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ABSTRACT

This paper proposes a procedure based on random walks for testing and visualizing differences in forecast

skill. The test is formally equivalent to the sign test and has numerous attractive statistical properties, in-

cluding being independent of distributional assumptions about the forecast errors and being applicable to a

wide class of measures of forecast quality. While the test is best suited for independent outcomes, it provides

useful information even when serial correlation exists. The procedure is applied to deterministic ENSO

forecasts from the North American Multimodel Ensemble and yields several revealing results, including

1) the Canadian models are the most skillful dynamical models, even when compared to the multimodel

mean; 2) a regression model is significantly more skillful than all but one dynamical model (to which it is

equally skillful); and 3) in some cases, there are significant differences in skill between ensemble members

from the samemodel, potentially reflecting differences in initialization. Themethod requires only a few years

of data to detect significant differences in the skill of models with known errors/biases, suggesting that the

procedure may be useful for model development and monitoring of real-time forecasts.

1. Introduction

This paper is concerned with comparing the skill of

two forecasts. One of the most elegant methods of

comparing skill is the sign test. The procedure is simple:

given a criterion for selecting the most skillful forecast

of a single event, count the number of times that forecast

A has more skill than forecast B. If the count is ‘‘large,’’

then forecast A is more skillful than forecast B, whereas

if the count is ‘‘small’’ then A is less skillful than B. To

define large and small, the counts are compared to the

frequency assuming that forecast A has a 50% proba-

bility on any given event of being more skillful than

forecast B. A forecaster can then simply count the

number of times a forecast is more skillful than another,

and reject the ‘‘equal skill’’ hypothesis if the probability

of obtaining that count, or a more extreme count, is less

than some predefined significance threshold. This

procedure is equivalent to testing whether a coin is fair

based on the frequency of heads.

Often the criterion for selecting the most skillful

forecast is based on the difference between two skill

measures. In such cases, the sign test depends only on

the sign of this difference (hence its name), not on the

size. Alternative measures like correlation and mean

square error account for the size of the error, but testing

the significance of differences is problematic because

standard tests assume the measures were computed

from independent samples. In practice, skill measures

computed on a common period or with a common set of

observations are not independent (e.g., different fore-

casts tend to bust for the same event). Therefore, such

tests cannot properly compare forecasts, and in fact

applying these tests when the skill measures are not in-

dependent leads to serious biases (DelSole and Tippett

2014). In contrast, the sign test avoids this problem

partially because it ignores the size of the errors.

Moreover, the sign test makes no distributional as-

sumptions about the forecast errors and is valid for a

wide class of criteria for selecting the most skill-

ful forecast. In particular, the forecast errors can be
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non-Gaussian, the skill measure need not be quadratic,

symmetric, or continuous, and the criterion can be based

on categorical measures.

We propose further exploiting the virtues of the sign

test by displaying the results as a random walk. Specifi-

cally, whenever forecast A is more skillful than forecast

B, a step in the positive direction is taken, otherwise a

step in the negative direction is taken. The resulting

random walk displays the time evolution of skill differ-

ences, thereby adding information beyond the mere

decision to accept or reject the null hypothesis. Despite

its simplicity, the procedure gives a revealing and easy-

to-understand assessment of the relative skills of dif-

ferent models, as we will show. The full procedure is

discussed in the next section and illustrated with a

multimodel forecast dataset in sections 3 and 4.We close

with a summary and discussion of our results.

2. Method

We first describe the sign test, which Diebold and

Mariano (1995) proposed for comparing economic

forecasts. The sign test requires a criterion for deciding

the most skillful forecast of a single event. Aside from

measures like correlation, which cannot be evaluated

for a single event, virtually any criterion for judging

forecasts of single events is appropriate, including cat-

egorical criteria. For instance, the criterion could be

defined to focus on strong high-skill cases. More exotic

applications might define ‘‘event’’ based on multiple

forecasts, such as at a few lead times. In this paper, the

forecast closest to the observation is defined to be more

skillful, which is equivalent to using squared error or

absolute error for the criterion. Ties present no special

problems for the sign test: if a criterion implies that

forecasts of a single event are equally skillful, then just

eliminate these events from analysis. We assume below

that no ties occur (which is true for our data).

Suppose forecasts A and B are comparedN times. Let

K denote the number of times A is more skillful than B.

A natural null hypothesis is that at each time t forecast A

has 50% probability of being more skillful than forecast

B. If each time step also is independent of the others (an

assumption discussed in more detail shortly), then the

count K should follow a binomial distribution with

p5 1/2, in which case the probability that the count

equals K is

p
b
(K)5

1

2N
N!

K!(N2K)!
. (1)

To test the null hypothesis, we compute the probability

of obtaining an observed value K0, or a more extreme

value, from (1). This probability is called the p value and

is given by

p value52p
b
(0)1 2p

b
(1)1⋯1 2p

b
(min[K

o
,N2K

o
]) ,

(2)

where the factor of 2 accounts for the fact that test is two

tailed, since a priori we do not know which forecast is

superior.We reject the null hypothesis if the p value falls

below a prescribed significance levela. This procedure is

called the sign test (Conover 1980) and has been applied

for forecast verification (Diebold and Mariano 1995;

DelSole and Tippett 2014). The sign test is equivalent to

testing the hypothesis that the median measure for de-

ciding the most skillful forecast vanishes. Also, the sign

test is equivalent to testing the hypothesis that the

forecast comparisons are drawn from independent

Bernoulli trials with p5 1/2.

The critical value Kbinom
a is the smallest value of Ko

such that the p value in (2) is equal to or greater than a.

Critical values forN5 1, 2, . . . , 45 are shown in Table 1

for a5 5%. The hypothesis is rejected if Ko ,Kbinom
a or

Ko .N2Kbinom
a . For large N, the binomial distribution

has an approximately Gaussian distribution with mean

N/2 and variance N/4. If one also invokes a standard

‘‘continuity correction’’ to adjust for the use of a con-

tinuous distribution to approximate a discrete distribu-

tion (Rosner 2000), then the critical value can be

approximated as

Knorm
a 5 dN/22 z

a/2

ffiffiffiffiffiffiffiffi

N/4
p

2 1/2e , (3)

where za is the value for which a standardized Gaussian

is exceeded with probability a, and dxe denotes the

smallest integer not less than x. The critical values de-

rived from the Gaussian approximation, shown in

Table 1, are mostly identical to the critical values de-

rived from the exact binomial distribution, even for

small N, and hence will be used in the remainder of

this paper.

We propose expressing the counts in terms of a ran-

dom walk. Specifically, whenever A is more skillful than

B, a step in the positive direction is taken; otherwise, a

step in the negative direction is taken (ties are assumed

to never occur). Accordingly, there are K steps in the

positive direction and N 2 K steps in the negative

direction, so the net distance traveled by the random

walk is

d
N
5K2 (N2K)5 2K2N . (4)

Using (3), an approximate confidence can be computed

from (4) as
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(12a)100% confidence interval for d
N

’ z
a/2
(2

ffiffiffiffi

N
p

,
ffiffiffiffi

N
p

) . (5)

The exact upper limit of dN differs from za/2
ffiffiffiffi

N
p

by less

than 1.09 for N# 1000.

The above test assumes that the forecasts are in-

dependent. In weather and seasonal prediction,

forecast errors often are correlated between consec-

utive events. Diebold and Mariano (1995) review al-

ternative tests of skill differences that account for

serial correlation, including a generalization of the t

test that is popular in the economics literature. For

the sign test, however, serial correlation is problem-

atic because large excursions in the counts are more

frequent than those from an independent Bernoulli

process. We have explored various methods of deal-

ing with serial correlation, including skipping across a

fixed number of months, using residuals of autoregressive

model fits, and correcting the p value using Bonferroni

methods. Unfortunately, these methods do not fully

account for serial correlation (e.g., forecast errors re-

main correlated even after 12 months). Also, these

methods lead to conclusions that depend on the

method used to remove serial correlation and on the

models being compared, thereby obscuring the final

conclusion. Instead, we apply the test regardless of

serial correlation. Technically, then, the test is for the

entire null hypothesis of independent Bernoulli trials.

We argue that rejecting the hypothesis of independent

Bernoulli trials is informative even if due to serial

correlation, because if yesterday’s forecast A was

better than B, then tomorrow’s forecast A ought to be

better than B. Therefore, hedging toward forecast A

ought to be better than simply averaging forecasts A

and B. In this way, a significant difference relative to

independent Bernoulli trials can be useful for im-

proving forecasts, even if the difference is due to serial

correlation. Exactly how much to hedge is a question

that requires separate study. The test provides an

objective basis for deciding whether such study is

warranted.

Note that the above test is free of distributional as-

sumptions regarding the error and is applicable to a wide

class of criteria for selecting the most skillful forecast.

This is in contrast to correlation skill or mean square

error, whose significance tests often are based on the

Gaussian assumption.

3. Data

We illustrate the skill comparison test using hindcasts

of monthly mean Niño-3.4 from the North American

Multimodel Ensemble (NMME). The NMME, re-

viewed by Kirtman et al. (2014), consists of at least

9-month hindcasts by state-of-the-art coupled

atmosphere–ocean models from the following centers:

the National Centers for Environmental Prediction

(NCEP-CFSv1 and NCEP-CFSv2), the Canadian Cen-

tre for Climate Modeling and Analysis (CMC1-

CanCM3 and CMC2-CanCM4), the Geophysical Fluid

Dynamics Laboratory (GFDL-CM2p1-aer04, GFDL-

CM2p5-FLOR-A06, and GFDL-CM2p5-FLOR-B01),

the International Research Institute for Climate

and Society (IRI-ECHAM4p5-Anomaly and IRI-

ECHAM4p5-Direct), the National Aeronautics and

Space Administration (NASA-GMAO-062012), and a

joint collaboration between the Center for Ocean–

Land–Atmosphere Studies, University of Miami, and

TABLE 1. The exact (Kbinom
0:05 ) andGaussian approximated (Knorm

0:05 ) lower critical value of the number of trials, out ofN, a given forecast can

exceed the skill of another forecast, in order to reject the hypothesis of a binomial distribution with p5 1/2 at the 5% significance level.

N Knorm
0:05 Kbinom

0:05 N Knorm
0:05 Kbinom

0:05 N Knorm
0:05 Kbinom

0:05 N Knorm
0:05 Kbinom

0:05

1 0 0 16 4 4 31 10 10 46 16 16

2 0 0 17 5 4 32 10 10 47 17 17

3 0 0 18 5 5 33 11 11 48 17 17

4 0 0 19 5 5 34 11 11 49 18 18

5 0 0 20 6 6 35 12 12 50 18 18

6 1 1 21 6 6 36 12 12 51 19 19

7 1 1 22 6 6 37 13 13 52 19 19

8 1 1 23 7 7 38 13 13 53 19 19

9 2 2 24 7 7 39 13 13 54 20 20

10 2 2 25 8 8 40 14 14 55 20 20

11 2 2 26 8 8 41 14 14 56 21 21

12 3 3 27 8 8 42 15 15 57 21 21

13 3 3 28 9 9 43 15 15 58 22 22

14 3 3 29 9 9 44 16 15 59 22 22

15 4 4 30 10 10 45 16 16 60 22 22
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theNational Center forAtmospheric Research (COLA-

RSMAS-CCSM3 and COLA-RSMAS-CCSM4).

Relevant details of the above models are given in

Table 2. Real-time forecasts began in August 2011.

Three of the above models began real-time forecasts

in 2014: GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-

FLOR-B01, and COLA-RSMAS-CCSM4. Three NMME

models havebeen retired:NCEP-CFSv1, IRI-ECHAM4p5-

Anomaly, and IRI-ECHAM4p5-Direct.

The CFSv2 hindcasts have an apparent discontinuity

across 1999, presumably due to the introduction of cer-

tain satellite data into the assimilation system in Octo-

ber 1998 (Kumar et al. 2012; Barnston and Tippett 2013;

Saha et al. 2014). Different bias corrections will be

considered in the next section, but all of them will avoid

computing climatologies over periods that cross 1999.

The validation data used in this study are the NOAA

Optimum Interpolation Sea Surface Temperature (OISST)

version 2 (Reynolds et al. 2002). The variable investigated

is the Niño-3.4 index, which is the area weighted sea sur-

face temperature within the region bounded by 58S– 58N,

1208–1708W. (The OISST version of this index is avail-

able from the Climate Prediction Center website at http://

www.cpc.ncep.noaa.gov/data/indices/sstoi.indices.)

4. Results

For convenience, we use the term ‘‘forecast’’ to refer

to both ensemble mean hindcasts and forecasts. To

eliminate differences due to different ensemble sizes,

the same number of ensemble members per model is

analyzed. Specifically, we select the last six ensemble

members of CFSv1 and CFSv2 (because these members

were initialized closest to the target date, as discussed

shortly) and the first six members of all other models.

This selection results in over 200 000 forecasts (e.g., 13

models, 8 leadmonths, 12 months per year, 33 years, and

6 ensemble members corresponds to 247 104 forecasts).

To reduce the analysis to a manageable size, we focus

only on ensemble mean forecasts of the Niño-3.4 index

at 2.5-month lead (e.g., for a March target, the model is

initialized using observations no later than mid-January).

The most skillful forecast is defined to be the ensemble

mean forecast closest to the observed monthly meanNiño-
3.4 index. Equivalently, the most skillful forecast has the

least squared error or least absolute error between fore-

casted and observed monthly mean Niño-3.4 index.

We choose the significance level a5 5%, in which case

za/2 ’ 1:96.

a. Exchangeability

As a novel application of our method, we first apply it

to test differences in skill among ensemble members

from the same model. Ensemble members are intended

to be exchangeable, in the sense that the statistical

properties of the ensemble should be invariant to per-

mutations of the member labels. For instance, some

models use members generated by randomly perturbing

the same initial state. If the random numbers are drawn

independently from the same distribution, no statistical

feature could exist to discriminate between members,

hence, the members are exchangeable. Similarly, the

GFDL models use ocean ensemble data assimilation

schemes, which generate exchangeable members (the

models also use states from atmospheric models that are

exchangeable). In contrast, some models use a lagged

ensemble in which different members correspond to

different start dates. Lagged ensembles might be dis-

tinguishable because members initialized farther from

the target may have more skill than those initialized

closer to the target. In addition to a lagged ensemble, the

NASA model also includes members generated by spe-

cial perturbation techniques, such as breeding methods,

which might be more or less skillful than forecasts

TABLE 2. List of NMMEmodels and relevant details. Entries under ‘‘ensemble generation’’ summarize our assessment of whether the

initialization system (which differs for each model) is exchangeable, or if not, the potential cause for the lack of exchangeability.

(Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Full model name Shortened model name First real-time forecast Status Ensemble generation

NCEP-CFSv1 CFSv1 2011 Retired Lagged

NCEP-CFSv2 CFSv2 2011 Active Lagged

CMC1-CanCM3 CanCM3 2011 Active Exchangeable

CMC2-CanCM4 CanCM4 2011 Active Exchangeable

GFDL-CM2p1-aer04 CM2p1-aer04 2011 Active Exchangeable

GFDL-CM2p5-FLOR-A06 FLOR-A 2014 Active Exchangeable

GFDL-CM2p5-FLOR-B01 FLOR-B 2014 Active Exchangeable

IRI-ECHAM4p5-Anomaly IRI-A 2011 Retired Exchangeable

IRI-ECHAM4p5-Direct IRI-D 2011 Retired Exchangeable

NASA-GMAO-062012 NASA 2011 Active Some members lagged

COLA-RSMAS-CCSM3 CCSM3 2011 Active Fixed atmospheric ICs

COLA-RSMAS-CCSM4 CCSM4 2014 Active Lagged atmosphere
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generated by other initialization techniques. Different in-

stitutions use different initialization schemes on different

components of the coupled atmosphere–ocean–land–ice

system, some of which are quite complex. Therefore, it is

difficult to summarize these schemes in this paper. In Table

2 we have summarized our assessment of whether each

initialization scheme, as documented in the literature, is

exchangeable, and if not, speculated as to the reasons for

differences in skill between members.

Exchangeability can be tested partly by comparing the

skill between two ensemble members from the same

model: if onemember is more skillful than another, then

obviously the two members are not exchangeable. The

result of testing all possible pairs of ensemble members

for all available months and years is shown in Fig. 1. The

95% confidence interval for independent Bernoulli trials

is indicated by the error bars. For most models, the results

are consistent with that expected for independent Bernoulli

trials. Differences in skill between ensemble members are

evident in CFSv1, NASA, IRI-A, and CCSM3. CFSv1 and

NASA use lagged ensembles, which are not strictly ex-

changeable (e.g., members initialized closer to the target

are likely to be more skillful), so we presume the test has

detected differences due to using lagged ensembles.

Almost half of the comparisons from CCSM3 are

more skillful than expected. Closer inspection reveals

that ensemble member ‘‘2’’ has significantly less skill

than other members. The reason for this difference is

unclear. For CCSM3, the ocean state is identical for all

members initialized in the same month, but the atmo-

sphere, land, and ice are drawn from different years in a

long control simulation (B. Kirtman 2015, personal

communication). Importantly, the initial atmosphere–

land–ice state for a given month and ensemble member

is identical across years (e.g., the atmosphere–land–ice

state in the first ensemble member for January 1982 is

identical with that of the first ensemble member for

January 1983, January 1984, etc.). Strictly speaking,

then, the initial conditions for the atmosphere–land–ice

state are not statistically exchangeable—in particular,

the initial state for ensemble member 2 may have a large

bias relative to other members.

Interestingly, CFSv2 also uses a lagged ensemble, but

no differences in skill among ensemble members were

detected. This might be because the lagged ensemble for

CFSv2 is much more closely spaced than for CFSv1. For

example, for a mid-June release, our particular CFSv2

ensemble has four members initialized on 5 June and

two members initialized on 31May (Saha et al. 2014). In

contrast, CFSv1 has onemember is initialized on 21May

and others initialized on 30 and 31 May and 1, 2, and

3 June (Saha et al. 2006). Thus, the most extreme time

FIG. 1. Fraction of forecasts from a given model in which one ensemble member is more

skillful than another member, for all possible pairs of ensemble members, for 2.5-month lead

during 1982–2014 (dots), and the 95% confidence interval for independent trials of a Bernoulli

process with p5 1/2 (error bar).
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separation for our CFSv2 six-member ensemble is 6 days,

while that for CFSv1 is 13 days. Since the time separation

is larger for CFSv1 than for CFSv2, the CFSv1 members

are likely to have larger differences in skill.

Differences in skill are detected for members from

IRI-A, but the source of these differences are unclear.

Note that 5% of the cases on average would lie outside

the computed limits even if exchangeability were true.

b. Bias correction based on the 1982–98 mean error

We now consider bias-corrected forecasts. Ideally, the

same data should not be used to estimate bias and to

compare skill simultaneously, since the sign test does not

account for bias correction, moreover such correction is

unrealistic in real-time forecasting because future data

are not available for estimating bias. A straightforward

way to circumvent this problem is to estimate the bias

correction parameters using data that are separate from

that used to test skill differences. Accordingly, we esti-

mate the mean forecast error for each calendar month

using hindcasts whose verifications lie within the period

1982–98 inclusive, and then subtract this error from the

appropriate forecast after this period. The comparisons

begin with hindcasts initialized on January 1999. The

result of comparing CFSv2 with other models, shown in

Fig. 2, reveals that all models are significantly more

skillful than CFSv2 after only a few years of compari-

sons. The poor skill of CFSv2 relative to other models

has been attributed to a discontinuity in climatology due

to the introduction of ATOVS satellite data into the as-

similation system in October 1998, as discussed in Kumar

et al. (2012), Barnston and Tippett (2013), and Saha et al.

(2014). Thus, the result is not unanticipated, but the ra-

pidity and decisiveness of detection of an abrupt differ-

ence in skill is noteworthy.

The above illustration may seem contrived because

the transition year 1999 was purposely avoided when

estimating the bias correction. In practice, a real fore-

caster would not ordinarily know the transition year of

an abrupt change in skill. Fortunately, changes in skill

can be recognized by changes in the average slope of a

randomwalk. To illustrate this fact, we show in Fig. 3 the

FIG. 2. Comparison of monthly mean forecasts of Niño-3.4 at 2.5-month lead between CFSv2

and other models in the NMME. The mean 1982–98 error is removed from each model. The

count increases by 1 when the squared error of CFSv2 is less than that of another model, and

decreases by 1 otherwise. The count is accumulated forward in time for each model separately,

over all initial months and years (for a fixed lead time), thereby tracing out a randomwalk. The

shaded area indicates the range of counts that would be obtained 95% of the time under in-

dependent Bernoulli trials for p5 1/2. A random walk extending above the shaded area in-

dicates that CFSv2 forecasts are closer to observations significantly more often than expected

for independent Bernoulli trials (i.e., the CFSv2 is more skillful than the model). Conversely,

a random walk extending below the shaded area indicates that CFSv2 forecasts are closer to

observations significantly less often than expected for independent Bernoulli trials (i.e., the

CFSv2 is less skillful than the model).
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result of comparing CFSv2 with other models, except

that the random walk is initialized in 1982. The figure

clearly shows a distinct change in average slope beginning

around 2000. This result illustrates how random walks

could be used in real time to monitor and detect abrupt

changes in skill without knowledge of the transition year.

Comparisons based on the ‘‘retired’’ models IRI-A,

IRI-D, and CFSv1 are shown in Fig. 4. Forecasts for

these models were unavailable at the end of the period.

In such cases, the ‘‘count’’ is kept constant, which

produces a random walk that is ‘‘flat’’ at the end of the

period. Incidentally, this flattening procedure can be

applied when ties occur in forecast skill, although such

ties never occur in our data. The figure shows that,

among other things, no significant difference in skill is

detected between IRI-A and IRI-D. Thus, at least for

ENSO forecasts from these two models, no detectable

difference in skill can be detected between anomaly

coupled and fully coupled models, provided a bias cor-

rection is applied. The fact that all three models are more

skillful than CFSv2 (using anomalies with respect to

1982–98 climatology) has already been indicated in Fig. 2.

The comparison between other models not considered

yet are shown in Fig. 5 (still using a bias correction de-

rived from 1982–98). The figure reveals that theCanadian

models are significantly more skillful than other models.

CFSv2 is significantly less skillful than all other models,

as discussed earlier. CCSM4 and CCSM3 are the next

least skillful models. FLOR-A and FLOR-B are either

comparable to, or significantly more skillful than, all

other models except for the Canadianmodels. Moreover,

no significant difference in skill is detected between

FLOR-A and FLOR-B. Also, FLOR-A and FLOR-B

represent an improvement over the previous version of

the GFDL model CM2p1-AER. The NASA model is

either comparable to, or significantly more skillful than,

other models except for the Canadian models.

c. Multimodel mean

It is interesting to compare NMME forecasts with the

multimodel mean. To compute the multimodel mean,

we omit the retired models IRI-A, IRI-D, and CFSv1.

Since we continue removing the mean bias estimated

during 1982–98, we omit CFSv2 due to the discontinuity

around 1999. Note that our test can compare the multi-

model mean with an individual model even if that model is

contained in the multimodel mean. The resulting compar-

ison, shown in Fig. 6, reveals that the multimodel mean is

either comparable to, or more skillful than, other models

except for the Canadian models. These and subsequent

results are unchanged if CCSM4 is omitted from the mul-

timodel mean. Thus, although CCSM4 is significantly less

skillful than all other models (see Fig. 5), it does not sig-

nificantly alter the skill of the multimodel mean.

d. Statistical forecasts

Another interesting question is how the dynamical fore-

casts compare to purely statistical forecasts. Although there

FIG. 3. Comparison of 2.5-month lead forecasts of monthly mean Niño-3.4 from CFSv2, as in

Fig. 2, but the comparisons are initialized in 1982 (all anomalies are computed with respect to

the 1982–98 mean).
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exists a wide variety of statistical models of ENSO, here

we use ordinary linear regression. Specifically, for each cal-

endar monthm, we fit the linear prediction equation:

T
m1t

5 b
m,t

1 a
m,t

T
m21

1 � , (6)

where am,t and bm,t are the slope and intercept terms for

monthm, respectively; t is the lead time (i.e., 2.5 months);

and � is the random error. The predictor Tm21 has an extra

1-month lag for consistency with the NMME forecast

protocol. For instance, for a 0.5-month lead forecast in

November, the observed state for November is unavail-

able at the beginning of the forecast. Thus, a regression

prediction must use the observed state for the preceding

October to produce a forecast for November. The slope

and intercept terms are estimated by standard linear re-

gression. The training period for this estimation corre-

sponds to verifications between March 1982 and December

1998 inclusive (for lead 5 2.5 months). The prediction

T̂m1t is then computed as

T̂
m1t

5 b̂
m,t

1 â
m,t

T
m21

, (7)

where âm,t and b̂m,t are the least squares estimates of the

slope and intercept. The resulting comparison, shown in

Fig. 7, reveals that the statistical model is significantly more

skillful than all other models except two (CanCM3 and

CanCM4). Note that the regression model is significantly

more skillful than the multimodel mean too. This conclu-

sion holds for all lags examined, namely, 0.5–7.5 months.

e. Bias correction based on the 1999–2010 mean error

We now compare forecasts initialized after 2010, but

biased corrected using the 1999–2010 mean error. This

comparison allows CFSv2 to be included (since the bias

correction avoids the discontinuity across 1999). Also,

many models generated genuine forecasts during this

period. The linear regression model is retrained based

on the 1982–2010 period (although results for the orig-

inal regression model trained on 1982–98 are similar).

The resulting comparisons are shown in Fig. 8. CCSM3

stands out as being marginally or significantly less

skillful than most other models. CCSM4 is significantly

more skillful than three othermodels (CCSM3,NASA, and

CanCM4). CanCM3 is significantly more skillful than

CanCM4 and CCSM3 during the forecast period, but

otherwise has comparable skill to other models. The

regression model is significantly more skillful than

CCSM3, but otherwise has comparable skill to other

models.

5. Summary and discussion

This paper proposed a procedure for testing differ-

ences in forecast skill that can be visualized as a random

walk. The random walk is defined as follows: whenever

forecast A is more skillful than forecast B, a step in the

positive direction is taken, otherwise, a step in the nega-

tive direction is taken. If the distance traveled by the

random walk after N steps falls outside the 2.5% and

97.5% interval of a binomial distribution with N and

p5 1/2, which is approximately (22
ffiffiffiffi

N
p

, 2
ffiffiffiffi

N
p

), then the

hypothesis of equally skillful forecasts is rejected at the

5% significance level. The test is formally equivalent to

the sign test, but the random walk representation further

shows the evolution of skill differences. Remarkably, the

test can be applied to general criteria for selecting the

most skillful forecast and is independent of distributional

assumptions about the forecast errors. The method also

can be used to compare a multimodel mean with another

model that may be included in the multimodel mean, in

contrast to most standard tests.

FIG. 4. Comparison of 2.5-month lead forecasts of monthly mean Niño-3.4, as in Fig. 2, but for the ‘‘retired’’ models IRI-A, IRI-D, and

CFSv1, and with the mean 1982–98 error removed from each model.
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The above test is most suited for independent events.

In practice, forecast errors tend to be serially correlated,

especially when separated by short time periods (e.g.,

numerical weather predictions separated by a day or less).

We do not recommend ‘‘correcting’’ for independence by

adjusting degrees of freedom or applying whitening trans-

formations, because such methods are difficult to justify

and require estimating parameters usingmost of the data.

In addition, such methods lead to conclusions that are

difficult to interpret because they depend on the method

used to account for serial correlation. Instead, we rec-

ommend applying the test in its pure form and clearly

stating that the hypothesis being tested is independent

Bernoulli trials with p5 1/2. We argue that the result is

useful even if serial correlation exists. For instance, if a

forecast is more skillful and this skill is persistent, then

hedging toward previous more skillful forecasts can lead

to better forecasts at subsequent times compared to equal

weighting schemes. The test can be viewed as an objective

procedure for deciding whether such hedging is warranted.

The above procedure was applied to NMME monthly

mean hindcasts and forecasts ofNiño-3.4 at 2.5-month lead.

The procedure was able to detect the discontinuity in skill

of CFSv2 after 1998. This result is not surprising in light

of known errors in this model, but it is significant that the

procedure was able to detect this difference in skill after

only a few years of hindcasts. These results illustrate how

the proposed testmay be an effective tool for routinemodel

development. Over the period 1999–2014, a possible rank-

ing of the Niño-3.4 forecasts at 2.5-month lead is as follows:

1) CanCM3, CanCM4, linear regression model;

2) FLOR-A, FLOR-B, multimodel mean, NASA;

3) CM2p1-AER;

4) CCSM3; and

5) CCSM4.

FIG. 5. Comparison of 2.5-month lead forecasts of monthly mean Niño-3.4, as in Fig. 2, but for other models not considered in previous

figures. The mean 1982–98 error is removed from each model.
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Technically, a unique ranking is ill defined because

some pairwise comparisons are intransitive; for ex-

ample, FLOR-A is comparable to NASA and NASA

is comparable CM2p1-AER, but FLOR-A is signifi-

cantly more skillful than CM2p1-AER. Thus, NASA

could be grouped into category 2 or 3. CFSv2 is not

included because the ranking is based on a bias cor-

rection estimated from the 1982–98 hindcasts, which

does not produce an accurate correction for CFSv2

after 1999.

FIG. 7. Comparison of 2.5-month lead forecasts ofmonthlymeanNiño-3.4, as in Fig. 2, but for
the linear regressionmodel based on 1982–98 training data. Themean 1982–98 error is removed

from each model.

FIG. 6. Comparison of 2.5-month lead forecasts ofmonthlymeanNiño-3.4, as in Fig. 2, but for
the multimodel mean based on the models indicated in the figure. The mean 1982–98 error is

removed from each model.
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Other interesting conclusions include the following.

Linear regression produces more skillful predictions

of monthly mean Niño-3.4 anomalies than most

models in the NMME at all leads investigated (0.5–

7.5 months). No significant difference in skill was

detected between bias-corrected IRI-A and IRI-D

forecasts, indicating little difference in skill between

anomaly coupled and fully coupled prediction

models. FLOR-A and FLOR-B are significantly more

skillful than its predecessor CM2p1-AER, but

CCSM4 is not significantly more skillful than its pre-

decessor CCSM3 during 1999–2010, but is more

skillful during 2011–14. The test also revealed sig-

nificant differences in skill between ensemble mem-

bers from the same model. In virtually every case for

which differences in skill could be detected, the

method used to generate ensemble members does not

produce strictly exchangeable ensemble members. For

instance, CFSv1 and NASA employ lagged ensembles, so

members initialized closer to the target are likely to be

more skillful and, therefore, are potentially distinguishable.

It should be recognized that the present study is lim-

ited by the fact that only a single index has been exam-

ined. Of course, a model that performs well for one

index may perform poorly for another index. The Niño-
3.4 index has been chosen for this study because it is one

of the most important predictors of seasonal mean cli-

mate variables.

We suggest that the abovemethod can be a very useful

tool for model development. One of the biggest chal-

lenges in model development is to decide whether a

particular model change improves skill. As discussed in

DelSole and Tippett (2014), statistical tests based on

correlation skill or mean square error are problematic.

In contrast, the proposedmethod is completely rigorous,

makes no distributional assumptions about the forecast

errors, and can be applied to a wide class of criteria

for selecting the most skillful forecast. Therefore, the

FIG. 8. Comparison of 2.5-month lead forecasts of monthly meanNiño-3.4, as in Fig. 2, but for bias correction based on 1999–2010 training

data, and validated over 2011–14. The linear regression model is trained on 1982–2010 data.
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method can be applied even to highly non-Gaussian vari-

ables like precipitation, and can be tailored to specific

performance measures of interest to modelers or fore-

casters. Finally, the method can detect discontinuities in

skill without knowledge of when they might occur, and,

therefore, can be used to decide if a significant change

in skill has occurred due to a change in dynamical model,

change in the quality of the initial conditions, or inadver-

tent errors introduced in the forecast system.
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