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ABSTRACT

Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of
the most important being the non-Gaussian error distributions associated with precipitation, and large
model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating
precipitation has been found to be difficult. To identify the challenges and propose practical solutions to
assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP
Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The
samples are constructed using the same model with the same forecast period, observation variables, and
resolution as in the follow-on GFS/TMPA precipitation assimilation experiments presented in the
companion paper.

The statistical results indicate that the T62 and T126 GFS models generally have positive bias in pre-
cipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus
precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the
commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a
better relationship between the model and observational precipitation. When the Gaussian trans-
formations are separately applied to the model and observational precipitation, they serve as a bias cor-
rection that corrects the amplitude-dependent biases. In addition, using a spatially and/or temporally
averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for
precipitation assimilation.

1. Introduction
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Meanwhile, many efforts to assimilate precipitation ob-
servations have also been made (e.g., Tsuyuki 1996, 1997;
Falkovich et al. 2000; Davolio and Buzzi 2004; Koizumi
et al. 2005; Mesinger et al. 2006). However, serious diffi-
culties still remain in assimilating the precipitation data.
For example, most data assimilation schemes, including
the variational methods and the ensemble Kalman filter
(EnKF) methods, assume Gaussian error distributions for
both observation and model background. If the error dis-
tribution is not Gaussian, the analysis may not be optimal.
Since the precipitation-related variables are far from
Gaussian, the non-Gaussianity issue becomes a severe
problem for precipitation assimilation. Besides, both the
model errors and observation errors are important issues
for precipitation assimilation. As a consequence, a widely
shared experience is that the precipitation assimilation can
be useful in improving the model analyses, but the forecast
improvement is usually limited to the first few forecast
hours (e.g., Falkovich et al. 2000; Davolio and Buzzi 2004;
Tsuyuki and Miyoshi 2007). These issues have been dis-
cussed and summarized in several articles, such as Errico
et al. (2007), Bauer et al. (2011), and Lien et al. (2013,
hereafter LKM13). Notwithstanding these difficulties,
several recent studies have shown some usefulness of
precipitation assimilation (Lopez 2011, 2013; Zupanski
et al. 2011; Zhang et al. 2013).

Data assimilation methods that do not assume
Gaussian errors, such as a particle filter, are usually too
computationally expensive. Alternatively, a variable
transformation technique is a computationally cheaper
and practical solution to mitigate the non-Gaussianity
problem in realistic geophysical data assimilation sys-
tems (Bocquet et al. 2010; LKM13; Amezcua and van
Leeuwen 2014). For precipitation data assimilation, the
precipitation values are usually transformed by a loga-
rithmic function before assimilating them into the model
(e.g., Lopez 2011). Instead of the logarithmic trans-
formation, LKM13 proposed to apply the Gaussian ana-
morphosis method to precipitation based on its model
climatology, under the assumption that a forecast variable
with more Gaussian climatological distribution would
result in a more Gaussian error distribution. With this
transformation, they succeeded in showing effective as-
similation of global precipitation in their proof-of-concept
observing system simulation experiments (OSSEs),
using a simplified general circulation model and the local
ensemble transform Kalman filter (LETKF). In their
experiments, precipitation assimilation not only improves
the analyses but also improves the model forecasts over
the entire 5-day forecast period in their experiments.

Although a significant forecast improvement by pre-
cipitation assimilation was demonstrated in LKM13
with an idealized system, in real systems improvements
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are generally very limited or even absent. The distinct
challenges associated with the use of realistic model and
real observations include the large and unknown errors
related not only to the moist physical parameterization
in the model but also to the observations. Since both the
model precipitation and the observations could have
large errors, the long-term statistics of these two quan-
tities may be very different, which is harmful to the data
assimilation use. Therefore, before performing real
precipitation data assimilation, it is worthwhile to first
investigate the statistical characteristics of precipitation
in both model and observation datasets that we would
like to use, which are presented in this paper.

We investigate the differences in probability distri-
butions between the precipitation in a series of short-
term model forecasts and a precipitation observation
dataset, to isolate the different characteristics of the real
model and observations. It is noted that the challenges
introduced by these differences could not be addressed
in LKM13 since they used an identical-twin OSSE
method. Here we use more realistic settings: the Na-
tional Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS), running at a low reso-
lution, and the TMPA data as the precipitation obser-
vations. Given the low resolution feasible in our study,
the main focus of our work is assimilation of the global
large-scale precipitation, which could be particularly
important for improving medium-range model fore-
casts. Since the probability distributions are dependent
on the use (or lack of use) of variable transformations,
the results with different transformation methods are
investigated. We also show the correlation between
model forecasts and observations at each grid point on a
map. Several suggestions for real-data precipitation as-
similation are made in the concluding section of this
article. Although we choose to use the NCEP GFS
model and the TMPA data to study the precipitation
data assimilation, the same analysis can also be per-
formed with other models and observation datasets.

The paper is organized as follows. The GFS model and
TMPA observations are briefly introduced in section 2.
Section 3 describes the transformation methods we will use
in the precipitation statistics. A series of statistical results
are then presented in the following sections. Section 4
shows the cumulative distribution functions (CDFs) of the
precipitation data, which will be used to define the
Gaussian transformation of precipitation. Section 5 shows
the joint probability distribution diagrams between the
model and observational precipitation and compares the
results in terms of the transformation methods, the tem-
poral integration of precipitation, and the resolution
of precipitation data. Section 6 presents the geographic
distribution of correlation scores between these two
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FIG. 1. (a) The data coverage rate (%) and (b) the mean daily precipitation (mm) of the 14-yr
(1998-2011) TMPA.

variables. Conclusions and suggestions for the pre-
cipitation assimilation are given in section 7. In addition,
the successful assimilation of the TMPA data following the
guidance derived from this study is presented in a separate
paper (Lien et al. 2016, hereafter LMK16).

2. The model and observations

The GFS model is the operational global numerical
weather prediction (NWP) model used at the NCEP. It
is one of the major world state-of-the-art operational
NWP model. The GFS model can be run at various
spectral resolutions on a hybrid sigma/pressure co-
ordinate. In this study we focus on the large-scale global
precipitation and also consider the computational con-
straints, so the experiments and analyses are done with
two lower-resolution configurations: T62 and T126
(roughly equivalent to 200- and 100-km horizontal res-
olutions) with 64 vertical levels (L64). Convective pre-
cipitation is parameterized using a modified Simplified
Arakawa-Schubert (SAS) scheme (Pan and Wu 1995;
Han and Pan 2011), considering both deep and shallow
convection.

The TMPA (Huffman et al. 2007, 2010) is a gridded
precipitation dataset compiled from multiple satellite
sensors. It has a global coverage from 50°S to 50°N with
0.25° spatial resolution and 3-h temporal resolution. The
estimated surface precipitation rate is provided. The
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primary data sources are the low-earth-orbit satellites
such as the TRMM Microwave Imager (TMI), the Special
Sensor Microwave Imager (SSM/I) and Special Sensor
Microwave Imager/Sounder (SSMIS) on the Defense
Meteorological Satellite Program (DMSP) satellites, the
Advanced Microwave Scanning Radiometer-Earth Ob-
serving System (AMSR-E) on Aqua, the Advanced Mi-
crowave Sounding Unit-B (AMSU-B) on the National
Oceanic and Atmospheric Administration (NOAA)
satellite series, and the Microwave Humidity Sounder
(MHS) on both the NOAA and the EUMETSAT
MetOp series. The microwave satellite observations
have a strong physical relationship to the hydrometeors
and thus the surface precipitation, but they are spatially
and temporally inhomogeneous. To fill the gaps left from
the low-earth-orbit sensors, the infrared (IR) data col-
lected by the geosynchronous-earth-orbit satellites are
used as the secondary data sources with calibration by the
microwave precipitation estimates, though the accuracy
of precipitation derived from the IR data is lower. For the
research version (i.e., not in real time) of the TMPA,
these satellite-derived precipitation amounts are further
rescaled based on monthly rain gauge analyses to achieve
accurate statistics in the climatological scale, while in the
real-time version the satellite-derived precipitation is
rescaled with a climatological correction to the research
version. With the above data processing procedure, the
TMPA has a very high (>95%) data coverage rate
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(Fig. 1a), thus becoming a potential good observational
source for the assimilation of global precipitation. In this
study, we use version 7 of the TMPA research products,
labeled as 3B42, released in 2012 (Huffman et al. 2012).
The climatological mean daily precipitation computed
from the 14-yr TMPA data (1998-2011) is shown in Fig. 1b.
To make the 0.25°-resolution TMPA data correspond to
the lower resolutions of the T62/T126 GFS model, we
preprocess the precipitation rate data, upscaling the orig-
inal TMPA grids to the T62 or T126 Gaussian grids used
by the GFS model using an area-conserving remapping,.

3. Transformation of precipitation

In this section, several transformations for pre-
cipitation assimilation are described, including the
widely used logarithm transformation, and the trans-
formation based on Gaussian anamorphosis used in
previous studies such as Simon and Bertino (2009),
Schoniger et al. (2012), and LKMI13. The trans-
formations have a profound impact on the statistical
results shown in later sections.

a. Logarithm transformation

The logarithm transformation
y=In(y +a) 1)

is a simple and frequently used method to transform
precipitation. Here, y is the original variable, y is the
transformed variable, and « is a tunable constant added
to prevent the singularity at zero precipitation (y = 0).
Using the logarithm transformation, Lopez (2011) suc-
cessfully assimilated the NCEP stage-IV precipitation
analysis over the eastern United States, and Lopez
(2013) presented experimental results of assimilation of
the 6-hourly accumulated precipitation observations
measured by the rain gauges at synoptic stations.

b. Gaussian transformation

The logarithm transformation may be helpful for
precipitation assimilation in some regions, seasons, or
precipitation types, but a globally invariant analytical
transformation may not be applicable to every case.
Therefore, following LKM13, we will also examine the
effect of the Gaussian transformation on the precipitation
statistics. Here we briefly summarize the formulation of
the Gaussian transformation in LKM13 and explain the
changes made in this study after LKM13.

1) GENERAL FORMULA

The transformation is made by equating the two CDFs
of the original variable y and the transformed variable y:
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F(y)=F(y), or 2
y=F'[FO), A3)

where F is the CDF of y, F is the CDF of , and F~" is the
inverse function of F. By definition, the CDFs are
bounded within [0, 1]. The CDF of the original variable
F is empirically determined from samples, and the CDF
of the transformed variable F can be arbitrarily chosen
so that the transformed variable can have any desired
distribution. If we choose

- 1 v
FO)=F°@)==1+erf(=)], 4
®=rog =3 1eet( )] @
which is the CDF of a standard normal distribution with
zero mean and unit variance, and erf is the error func-
tion, then

FOY(P)=V2ert ' (2P —1) (5)

where P is the cumulative probability, so that it becomes a
“Gaussian anamorphosis” (e.g., Wackernagel 2003):

y=FOUFO)]. (6)

In this way, the transformed variable y becomes a
Gaussian variable. The use of the Gaussian anamor-
phosis has appeared in several geophysical data assimi-
lation studies (e.g., Simon and Bertino 2009, 2012;
Schoniger et al. 2012). We call this method “Gaussian
transformation’ hereafter.

Figure 2 provides an illustration of the Gaussian
transformation procedure. It displays the 10-yr clima-
tological probability density function (PDF) and CDF of
the original and transformed precipitation in both the
GFS model forecasts and the TMPA dataset, at three
selected locations for the 11-20 January period. The
collection of the model and observational precipitation
samples will be discussed in later sections, but here we
first use the plots to visualize the method. The trans-
formation starts from Figs. 2a, 2e, and 2i, which are
the very non-Gaussian PDFs of the original variables.
The red color stands for the model precipitation and the
green color stands for the observational precipitation.
Their CDFs are then calculated (Figs. 2¢,g,k). Using the
inverse CDF of the standard normal distribution F¢~!,
the cumulative probability values are converted into the
transformed variables y, whose CDFs shown in
Figs. 2d, 2h, and 21 and PDFs are shown in Figs. 2b, 2f,
and 2j. It is important to note that the precipitation
distribution contains a great portion of zero values,
shown as a delta function in the PDFs and a disconti-
nuity in the CDFs, which need to be treated in a special
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FIG. 2. The PDF and CDF of the original precipitation and the
transformed precipitation based on the 10-yr (2001-10) model
(red) and observation (green) climatologies for (a)-(d) a grid
point in the extratropics (39.0°N, 76.9°W; near Maryland); (e)—(h)
a grid point in the tropics (1.0°S, 120.0°E); and (i)—(1) a grid point
in a marine stratocumulus region west of South America (20.0°S,
84.3°W). All plots correspond to the 11-20 Jan period. The
procedure of the Gaussian transformation is indicated by the
arrows [i.e., (a) to (c) to (d) to (b)]. The open circles correspond
to the zero precipitation probability and the solid circles corre-
spond to the half value (median) of the zero precipitation
probability.
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manner. Following LKM13, all the zero values are
represented by half of the zero precipitation cumula-
tive probability (i.e., the median; solid circles in Fig. 2)
during the transformation:

F(0)= %Pc, )

where P, is the zero precipitation probability in the
climatology. In this way, the zero precipitation is still a
delta function in the transformed variable, but it is lo-
cated at a certain distance away from the trace pre-
cipitation values.

This method transforms the climatological distribu-
tion of the model forecast variable into a Gaussian dis-
tribution, but this does not necessarily make the
background error distributions Gaussian, as required in
the EnKF data assimilation (e.g., Ott et al. 2004).
However, it is reasonable to assume that a forecast
with a more Gaussian climatological distribution would
also result in more Gaussian forecast error distribution
(LKM13). It is difficult to validate this assumption using
the climatological data in this study but we do provide a
validation of this assumption in the companion paper
(LMK16) using the actual experimental data from the
cycling LETKF data assimilation.

It is worth mentioning that this CDF-based trans-
formation of precipitation has also been used in some
climate studies, though they are not related to data as-
similation. For example, the standardized precipitation
index (SPI) (McKee et al. 1993; Guttman 1999) com-
monly used to study drought is defined based on a sim-
ilar method, but the time scales of precipitation
accumulations they have focused on are much longer
than the 6 h used in weather data assimilation.

2) COMPUTATION OF THE CDFS AND
TRANSFORMATIONS

Some technical details are described in this subsection.
First, we regard all precipitation values smaller than
0.06mm (6h) "' as “zero precipitation” because such
small values in the model or observational precipitation
data are irrelevant. This choice of the threshold value
leads to good experimental results with the current GFS/
TMPA assimilation system. Note that the optimal value
of the threshold could change with different models,
observations, or assimilation techniques; however, the
current choice is close to the threshold used in LKM13,
0.1mm (6h) .

Second, extreme values with cumulative distribution
less than 0.001 and greater than 0.999 are set to 0.001 and
0.999, respectively. Consequently, when the original
values fall outside the range in the climatological
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FIG. 3. Schematic of the preparation of precipitation samples from the (top) TMPA obser-
vation dataset and the (bottom) GFS model forecasts. For precipitation observations, a 10-yr
series of the 3-hourly TMPA data is collected; for model background precipitation, equivalent
10-yr data are formed from a series of 9-h GFS model forecasts every 6 h initialized from the
10-yr CFSR reanalysis. In each forecast cycle, the forecast is conducted with the desired
model configuration and resolutions (T62 and T126 in this study), and only the 3-9-h forecasts

are used.

samples, they will be transformed to —3.09 and 3.09. It is
noted for reference that Simon and Bertino (2012) also
discussed this problem and they used parametric linear
tails to form their transformation.

Third, we derive the CDFs from precipitation samples
using constant-width bins with respect to the cumulative
probability in [0, 1], not with respect to the precipitation
amount as it might be intuitively done. A total of 200
bins are used. The CDFs are thus represented by the 201
(including 0 and 1) discretized precipitation amounts at
each cumulative distribution levels at a 0.005 increment.
When we need to compute F(y) for a given precipitation
value y, we perform a linear interpolation from the two
nearby data points. Compared to binning with respect to
the precipitation amount, this method can more pre-
cisely represent the CDF curves using the same number
of the bins, particularly for large precipitation values.

3) SEPARATE GAUSSIAN TRANSFORMATION
APPLIED TO MODEL BACKGROUND AND
OBSERVATIONS

Following the methods described above, we can apply
the Gaussian transformation to the GFS model and the
TMPA data. However, there is an important difference
between the Gaussian transformation used in LKM13 and
in this study. In LKM13, the transformation was defined
purely based on the 10-yr model precipitation climatology,
and the same transformation was used for both the model
and observational precipitation. There was no need to
consider the transformations of the model and observa-
tional precipitation separately because the work used
an identical-twin configuration so that the two CDFs
are identical. In contrast, in this study with a realistic
model and real observations, the transformations need to
be defined separately for model precipitation and obser-
vations (see red and green colors in Fig. 2). Specifically, the
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transformation of the model precipitation is performed
based on the CDF computed from the model climatology;
and the transformation of the precipitation observations is
performed based on the CDF computed from the obser-
vation climatology. In this way, the model climatology and
the observation climatology are first converted to the same
0-1 scale of their cumulative distribution using the corre-
sponding transformation (Fig. 2d), then the same F°~! is
applied to obtain the Gaussian variables (Fig. 2b).
Therefore, this method can essentially remove the clima-
tological bias between these two variables that is de-
pendent on the precipitation values, referred to as the
“amplitude-dependent bias.” The effect of the separate
transformations can be large because the precipitation
distribution of the model and observational precipitation
can be very different at some regions (e.g., Figs. 2i-1),
which will be discussed in later sections.

4. Cumulative distribution functions of the
climatological precipitation data

We first construct the empirical CDFs for both the GFS
model background precipitation and the TMPA observa-
tions, based on their climatological samples. These model
and observational CDFs will be compared, and they will
also be used in defining the Gaussian precipitation trans-
formation. For a relevant comparison useful for guiding
the assimilation of precipitation, we examine the quanti-
ties that are used in the data assimilation, which depend on
the design of the specific data assimilation system. We now
describe how we collect the 10-yr samples of the model
background precipitation and observations in correspon-
dence with our proposed 4D-LETKF experiments.

Figure 3 shows a schematic of the sample preparation.
First, for the model precipitation, we would like to
have the “‘background values,” which are usually the



FEBRUARY 2016

short-term (e.g., 6 h) forecasts from the analyses. In our
system of 4D-LETKF, forecast variables within the pe-
riod from 3 to 9h will be used as the model background
(Hunt et al. 2004; Miyoshi and Yamane 2007). There-
fore, we conduct a series of 9-h GFS model forecasts at
desired resolutions (T62 and T126 in this study) every
6h initialized from 10-yr (2001-10) CFSR reanalysis
data, then the 3-9-h forecasts are collected to form a
series of model backgrounds. The GFS model outputs
forecast fields every hour in the form of the in-
stantaneous precipitation rate; thus, we can either pick
up the precipitation rates every 3 h corresponding to the
TMPA observations or compute the 6-h accumulated
precipitation centered at time ¢ by

1 t+2 1
P(6h)’:§Prt73+ t,g‘,ZPrt,+§Pr[+3’ (8)

where Pr, is the precipitation rate (mmh™') at time .
Note that although we could directly use reanalysis
precipitation as the model precipitation samples without
performing the short-term forecasts, running the fore-
casts using the proposed data assimilation system is
preferable because the existing reanalysis dataset may
be produced in a way that is different from the current
data assimilation system (e.g., different configurations
of the forecast model), and the specific variable used in
the data assimilation, such as the accumulated pre-
cipitation within the 3-9-h forecast, may not be provided
in the reanalysis dataset.

For the observations, the same 10-yr (2001-10) data
should be collected to form a series of equivalent ob-
servational data. The original TMPA data are provided
with the 3-hourly precipitation rate at a 0.25° longitude—
latitude resolution. After upscaling the TMPA data to
the Gaussian grids used by the T62/T126 GFS model,
either the instantaneous precipitation rate as in its
original form, or the 6-h accumulated precipitation
amount can be used to compute the statistics. The 6-h
accumulated precipitation centered at time ¢ is com-
puted by a weighted average:

3 3
P(6h)t:§Prr73 +3Prt+§PrH3. 9)

After collecting large samples of model background
and observational precipitation values, their CDFs are
computed using the method described in section 3b, for
each T62 grid point and each 10-day period of year (3

periods per month; 36 periods in total); that is,
F = F(y;location, period of year), (10)

where y can be either model or observed 6-h accumu-
lated precipitation in their original value, and F is the
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CDF, as previously defined in Egs. (2) and (3). The real
data contain large spatial and temporal variabilities.
Therefore, to create a more ‘“‘continuous” CDF field
smoothly varying in space and time, we include all data
within 500-km radius and =2 periods (*20 days) when
computing the CDF at each grid point and each period.
This choice also increases the sample sizes and thus reduces
the sampling errors. The grid numbers within the 500-km
radius are about 20 for the T62 resolution and 80 for the
T126 resolution (changing with the geographical location),
so the total grid numbers used to construct the CDF for
each point are roughly 10 (yr) X 365 (daysyr ') X
4 (cycles day ') X (5 periods 36 periods ') X {20, 80} =
{4x10% 1.6x10°} for the {T62, TI126} resolution,
respectively.

We already presented in Fig. 2 the examples of CDFs
at three arbitrary locations in different climatological
regions—the extratropics, the tropics, and the marine
stratocumulus region—for demonstrating how to construct
the Gaussian transformation. The marine stratocumulus
region shows a large discrepancy between the CDFs of the
model and observational precipitation (Figs. 2i-1). To vi-
sualize the entire CDF field as a function of the geographic
location, we plot the maps of precipitation amounts at
various cumulative distribution levels also for the period of
11-20 January for both the TMPA data and the T62 GFS
model backgrounds (Fig. 4). By comparing the fields at the
same cumulative distribution levels, it is clearly found that
the model has a positive bias compared to the observations
since the amounts in Figs. 4b, 4d, and 4f are generally
greater than those in Figs. 4a, 4c, and 4e. Positive biases are
also generally seen in other seasons (not shown). In terms
of geographical patterns, the CDF fields of the model and
observations agree reasonably well in most regions. How-
ever, in some particular regions, they actually have a large
disagreement. For example, the GFS forecast shows a
local maximum in the precipitation amount at both the
30% and 60% cumulative distribution levels (Figs. 4b,d)
in the Pacific Ocean west of South America (at about
20°S), but this local maximum does not appear in the
TMPA data (Figs. 4a,c,e). This is the region correspond-
ing to the marine stratocumulus precipitation.

This discrepancy in these regions is most apparent in
maps showing the probability of zero precipitation. As
shown in Fig. 5, the most significant differences in the
zero precipitation probability between the model and
observations are found over the regions where the ma-
rine stratocumulus are formed over cold waters, in-
cluding the subtropical eastern Pacific in both the
Northern and Southern Hemispheres (west of North and
South America), and west of Australia and Africa. In
the TMPA data, it rarely rains in these regions, typically
with 90% probability of zero precipitation or 10%
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(ﬂ) TMPA at T62 grid: Gh Precip (mm) at CDF=30% [Period: Jan 11-20]
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FIG. 4. Comparison of TMPA and GFS precipitation amounts (mm) for different
levels of precipitation CDFs: (a),(b) 30%; (c).(d) 60%; and (e),(f) 90% cumulative
distribution levels during the 11-20 Jan period for the 10-yr (2001-10) data. (a),(c),(e)
TMPA data and (b),(d),(f) T62 GFS model forecasts.
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FI1G. 5. The maps of (all season) zero precipitation probability (%) in (a) the TMPA data and
(b) the T62 GFS model forecasts for the 10-yr (2001-10) data.

probability of nonzero precipitation (green open circle
in Figs. 2k and 21). In contrast, the model drizzle is too
frequent, with typically 80% probability of nonzero
precipitation (red open circle in Figs. 2k and 21). Several
studies of the marine stratocumulus (vanZanten et al.
2005; Leon et al. 2008) indicate that the real nonzero
precipitation probability is not as high as the model
climatology here, favoring the TMPA data. The pre-
cipitation parameterization in the low-resolution T62
GFS model may be unable to correctly simulate the low
level of marine stratocumulus precipitation. However, it
has also been documented that the lack of sensitivity of
IR and microwave imagers to light precipitation can
lead to a low precipitation occurrence bias over the
ocean in the satellite precipitation estimates (Huffman
et al. 2007; Behrangi et al. 2012). Therefore, these large
differences could come from both high bias in the model
and low bias in the TMPA data. Since in this paper we
do not attempt to improve either the model or the
observations, a reasonable strategy is not to assimilate the
precipitation data in regions where the disagreement be-
tween the model background and the observations is large.

5. Joint probability distributions

In this section we use the joint probability distribution
diagrams to more clearly show the relationship between
the model background precipitation and the precipitation
observations. All data points in the 10-yr samples are
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included in the statistics. Results with different trans-
formation methods, different variables (i.e., precipitation
rate versus accumulated precipitation), and different
resolutions will be shown and discussed.

a. Original data versus logarithm transformed
precipitation

Figure 6 shows the joint probability distribution dia-
grams between the 6-h accumulated precipitation in the
T62 GFS model background and in the TMPA data
upscaled to the same T62 grids. Different trans-
formation methods are used in each subplot. Only
nonzero precipitation is shown in the figures because
when the zero precipitation is also plotted, it just adds
two saturated lines along the x axis (J, y,.,,) and y axis
(¥,er0» ¥) Tepresenting the abundance of zero precipita-
tion in either the model background or the observation
data (not shown). One would expect that the maximum
probability regions should be located along the one-to-
one diagonal line for a variable that is useful for data
assimilation. However, when the joint probability distribu-
tion diagram is plotted without a transformation method
(Fig. 6a), we barely see any correlation in precipitation
between the model background and the observations.! The

'In this case, the R? value computed from linear regression
shown in the figure may not be particularly meaningful, since the
correlation largely comes from the off-diagonal regions.
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FIG. 6. Joint probability distributions of the 6-h accumulated precipitation with different transformation methods between the T62 GFS
model background and the TMPA data upscaled to the same T62 grids. (a) No transformation (mm), (b) exact logarithm transformation
[e=0in Eq. (1)], and (c) “modified” logarithm transformation (e = 0.6 mm) applied to the precipitation variables. Samples are collected
for the 10-yr (2001-10) period, and only positive precipitation is shown.

probability of small precipitation amounts is saturated and
not oriented along the one-to-one line. In addition, the
Gaussianity of the original precipitation variable is ob-
viously very poor (see skewness and kurtosis shown in
Table 1). These statistical properties partly explain why
the original precipitation is not a good variable for data
assimilation and an appropriate transformation of pre-
cipitation is needed.

When we calculate the joint probability using loga-
rithm transformed precipitation [without adding a con-
stant in the logarithmic function; a« =0 in Eq. (1)]
(Fig. 6b), the curved line of the maximum probability
(indicated with a red dashed curve) is clearly seen. This
maximum probability curve is to the right of the one-to-
one line, indicating an amplitude-dependent positive
bias of the model precipitation when compared to the
TMPA data. In this data assimilation study, we do not
consider whether the model precipitation or the TMPA
data is more correct, but it is clearly better to remove
this bias before data assimilation. For example, bias
correction schemes have been widely used in the mod-
ern satellite radiance data assimilation (e.g., Derber and
Wu 1998; Dee 2005). In addition, the skewness and
kurtosis calculation indicates that the climatological
precipitation distribution after the logarithm trans-
formation becomes much more Gaussian than the
original distribution (Table 1).

An interesting fact is found when the “modified”
logarithm is used [i.e., a constant « =0.6mm (6h) ' is
added in the transformation; Eq. (1)]. In Fig. 6c, satu-
ration in the small precipitation amounts, as in Fig. 6a, is
seen again. The maximum probability curve near the
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one-to-one line is still retained but it is less obvious
than that in Fig. 6b. Therefore, from this joint proba-
bility distribution diagram, it is inferred that the use
of a too large constant « in the logarithm trans-
formation may not be a good solution, since it makes
the behavior of the transformed variable in the small
precipitation amounts similar to the original variable,
and thus reduces the discrimination for small amounts.
A careful choice of the « value is thus essential.

b. Precipitation rate versus accumulated precipitation

Figure 7a shows the same diagrams but for the in-
stantaneous precipitation rate [in a unit of mm (6h) !
before the logarithm transformation, and a =0 in the
logarithm transformation]. Comparing it with Fig. 6b,
it is clear that the correlation with the precipitation
rate is worse than that with the accumulated pre-
cipitation amount. In particular, a multimodal feature is
seen in the model precipitation. The precipitation rate

TABLE 1. The skewness and kurtosis for the precipitation dis-
tributions in the GFS model and TMPA observations using dif-
ferent transformation methods. A Gaussian distribution has zero
skewness and kurtosis. Samples are collected for the 10-yr (2001-
10) period and within 50°N-50°S, and only positive precipitation
is used.

Skewness Kurtosis
Transformation methods GFS TMPA GFS TMPA
No transformation 2.32 4.67 7.50 38.5
Logarithm transformation  —0.16 0.24 —0.81 —0.87
Gaussian transformation 0.22 0.24 —-041 -0.14
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FIG. 7. As in Fig. 6b, but for the logarithm transformed (a) instantaneous precipitation rate [mm (6 h) ! before
the transformation] at the T62 resolution and (b) 6-h accumulated precipitation (mm before the transformation) at
the T126 resolution in both the GFS model background and the TMPA data.

produced from the T62 GFS model tends to be con-
centrated at several ranges (roughly [—-1.2, —0.2], [0.2,
0.6], and [1.6, 2.6] in the logarithm transformed value),
which could be related to some deficiencies of the pre-
cipitation parameterization at this low resolution. The
lower correlation may also be a result of the timing error
of the precipitation parameterization scheme. The in-
stantaneous precipitation rate is too sensitive to the
timing error, which is common for the precipitation
produced from cumulus parameterizations. For exam-
ple, Chao (2013) showed that cumulus precipitation
schemes can have large systematic errors in the pre-
cipitation diurnal cycle over the land. Therefore, al-
though the accumulation of precipitation discards the
information of the time variations of the precipitation
within the 6-h assimilation window, the 6-h accumulated
value of precipitation would be still better for the as-
similation than the precipitation rate. The successful
assimilation of precipitation demonstrated by Lopez
(2011, 2013) also used the 6-h accumulated pre-
cipitation. Nevertheless, we note that the model
resolution we use is fairly coarse, and the model pre-
cipitation could perform better in a higher-resolution
model.

¢. Resolution (T62 versus T126)

The same diagram of Fig. 6b but based on higher-
resolution results (6-h accumulated precipitation) is
shown in Fig. 7b. We carry out all the same processes
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illustrated in Fig. 3 at T126 resolution. At this resolution,
the bias between the model and observational pre-
cipitation is clearly smaller than that at the T62 resolu-
tion as seen in the joint probability distribution diagrams
(i.e., the deviation of the maximum probability line from
the one-to-one line in Fig. 7b is smaller than that in
Fig. 6b); however, the correlation between the model
and observations also becomes slightly lower than that at
T62 (i.e.,0.1625 versus 0.1822 in R?). This is probably due
to the larger random error in the higher-resolution model
and observation data. By spatially averaging the field, this
random error can be reduced (Huffman et al. 2010),
which may be easier for the precipitation assimilation.
However, there is certainly some loss of information
caused by upscaling the observation data to a lower
resolution, and also a reduction in the accuracy of nu-
merical models by using the low-resolution configura-
tion. Therefore, the choice of the resolution may depend
on the specific purpose of the work. In this study, we
propose that, for the purpose of improving large-scale
medium-range forecasts, using the spatially averaged
(i.e., upscaled) TMPA data would be a reasonable
choice. Indeed, we show in the companion paper
(LMK16) that the assimilation of the global large-scale
(lower resolution) precipitation field at the T62 resolu-
tion is able to improve the 5-day model forecasts. We do
not argue that the higher-resolution model or observa-
tions are useless in precipitation assimilation, but that
there is a “trade-off”” between the resolution and errors.
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FI1G. 8. The joint probability distribution of (a)-(c) the logarithm transformed (a = 0) and (d)—(f) the Gaussian transformed 6-h ac-
cumulated precipitation between the T62 GFS model background and the TMPA data upscaled to the same T62 grids. (a),(d) Global
results; (b),(e) only the precipitation over the land; and (c),(f) only the precipitation over the ocean. Samples are collected for the 10-yr

(2001-10) period, and only positive precipitation is shown.

Since it has been shown that model resolution leads to a
large impact on the precipitation forecasts (e.g., Wen
et al. 2012), assimilating higher-resolution precipitation
data and solving the issues regarding the random errors
would be important research. Using a higher-resolution
model that has better representation of precipitation
processes but still employing the spatial average in the
observation operator could also be considered.

d. Gaussian transformed precipitation

Using the CDFs constructed in section 4, we can de-
fine the Gaussian transformations of the GFS model
precipitation and the TMPA data following section 3b.
Note again that the CDFs are computed for each T62
grid point and each 10-day period of year, and smoothed
by including the nearby grids and times. Although this
smoothing helps to construct a smooth CDF field and
thus a more continuous definition of the Gaussian
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transformation, the disadvantage of this method is that
the transformation would not be good in regions with an
intrinsically large gradient of precipitation climatology,
such as regions with complex terrain and orographic
precipitation.

With the Gaussian transformation, the joint proba-
bility distribution diagrams are shown in Fig. 8.
Figures 8a and 8d are the global results. Figure 8a uses
the logarithm transformation already shown before
(Fig. 6b), and Fig. 8d is the same figure plotted with the
Gaussian transformed variables. First, the figure shows
that with the Gaussian transformation, the joint dis-
tribution of the precipitation variables become more
normal. It is found from the skewness and kurtosis
statistics (Table 1) that the skewness for the climato-
logical precipitation distributions in the GFS model
and TMPA observations using the logarithm and
Gaussian transformation methods are similar, while
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FIG. 9. As in Fig. 8, but for (a),(d) the Northern Hemisphere extratropics (20°-50°N); (b),(e) the tropical regions (20°N-20°S); and
(c),(f) the Southern Hemisphere extratropics (20°-50°S).

the Gaussian transformation method particularly im-
proves the kurtosis. However, as mentioned in section
3b, what is most important is the Gaussianity of the
error distribution, not of the climatological distribution
examined here. The examination of the Gaussianity of
the real error distribution is shown in LMK16, and it
further confirms the improving Gaussianity of the
background precipitation errors in the LETKF data
assimilation.

Second, it is also important to indicate that the max-
imum probability curve becomes more collocated with
the one-to-one line (i.e., the biases are reduced), and the
correlation square (R?) value increases slightly. In our
transformation method defined for model and observa-
tions separately, the model climatology and the obser-
vation climatology are first converted to the same 0-1
scale (cumulative distribution), and then the same F¢~!
is applied to obtain the Gaussian variables. Therefore, this
method can effectively reduce the amplitude-dependent
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bias as seen in Fig. 8a. We call this method a “CDF-based
bias correction.”

The same diagrams are then plotted with land data
only (Figs. 8b,e), ocean data only (Figs. 8c.f), the
Northern Hemisphere extratropics (20°-50°N; Figs. 9a,d),
the tropical regions (20°N-20°S; Figs. 9b,e), and the
Southern Hemisphere extratropics (20°-50°S; Figs. 9c,f).
Note that the TMPA only covers from 50°S to 50°N so
the statistics are done within this extent. Overall, the
improvements in the normality, centeredness, and cor-
relations that we found in the global results are also
generally found over the separate validation regions.
The amplitude-dependent biases are reduced in all re-
gions. The skewness and kurtosis calculations in every
region indicate that the skewness for logarithm and
Gaussian transformations are of similar magnitude, but
the kurtosis of the Gaussian transformed precipitation
distribution is much reduced compared to the logarithm
transformation (not shown). Regarding the correlation
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FIG. 10. The maps of correlation between precipitation in the GFS model background and in the TMPA ob-
servations during the periods of (a) 11-20 Jan, (b) 11-20 Apr, (c) 11-20 Jul, and (d) 11-20 Oct for the 10-yr (2001-
10) data. The blue contours indicate correlations equal to 0.35, which is the threshold used for the precipitation

assimilation in LMK16.

between model and observed precipitation, the increase
of the correlation using the Gaussian transformation is
particularly notable in the land region (Figs. 8b,e) and in
the Northern Hemisphere extratropics (Figs. 9a,d). It
slightly decreases over the ocean (Figs. 8c,f) and the
tropics (Figs. 9b,e), but the change is small. In summary,
we find that using separate Gaussian transformations
applied to model background precipitation and obser-
vations, defined in terms of each grid point and each
period of year, the statistical properties of the pre-
cipitation variable become significantly more suitable
for data assimilation.

6. Time correlation maps

Using the same 10-yr samples of data, and the same
Gaussian transformation, we also calculate the time
correlations between the 6-h accumulated model and
observational precipitation at each grid point and each
10-day period of year so that their geographical distri-
butions can be displayed. Similar to the CDF calcula-
tion, when computing the correlation at each grid point,
the data within *2 periods (=20 days) are considered
together to obtain the temporally smoothed field. Thus
this correlation score is a simple measure of the statis-
tical “‘consistency” between the model and the obser-
vation climatologies. Figure 10 shows the global
correlation maps in four different periods in January,
April, July, and October. Overall, the dry area shows
smaller correlations, which is expected because it may
not easy to capture the small or infrequent precipitation
amounts by the moist physical parameterization in the
model. Besides, the correlation over ocean is generally
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much higher than that over land, except for the marine
stratocumulus region, where the correlations are very
low as shown from the discrepancy of the CDF statistics
discussed in section 4. Over land, the desert areas (such
as the Sahara) show persistent low correlations over the
year probably because of the infrequent precipitation
events and small precipitation values. The mountainous
areas such as the Tibetan Plateau also show low corre-
lations, which could be partly due to the problem of
orographic precipitation in the satellite-based estimates
(Shige et al. 2013). Over the United States, the eastern
area has higher correlation than the western area.

These time correlation maps suggest that the precip-
itation data distributed over the regions with reasonable
correlations can be useful in the data assimilation to
improve the model analyses and forecasts, but we hy-
pothesize that the data over regions with very low corre-
lation would be difficult to use, because of shortcomings in
the precipitation parameterization in the model. There-
fore, the results suggest to set up a threshold of the cor-
relation value below which the observations are rejected
in the data assimilation process. We employed this ap-
proach, rejecting observations in regions where the clima-
tological correlation was less than 0.35, in the precipitation
assimilation experiments and obtained a small improve-
ment over not using this criterion (LMK16).

7. Conclusions and suggestions for precipitation
assimilation

This article is the first part of our GFS/TMPA pre-
cipitation data assimilation study. We calculate statistics
with the precipitation variable in the model background
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and observations from the point of view of data assim-
ilation. To achieve meaningful statistics, the samples
are carefully constructed using the same model with
the same forecast period, observation variables, and
resolution, as we use in the real precipitation assimila-
tion experiments (LMK16). These statistical results can
indicate how to extract more useful information from
the precipitation observations.

First, the errors of precipitation in numerical models
can contribute to a substantial amount of the difficulties
observed in the precipitation assimilation. For example,
our statistical results indicate that the GFS model at
both T62 and T126 resolution generally has positive bias
in precipitation as compared to the TMPA observations,
and that it has a severe problem in parameterizing the
marine stratocumulus precipitation. In particular,
the “‘precipitation scale” is one of the key points of the
problem. The precipitation in the model is simulated
by a cumulus parameterization and/or a microphysics
parameterization scheme, but the behavior of such
methods depends intrinsically on different grid resolu-
tions. In addition, precipitation usually appears in ran-
dom patches, especially for convective precipitation,
leading to large random errors at higher resolution. The
timing of the convective precipitation is also difficult to
be simulated by models. The high spatial and temporal
variability further leads to large representativeness er-
rors, which are also dependent upon resolution and
important to data assimilation. In this study, we find the
GFS model precipitation at T126 resolution to be less
biased than that at T62 resolution, but the correlation to
the observations is slightly lower, presumably due to the
increasing difficulty in collocating forecasted and ob-
served precipitation that comes with model resolution.

Performing spatial and/or temporal averages can ef-
fectively reduce these errors. Huffman et al. (2010)
recommended TMPA users to create time/space aver-
ages that are appropriate to their application from the
original finescale data. Bauer et al. (2011) also pointed
out that using spatially/temporally smoothed precipita-
tion data in assimilation can be beneficial. Based on
similar arguments, accumulated precipitation (equiva-
lent to a time average) is expected to be a preferable
variable to be used in the data assimilation, rather than
the instantaneous precipitation rate. However, this
strategy may seem to contradict the continued pursuit of
higher resolution, especially if we are able to afford
high-resolution models and take high-resolution obser-
vations. We consider that this is a trade-off between
resolution and errors. If the main goal is to improve the
medium-range model forecasts, using a smoothed lower-
resolution precipitation to improve the large-scale
analysis can be a reasonable choice. We note that the

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:44 PM UTC

LIEN ET AL.

677

strategy needed for effective assimilation of convective-
scale precipitation such as meteorological radar observa-
tions could be quite different from the current discussion
(e.g., Fabry and Sun 2010; Yussouf et al. 2013).

The ultimate solution to overcome the above problems
would be attained by the improvement of the model
precipitation parameterization and the satellite pre-
cipitation estimates. Strenuous efforts have been made by
the modeling (e.g., Han and Pan 2011) and remote sensing
retrieval communities (e.g., Tapiador et al. 2012). How-
ever, within the scope of our data assimilation study, we
do not attempt to improve the model or the observations.
Our goal is to optimally use this imperfect observation
dataset in this imperfect model, to improve the model
forecasts of both precipitation and nonprecipitation var-
iables, such as wind, temperature, and pressure, by using
appropriate error covariances in the data assimilation. To
achieve this goal, we suggest applying separate Gaussian
transformations to model background and observational
precipitation, which can improve the Gaussianity of the
variables while also effectively removing the amplitude-
dependent biases between them. This idea is an extension
of the Gaussian precipitation transformation proposed
for a perfect model by LKM13 in which the same trans-
formation was applied to both model precipitation and
observations.

However, since the transformation method is just an
approximate way to mitigate the non-Gaussianity issue
in the data assimilation, and both the transformation
and the bias correction are constructed based only on
the climatologies, there should be some limits of these
transformation and correction approaches. Therefore,
precipitation observations that are deemed to be “too
bad to be assimilated” may need to be rejected. Note
that the statement ““an observation is bad for assimila-
tion” is not necessarily because the observation itself is
bad, but because the model is not capable of making use
of this observation in that location and time. The samples
of long-term model and observational precipitation data
prepared in this study could be a useful reference to de-
fine appropriate quality control criteria to assimilate only
the “‘useful” precipitation observations.

Based on the discussion above, we suggest that the
problems associated with the assimilation of large-scale
satellite precipitation data with the goal to improve the
medium-range model forecasts can be addressed as
follows:

o Non-Gaussianity of the precipitation variable: apply
the Gaussian transformation to both model and obser-
vational precipitation. In LKM13, this was shown to be
essential for effective assimilation of precipitation using
the LETKEF in perfect-model simulation experiments.
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LKM13 also suggested performing the assimilation
only when there are enough background members with
nonzero precipitation.

« Inconsistent probability distributions of precipitation
in model climatology and observation climatology:
define the Gaussian transformations for the model
precipitation and the observational precipitation
separately based on their own CDFs so that the
amplitude-dependent bias is reduced. We call this
method a “CDF-based bias correction.”

» Timing errors of the precipitation: use 6-h accumu-
lated amounts.

o Deficient precipitation parameterization: do not as-
similate observations where the model is deficient.
Appropriate quality control criteria (e.g., a minimum
climatological correlation score between the model
and the observational precipitation) can be considered
to keep only the precipitation observations that the
model can effectively use.

o High-resolution observations contain large random
errors: perform spatial and/or temporal averages to
reduce the random errors; upscale the observations to
large-scale grids.

These suggestions to precipitation assimilation based
on the statistical approaches were implemented and
found to significantly improve the T62 5-day model
forecasts, as shown in LMK16.
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