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ABSTRACT

Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of

the most important being the non-Gaussian error distributions associated with precipitation, and large

model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating

precipitation has been found to be difficult. To identify the challenges and propose practical solutions to

assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP

Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The

samples are constructed using the same model with the same forecast period, observation variables, and

resolution as in the follow-on GFS/TMPA precipitation assimilation experiments presented in the

companion paper.

The statistical results indicate that the T62 and T126 GFS models generally have positive bias in pre-

cipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus

precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the

commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a

better relationship between the model and observational precipitation. When the Gaussian trans-

formations are separately applied to the model and observational precipitation, they serve as a bias cor-

rection that corrects the amplitude-dependent biases. In addition, using a spatially and/or temporally

averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for

precipitation assimilation.

1. Introduction

In recent years, several global precipitation estimations

from a variety of remote sensing platforms have become

available, such as the Tropical Rainfall MeasuringMission

(TRMM) Multisatellite Precipitation Analysis (TMPA;

Huffman et al. 2007, 2010) and the Global Satellite Map-

ping of Precipitation (GSMaP; Ushio et al. 2009).

Corresponding author address: Guo-Yuan Lien, Data Assimila-

tion Research Team, RIKEN Advanced Institute for Computa-

tional Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe,

Hyogo 650-0047, Japan.

E-mail: guo-yuan.lien@riken.jp

Denotes Open Access content.

FEBRUARY 2016 L I EN ET AL . 663

DOI: 10.1175/MWR-D-15-0150.1

� 2016 American Meteorological Society
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:44 PM UTC

mailto:guo-yuan.lien@riken.jp


Meanwhile, many efforts to assimilate precipitation ob-

servations have also been made (e.g., Tsuyuki 1996, 1997;

Falkovich et al. 2000; Davolio and Buzzi 2004; Koizumi

et al. 2005; Mesinger et al. 2006). However, serious diffi-

culties still remain in assimilating the precipitation data.

For example, most data assimilation schemes, including

the variational methods and the ensemble Kalman filter

(EnKF) methods, assume Gaussian error distributions for

both observation and model background. If the error dis-

tribution is not Gaussian, the analysis may not be optimal.

Since the precipitation-related variables are far from

Gaussian, the non-Gaussianity issue becomes a severe

problem for precipitation assimilation. Besides, both the

model errors and observation errors are important issues

for precipitation assimilation. As a consequence, a widely

shared experience is that the precipitation assimilation can

be useful in improving themodel analyses, but the forecast

improvement is usually limited to the first few forecast

hours (e.g., Falkovich et al. 2000; Davolio and Buzzi 2004;

Tsuyuki and Miyoshi 2007). These issues have been dis-

cussed and summarized in several articles, such as Errico

et al. (2007), Bauer et al. (2011), and Lien et al. (2013,

hereafter LKM13). Notwithstanding these difficulties,

several recent studies have shown some usefulness of

precipitation assimilation (Lopez 2011, 2013; Zupanski

et al. 2011; Zhang et al. 2013).

Data assimilation methods that do not assume

Gaussian errors, such as a particle filter, are usually too

computationally expensive. Alternatively, a variable

transformation technique is a computationally cheaper

and practical solution to mitigate the non-Gaussianity

problem in realistic geophysical data assimilation sys-

tems (Bocquet et al. 2010; LKM13; Amezcua and van

Leeuwen 2014). For precipitation data assimilation, the

precipitation values are usually transformed by a loga-

rithmic function before assimilating them into themodel

(e.g., Lopez 2011). Instead of the logarithmic trans-

formation, LKM13 proposed to apply the Gaussian ana-

morphosis method to precipitation based on its model

climatology, under the assumption that a forecast variable

with more Gaussian climatological distribution would

result in a more Gaussian error distribution. With this

transformation, they succeeded in showing effective as-

similation of global precipitation in their proof-of-concept

observing system simulation experiments (OSSEs),

using a simplified general circulation model and the local

ensemble transform Kalman filter (LETKF). In their

experiments, precipitation assimilation not only improves

the analyses but also improves the model forecasts over

the entire 5-day forecast period in their experiments.

Although a significant forecast improvement by pre-

cipitation assimilation was demonstrated in LKM13

with an idealized system, in real systems improvements

are generally very limited or even absent. The distinct

challenges associated with the use of realistic model and

real observations include the large and unknown errors

related not only to the moist physical parameterization

in the model but also to the observations. Since both the

model precipitation and the observations could have

large errors, the long-term statistics of these two quan-

tities may be very different, which is harmful to the data

assimilation use. Therefore, before performing real

precipitation data assimilation, it is worthwhile to first

investigate the statistical characteristics of precipitation

in both model and observation datasets that we would

like to use, which are presented in this paper.

We investigate the differences in probability distri-

butions between the precipitation in a series of short-

term model forecasts and a precipitation observation

dataset, to isolate the different characteristics of the real

model and observations. It is noted that the challenges

introduced by these differences could not be addressed

in LKM13 since they used an identical-twin OSSE

method. Here we use more realistic settings: the Na-

tional Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS), running at a low reso-

lution, and the TMPA data as the precipitation obser-

vations. Given the low resolution feasible in our study,

the main focus of our work is assimilation of the global

large-scale precipitation, which could be particularly

important for improving medium-range model fore-

casts. Since the probability distributions are dependent

on the use (or lack of use) of variable transformations,

the results with different transformation methods are

investigated. We also show the correlation between

model forecasts and observations at each grid point on a

map. Several suggestions for real-data precipitation as-

similation are made in the concluding section of this

article. Although we choose to use the NCEP GFS

model and the TMPA data to study the precipitation

data assimilation, the same analysis can also be per-

formed with other models and observation datasets.

The paper is organized as follows. The GFS model and

TMPA observations are briefly introduced in section 2.

Section 3 describes the transformationmethodswewill use

in the precipitation statistics. A series of statistical results

are then presented in the following sections. Section 4

shows the cumulative distribution functions (CDFs) of the

precipitation data, which will be used to define the

Gaussian transformation of precipitation. Section 5 shows

the joint probability distribution diagrams between the

model and observational precipitation and compares the

results in terms of the transformation methods, the tem-

poral integration of precipitation, and the resolution

of precipitation data. Section 6 presents the geographic

distribution of correlation scores between these two
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variables. Conclusions and suggestions for the pre-

cipitation assimilation are given in section 7. In addition,

the successful assimilation of theTMPAdata following the

guidance derived from this study is presented in a separate

paper (Lien et al. 2016, hereafter LMK16).

2. The model and observations

The GFS model is the operational global numerical

weather prediction (NWP) model used at the NCEP. It

is one of the major world state-of-the-art operational

NWP model. The GFS model can be run at various

spectral resolutions on a hybrid sigma/pressure co-

ordinate. In this study we focus on the large-scale global

precipitation and also consider the computational con-

straints, so the experiments and analyses are done with

two lower-resolution configurations: T62 and T126

(roughly equivalent to 200- and 100-km horizontal res-

olutions) with 64 vertical levels (L64). Convective pre-

cipitation is parameterized using a modified Simplified

Arakawa–Schubert (SAS) scheme (Pan and Wu 1995;

Han and Pan 2011), considering both deep and shallow

convection.

The TMPA (Huffman et al. 2007, 2010) is a gridded

precipitation dataset compiled from multiple satellite

sensors. It has a global coverage from 508S to 508N with

0.258 spatial resolution and 3-h temporal resolution. The

estimated surface precipitation rate is provided. The

primary data sources are the low-earth-orbit satellites

such as the TRMMMicrowave Imager (TMI), the Special

Sensor Microwave Imager (SSM/I) and Special Sensor

Microwave Imager/Sounder (SSMIS) on the Defense

Meteorological Satellite Program (DMSP) satellites, the

Advanced Microwave Scanning Radiometer-Earth Ob-

serving System (AMSR-E) on Aqua, the Advanced Mi-

crowave Sounding Unit-B (AMSU-B) on the National

Oceanic and Atmospheric Administration (NOAA)

satellite series, and the Microwave Humidity Sounder

(MHS) on both the NOAA and the EUMETSAT

MetOp series. The microwave satellite observations

have a strong physical relationship to the hydrometeors

and thus the surface precipitation, but they are spatially

and temporally inhomogeneous. To fill the gaps left from

the low-earth-orbit sensors, the infrared (IR) data col-

lected by the geosynchronous-earth-orbit satellites are

used as the secondary data sources with calibration by the

microwave precipitation estimates, though the accuracy

of precipitation derived from the IR data is lower. For the

research version (i.e., not in real time) of the TMPA,

these satellite-derived precipitation amounts are further

rescaled based onmonthly rain gauge analyses to achieve

accurate statistics in the climatological scale, while in the

real-time version the satellite-derived precipitation is

rescaled with a climatological correction to the research

version. With the above data processing procedure, the

TMPA has a very high (.95%) data coverage rate

FIG. 1. (a) The data coverage rate (%) and (b) the mean daily precipitation (mm) of the 14-yr

(1998–2011) TMPA.
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(Fig. 1a), thus becoming a potential good observational

source for the assimilation of global precipitation. In this

study, we use version 7 of the TMPA research products,

labeled as 3B42, released in 2012 (Huffman et al. 2012).

The climatological mean daily precipitation computed

from the 14-yr TMPAdata (1998–2011) is shown in Fig. 1b.

Tomake the 0.258-resolution TMPAdata correspond to

the lower resolutions of the T62/T126 GFS model, we

preprocess the precipitation rate data, upscaling the orig-

inal TMPA grids to the T62 or T126 Gaussian grids used

by the GFS model using an area-conserving remapping.

3. Transformation of precipitation

In this section, several transformations for pre-

cipitation assimilation are described, including the

widely used logarithm transformation, and the trans-

formation based on Gaussian anamorphosis used in

previous studies such as Simon and Bertino (2009),

Schöniger et al. (2012), and LKM13. The trans-

formations have a profound impact on the statistical

results shown in later sections.

a. Logarithm transformation

The logarithm transformation

~y5 ln(y1a) (1)

is a simple and frequently used method to transform

precipitation. Here, y is the original variable, ~y is the

transformed variable, and a is a tunable constant added

to prevent the singularity at zero precipitation (y5 0).

Using the logarithm transformation, Lopez (2011) suc-

cessfully assimilated the NCEP stage-IV precipitation

analysis over the eastern United States, and Lopez

(2013) presented experimental results of assimilation of

the 6-hourly accumulated precipitation observations

measured by the rain gauges at synoptic stations.

b. Gaussian transformation

The logarithm transformation may be helpful for

precipitation assimilation in some regions, seasons, or

precipitation types, but a globally invariant analytical

transformation may not be applicable to every case.

Therefore, following LKM13, we will also examine the

effect of theGaussian transformation on the precipitation

statistics. Here we briefly summarize the formulation of

the Gaussian transformation in LKM13 and explain the

changes made in this study after LKM13.

1) GENERAL FORMULA

The transformation ismade by equating the twoCDFs

of the original variable y and the transformed variable ~y:

~F(~y)5F(y), or (2)

~y5 ~F21[F(y)] , (3)

where F is the CDF of y, ~F is the CDF of ~y, and ~F21 is the

inverse function of ~F. By definition, the CDFs are

bounded within [0, 1]. The CDF of the original variable

F is empirically determined from samples, and the CDF

of the transformed variable ~F can be arbitrarily chosen

so that the transformed variable can have any desired

distribution. If we choose

~F(~y)5FG(~y)5
1

2

�
11 erf

�
~yffiffiffi
2

p
��

, (4)

which is the CDF of a standard normal distribution with

zero mean and unit variance, and erf is the error func-

tion, then

FG21(P)5
ffiffiffi
2

p
erf21(2P2 1) (5)

where P is the cumulative probability, so that it becomes a

‘‘Gaussian anamorphosis’’ (e.g., Wackernagel 2003):

~y5FG21[F(y)] . (6)

In this way, the transformed variable ~y becomes a

Gaussian variable. The use of the Gaussian anamor-

phosis has appeared in several geophysical data assimi-

lation studies (e.g., Simon and Bertino 2009, 2012;

Schöniger et al. 2012). We call this method ‘‘Gaussian

transformation’’ hereafter.

Figure 2 provides an illustration of the Gaussian

transformation procedure. It displays the 10-yr clima-

tological probability density function (PDF) andCDF of

the original and transformed precipitation in both the

GFS model forecasts and the TMPA dataset, at three

selected locations for the 11–20 January period. The

collection of the model and observational precipitation

samples will be discussed in later sections, but here we

first use the plots to visualize the method. The trans-

formation starts from Figs. 2a, 2e, and 2i, which are

the very non-Gaussian PDFs of the original variables.

The red color stands for the model precipitation and the

green color stands for the observational precipitation.

Their CDFs are then calculated (Figs. 2c,g,k). Using the

inverse CDF of the standard normal distribution FG21,

the cumulative probability values are converted into the

transformed variables ~y, whose CDFs shown in

Figs. 2d, 2h, and 2l and PDFs are shown in Figs. 2b, 2f,

and 2j. It is important to note that the precipitation

distribution contains a great portion of zero values,

shown as a delta function in the PDFs and a disconti-

nuity in the CDFs, which need to be treated in a special
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manner. Following LKM13, all the zero values are

represented by half of the zero precipitation cumula-

tive probability (i.e., the median; solid circles in Fig. 2)

during the transformation:

F(0)5
1

2
P
c
, (7)

where Pc is the zero precipitation probability in the

climatology. In this way, the zero precipitation is still a

delta function in the transformed variable, but it is lo-

cated at a certain distance away from the trace pre-

cipitation values.

This method transforms the climatological distribu-

tion of the model forecast variable into a Gaussian dis-

tribution, but this does not necessarily make the

background error distributions Gaussian, as required in

the EnKF data assimilation (e.g., Ott et al. 2004).

However, it is reasonable to assume that a forecast

with a more Gaussian climatological distribution would

also result in more Gaussian forecast error distribution

(LKM13). It is difficult to validate this assumption using

the climatological data in this study but we do provide a

validation of this assumption in the companion paper

(LMK16) using the actual experimental data from the

cycling LETKF data assimilation.

It is worth mentioning that this CDF-based trans-

formation of precipitation has also been used in some

climate studies, though they are not related to data as-

similation. For example, the standardized precipitation

index (SPI) (McKee et al. 1993; Guttman 1999) com-

monly used to study drought is defined based on a sim-

ilar method, but the time scales of precipitation

accumulations they have focused on are much longer

than the 6 h used in weather data assimilation.

2) COMPUTATION OF THE CDFS AND

TRANSFORMATIONS

Some technical details are described in this subsection.

First, we regard all precipitation values smaller than

0.06mm(6h)21 as ‘‘zero precipitation’’ because such

small values in the model or observational precipitation

data are irrelevant. This choice of the threshold value

leads to good experimental results with the current GFS/

TMPA assimilation system. Note that the optimal value

of the threshold could change with different models,

observations, or assimilation techniques; however, the

current choice is close to the threshold used in LKM13,

0.1mm(6h)21.

Second, extreme values with cumulative distribution

less than 0.001 and greater than 0.999 are set to 0.001 and

0.999, respectively. Consequently, when the original

values fall outside the range in the climatological

FIG. 2. The PDF and CDF of the original precipitation and the

transformed precipitation based on the 10-yr (2001–10) model

(red) and observation (green) climatologies for (a)–(d) a grid

point in the extratropics (39.08N, 76.98W; near Maryland); (e)–(h)

a grid point in the tropics (1.08S, 120.08E); and (i)–(l) a grid point

in a marine stratocumulus region west of South America (20.08S,
84.38W). All plots correspond to the 11–20 Jan period. The

procedure of the Gaussian transformation is indicated by the

arrows [i.e., (a) to (c) to (d) to (b)]. The open circles correspond

to the zero precipitation probability and the solid circles corre-

spond to the half value (median) of the zero precipitation

probability.
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samples, they will be transformed to23.09 and 3.09. It is

noted for reference that Simon and Bertino (2012) also

discussed this problem and they used parametric linear

tails to form their transformation.

Third, we derive the CDFs from precipitation samples

using constant-width bins with respect to the cumulative

probability in [0, 1], not with respect to the precipitation

amount as it might be intuitively done. A total of 200

bins are used. The CDFs are thus represented by the 201

(including 0 and 1) discretized precipitation amounts at

each cumulative distribution levels at a 0.005 increment.

When we need to compute F(y) for a given precipitation

value y, we perform a linear interpolation from the two

nearby data points. Compared to binning with respect to

the precipitation amount, this method can more pre-

cisely represent the CDF curves using the same number

of the bins, particularly for large precipitation values.

3) SEPARATE GAUSSIAN TRANSFORMATION

APPLIED TO MODEL BACKGROUND AND

OBSERVATIONS

Following the methods described above, we can apply

the Gaussian transformation to the GFS model and the

TMPA data. However, there is an important difference

between theGaussian transformation used in LKM13 and

in this study. In LKM13, the transformation was defined

purely based on the 10-yrmodel precipitation climatology,

and the same transformation was used for both the model

and observational precipitation. There was no need to

consider the transformations of the model and observa-

tional precipitation separately because the work used

an identical-twin configuration so that the two CDFs

are identical. In contrast, in this study with a realistic

model and real observations, the transformations need to

be defined separately for model precipitation and obser-

vations (see red and green colors in Fig. 2). Specifically, the

transformation of the model precipitation is performed

based on the CDF computed from the model climatology;

and the transformation of the precipitation observations is

performed based on the CDF computed from the obser-

vation climatology. In this way, themodel climatology and

the observation climatology are first converted to the same

0–1 scale of their cumulative distribution using the corre-

sponding transformation (Fig. 2d), then the same FG21 is

applied to obtain the Gaussian variables (Fig. 2b).

Therefore, this method can essentially remove the clima-

tological bias between these two variables that is de-

pendent on the precipitation values, referred to as the

‘‘amplitude-dependent bias.’’ The effect of the separate

transformations can be large because the precipitation

distribution of the model and observational precipitation

can be very different at some regions (e.g., Figs. 2i–l),

which will be discussed in later sections.

4. Cumulative distribution functions of the
climatological precipitation data

We first construct the empirical CDFs for both the GFS

model background precipitation and the TMPA observa-

tions, based on their climatological samples. These model

and observational CDFs will be compared, and they will

also be used in defining the Gaussian precipitation trans-

formation. For a relevant comparison useful for guiding

the assimilation of precipitation, we examine the quanti-

ties that are used in the data assimilation, which depend on

the design of the specific data assimilation system.We now

describe how we collect the 10-yr samples of the model

background precipitation and observations in correspon-

dence with our proposed 4D-LETKF experiments.

Figure 3 shows a schematic of the sample preparation.

First, for the model precipitation, we would like to

have the ‘‘background values,’’ which are usually the

FIG. 3. Schematic of the preparation of precipitation samples from the (top) TMPA obser-

vation dataset and the (bottom) GFS model forecasts. For precipitation observations, a 10-yr

series of the 3-hourly TMPA data is collected; for model background precipitation, equivalent

10-yr data are formed from a series of 9-h GFS model forecasts every 6 h initialized from the

10-yr CFSR reanalysis. In each forecast cycle, the forecast is conducted with the desired

model configuration and resolutions (T62 and T126 in this study), and only the 3–9-h forecasts

are used.
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short-term (e.g., 6 h) forecasts from the analyses. In our

system of 4D-LETKF, forecast variables within the pe-

riod from 3 to 9h will be used as the model background

(Hunt et al. 2004; Miyoshi and Yamane 2007). There-

fore, we conduct a series of 9-h GFS model forecasts at

desired resolutions (T62 and T126 in this study) every

6 h initialized from 10-yr (2001–10) CFSR reanalysis

data, then the 3–9-h forecasts are collected to form a

series of model backgrounds. The GFS model outputs

forecast fields every hour in the form of the in-

stantaneous precipitation rate; thus, we can either pick

up the precipitation rates every 3h corresponding to the

TMPA observations or compute the 6-h accumulated

precipitation centered at time t by

P(6 h)
t
5

1

2
Pr

t23
1 �

t12

t05t22

Pr
t0 1

1

2
Pr

t13
, (8)

where Prt is the precipitation rate (mmh21) at time t.

Note that although we could directly use reanalysis

precipitation as themodel precipitation samples without

performing the short-term forecasts, running the fore-

casts using the proposed data assimilation system is

preferable because the existing reanalysis dataset may

be produced in a way that is different from the current

data assimilation system (e.g., different configurations

of the forecast model), and the specific variable used in

the data assimilation, such as the accumulated pre-

cipitation within the 3–9-h forecast, may not be provided

in the reanalysis dataset.

For the observations, the same 10-yr (2001–10) data

should be collected to form a series of equivalent ob-

servational data. The original TMPA data are provided

with the 3-hourly precipitation rate at a 0.258 longitude–
latitude resolution. After upscaling the TMPA data to

the Gaussian grids used by the T62/T126 GFS model,

either the instantaneous precipitation rate as in its

original form, or the 6-h accumulated precipitation

amount can be used to compute the statistics. The 6-h

accumulated precipitation centered at time t is com-

puted by a weighted average:

P(6 h)
t
5

3

2
Pr

t23
1 3Pr

t
1

3

2
Pr

t13
. (9)

After collecting large samples of model background

and observational precipitation values, their CDFs are

computed using the method described in section 3b, for

each T62 grid point and each 10-day period of year (3

periods per month; 36 periods in total); that is,

F5F(y; location, period of year) , (10)

where y can be either model or observed 6-h accumu-

lated precipitation in their original value, and F is the

CDF, as previously defined in Eqs. (2) and (3). The real

data contain large spatial and temporal variabilities.

Therefore, to create a more ‘‘continuous’’ CDF field

smoothly varying in space and time, we include all data

within 500-km radius and 62 periods (620 days) when

computing the CDF at each grid point and each period.

This choice also increases the sample sizes and thus reduces

the sampling errors. The grid numbers within the 500-km

radius are about 20 for the T62 resolution and 80 for the

T126 resolution (changing with the geographical location),

so the total grid numbers used to construct the CDF for

each point are roughly 10 (yr) 3 365 (daysyr21) 3
4 (cycles day21)3 (5 periods 36 periods21)3 f20, 80g ffi
f43 104, 1:63 105g for the fT62, T126g resolution,

respectively.

We already presented in Fig. 2 the examples of CDFs

at three arbitrary locations in different climatological

regions—the extratropics, the tropics, and the marine

stratocumulus region—for demonstrating how to construct

the Gaussian transformation. The marine stratocumulus

region shows a large discrepancy between the CDFs of the

model and observational precipitation (Figs. 2i–l). To vi-

sualize the entire CDF field as a function of the geographic

location, we plot the maps of precipitation amounts at

various cumulative distribution levels also for the period of

11–20 January for both the TMPA data and the T62 GFS

model backgrounds (Fig. 4). By comparing the fields at the

same cumulative distribution levels, it is clearly found that

themodel has a positive bias compared to the observations

since the amounts in Figs. 4b, 4d, and 4f are generally

greater than those in Figs. 4a, 4c, and 4e. Positive biases are

also generally seen in other seasons (not shown). In terms

of geographical patterns, the CDF fields of the model and

observations agree reasonably well in most regions. How-

ever, in some particular regions, they actually have a large

disagreement. For example, the GFS forecast shows a

local maximum in the precipitation amount at both the

30% and 60% cumulative distribution levels (Figs. 4b,d)

in the Pacific Ocean west of South America (at about

208S), but this local maximum does not appear in the

TMPA data (Figs. 4a,c,e). This is the region correspond-

ing to the marine stratocumulus precipitation.

This discrepancy in these regions is most apparent in

maps showing the probability of zero precipitation. As

shown in Fig. 5, the most significant differences in the

zero precipitation probability between the model and

observations are found over the regions where the ma-

rine stratocumulus are formed over cold waters, in-

cluding the subtropical eastern Pacific in both the

Northern and SouthernHemispheres (west of North and

South America), and west of Australia and Africa. In

the TMPA data, it rarely rains in these regions, typically

with 90% probability of zero precipitation or 10%
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FIG. 4. Comparison of TMPA andGFS precipitation amounts (mm) for different

levels of precipitation CDFs: (a),(b) 30%; (c),(d) 60%; and (e),(f) 90% cumulative

distribution levels during the 11–20 Jan period for the 10-yr (2001–10) data. (a),(c),(e)

TMPA data and (b),(d),(f) T62 GFS model forecasts.
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probability of nonzero precipitation (green open circle

in Figs. 2k and 2l). In contrast, the model drizzle is too

frequent, with typically 80% probability of nonzero

precipitation (red open circle in Figs. 2k and 2l). Several

studies of the marine stratocumulus (vanZanten et al.

2005; Leon et al. 2008) indicate that the real nonzero

precipitation probability is not as high as the model

climatology here, favoring the TMPA data. The pre-

cipitation parameterization in the low-resolution T62

GFS model may be unable to correctly simulate the low

level of marine stratocumulus precipitation. However, it

has also been documented that the lack of sensitivity of

IR and microwave imagers to light precipitation can

lead to a low precipitation occurrence bias over the

ocean in the satellite precipitation estimates (Huffman

et al. 2007; Behrangi et al. 2012). Therefore, these large

differences could come from both high bias in the model

and low bias in the TMPA data. Since in this paper we

do not attempt to improve either the model or the

observations, a reasonable strategy is not to assimilate the

precipitation data in regions where the disagreement be-

tween themodel background and the observations is large.

5. Joint probability distributions

In this section we use the joint probability distribution

diagrams to more clearly show the relationship between

themodel background precipitation and the precipitation

observations. All data points in the 10-yr samples are

included in the statistics. Results with different trans-

formation methods, different variables (i.e., precipitation

rate versus accumulated precipitation), and different

resolutions will be shown and discussed.

a. Original data versus logarithm transformed
precipitation

Figure 6 shows the joint probability distribution dia-

grams between the 6-h accumulated precipitation in the

T62 GFS model background and in the TMPA data

upscaled to the same T62 grids. Different trans-

formation methods are used in each subplot. Only

nonzero precipitation is shown in the figures because

when the zero precipitation is also plotted, it just adds

two saturated lines along the x axis (~y, ~yzero) and y axis

(~yzero, ~y) representing the abundance of zero precipita-

tion in either the model background or the observation

data (not shown). One would expect that the maximum

probability regions should be located along the one-to-

one diagonal line for a variable that is useful for data

assimilation. However, when the joint probability distribu-

tion diagram is plotted without a transformation method

(Fig. 6a), we barely see any correlation in precipitation

between the model background and the observations.1 The

FIG. 5. The maps of (all season) zero precipitation probability (%) in (a) the TMPA data and

(b) the T62 GFS model forecasts for the 10-yr (2001–10) data.

1 In this case, the R2 value computed from linear regression

shown in the figure may not be particularly meaningful, since the

correlation largely comes from the off-diagonal regions.
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probability of small precipitation amounts is saturated and

not oriented along the one-to-one line. In addition, the

Gaussianity of the original precipitation variable is ob-

viously very poor (see skewness and kurtosis shown in

Table 1). These statistical properties partly explain why

the original precipitation is not a good variable for data

assimilation and an appropriate transformation of pre-

cipitation is needed.

When we calculate the joint probability using loga-

rithm transformed precipitation [without adding a con-

stant in the logarithmic function; a5 0 in Eq. (1)]

(Fig. 6b), the curved line of the maximum probability

(indicated with a red dashed curve) is clearly seen. This

maximum probability curve is to the right of the one-to-

one line, indicating an amplitude-dependent positive

bias of the model precipitation when compared to the

TMPA data. In this data assimilation study, we do not

consider whether the model precipitation or the TMPA

data is more correct, but it is clearly better to remove

this bias before data assimilation. For example, bias

correction schemes have been widely used in the mod-

ern satellite radiance data assimilation (e.g., Derber and

Wu 1998; Dee 2005). In addition, the skewness and

kurtosis calculation indicates that the climatological

precipitation distribution after the logarithm trans-

formation becomes much more Gaussian than the

original distribution (Table 1).

An interesting fact is found when the ‘‘modified’’

logarithm is used [i.e., a constant a5 0:6mm(6h)21 is

added in the transformation; Eq. (1)]. In Fig. 6c, satu-

ration in the small precipitation amounts, as in Fig. 6a, is

seen again. The maximum probability curve near the

one-to-one line is still retained but it is less obvious

than that in Fig. 6b. Therefore, from this joint proba-

bility distribution diagram, it is inferred that the use

of a too large constant a in the logarithm trans-

formation may not be a good solution, since it makes

the behavior of the transformed variable in the small

precipitation amounts similar to the original variable,

and thus reduces the discrimination for small amounts.

A careful choice of the a value is thus essential.

b. Precipitation rate versus accumulated precipitation

Figure 7a shows the same diagrams but for the in-

stantaneous precipitation rate [in a unit of mm(6h)21

before the logarithm transformation, and a5 0 in the

logarithm transformation]. Comparing it with Fig. 6b,

it is clear that the correlation with the precipitation

rate is worse than that with the accumulated pre-

cipitation amount. In particular, a multimodal feature is

seen in the model precipitation. The precipitation rate

FIG. 6. Joint probability distributions of the 6-h accumulated precipitation with different transformationmethods between the T62GFS

model background and the TMPA data upscaled to the same T62 grids. (a) No transformation (mm), (b) exact logarithm transformation

[a5 0 in Eq. (1)], and (c) ‘‘modified’’ logarithm transformation (a5 0:6mm) applied to the precipitation variables. Samples are collected

for the 10-yr (2001–10) period, and only positive precipitation is shown.

TABLE 1. The skewness and kurtosis for the precipitation dis-

tributions in the GFS model and TMPA observations using dif-

ferent transformation methods. A Gaussian distribution has zero

skewness and kurtosis. Samples are collected for the 10-yr (2001–

10) period and within 508N–508S, and only positive precipitation

is used.

Transformation methods

Skewness Kurtosis

GFS TMPA GFS TMPA

No transformation 2.32 4.67 7.50 38.5

Logarithm transformation 20.16 0.24 20.81 20.87

Gaussian transformation 0.22 0.24 20.41 20.14
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produced from the T62 GFS model tends to be con-

centrated at several ranges (roughly [21.2, 20.2], [0.2,

0.6], and [1.6, 2.6] in the logarithm transformed value),

which could be related to some deficiencies of the pre-

cipitation parameterization at this low resolution. The

lower correlationmay also be a result of the timing error

of the precipitation parameterization scheme. The in-

stantaneous precipitation rate is too sensitive to the

timing error, which is common for the precipitation

produced from cumulus parameterizations. For exam-

ple, Chao (2013) showed that cumulus precipitation

schemes can have large systematic errors in the pre-

cipitation diurnal cycle over the land. Therefore, al-

though the accumulation of precipitation discards the

information of the time variations of the precipitation

within the 6-h assimilation window, the 6-h accumulated

value of precipitation would be still better for the as-

similation than the precipitation rate. The successful

assimilation of precipitation demonstrated by Lopez

(2011, 2013) also used the 6-h accumulated pre-

cipitation. Nevertheless, we note that the model

resolution we use is fairly coarse, and the model pre-

cipitation could perform better in a higher-resolution

model.

c. Resolution (T62 versus T126)

The same diagram of Fig. 6b but based on higher-

resolution results (6-h accumulated precipitation) is

shown in Fig. 7b. We carry out all the same processes

illustrated in Fig. 3 at T126 resolution. At this resolution,

the bias between the model and observational pre-

cipitation is clearly smaller than that at the T62 resolu-

tion as seen in the joint probability distribution diagrams

(i.e., the deviation of themaximum probability line from

the one-to-one line in Fig. 7b is smaller than that in

Fig. 6b); however, the correlation between the model

and observations also becomes slightly lower than that at

T62 (i.e., 0.1625 versus 0.1822 inR2). This is probably due

to the larger random error in the higher-resolutionmodel

and observation data. By spatially averaging the field, this

random error can be reduced (Huffman et al. 2010),

which may be easier for the precipitation assimilation.

However, there is certainly some loss of information

caused by upscaling the observation data to a lower

resolution, and also a reduction in the accuracy of nu-

merical models by using the low-resolution configura-

tion. Therefore, the choice of the resolutionmay depend

on the specific purpose of the work. In this study, we

propose that, for the purpose of improving large-scale

medium-range forecasts, using the spatially averaged

(i.e., upscaled) TMPA data would be a reasonable

choice. Indeed, we show in the companion paper

(LMK16) that the assimilation of the global large-scale

(lower resolution) precipitation field at the T62 resolu-

tion is able to improve the 5-day model forecasts. We do

not argue that the higher-resolution model or observa-

tions are useless in precipitation assimilation, but that

there is a ‘‘trade-off’’ between the resolution and errors.

FIG. 7. As in Fig. 6b, but for the logarithm transformed (a) instantaneous precipitation rate [mm (6 h)21 before

the transformation] at the T62 resolution and (b) 6-h accumulated precipitation (mm before the transformation) at

the T126 resolution in both the GFS model background and the TMPA data.
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Since it has been shown that model resolution leads to a

large impact on the precipitation forecasts (e.g., Wen

et al. 2012), assimilating higher-resolution precipitation

data and solving the issues regarding the random errors

would be important research. Using a higher-resolution

model that has better representation of precipitation

processes but still employing the spatial average in the

observation operator could also be considered.

d. Gaussian transformed precipitation

Using the CDFs constructed in section 4, we can de-

fine the Gaussian transformations of the GFS model

precipitation and the TMPA data following section 3b.

Note again that the CDFs are computed for each T62

grid point and each 10-day period of year, and smoothed

by including the nearby grids and times. Although this

smoothing helps to construct a smooth CDF field and

thus a more continuous definition of the Gaussian

transformation, the disadvantage of this method is that

the transformation would not be good in regions with an

intrinsically large gradient of precipitation climatology,

such as regions with complex terrain and orographic

precipitation.

With the Gaussian transformation, the joint proba-

bility distribution diagrams are shown in Fig. 8.

Figures 8a and 8d are the global results. Figure 8a uses

the logarithm transformation already shown before

(Fig. 6b), and Fig. 8d is the same figure plotted with the

Gaussian transformed variables. First, the figure shows

that with the Gaussian transformation, the joint dis-

tribution of the precipitation variables become more

normal. It is found from the skewness and kurtosis

statistics (Table 1) that the skewness for the climato-

logical precipitation distributions in the GFS model

and TMPA observations using the logarithm and

Gaussian transformation methods are similar, while

FIG. 8. The joint probability distribution of (a)–(c) the logarithm transformed (a5 0) and (d)–(f) the Gaussian transformed 6-h ac-

cumulated precipitation between the T62 GFS model background and the TMPA data upscaled to the same T62 grids. (a),(d) Global

results; (b),(e) only the precipitation over the land; and (c),(f) only the precipitation over the ocean. Samples are collected for the 10-yr

(2001–10) period, and only positive precipitation is shown.
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the Gaussian transformation method particularly im-

proves the kurtosis. However, as mentioned in section

3b, what is most important is the Gaussianity of the

error distribution, not of the climatological distribution

examined here. The examination of the Gaussianity of

the real error distribution is shown in LMK16, and it

further confirms the improving Gaussianity of the

background precipitation errors in the LETKF data

assimilation.

Second, it is also important to indicate that the max-

imum probability curve becomes more collocated with

the one-to-one line (i.e., the biases are reduced), and the

correlation square (R2) value increases slightly. In our

transformation method defined for model and observa-

tions separately, the model climatology and the obser-

vation climatology are first converted to the same 0–1

scale (cumulative distribution), and then the same FG21

is applied to obtain the Gaussian variables. Therefore, this

method can effectively reduce the amplitude-dependent

bias as seen in Fig. 8a. We call this method a ‘‘CDF-based

bias correction.’’

The same diagrams are then plotted with land data

only (Figs. 8b,e), ocean data only (Figs. 8c,f), the

Northern Hemisphere extratropics (208–508N; Figs. 9a,d),

the tropical regions (208N–208S; Figs. 9b,e), and the

Southern Hemisphere extratropics (208–508S; Figs. 9c,f).
Note that the TMPA only covers from 508S to 508N so

the statistics are done within this extent. Overall, the

improvements in the normality, centeredness, and cor-

relations that we found in the global results are also

generally found over the separate validation regions.

The amplitude-dependent biases are reduced in all re-

gions. The skewness and kurtosis calculations in every

region indicate that the skewness for logarithm and

Gaussian transformations are of similar magnitude, but

the kurtosis of the Gaussian transformed precipitation

distribution is much reduced compared to the logarithm

transformation (not shown). Regarding the correlation

FIG. 9. As in Fig. 8, but for (a),(d) the Northern Hemisphere extratropics (208–508N); (b),(e) the tropical regions (208N–208S); and
(c),(f) the Southern Hemisphere extratropics (208–508S).
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between model and observed precipitation, the increase

of the correlation using the Gaussian transformation is

particularly notable in the land region (Figs. 8b,e) and in

the Northern Hemisphere extratropics (Figs. 9a,d). It

slightly decreases over the ocean (Figs. 8c,f) and the

tropics (Figs. 9b,e), but the change is small. In summary,

we find that using separate Gaussian transformations

applied to model background precipitation and obser-

vations, defined in terms of each grid point and each

period of year, the statistical properties of the pre-

cipitation variable become significantly more suitable

for data assimilation.

6. Time correlation maps

Using the same 10-yr samples of data, and the same

Gaussian transformation, we also calculate the time

correlations between the 6-h accumulated model and

observational precipitation at each grid point and each

10-day period of year so that their geographical distri-

butions can be displayed. Similar to the CDF calcula-

tion, when computing the correlation at each grid point,

the data within 62 periods (620 days) are considered

together to obtain the temporally smoothed field. Thus

this correlation score is a simple measure of the statis-

tical ‘‘consistency’’ between the model and the obser-

vation climatologies. Figure 10 shows the global

correlation maps in four different periods in January,

April, July, and October. Overall, the dry area shows

smaller correlations, which is expected because it may

not easy to capture the small or infrequent precipitation

amounts by the moist physical parameterization in the

model. Besides, the correlation over ocean is generally

much higher than that over land, except for the marine

stratocumulus region, where the correlations are very

low as shown from the discrepancy of the CDF statistics

discussed in section 4. Over land, the desert areas (such

as the Sahara) show persistent low correlations over the

year probably because of the infrequent precipitation

events and small precipitation values. The mountainous

areas such as the Tibetan Plateau also show low corre-

lations, which could be partly due to the problem of

orographic precipitation in the satellite-based estimates

(Shige et al. 2013). Over the United States, the eastern

area has higher correlation than the western area.

These time correlation maps suggest that the precip-

itation data distributed over the regions with reasonable

correlations can be useful in the data assimilation to

improve the model analyses and forecasts, but we hy-

pothesize that the data over regions with very low corre-

lationwould be difficult to use, because of shortcomings in

the precipitation parameterization in the model. There-

fore, the results suggest to set up a threshold of the cor-

relation value below which the observations are rejected

in the data assimilation process. We employed this ap-

proach, rejecting observations in regions where the clima-

tological correlation was less than 0.35, in the precipitation

assimilation experiments and obtained a small improve-

ment over not using this criterion (LMK16).

7. Conclusions and suggestions for precipitation
assimilation

This article is the first part of our GFS/TMPA pre-

cipitation data assimilation study. We calculate statistics

with the precipitation variable in the model background

FIG. 10. The maps of correlation between precipitation in the GFS model background and in the TMPA ob-

servations during the periods of (a) 11–20 Jan, (b) 11–20 Apr, (c) 11–20 Jul, and (d) 11–20 Oct for the 10-yr (2001–

10) data. The blue contours indicate correlations equal to 0.35, which is the threshold used for the precipitation

assimilation in LMK16.
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and observations from the point of view of data assim-

ilation. To achieve meaningful statistics, the samples

are carefully constructed using the same model with

the same forecast period, observation variables, and

resolution, as we use in the real precipitation assimila-

tion experiments (LMK16). These statistical results can

indicate how to extract more useful information from

the precipitation observations.

First, the errors of precipitation in numerical models

can contribute to a substantial amount of the difficulties

observed in the precipitation assimilation. For example,

our statistical results indicate that the GFS model at

both T62 and T126 resolution generally has positive bias

in precipitation as compared to the TMPAobservations,

and that it has a severe problem in parameterizing the

marine stratocumulus precipitation. In particular,

the ‘‘precipitation scale’’ is one of the key points of the

problem. The precipitation in the model is simulated

by a cumulus parameterization and/or a microphysics

parameterization scheme, but the behavior of such

methods depends intrinsically on different grid resolu-

tions. In addition, precipitation usually appears in ran-

dom patches, especially for convective precipitation,

leading to large random errors at higher resolution. The

timing of the convective precipitation is also difficult to

be simulated by models. The high spatial and temporal

variability further leads to large representativeness er-

rors, which are also dependent upon resolution and

important to data assimilation. In this study, we find the

GFS model precipitation at T126 resolution to be less

biased than that at T62 resolution, but the correlation to

the observations is slightly lower, presumably due to the

increasing difficulty in collocating forecasted and ob-

served precipitation that comes with model resolution.

Performing spatial and/or temporal averages can ef-

fectively reduce these errors. Huffman et al. (2010)

recommended TMPA users to create time/space aver-

ages that are appropriate to their application from the

original finescale data. Bauer et al. (2011) also pointed

out that using spatially/temporally smoothed precipita-

tion data in assimilation can be beneficial. Based on

similar arguments, accumulated precipitation (equiva-

lent to a time average) is expected to be a preferable

variable to be used in the data assimilation, rather than

the instantaneous precipitation rate. However, this

strategy may seem to contradict the continued pursuit of

higher resolution, especially if we are able to afford

high-resolution models and take high-resolution obser-

vations. We consider that this is a trade-off between

resolution and errors. If the main goal is to improve the

medium-rangemodel forecasts, using a smoothed lower-

resolution precipitation to improve the large-scale

analysis can be a reasonable choice. We note that the

strategy needed for effective assimilation of convective-

scale precipitation such as meteorological radar observa-

tions could be quite different from the current discussion

(e.g., Fabry and Sun 2010; Yussouf et al. 2013).

The ultimate solution to overcome the above problems

would be attained by the improvement of the model

precipitation parameterization and the satellite pre-

cipitation estimates. Strenuous efforts have beenmade by

themodeling (e.g.,Han andPan 2011) and remote sensing

retrieval communities (e.g., Tapiador et al. 2012). How-

ever, within the scope of our data assimilation study, we

do not attempt to improve the model or the observations.

Our goal is to optimally use this imperfect observation

dataset in this imperfect model, to improve the model

forecasts of both precipitation and nonprecipitation var-

iables, such as wind, temperature, and pressure, by using

appropriate error covariances in the data assimilation. To

achieve this goal, we suggest applying separate Gaussian

transformations to model background and observational

precipitation, which can improve the Gaussianity of the

variables while also effectively removing the amplitude-

dependent biases between them. This idea is an extension

of the Gaussian precipitation transformation proposed

for a perfect model by LKM13 in which the same trans-

formation was applied to both model precipitation and

observations.

However, since the transformation method is just an

approximate way to mitigate the non-Gaussianity issue

in the data assimilation, and both the transformation

and the bias correction are constructed based only on

the climatologies, there should be some limits of these

transformation and correction approaches. Therefore,

precipitation observations that are deemed to be ‘‘too

bad to be assimilated’’ may need to be rejected. Note

that the statement ‘‘an observation is bad for assimila-

tion’’ is not necessarily because the observation itself is

bad, but because the model is not capable of making use

of this observation in that location and time. The samples

of long-term model and observational precipitation data

prepared in this study could be a useful reference to de-

fine appropriate quality control criteria to assimilate only

the ‘‘useful’’ precipitation observations.

Based on the discussion above, we suggest that the

problems associated with the assimilation of large-scale

satellite precipitation data with the goal to improve the

medium-range model forecasts can be addressed as

follows:

d Non-Gaussianity of the precipitation variable: apply

the Gaussian transformation to both model and obser-

vational precipitation. In LKM13, this was shown to be

essential for effective assimilation of precipitation using

the LETKF in perfect-model simulation experiments.
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LKM13 also suggested performing the assimilation

only when there are enough backgroundmembers with

nonzero precipitation.
d Inconsistent probability distributions of precipitation

in model climatology and observation climatology:

define the Gaussian transformations for the model

precipitation and the observational precipitation

separately based on their own CDFs so that the

amplitude-dependent bias is reduced. We call this

method a ‘‘CDF-based bias correction.’’
d Timing errors of the precipitation: use 6-h accumu-

lated amounts.
d Deficient precipitation parameterization: do not as-

similate observations where the model is deficient.

Appropriate quality control criteria (e.g., a minimum

climatological correlation score between the model

and the observational precipitation) can be considered

to keep only the precipitation observations that the

model can effectively use.
d High-resolution observations contain large random

errors: perform spatial and/or temporal averages to

reduce the random errors; upscale the observations to

large-scale grids.

These suggestions to precipitation assimilation based

on the statistical approaches were implemented and

found to significantly improve the T62 5-day model

forecasts, as shown in LMK16.
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