDL-CM2p5-FLOR-BO01),
the International Research Institute for Climate
and Society (IRI-ECHAM4p5-Anomaly and IRI-
ECHAM4p5-Direct), the National Aeronautics and
Space Administration (NASA-GMAO-062012), and a
joint collaboration between the Center for Ocean—
Land-Atmosphere Studies, University of Miami, and
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TABLE 2. List of NMME models and relevant details. Entries under ‘‘ensemble generation” summarize our assessment of whether the
initialization system (which differs for each model) is exchangeable, or if not, the potential cause for the lack of exchangeability.

(Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Full model name Shortened model name First real-time forecast Status Ensemble generation
NCEP-CFSvl CFSvl 2011 Retired Lagged
NCEP-CFSv2 CFSv2 2011 Active Lagged
CMC1-CanCM3 CanCM3 2011 Active Exchangeable
CMC2-CanCM4 CanCM4 2011 Active Exchangeable
GFDL-CM2pl-aer04 CM2pl-aer04 2011 Active Exchangeable
GFDL-CM2p5-FLOR-A06 FLOR-A 2014 Active Exchangeable
GFDL-CM2p5-FLOR-B01 FLOR-B 2014 Active Exchangeable
IRI-ECHAM4p5-Anomaly IRI-A 2011 Retired Exchangeable
IRI-ECHAM4p5-Direct IRI-D 2011 Retired Exchangeable
NASA-GMAO-062012 NASA 2011 Active Some members lagged
COLA-RSMAS-CCSM3 CCSM3 2011 Active Fixed atmospheric ICs
COLA-RSMAS-CCSM4 CCSM4 2014 Active Lagged atmosphere

the National Center for Atmospheric Research (COLA-
RSMAS-CCSM3 and COLA-RSMAS-CCSM4).

Relevant details of the above models are given in
Table 2. Real-time forecasts began in August 2011.
Three of the above models began real-time forecasts
in 2014: GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-
FLOR-BO01, and COLA-RSMAS-CCSM4. Three NMME
models have been retired: NCEP-CFSv1, IRI-ECHAM4p5-
Anomaly, and IRI-ECHAM4p5-Direct.

The CFSv2 hindcasts have an apparent discontinuity
across 1999, presumably due to the introduction of cer-
tain satellite data into the assimilation system in Octo-
ber 1998 (Kumar et al. 2012; Barnston and Tippett 2013;
Saha et al. 2014). Different bias corrections will be
considered in the next section, but all of them will avoid
computing climatologies over periods that cross 1999.

The validation data used in this study are the NOAA
Optimum Interpolation Sea Surface Temperature (OISST)
version 2 (Reynolds et al. 2002). The variable investigated
is the Nifio-3.4 index, which is the area weighted sea sur-
face temperature within the region bounded by 5°S— 5°N,
120°-170°W. (The OISST version of this index is avail-
able from the Climate Prediction Center website at http://
www.cpc.ncep.noaa.gov/data/indices/sstoi.indices.)

4. Results

For convenience, we use the term ““forecast’ to refer
to both ensemble mean hindcasts and forecasts. To
eliminate differences due to different ensemble sizes,
the same number of ensemble members per model is
analyzed. Specifically, we select the last six ensemble
members of CFSv1 and CFSv2 (because these members
were initialized closest to the target date, as discussed
shortly) and the first six members of all other models.
This selection results in over 200000 forecasts (e.g., 13
models, 8 lead months, 12 months per year, 33 years, and
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6 ensemble members corresponds to 247 104 forecasts).
To reduce the analysis to a manageable size, we focus
only on ensemble mean forecasts of the Nifio-3.4 index
at 2.5-month lead (e.g., for a March target, the model is
initialized using observations no later than mid-January).
The most skillful forecast is defined to be the ensemble
mean forecast closest to the observed monthly mean Nifio-
3.4 index. Equivalently, the most skillful forecast has the
least squared error or least absolute error between fore-
casted and observed monthly mean Nifio-3.4 index.
We choose the significance level @ = 5%, in which case
Zan == 1.96.

a. Exchangeability

As a novel application of our method, we first apply it
to test differences in skill among ensemble members
from the same model. Ensemble members are intended
to be exchangeable, in the sense that the statistical
properties of the ensemble should be invariant to per-
mutations of the member labels. For instance, some
models use members generated by randomly perturbing
the same initial state. If the random numbers are drawn
independently from the same distribution, no statistical
feature could exist to discriminate between members,
hence, the members are exchangeable. Similarly, the
GFDL models use ocean ensemble data assimilation
schemes, which generate exchangeable members (the
models also use states from atmospheric models that are
exchangeable). In contrast, some models use a lagged
ensemble in which different members correspond to
different start dates. Lagged ensembles might be dis-
tinguishable because members initialized farther from
the target may have more skill than those initialized
closer to the target. In addition to a lagged ensemble, the
NASA model also includes members generated by spe-
cial perturbation techniques, such as breeding methods,
which might be more or less skillful than forecasts
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FIG. 1. Fraction of forecasts from a given model in which one ensemble member is more
skillful than another member, for all possible pairs of ensemble members, for 2.5-month lead
during 1982-2014 (dots), and the 95% confidence interval for independent trials of a Bernoulli

process with p = 1/2 (error bar).

generated by other initialization techniques. Different in-
stitutions use different initialization schemes on different
components of the coupled atmosphere—ocean—land-ice
system, some of which are quite complex. Therefore, it is
difficult to summarize these schemes in this paper. In Table
2 we have summarized our assessment of whether each
initialization scheme, as documented in the literature, is
exchangeable, and if not, speculated as to the reasons for
differences in skill between members.

Exchangeability can be tested partly by comparing the
skill between two ensemble members from the same
model: if one member is more skillful than another, then
obviously the two members are not exchangeable. The
result of testing all possible pairs of ensemble members
for all available months and years is shown in Fig. 1. The
95% confidence interval for independent Bernoulli trials
is indicated by the error bars. For most models, the results
are consistent with that expected for independent Bernoulli
trials. Differences in skill between ensemble members are
evident in CFSvl, NASA, IRI-A, and CCSM3. CFSv1 and
NASA use lagged ensembles, which are not strictly ex-
changeable (e.g., members initialized closer to the target
are likely to be more skillful), so we presume the test has
detected differences due to using lagged ensembles.

Almost half of the comparisons from CCSM3 are
more skillful than expected. Closer inspection reveals

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:45 PM UTC

that ensemble member “2” has significantly less skill
than other members. The reason for this difference is
unclear. For CCSM3, the ocean state is identical for all
members initialized in the same month, but the atmo-
sphere, land, and ice are drawn from different years in a
long control simulation (B. Kirtman 2015, personal
communication). Importantly, the initial atmosphere—
land—ice state for a given month and ensemble member
is identical across years (e.g., the atmosphere—land-ice
state in the first ensemble member for January 1982 is
identical with that of the first ensemble member for
January 1983, January 1984, etc.). Strictly speaking,
then, the initial conditions for the atmosphere—-land-ice
state are not statistically exchangeable—in particular,
the initial state for ensemble member 2 may have a large
bias relative to other members.

Interestingly, CFSv2 also uses a lagged ensemble, but
no differences in skill among ensemble members were
detected. This might be because the lagged ensemble for
CFSv2 is much more closely spaced than for CFSv1. For
example, for a mid-June release, our particular CFSv2
ensemble has four members initialized on 5 June and
two members initialized on 31 May (Saha et al. 2014). In
contrast, CFSv1 has one member is initialized on 21 May
and others initialized on 30 and 31 May and 1, 2, and
3 June (Saha et al. 2006). Thus, the most extreme time
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CCSM4
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CanCM3
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FIG. 2. Comparison of monthly mean forecasts of Niflo-3.4 at 2.5-month lead between CFSv2
and other models in the NMME. The mean 1982-98 error is removed from each model. The
count increases by 1 when the squared error of CFSv2 is less than that of another model, and
decreases by 1 otherwise. The count is accumulated forward in time for each model separately,
over all initial months and years (for a fixed lead time), thereby tracing out a random walk. The
shaded area indicates the range of counts that would be obtained 95% of the time under in-
dependent Bernoulli trials for p = 1/2. A random walk extending above the shaded area in-
dicates that CFSv2 forecasts are closer to observations significantly more often than expected
for independent Bernoulli trials (i.e., the CFSv2 is more skillful than the model). Conversely,
a random walk extending below the shaded area indicates that CFSv2 forecasts are closer to
observations significantly less often than expected for independent Bernoulli trials (i.e., the

CFSv2 is less skillful than the model).

separation for our CFSv2 six-member ensemble is 6 days,
while that for CFSvl is 13 days. Since the time separation
is larger for CFSv1 than for CFSv2, the CFSvl members
are likely to have larger differences in skill.

Differences in skill are detected for members from
IRI-A, but the source of these differences are unclear.
Note that 5% of the cases on average would lie outside
the computed limits even if exchangeability were true.

b. Bias correction based on the 1982-98 mean error

We now consider bias-corrected forecasts. Ideally, the
same data should not be used to estimate bias and to
compare skill simultaneously, since the sign test does not
account for bias correction, moreover such correction is
unrealistic in real-time forecasting because future data
are not available for estimating bias. A straightforward
way to circumvent this problem is to estimate the bias
correction parameters using data that are separate from
that used to test skill differences. Accordingly, we esti-
mate the mean forecast error for each calendar month
using hindcasts whose verifications lie within the period
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1982-98 inclusive, and then subtract this error from the
appropriate forecast after this period. The comparisons
begin with hindcasts initialized on January 1999. The
result of comparing CFSv2 with other models, shown in
Fig. 2, reveals that all models are significantly more
skillful than CFSv2 after only a few years of compari-
sons. The poor skill of CFSv2 relative to other models
has been attributed to a discontinuity in climatology due
to the introduction of ATOVS satellite data into the as-
similation system in October 1998, as discussed in Kumar
et al. (2012), Barnston and Tippett (2013), and Saha et al.
(2014). Thus, the result is not unanticipated, but the ra-
pidity and decisiveness of detection of an abrupt differ-
ence in skill is noteworthy.

The above illustration may seem contrived because
the transition year 1999 was purposely avoided when
estimating the bias correction. In practice, a real fore-
caster would not ordinarily know the transition year of
an abrupt change in skill. Fortunately, changes in skill
can be recognized by changes in the average slope of a
random walk. To illustrate this fact, we show in Fig. 3 the
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FI1G. 3. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4 from CFSv2, as in
Fig. 2, but the comparisons are initialized in 1982 (all anomalies are computed with respect to

the 1982-98 mean).

result of comparing CFSv2 with other models, except
that the random walk is initialized in 1982. The figure
clearly shows a distinct change in average slope beginning
around 2000. This result illustrates how random walks
could be used in real time to monitor and detect abrupt
changes in skill without knowledge of the transition year.

Comparisons based on the “‘retired”” models IRI-A,
IRI-D, and CFSvl are shown in Fig. 4. Forecasts for
these models were unavailable at the end of the period.
In such cases, the ‘“‘count” is kept constant, which
produces a random walk that is ““flat’’ at the end of the
period. Incidentally, this flattening procedure can be
applied when ties occur in forecast skill, although such
ties never occur in our data. The figure shows that,
among other things, no significant difference in skill is
detected between IRI-A and IRI-D. Thus, at least for
ENSO forecasts from these two models, no detectable
difference in skill can be detected between anomaly
coupled and fully coupled models, provided a bias cor-
rection is applied. The fact that all three models are more
skillful than CFSv2 (using anomalies with respect to
1982-98 climatology) has already been indicated in Fig. 2.

The comparison between other models not considered
yet are shown in Fig. 5 (still using a bias correction de-
rived from 1982-98). The figure reveals that the Canadian
models are significantly more skillful than other models.
CFSv2 is significantly less skillful than all other models,
as discussed earlier. CCSM4 and CCSM3 are the next
least skillful models. FLOR-A and FLOR-B are either
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comparable to, or significantly more skillful than, all
other models except for the Canadian models. Moreover,
no significant difference in skill is detected between
FLOR-A and FLOR-B. Also, FLOR-A and FLOR-B
represent an improvement over the previous version of
the GFDL model CM2pl1-AER. The NASA model is
either comparable to, or significantly more skillful than,
other models except for the Canadian models.

c. Multimodel mean

It is interesting to compare NMME forecasts with the
multimodel mean. To compute the multimodel mean,
we omit the retired models IRI-A, IRI-D, and CFSvl.
Since we continue removing the mean bias estimated
during 1982-98, we omit CFSv2 due to the discontinuity
around 1999. Note that our test can compare the multi-
model mean with an individual model even if that model is
contained in the multimodel mean. The resulting compar-
ison, shown in Fig. 6, reveals that the multimodel mean is
either comparable to, or more skillful than, other models
except for the Canadian models. These and subsequent
results are unchanged if CCSM4 is omitted from the mul-
timodel mean. Thus, although CCSM4 is significantly less
skillful than all other models (see Fig. 5), it does not sig-
nificantly alter the skill of the multimodel mean.

d. Statistical forecasts

Another interesting question is how the dynamical fore-
casts compare to purely statistical forecasts. Although there
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Comparison of Monthly Mean NINO3.4 Hindcasts of NMME Models
1982-1998 CLIM; lead= 2.5; alpha= 5%

CFsvz IRI-D more skillful
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CCSM4

} CCSM3
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FIG. 4. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4, as in Fig. 2, but for the “‘retired” models IRI-A, IRI-D, and
CFSvl1, and with the mean 1982-98 error removed from each model.

exists a wide variety of statistical models of ENSO, here
we use ordinary linear regression. Specifically, for each cal-
endar month m, we fit the linear prediction equation:

T +T=bm’7+a T

m m,r " m—1

+e, (6)
where a,, . and b, ; are the slope and intercept terms for
month m, respectively; 7 is the lead time (i.e., 2.5 months);
and e is the random error. The predictor 7,,-; has an extra
1-month lag for consistency with the NMME forecast
protocol. For instance, for a 0.5-month lead forecast in
November, the observed state for November is unavail-
able at the beginning of the forecast. Thus, a regression
prediction must use the observed state for the preceding
October to produce a forecast for November. The slope
and intercept terms are estimated by standard linear re-
gression. The training period for this estimation corre-
sponds to verifications between March 1982 and December
1998 inclusive (for lead = 2.5 months). The prediction

T n+- is then computed as

T,..=b, +a, T

T myr m—1>

™)

where d,,, and l;m,, are the least squares estimates of the
slope and intercept. The resulting comparison, shown in
Fig. 7, reveals that the statistical model is significantly more
skillful than all other models except two (CanCM3 and
CanCM4). Note that the regression model is significantly
more skillful than the multimodel mean too. This conclu-
sion holds for all lags examined, namely, 0.5-7.5 months.

e. Bias correction based on the 1999-2010 mean error

We now compare forecasts initialized after 2010, but
biased corrected using the 1999-2010 mean error. This
comparison allows CFSv2 to be included (since the bias
correction avoids the discontinuity across 1999). Also,
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many models generated genuine forecasts during this
period. The linear regression model is retrained based
on the 1982-2010 period (although results for the orig-
inal regression model trained on 1982-98 are similar).
The resulting comparisons are shown in Fig. 8. CCSM3
stands out as being marginally or significantly less
skillful than most other models. CCSM4 is significantly
more skillful than three other models (CCSM3, NASA, and
CanCM4). CanCM3 is significantly more skillful than
CanCM4 and CCSM3 during the forecast period, but
otherwise has comparable skill to other models. The
regression model is significantly more skillful than
CCSM3, but otherwise has comparable skill to other
models.

5. Summary and discussion

This paper proposed a procedure for testing differ-
ences in forecast skill that can be visualized as a random
walk. The random walk is defined as follows: whenever
forecast A is more skillful than forecast B, a step in the
positive direction is taken, otherwise, a step in the nega-
tive direction is taken. If the distance traveled by the
random walk after N steps falls outside the 2.5% and
97.5% interval of a binomial distribution with N and
p = 1/2, which is approximately (—2v/N, 2v/N), then the
hypothesis of equally skillful forecasts is rejected at the
5% significance level. The test is formally equivalent to
the sign test, but the random walk representation further
shows the evolution of skill differences. Remarkably, the
test can be applied to general criteria for selecting the
most skillful forecast and is independent of distributional
assumptions about the forecast errors. The method also
can be used to compare a multimodel mean with another
model that may be included in the multimodel mean, in
contrast to most standard tests.
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FIG. 5. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4, as in Fig. 2, but for other models not considered in previous
figures. The mean 1982-98 error is removed from each model.

The above test is most suited for independent events.
In practice, forecast errors tend to be serially correlated,
especially when separated by short time periods (e.g.,
numerical weather predictions separated by a day or less).
We do not recommend ““correcting’ for independence by
adjusting degrees of freedom or applying whitening trans-
formations, because such methods are difficult to justify
and require estimating parameters using most of the data.
In addition, such methods lead to conclusions that are
difficult to interpret because they depend on the method
used to account for serial correlation. Instead, we rec-
ommend applying the test in its pure form and clearly
stating that the hypothesis being tested is independent
Bernoulli trials with p = 1/2. We argue that the result is
useful even if serial correlation exists. For instance, if a
forecast is more skillful and this skill is persistent, then
hedging toward previous more skillful forecasts can lead
to better forecasts at subsequent times compared to equal
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weighting schemes. The test can be viewed as an objective
procedure for deciding whether such hedging is warranted.

The above procedure was applied to NMME monthly
mean hindcasts and forecasts of Nifio-3.4 at 2.5-month lead.
The procedure was able to detect the discontinuity in skill
of CFSv2 after 1998. This result is not surprising in light
of known errors in this model, but it is significant that the
procedure was able to detect this difference in skill after
only a few years of hindcasts. These results illustrate how
the proposed test may be an effective tool for routine model
development. Over the period 1999-2014, a possible rank-
ing of the Nifio-3.4 forecasts at 2.5-month lead is as follows:

1) CanCM3, CanCM4, linear regression model;
2) FLOR-A, FLOR-B, multimodel mean, NASA,
3) CM2pl-AER;

4) CCSM3; and

5) CCSM4.

PM UTC
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FIG. 6. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4, as in Fig. 2, but for
the multimodel mean based on the models indicated in the figure. The mean 1982-98 error is
removed from each model.

Technically, a unique ranking is ill defined because could be grouped into category 2 or 3. CFSv2 is not
some pairwise comparisons are intransitive; for ex- included because the ranking is based on a bias cor-
ample, FLOR-A is comparable to NASA and NASA rection estimated from the 1982-98 hindcasts, which
is comparable CM2p1-AER, but FLOR-A is signifi- does not produce an accurate correction for CFSv2
cantly more skillful than CM2p1-AER. Thus, NASA after 1999.
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FIG. 7. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4, as in Fig. 2, but for
the linear regression model based on 1982-98 training data. The mean 1982-98 error is removed
from each model.
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FIG. 8. Comparison of 2.5-month lead forecasts of monthly mean Nifio-3.4, as in Fig. 2, but for bias correction based on 1999-2010 training
data, and validated over 2011-14. The linear regression model is trained on 1982-2010 data.

Other interesting conclusions include the following.
Linear regression produces more skillful predictions
of monthly mean Nifio-3.4 anomalies than most
models in the NMME at all leads investigated (0.5-
7.5 months). No significant difference in skill was
detected between bias-corrected IRI-A and IRI-D
forecasts, indicating little difference in skill between
anomaly coupled and fully coupled prediction
models. FLOR-A and FLOR-B are significantly more
skillful than its predecessor CM2pl-AER, but
CCSM4 is not significantly more skillful than its pre-
decessor CCSM3 during 1999-2010, but is more
skillful during 2011-14. The test also revealed sig-
nificant differences in skill between ensemble mem-
bers from the same model. In virtually every case for
which differences in skill could be detected, the
method used to generate ensemble members does not
produce strictly exchangeable ensemble members. For
instance, CFSvl and NASA employ lagged ensembles, so
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members initialized closer to the target are likely to be
more skillful and, therefore, are potentially distinguishable.

It should be recognized that the present study is lim-
ited by the fact that only a single index has been exam-
ined. Of course, a model that performs well for one
index may perform poorly for another index. The Nifio-
3.4 index has been chosen for this study because it is one
of the most important predictors of seasonal mean cli-
mate variables.

We suggest that the above method can be a very useful
tool for model development. One of the biggest chal-
lenges in model development is to decide whether a
particular model change improves skill. As discussed in
DelSole and Tippett (2014), statistical tests based on
correlation skill or mean square error are problematic.
In contrast, the proposed method is completely rigorous,
makes no distributional assumptions about the forecast
errors, and can be applied to a wide class of criteria
for selecting the most skillful forecast. Therefore, the
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method can be applied even to highly non-Gaussian vari-
ables like precipitation, and can be tailored to specific
performance measures of interest to modelers or fore-
casters. Finally, the method can detect discontinuities in
skill without knowledge of when they might occur, and,
therefore, can be used to decide if a significant change
in skill has occurred due to a change in dynamical model,
change in the quality of the initial conditions, or inadver-
tent errors introduced in the forecast system.
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