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ABSTRACT: This manuscript presents several improvements to methods for despiking and measuring turbulent dissipa-
tion values with acoustic Doppler velocimeters (ADVs). This includes an improved inertial subrange fitting algorithm rele-
vant for all experimental conditions as well as other modifications designed to address failures of existing methods in the
presence of large infragravity (IG) frequency bores and other intermittent, nonlinear processes. We provide a modified
despiking algorithm, wavenumber spectrum calculation algorithm, and inertial subrange fitting algorithm that together pro-
duce reliable dissipation measurements in the presence of IG frequency bores, representing turbulence over a 30 min inter-
val. We use a semi-idealized model to show that our spectrum calculation approach works substantially better than existing
wave correction equations that rely on Gaussian-based velocity distributions. We also find that our inertial subrange fitting
algorithm provides more robust results than existing approaches that rely on identifying a single best fit and that this im-
provement is independent of environmental conditions. Finally, we perform a detailed error analysis to assist in future use
of these algorithms and identify areas that need careful consideration. This error analysis uses error distribution widths to
find, with 95% confidence, an average systematic uncertainty of =15.2% and statistical uncertainty of =7.8% for our final
dissipation measurements. In addition, we find that small changes to ADV despiking approaches can lead to large uncer-
tainties in turbulent dissipation and that further work is needed to ensure more reliable despiking algorithms.

SIGNIFICANCE STATEMENT: Turbulent mixing is a process where the random movement of water can lead
to water with different properties irreversibly mixing. This process is important to understand in estuaries because the
extent of mixing of freshwater and saltwater inside an estuary alters its overall circulation and thus affects ecosystem
health and the distribution of pollution or larvae in an estuary, among other things. Existing approaches to measuring
turbulent dissipation, an important parameter for evaluating turbulent mixing, make assumptions that fail in the
presence of certain processes, such as long-period, breaking waves in shallow estuaries. We evaluate and improve data
analysis techniques to account for such processes and accurately measure turbulent dissipation in shallow estuaries.
Some of our improvements are also relevant to a broad array of coastal and oceanic conditions.
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1. Introduction IG waves have long been known to contribute to swash and run
up on beaches (e.g., Guza and Thornton 1982; Ruessink et al.
1998). More recently, researchers have shown that IG oscilla-
tions are important in sediment transport and estuarine mouth
closure processes (e.g., Behrens et al. 2013; Bertin et al. 2019;
Bertin and Olabarrieta 2016). Some studies have also shown
that shallow estuarine mouths can act as low-pass frequency fil-
ters, leading to oscillations within estuaries dominated by IG fre-
quencies with velocity amplitudes as large as tidal velocities
(e.g., Williams and Stacey 2016; Harvey et al. 2022; McSweeney
et al. 2020). To be explicit, we are using oscillation and wave as
distinct terms here, with oscillation implying repeated back and

In recent years, acoustic Doppler velocimeters (ADVs)
have proven valuable tools for measuring turbulent statistics
in various environments. With their fast sample rates, rela-
tively accurate measurements, and ability to measure in
shallow water, ADVs have led to improvements in our under-
standing of surf zone and shallow estuarine turbulence (e.g.,
Feddersen 2012; Jones and Monismith 2008). Key to this suc-
cess has been the development of reliable data processing
techniques for despiking ADV data and calculating wave-
number spectra from ADV velocity data in the presence of
surface gravity waves (e.g., Goring and Nikora 2002; Shaw

and Trowbridge 2001) forth motion with a definable frequency range and wave imply-
At the same time, physical oceanographers are becoming ing a more regular process with consistent statistics that follows
: wave theory.

increasingly aware of the importance of infragravity (IG) os-
cillations (25-250 s periods) for coastal, shallow reef, and es-
tuarine processes (e.g., Bertin et al. 2018; Becker et al. 2016).

With our new understanding that IG frequencies are dy-
namically important, it is increasingly important to under-
stand how IG motions affect velocity and turbulence. It is
particularly important to tease out how IG velocity oscilla-
tions interact with other sediment transport mechanisms and

Corresponding author: Duncan C. Wheeler, dcwheele@uesd.  how they affect mixing within estuaries. To address turbu-
edu lence in the presence of IG motions, ADVs appear to be the
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FIG. 1. Map of deployment at Los Pefiasquitos Lagoon. (a) The California coast with the domain of (b) in the
pink box. (b) The San Diego coastline with the lagoon watershed outlined in blue and the domain of (c) in the
red box. (c) The lagoon bathymetry with the locations of various instruments deployed for the experiment as well
as sketches of the moorings at locations 5 and 7 with distances between the bottom and the ADV heads. This paper

only uses data from the ADVs at locations 5 and 7.

ideal tool, as IG waves are often most dominant in particu-
larly shallow waters. However, many of the existing methods
for analyzing ADV data in the presence of waves make
assumptions that fail in the presence of IG motions. In partic-
ular, the irregular IG motions introduce nonstationary tur-
bulence with unpredictable changes in velocity variance that
interfere with despiking algorithms, and the nonlinear behav-
ior of the oscillations lead to changes in spectral slope when
using standard frozen turbulence assumptions. To be clear,
we use the term oscillations instead of waves because the data
presented here are nonlinear and asymmetric, frequently with
broken fronts. Such oscillations match observations from other
experiments in shallow estuaries (e.g., Williams and Stacey 2016;
McSweeney et al. 2020) and are most accurately described as
IG frequency bores. Therefore, we will use this terminology
for the rest of the paper. Harvey et al. (2022) and Fig. 2e have
raw ADV time series that provide visualizations for these
oscillations.

This manuscript closely examines and adapts existing tech-
niques for despiking ADV data and measuring turbulent dis-
sipation in the presence of large IG frequency bores in a
shallow estuary. We identify where current algorithms fail
and suggest alterations in order to deal with the unique chal-
lenges presented by dominant IG oscillations. We note that
the effects we correct for are not unique to IG frequency
bores, meaning that many of the techniques presented here
have the potential to be applied to a wider range of situations.
In addition, our modifications to inertial subrange fitting
methods are improvements even in the absence of nonlinear
dynamics. We provide tolerance calculations and an error
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analysis framework with the goal that future researchers may
use these techniques to more easily evaluate turbulence using
ADVs. This error analysis examines variables not tradition-
ally considered in final turbulence calculations, allowing us to
identify areas where ADV processing for turbulence calcula-
tions needs careful consideration and further work to produce
reliable results.

2. Data

The data used for the analyses presented were obtained
during a short field deployment at the beginning of 2020
aimed at understanding IG frequency bores within Los
Pefiasquitos Lagoon. Los Pefiasquitos lagoon, shown in Fig. 1,
is a low-inflow, bar-built estuary in Southern California with a
mouth that has been heavily modified due to the presence of a
road. The shallow sill at the mouth is above sea level at low
tide, while most of the lagoon interior is around 2 m deep or
less. When submerged, the shallow sill acts as a low-pass fre-
quency filter where larger sea and swell waves dissipate in the
surfzone while IG oscillations propagate into the estuary
(Harvey et al. 2022; Williams and Stacey 2016). The 1-2.5 m
tides during our deployment drive a semidiurnal 0.3-1.5 m water-
level change inside the lagoon, leading to water depths at
station 5 (see Fig. 1) that range from 0.2 to 1.7 m.

As part of the deployment, two synced ADVs (Nortek Vectors)
were mounted, along with other instruments, on a sawhorse
frame that was secured with sand anchors into the bed at
location 5 in Fig. 1c, 300 m upstream of the mouth. These
two ADVs sampled the water 30 and 50 cm above the bot-
tom. A third, bottom frame mounted, upward looking ADV
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was deployed 250 m farther upstream at location 7 in Fig. 1c,
sampling 1 m above the bottom. Diagrams for both moorings
are shown in Fig. 1c. All three ADVs started sampling at mid-
night on 2 February and collected data continuously at 16 Hz,
with 5 s breaks every hour to write the data to memory.
One of the synced ADVs stopped sampling the afternoon of
11 February due to memory limitations. The other two ADVs
included synced optical backscatter measurements and low
batteries led to shortened and irregular bursts starting the
morning of 14 February, making later data unusable.

After recovery, the data for each ADV were converted to a
netCDF4 file and processed for quality control. The pressure
was corrected for atmospheric pressure changes using a
nearby National Estuarine Research Reserve meteorological
station and converted to depth using the Python gsw package
(https://pypi.org/project/gsw/3.0.3/; McDougall and Barker
2011). Initial cleaning of the velocity data used a correlation
cutoff of 70% and signal-to-noise ratio (SNR) cutoff of 10 dB
for any beam, based on initial data inspection as recom-
mended by the manufacturer (Nortek 2018). Details on how
to access these data and the code for the methods presented
below can be found in the data availability statement.

3. Despiking

The first challenge when using ADV field measurements is
despiking. Due to phase shift ambiguities caused by contami-
nation from previous pulses reflecting off air bubbles and
other reflective surfaces suspended in the water, spikes can
appear in ADV velocity records (e.g., Goring and Nikora
2002). These spikes can contaminate otherwise valid data,
leading to errors in later averaging or turbulence calculations.

a. Existing methods

Perhaps the most common method for eliminating these
spikes is the Goring and Nikora (2002) method. This ap-
proach assumes that valid points collected by an ADV, after
removing the low-frequency signal, are clustered in a dense el-
lipsoid in phase space. Here, phase space is defined by using
the measured velocity (u), first time derivative (du/dt), and
second time derivative (d?u/df*) to form 3 independent axes.
The outer limits of the valid data ellipsoid are determined us-
ing the universal threshold, y2Tlogn X o, which is an upper
bound on the maximum expected value in a sample of size n
taken from a Gaussian distribution with standard deviation o.
Goring and Nikora (2002) use the universal threshold to de-
fine an ellipse for each of the three 2D projections of phase
space. Any points outside any one of those ellipses are re-
placed and the algorithm is repeated until no new spikes are
detected. Goring and Nikora (2002) also note that due to the
different spike numbers in vertical versus horizontal veloci-
ties, each velocity component should be despiked indepen-
dently. Wahl (2003) showed that the standard deviation—
based universal threshold could be biased by outliers and sug-
gested the median of the absolute deviation from the median
(MAD) as a robust alternative.

Further modifications to the phase space method came
from Parsheh et al. (2010), who noticed that particularly large
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spikes could introduce a bias in the derivative, making normal
data points appear as spikes in phase space. The proposed fix
used the MAD-based threshold to perform an initial screen-
ing based only on velocity magnitude before continuing to the
phase space method. In addition, Parsheh et al. (2010) sug-
gested that replacing spikes with the last valid data point pre-
vented the extended contamination of cleaned data from yet
to be detected spikes found when using other interpolation
methods.

Upon examination of our data, we find that the distribu-
tions for our velocities and derivatives are noticeably non-
Gaussian, with long tails that extend beyond the universal
threshold and MAD threshold cutoffs (see Fig. 2a). As a re-
sult, the use of unmodified versions of the methods proposed
by Goring and Nikora (2002), Wahl (2003), and Parsheh et al.
(2010) misidentifies too many valid data points as spikes.
These tails are likely a direct result of nonstationary turbu-
lence leading to changes in the variance of our data over our
burst length (30 min). In addition, this nonstationary effect
appears to be related to the passage of IG frequency bores,
which come in at largely irregular and unpredictable intervals
and can be seen as the low-pass signal in Figs. 2e and 2f. This
short term increase in turbulent energy with passing bores is
very similar to what Simpson et al. (2004) observe in the pres-
ence of a tidal bore propagating up a shallow estuary. As a re-
sult, simply changing the burst length for our despiking
algorithm was not an option.

Since Goring and Nikora (2002), several new methods of
despiking have been proposed that we also find inappropriate
for our situation. Cea et al. (2007) explore how correlations
between different velocity components can be used to create
a different 3D space for detecting spikes in a similar way to
the phase space approach. However, the lack of temporal de-
rivatives (e.g., du/df) misses an essential element of spike de-
tection for our situation. In data with varying velocity
amplitudes, as in the presence of large IG frequency bores,
some spikes have magnitudes that are no bigger than other
points in the same burst of data. These spikes must then be
identified by how much they stand out from their immediate
neighbors, which is captured by a temporal derivative. In ad-
dition to Cea et al. (2007), Razaz and Kawanisi (2011) pro-
pose an improved wavelet-based despiking algorithm that
decomposes data into wavelet packets. Sharma et al. (2018)
suggest a modified singular spectrum analysis approach that
identifies key eigenvectors which describe the data and can be
used for reconstructing a spike-free signal. However, inherent
in both the Razaz and Kawanisi (2011) and Sharma et al.
(2018) approaches is a reliance on stationary data that are
broken by the presence of IG frequency bores. To adapt ei-
ther of these approaches would be very dependent on the in-
dividual characteristics of the IG frequency bores in each
deployment, preventing the creation of a widely usable
algorithm.

For replacing detected spikes, Jesson et al. (2013) tested a
variety of proposed methods in combination with many of the
above despiking methods. Their results show that the optimal
replacement method depends on the detection method used,
and verified the conclusions of Parsheh et al. (2010) that the
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FIG. 2. Comparing the Gaussian-based cutoff with expanding cutoffs for a burst with IG energy. All data shown—except low-pass data
in (e) and (f)—have the low-pass filtered signal (20 s) removed. In all plots, black corresponds to the original data, dark blue corresponds
to the Gaussian-based cutoff, and cyan corresponds to the expanded cutoffs. (a) A histogram and corresponding kernel density estimate
(black line) of the raw data along with a Gaussian distribution that has the same mean and standard deviation as the results of the ex-
panded cutoff algorithm (dark blue). The dashed dark blue bars showing the universal threshold cutoffs encompass the Gaussian data but
cut short the extended tails of the true data. The solid cyan bars showing the expanded cutoffs relax the restrictions, keeping more data.
Note that the y axis has been expanded between 0 and 0.2 to highlight the extended tails of the data. (b)-(d) The 2D projections of phase
space with the Gaussian- and expanded-cutoff-based ellipses. (e) The results of the two different despiking algorithms. The expanded lim-
its appear to keep more data during periods with higher high-pass velocity (solid black line) variance that tend to correspond with large
positive low-pass velocities (dashed black line). Because this particular time period has weak tides, the low-pass velocity largely corre-
sponds to IG frequency oscillations. (f) A zoom-in on 1.5 min of (e) to highlight why we believe the Gaussian-based limits are throwing
out real data. Note that the Gaussian limits are always stricter than the expanded limits, so anywhere light blue is seen represents time pe-
riods where the expanded limits keep data while the Gaussian limits throw out data. Similarly, black represents time periods where both

limits throw out data.

last valid data point method was optimal for the modified
phase space method.

b. Expanding cutoff algorithm

Based on the variety of approaches above, we determine that
the best approach is to use the Goring and Nikora (2002) algo-
rithm with a modified cutoff to account for our non-Gaussian
data distribution. Because the Goring and Nikora (2002) univer-
sal threshold is too strict for our data, we modify the phase space
approach with an expanding cutoff algorithm, similar to the one
used by Islam and Zhu (2013). This approach uses the basic ob-
servation by Goring and Nikora (2002) that valid ADV data fall
within a tight ellipse in phase space. However, rather than using
a Gaussian distribution-based cutoff, we use the density of points
in phase space to determine where the ellipse ends. Islam and
Zhu (2013) use a bivariate kernel density function to create a
density map of the data in each 2D phase space projection. The
threshold is then determined by where the gradient in the density
levels off (indicating an end to the dense cluster in phase space).
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However, Islam and Zhu (2013) found that the particular imple-
mentation of the bivariate kernel density function appears to
heavily influence the mean velocity of their data. Because Islam
and Zhu (2013) do not provide an explicit sensitivity analysis on
the frequency spectrum of their data, the sensitivity of the mean
currents suggests that this approach would not be a robust and
easily adaptable algorithm for turbulence calculations; thus, here
we use a modified expanding cutoff algorithm.

We begin by linearly interpolating any data already marked
as bad and removing the 1/20 Hz low-pass filtered data so that
we are only despiking the high-frequency signal (appendix A,
steps 1 and 2). Then, for our modified cutoffs, we start with
the universal threshold from Goring and Nikora (2002) as an
initial estimate (appendix A, step 4). While these thresholds
are inaccurate in magnitude, the relative magnitudes (and
therefore the shape of the ellipsoid) are well represented by
the standard deviation of the data, as can be seen in Figs. 2b—d.
To determine the overall magnitude for a given 2D projection of
phase space, we then increase the corresponding cutoff limits by
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1% repeatedly, keeping the ellipse axis ratio constant throughout
(appendix A, step 5). For each expansion, we then calculate an
elliptical ring density of points as the number of data points that
lie between the ellipses defined by the new cutoff and the previ-
ous increment divided by the corresponding area (appendix A,
steps 6 and 7). The modified cutoff is then chosen as the point at
which the elliptical ring density of points in the ring between se-
quential cutoffs decreases by more than 95% of the previous
value (appendix A, steps 8 and 9) (see Figs. 2b—d). We do this ex-
pansion for each 2D projection of phase space independently.
Figure 2 shows how these expanded cutoffs keep more valid data
points than the original Goring and Nikora (2002) cutoffs, allow-
ing us to produce a more complete despiked time series in the
presence of nonstationarity.

Including these modified cutoffs, our full final despiking al-
gorithm is as follows. We begin by linearly interpolating any
NaNs in our data (appendix A, step 1) and then follow the
Goring and Nikora (2002) algorithm exactly until the point of
specifying cutoffs (appendix A, steps 2-4). We next use our
expanding algorithm to define the modified cutoffs as de-
scribed above (appendix A, steps 5-9). From here, we follow
the modified phase space approach suggested by Parsheh et al.
(2010) and Jesson et al. (2013) for replacing spikes. First, we
check if there are any points that explicitly exceed the velocity
threshold, marking those as spikes and replacing them with
the last valid point (appendix A, step 10). We use the last
valid point, because both Parsheh et al. (2010) and Jesson
et al. (2013) show that this replacement method produces a
more accurate spectrum than other interpolation methods
when paired with the modified phase space approach intro-
duced by Parsheh et al. (2010). If we identify spikes this way,
we return to the beginning of the iteration process (appendix A,
steps 11, 18, and 19), allowing us to remove particularly bad
spikes that might lead to valid points being detected as spikes
later on. If we do not identify spikes this way, we identify
spikes using the full phase space ellipses, being careful to use
the rotated ellipse for u—du/df* space as in Goring and Nikora
(2002), and again replace identified spikes with the last valid
point (appendix A, steps 12-18). Finally, we iterate until no
new data points are identified as spikes, add back the low-
frequency signal, and return any original NaN values that
were interpolated at the beginning back to NaN (appendix A,
step 20). This iteration occasionally gets stuck on repeatedly iden-
tifying the same points as spikes, so we impose a limit of 100 iter-
ations to prevent an infinite loop. Similar to Goring and Nikora
(2002), we despike each velocity component independently as
shown in Figs. 2b—d. This phase space despiking algorithm with
modified expanding cutoffs could be used on any dataset, but is
particularly well suited when the data are non-Gaussian due to
nonstationary turbulence over the burst length. Examples include
irregular waves and bores such as these, but also the passage of
fronts.

4. Spectral estimation

Once the velocity has been effectively despiked, the next
major challenge in measuring turbulent dissipation with an
ADV is calculating a wavenumber power spectrum of the

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:34 PM UTC

WHEELER AND GIDDINGS

289

vertical velocity while properly accounting for the presence of
oscillating velocities.

a. Existing methods

The standard approach to calculating dissipation from
velocity measurements is based off the inertial turbulence
subrange. For wavenumbers small compared to the energy
generation scales, but still much larger than the viscous dissi-
pation scale, i.e., the Kolmogorov scale, the vertical velocity,
horizontal wavenumber energy density spectrum follows (Pope
2000)

S, (k) = Cle’k 3, 1)

with S representing a directional energy spectrum, the subscripts
ww indicating a vertical velocity autospectrum, the functional de-
pendency on « indicating a spectrum in wavenumber space, the
subscript 1 representing the along-flow direction, e representing
dissipation, and C] = 4/3 X 18/55 X C ~ 0.65, where C = 1.5 is
Kolmogorov’s constant, 18/55 is a conversion factor for the
one dimensional spectrum in the direction of the mean cur-
rent, and 4/3 is a further conversion factor for the spectrum
in the direction perpendicular to the mean current (Pope
2000). Note that we are using vector notation whenever we
refer to the velocity components used in calculating a spec-
trum and index notation whenever we refer to the direction
of the wavenumbers calculated. By plotting the spectrum
in log space, a line with slope —5/3 can be fit to observed
data, and the y intercept of that line can be used to calculate
the turbulent dissipation (e.g., Burchard et al. 2008; Bluteau
et al. 2011; Rusello and Cowen 2011).

Since velocity measurements are often taken at one point
in space over time, rather than over space at one point in
time, initial spectra calculated are frequency spectra. Using
Taylor’s frozen turbulence hypothesis, the mean current dur-
ing the observation period can then be used to convert ob-
served frequencies to observed wavenumbers (e.g., Rusello
and Cowen 2011; Lumley and Terray 1983).

To reduce spectral noise, spectra are calculated over mi-
nutes long batches of data, where windowing and segmenta-
tion can be used to produce high degrees of freedom for
reduced errors. Because the turbulence is assumed constant
over the averaging time scale, a robust fit to the low noise
spectrum will accurately determine the turbulent dissipation.
However, in the presence of waves with periods smaller than
the observation period, the advection of turbulence past the
sensor by wave orbital velocities can bias energy spectra high
for frequencies higher than the wave frequency. This is be-
cause using the mean velocity to convert frequency to wave-
number is no longer an accurate assumption (e.g., Lumley
and Terray 1983; Rosman and Gerbi 2017).

Past attempts to adjust for this wave bias have employed
spectral-based corrections. By assuming a random, linear
wave field that leads to roughly Gaussian distributed wave ve-
locities, an analytical solution for the correlation of measured
turbulent velocities can be found. Using this correlation, one
can calculate the expected difference between the measured
spectrum and the ideal inertial subrange. Such corrections
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were first introduced by Lumley and Terray (1983), built on
by Trowbridge and Elgar (2001) and Feddersen et al. (2007)
among others, and have most recently been generalized to a
wide range of cases by Rosman and Gerbi (2017).

b. Semi-idealized model

Because the above methods are based on linear surface gravity
waves with Gaussian distributed velocities, we evaluate their ef-
fectiveness in the presence of IG frequency bores using a semi-
idealized model based on the approach in Rosman and
Gerbi (2017). We start with an idealized turbulent spectrum
with a known dissipation, an inertial subrange, and rolloffs
near the generation (L) and Kolmogorov (1) length scales,
as specified by Rosman and Gerbi (2017) and Pope (2000):

1 ds,, (x,)
SWW(KI) = é SLm(Kl) - KlTll 4
0 E 2
Suu(Kl) = J ﬂ(l - %)d'(’
e, K K
— 23,53 2)
E(k) = Cek~5F, (L), (),
xL 5/3+p,

fr(xL) =

)

(KLY + 472

f(km) = explcy{[(em)* + 41" = ¢ ).

with E representing a nondirectional energy spectrum, f; (kL)
representing the low wavenumber rolloff, f,(km) representing
the high wavenumber rolloff, C = 1.5, py = 2, ¢g = 5.2, and
¢, = 0.40. Here we use a generation length scale of 2 m, which
reflects our shallow water, but is also large enough to re-
solve a significantly large inertial subrange. In addition, the
Kolmogorov length scale is calculated as

W) ©

€

where v is the temperature dependent kinematic viscosity of
water.

We convert this spectrum to Fourier coefficients with ran-
dom phases and perform an inverse Fourier transform to ob-
tain an idealized spatial turbulent vertical velocity dataset for
that chosen dissipation value. We then sample from these ide-
alized data at a fixed location in space at 16 Hz, while advect-
ing the data with our IG frequency bore containing measured
horizontal velocities. The resulting semi-idealized (idealized
turbulence field with a fixed dissipation value advected by a
realistic IG bore containing velocity field) temporal dataset
then represents the vertical velocities that we would measure
with our field instruments if the vertical velocities followed
the initial idealized turbulent spectrum.

From these semi-idealized data, we can test different ap-
proaches to reconstruct the initial idealized turbulent spectrum
and the associated dissipation value. The following subsections
describe the two main approaches that we test with this method.
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FIG. 3. The idealized turbulence spectrum used to produce our
test data and the resulting reproduced spectra show that, in the
presence of IG frequency bores, a segmented approach performs
better than traditionally used wave correction methods. The semi-
idealized spectrum (section 4b) is in black, the Rosman and Gerbi
(2017) correction (section 4c) is in cyan, individual 10 s spectra
from our method (section 4d) are in light blue, and the average cor-
rected spectrum resulting from our method (section 4d) is in dark
blue. Note that the 10 s spectra overlap a lot, so they are mostly
transparent here to highlight where there is more overlap. The
dashed vertical lines show the generation and Kolmogorov length
scale derived boundaries of the inertial subrange.

¢. Full Rosman and Gerbi correction

First, we are interested in testing the high-frequency limit
of the correction originally presented by Lumley and Terray
(1983) and most recently explored by Rosman and Gerbi
(2017). This correction consists of dividing a single constant,

I(Uwavc) —
uC
which we call the wave correction constant, into the average

spectrum to correct the magnitude when converting from a
temporal spectrum [S,,,,(w)] to a spatial spectrum [S,,,,(k)] as

1
V2m )

o 2/3
1 — wave g e—(l/2)§2d§, (4)

uC

S
S (00 = o T

ww
I(Uwave

®)

Note that the functionality of the wave correction constant /
is explicitly included for clarity [see Eq. (4)] to demonstrate
that the wave correction constant (/) depends only on the ra-
tio of the standard deviation of the waves (oyaye) to the mean
current (u.). In addition, the relation between wavenumber
and frequency in Eq. (5) is k = o/u,.

Figure 3 shows that when we use / given by Eq. (4), the re-
sulting spectrum appears to have the correct amplitude, but
the wrong slope when compared to the initial ideal spectrum.
This implies that the nonlinear aspects of the IG frequency
bores introduce a slope variation in the frequency spectrum
not predicted by, and therefore not corrected by, the linear
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theory assumed by the above methods. Therefore, to avoid
wave bias from IG frequency bores, we must find a different
approach.

d. Segmented approach

Here, we adapt a method first introduced by George et al.
(1994). By splitting the velocity data into short enough seg-
ments (as defined below), we ensure that the velocity varies
linearly or not at all within any particular segment, thus en-
abling the use of Taylor’s frozen turbulence hypothesis. Then,
the resulting spectra can be averaged in wavenumber space,
resulting in an accurately reproduced wavenumber spectrum.
We use this approach over a 30 min burst of data to produce a
final 30 min averaged spectrum that is minimally impacted by
the phasing of individual IG oscillations. While 30 min is long
enough for our 30 s to 2 min long oscillations, the averaging
interval will need to be adjusted for datasets with different
dominant frequencies. Also, because the inertial subrange
scales as €, our final dissipation values will be composed of
the 30 min average of instantaneous dissipation values raised to
the two-thirds power, then raised to the three halves power to
maintain proper units, e.g., 2.7 (€23/N)]*%. We will refer to this
as the representative dissipation for the rest of the manuscript
and discuss its implications in section 7.

For each 30 min burst of vertical and horizontal velocity,
we first linearly interpolate any NaNs to produce consistently
spaced data (appendix B, step 1) before splitting the horizon-
tal velocity signal into low (iz) and high («”) frequency compo-
nents (appendix B, step 2) such that

u=u+u. (6)

We separate the frequencies by low-pass filtering with a cutoff
frequency of 1/5 Hz, which we find is higher than the fre-
quency of our IG bores while smaller than the frequency of
our large-scale turbulence. This cutoff will generally work so
long as there is a distinct separation between the bore fre-
quencies and turbulent frequencies. After filtering the data,
we split the low- and high-frequency horizontal and unfiltered
vertical velocity data all into 10 s segments (appendix B, step
3) and calculate the mean advection speed for each segment
as gy = AUy + V&, Where Useg and Vi, are the average
low-frequency horizontal velocity components for each seg-
ment. Next, we rotate the horizontal velocities into the direc-
tion of the mean velocity, as determined by the low-frequency
signal for each segment independently, such that 7y, Vsear
and v, represent the unfiltered, low-frequency, and high-
frequency velocities in the direction of the mean current,
respectively (appendix B, steps 4-7). We find that 10 s is suffi-
ciently short compared to the minutes long IG frequency bore
period while being long enough to calculate spectra that re-
solve the inertial subrange. For our data, the advection speeds
of these 10 s segments range from 0.05 mm s ! to 76 cm s ™!,
giving resolved length scales ranging from 5 mm to 3 m.
Before we can calculate spectra for these 10 s segments, we
must now use the low-frequency and high-frequency compo-
nents of the horizontal velocity to filter out segments that
break Taylor’s frozen turbulence hypothesis or those where
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the advection velocity significantly changes over the 10 s seg-
ment. First, for Taylor’s frozen turbulence hypothesis to hold,
the turbulent fluctuations must be much smaller than the
mean advection velocity (e.g., Bluteau et al. 2011; George
et al. 1994). Following George et al. (1994), to satisfy this con-
dition, we use the standard deviation of the rotated high-
frequency velocity oscillations to characterize the turbulent
fluctuations (appendix B, step 8). We then require the stan-
dard deviation of the high-frequency velocity component in
the direction of the mean velocity to be less than 1/5 of the
mean velocity magnitude (i.e., S(rggg = cseg), throwing out any
segments that do not satisfy this condition (e.g., George et al.
1994) (appendix B, step 9).

For the second condition, the advection velocity cannot
change too much over the 10 s segment. To satisfy this,
George et al. (1994) modified a criterion first suggested by
Lin (1953) to only keep segments where the variation of the
advection velocity was much less than the mean. This crite-
rion would lead us to throw out most of our segments, How-
ever, we can relax this condition using the results of an
idealized test with the model introduced in section 4b. Noting
that the low-frequency component of most of the 10 s seg-
ments is a roughly linearly changing advection velocity, we
test the effects of a linear advection velocity on idealized data.
Even though a linear advection velocity is not an oscillating
velocity, we choose to test the correction used in Eq. (5) be-
cause it is designed for the high-frequency limit where the tur-
bulent frequencies are much higher than the advection
frequencies. Our low-frequency signal is defined as anything
below 1/5 Hz, so we use the standard deviation of the linear
advection velocity when applying the wave correction cons-
tant to our test cases (e.g., 0y, = azeg). In doing so, we find
that the wave correction constant accurately corrects the mag-
nitude of the resulting spectrum but fails to adjust for changes
in the spectrum slope, much like the result of using the wave
correction constant on IG oscillation velocities as shown in
Fig. 3. However, we find that the slope error is the same order
or smaller than the magnitude error and that by ensuring the
change from using the wave correction constant is smaller
than 5% (i.e., I between 0.95 and 1.05) we can guarantee a
slope error under 5%. Plotting Eq. (4) for U;_/eg{cscg > ( shows
that / is between 0.95 and 1.05 so long as ol,/c,, = 1.025.
This allows us to relax the George et al. (1994) criterion and
instead only require 10 s segments to satisfy (Tg/eg/cSCg =1.025
(appendix B, step 9).

Based on work by Feddersen (2010), we also eliminate seg-
ments that have too many unoriginal points. These unoriginal
points can be due to interpolating NaNs or from replacing
spikes as described above. Feddersen (2010) showed that if
more than 1% of the data is unoriginal, the effects of individ-
ual spike replacement techniques start to become important.
Therefore, we eliminate the 10 s segments with the largest
number of unoriginal points until less than 1% of the total
points in all remaining segments of the 30 min burst are unori-
ginal (appendix B, steps 10 and 11). It is important to note
here that we do not place a limit on the number of consecu-
tive unoriginal points or unoriginal points in a given segment.
This is because including such cutoffs has little impact on the
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final calculated dissipation values beyond the conditions we
already use, and we choose to limit the number of subjective
cutoffs used. Further discussion on the sensitivity of different
subjective cutoffs (e.g., So, = Coeqs (J'Zeg/cseg =1.025, 1% of
total points in all remaining segments) is given in section 6c.

Once we have eliminated bad segments, we detrend, apply
a Hanning window, and calculate a power spectrum of the
unfiltered vertical velocity for each segment (Thomson and
Emery 2014b) (appendix B, step 12). We then use the local
mean horizontal velocity with Taylor’s frozen turbulence hy-
pothesis to convert each segment to wavenumber space in-
dependently and correct the spectrum magnitude using / as
in Eq. (5) (appendix B, step 13). The resulting individual
wavenumber spectra can be seen as the thin blue lines in
Fig. 3.

After converting each spectrum to wavenumber space, we
remove the lowest and highest wavenumbers to avoid low-
frequency contamination or aliasing of high-frequency energy.
On the low end, the semi-idealized model indicates an appar-
ent biasing of individual spectra high and that removing the
2 lowest wavenumbers is sufficient to eliminate this bias
(appendix B, step 14). On the high end, we assume the presence
of an inertial subrange. If the spectrum follows a —5/3 slope, we
can calculate a wavenumber cutoff,

Keutoff = (KI;ZQ X 4)73/5’ (7)
where we expect the spectrum to be 4 times larger than the
spectrum at the Nyquist (kyax) Wavenumber (appendix B,
step 15). Eliminating any points above this cutoff means that
any remaining points are theoretically at least 4 times larger
than the spectrum at the Nyquist frequency and can therefore
never be biased by more than 25% due to aliasing, which the
semi-idealized model indicates is sufficient to prevent substan-
tial alteration of the inertial subrange slope. It is important to
note that both of these cutoffs are based on our observations
from looking at individual 10 s spectra and the resulting im-
pacts on final average spectra. Therefore, we include these
cutoffs in the sensitivity analysis in section 6. In addition, the
bias resulting from this high wavenumber cutoff is detailed in
our semi-idealized error analysis in section 6a.

After cleaning the spectrum of each segment, we consider
individual spectral density values as independent estimates of
the true spectral value at their given wavenumber. We bin
the N spectral values in increasing order by wavenumber
into bins of at least Ny, = 50 as evenly as possible, as ex-
plained in appendix B, steps 16-17. We choose 50 as a bal-
ance between providing sufficient degrees of freedom that
we achieve a low noise spectrum and having enough bins
that the final spectrum has enough data points for us to per-
form a robust fit. The exact number may need to be adjusted
based on the noise level and size of each dataset and is
included in the sensitivity analysis in section 6¢c. We then
average the values in each bin together to obtain a low noise
spectrum without wave bias (appendix B, step 18). Because
we expect the spectral estimates to vary as K75/3, we esti-
mate the wavenumber of each average spectral density
value (appendix B, step 19) as
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where the index represents each individual estimate being
averaged in the bin and Ny, represents the total number of
spectral estimates in a bin. Each resulting averaged spectral
estimate then has 2Ny, degrees of freedom. Note, we find
that a maximum N for our dataset is 5760 (180 ten-second
segments X 32 kept wavenumbers per spectrum) and that a
minimum N for successful dissipation calculations in our data-
set is 768. Generally, if grouping individual values into bins of
at least Nyin, Npin Will range from Ny, to 2Ny, but success-
ful dissipation calculations will require many bins that will
as a result be more evenly distributed and generally close to
Nmin. For our data, Ny, ranges from 50 to 96 due to how
the remainder of N/50 distributes into the bins, but only
ranges from 50 to 53 for bursts with successful dissipation
calculations.

In summary, our spectrum calculation starts by interpolat-
ing NaNs and splitting the horizontal velocities into a low and
high-frequency portion (using a 1/5 Hz cutoff) before splitting
both the filtered horizontal and unfiltered vertical velocity
data into 10 s segments (appendix B, step 2). We then rotate
both the low- and high-frequency horizontal signals into the
direction of the mean velocity for each 10 s segment inde-
pendently (appendix B, steps 4-7). Next, we eliminate any
segments where the standard deviation of the low-frequency
horizontal signal is greater than 1.025 times the mean speed
or the standard deviation of the high-frequency horizontal
signal is greater than 1/5 times the mean speed, all calculated
in the mean velocity direction (appendix B, steps 8 and 9).
We also eliminate segments with the most unoriginal points
until less than 1% of the total points in all remaining segments
are unoriginal. After eliminating, we take a spectrum of the
unfiltered vertical velocity of all the remaining segments, con-
vert the spectra to wavenumber space individually, including
the wave correction factor (/) in Eq. (4), and trim the two low-
est wavenumbers along with the wavenumbers above Kcygoff tO
avoid aliasing. Finally, we bin the N resulting spectral estimates
as evenly as possible into floor(N/Np,) groups by wavenumber
and average each bin to obtain an averaged spectrum. It is impor-
tant to note that because we assume an inertial subrange at sev-
eral steps in our spectrum calculation, we only expect the final
result to be accurate within the inertial subrange. Figure 3 illus-
trates the method’s success in the inertial subrange.

5. Dissipation calculations

To use Eq. (1) to calculate dissipation, we must fit a line to
the logarithm of the wavenumber spectrum within the inertial
subrange. This poses two distinct problems: 1) how to fit a line
and 2) where to fit a line. The details of how to approach these
two problems have varied slightly in the literature, with no con-
sensus on what approach is best. The issues and modifications we
explain in this section are not specific to nonlinear or intermittent
dynamics such as IG frequency bores and are therefore helpful
over a broad range of observational conditions.
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a. How to fit

For fitting a line, a least squares error approach is com-
monly used (e.g., Feddersen 2010; Jones and Monismith
2008). However, the least squares error approach originates
from the maximum likelihood estimation (MLE) method spe-
cific to data with Gaussian errors (e.g., Leo 1994). As Bluteau
et al. (2011) point out, the errors on a spectrum follow a *
distribution, meaning that an MLE approach (rather than a
least squares error) would be more appropriate as it accounts
for the ¥* distribution. Unfortunately, the solution suggested
by Bluteau et al. (2011) requires constant degrees of freedom
over the entire spectrum (not guaranteed by our approach)
and the use of computationally costly nonlinear minimization
algorithms. Here, we choose to use a weighted least squares
approach with some modifications to account for the effects
of a x? distribution.

Considering our spectral calculation method, every 10 s seg-
ment estimate of a spectrum comes from taking the square
magnitude of a calculated Fourier coefficient. The real and
imaginary portion of each Fourier coefficient are sampled
from a Gaussian distribution with a mean of 0. Therefore, the
spectrum estimate is sampled from [S(k)/d] X x3, where S is
the true spectrum value, d = 2 is the number of degrees of
freedom, and x7 is a standard X distribution with d degrees
of freedom [see Thomson and Emery (2014b) for more de-
tails]. Because the mean of a ¥ distribution is x; =d, we
expect the mean of multiple spectrum estimates to ap-
proach the true spectrum value (Thomson and Emery
2014b). When we bin our spectrum estimates into groups
of Npin = 50 and average them together, we are adding
Niin X3_, variables. The resulting averaged spectrum is then
sampled from the same distribution with higher degrees of
freedom, dy;, = 2Npin = 100.

When performing our dissipation fit, we work in log space
with the observations

A, = log($)), 9)
taken from the distribution

Ci 23 Klj 5/3

ASi(dy, ) = log( = X Xfimn,,)’ (10)

bin,

where Cj is defined in Eq. (1), the hat (*-~) indicates a single
sample of a random value and the subscript i denotes a spe-
cific spectral observation being used in the fit. While a y* dis-
tribution is skewed, large degrees of freedom lead to a more
Gaussian distribution and logarithms tend to further suppress
skewness. Therefore, we choose to model A*i (dbin’l.) as a
Gaussian with expected value

A" (dy;, ) = 10g(C1eP ;) + ¢ (dy;, /2) — log(dy;, /12)
11)
and variance
Oi(dbin,i) =2 dbin,i' (12)

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:34 PM UTC

WHEELER AND GIDDINGS

293

Note that $O(duin/2) — log(dpin/2) is negligible for high de-
grees of freedom and comes from the expectation of a log x*
distribution, with ¢ representing a digamma function (e.g.,
Lee 2012). Equation (12) comes from standard error propa-
gation of the standard deviation of a y? variable through
Eq. (10) (Thomson and Emery 2014a). Modeling the log of
our spectrum as a Gaussian allows us to use a weighted least
squares fit with the inverse variances as the weights (e.g.,
Thomson and Emery 2014a; Leo 1994). We solve for a and b
iny, = ax; + b, where

9, = A, + log(dy;, /2) — ¥O(d,;, /2) = log(S,)

+ log(d.. ./12) — O, .12), (13)

bin,i bin,i

x; = log(k;), (14)

and the errors in the fit are weighted by Oi(dbin,i) = 2dy;, -
Note that we have defined y, in Eq. (13) with correction terms

such that the expected value for y, yi(d,, ;) is then
yk'(dbin,i) = ZK‘(dbin,i) + log(dbin,i/z) - ‘/‘(O)(dbin,f/z)v (15)
which, plugging in Eq. (11), becomes
— 5 /
y ’(dbin,i) = ~3 log(k;) + log(C] 52/3). (16)

Therefore, if we require a and b in y, = alog(k;) + b to match
the linear fit to theory, then a = —5/3 and b = log(Ce*?). Us-
ing these values, and applying a least squares fit to , (as in
Leo 1994), we can use a to determine the location of the iner-
tial subrange (as described in section 5b) and we can estimate
the dissipation as
e = [exp(b)/C; P> (17)
To confirm that our approach is satisfactory, we generate a
test inertial spectrum, add random )(2 noise, and calculate the
dissipation from the spectrum. When repeating this many
times, we find negligible differences between our approach
and the full nonlinear approach of Bluteau et al. (2011), even
for degrees of freedom as low as 10. We then proceed with
confidence that our simplification to Gaussian uncertainties
will not affect our final result.

b. Where to fit

When deciding what portion of the spectrum to fit as the in-
ertial subrange, a variety of approaches have been suggested.
Trowbridge and Elgar (2001) and Feddersen (2010) fit to a
constant, prespecified frequency range, eliminating spectra
that did not satisfy a misfit cutoff. Jones and Monismith
(2008) and Bluteau et al. (2011) fit to all portions of the spec-
trum longer than a minimum frequency range, and select the
fit that has the smallest misfit. Bluteau et al. (2011) use large-
scale flow properties and the Kolmogorov length scale to define
bounds to restrict where the final fit could be located, employing
an iterative procedure to account for the Kolmogorov length
scale being a function of the dissipation itself.
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FI1G. 4. Examples of inertial subrange fitting method. (left) Histograms from three different bursts of dissipation values
from each individual fit. The thin gray lines show Gaussian kernel-density estimates. The vertical lines represent dissipa-
tion values from different fitting schemes: the most likely dissipation value selected as in appendix C, step 13 (black), the
best fit according to metrics defined in row titles (dotted dark blue), and the second-best fit according to the same metric
(dashed light blue). (right) Mean spectrum from each burst, with corresponding fits plotted over all wavenumbers used to
produce the histograms (i.e., any wavenumbers over which there was a successful fit). The thin vertical lines denote theo-
retical wavenumber limits based on the generation and Kolmogorov scales. Note that the bottom row shows the same
burst as in Fig. 2, all axes’ limits are different and the x axis of the right column is nonradian wavenumber [«/(27)].

To quantify the misfit, Jones and Monismith (2008) use the
total squared error from the least squares fit of a —5/3 line to
the spectrum. Feddersen (2010) uses two misfit tests. First,
after performing a least squares fit of a line with unspecified
slope, Feddersen (2010) uses the difference of the fitted slope
from —5/3, normalized by the uncertainty of the fitted slope.
Second, Feddersen (2010) uses the ratio of the horizontal and
vertical spectra to test for isotropic turbulence. Bluteau et al.
(2011) use the same condition as Jones and Monismith (2008),
with an additional criterion based on the maximum absolute
deviation of their fit and a x* distribution.

After performing several tests with the semi-idealized
model, we find a common problem with all of the methods
suggested above. The statistical uncertainties from our fitting
method consistently underestimate the error of our calculated
dissipation values compared to the dissipation used to create
the initial ideal spectrum. This is because slight changes in
noise can change what portion of the spectrum is fit and dra-
matically change the final dissipation value. The first two rows
of Fig. 4 show two bursts where the best and second best fits
for two different measurements of best fit result in dramati-
cally different dissipation values. The first row uses the total
error as used by Jones and Monismith (2008) while the second
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uses the average error because we found that the total error
preferentially selected shorter fits. We therefore conclude
that specifying a specific portion of the spectrum as the best
fit can introduce unnecessary uncertainty. To solve this prob-
lem, we instead calculate a kernel density estimate of the dis-
sipation values from all possible valid fits to determine the
most likely true dissipation value, as shown in Fig. 4 and de-
scribed in the following paragraphs.

We employ a similar iterative procedure as used by Bluteau
et al. (2011), starting by identifying the theoretical bounds of
the inertial subrange. As a lower bound, we set

2

K in=2va

- (18)
where L is the generation length scale, which we set to 1 m
based on our shallow water depth. As an upper bound, we set

1 2
X —

= 19
max 60 ,n ’ ( )

K
where m is the Kolmogorov length scale defined in Eq. (3).

These theoretical bounds can be seen by the vertical lines in
Fig. 4b. The factor of 1/60 introduced in Eq. (19) is an
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empirically derived value from laboratory experiments (e.g.,
Pope 2000); however, the factor of 2 in Eq. (18) is relaxed
from the empirical value of 6. This relaxation is supported in
part because the laboratory experiments covered low Reynolds
numbers when compared to our measurement conditions and
because the water column depth changes over the sampling
period. This relaxation of the low wavenumber scaling factor
can also be thought of as using a larger generation length scale
and reflects the fact that we likely have longer horizontal turbu-
lent length scales than implied by the depth of the water col-
umn. Such extended horizontal scales are common in shallow
water, as discussed by Stacey et al. (1999), Kirincich et al.
(2010), and Amador et al. (2022). We also verified that this re-
laxation was appropriate because roughly a quarter of our final
dissipation measurements exhibit a well-defined inertial sub-
range well past the stricter cutoff.

For the iterative procedure, we begin by guessing a high
dissipation of €y = 107 to start with a very high upper
bound (appendix C, step 1). After setting the bounds based
on Egs. (18) and (19), we take every possible continuous sub-
section of the spectrum within those bounds that contains at
least 10 data points and wavenumbers that span at least a
quarter of a decade (appendix C, step 2). For each of these
subsections, we fit a line as described above, first calculating
the slope and slope error (Leo 1994) to determine what sub-
sections to eliminate (as described below), then fixing the
slope at —5/3 to obtain the y intercept and calculate the re-
sulting dissipation [Egs. (13)-(17) and appendix C, steps 3-9].

We do not use the total error of the fit to eliminate subsec-
tions because we find that the spectrum noise varies between
bursts, requiring arbitrary cutoffs greater than the statistical
errors suggested by our degrees of freedom. We also do not
use the comparison of the vertical to horizontal spectra be-
cause it would require removing noise from the horizontal
data. The noise is primarily Doppler white noise from the in-
strument, which varies with flow conditions, and is much larger
for the horizontal velocity components than the vertical (e.g.,
Voulgaris and Trowbridge 1998). The most common method for
evaluating noise levels requires our spectra to flatten, and alter-
natives, such as those suggested by Durgesh et al. (2014), require
stationary data. Neither of these are true for our data, so we
choose to focus on the lower noise vertical velocity data. Similar
to the misfit used by Feddersen (2010), we choose to ignore spec-
trum subsections where —5/3 lies outside the 95% confidence in-
terval of the fitted slope (appendix C, step 7).

In addition, some of our calculated spectra (~6%) appear to
have a peak at around 1.3 Hz, which maps to a 1-10 cm wave-
length with our frozen turbulence conversions (the exact location
varied). These peaks tended to appear at periods when the in-
struments were measuring close to the surface, and the shallower
instrument measured a much higher energy than the deeper in-
strument. These observations, along with the additional presence
of the peaks in the pressure spectrum, leads us to believe that
they were caused by local wind-generated waves. To avoid these
peaks causing inaccurate fits, we take the residual of each fit,

e =9, - (—gxi + b), (20)
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and calculate the prominence of each peak as well as the
prominence of each minimum (or, equivalently, the promi-
nence of each peak of the negative of the residual) using
the SciPy peak_prominences function (Virtanen et al. 2020)
(appendix C, step 10). If the largest prominence is greater
than 0.8 (note, because we are working in log space, this cor-
responds to a little over a factor of 2), we assume that the cor-
responding spectrum subsection contains a peak and ignore
that dissipation value (appendix C, step 11). We want to note
that for datasets in deeper water, we expect that these high-
frequency waves will not be present. However, most other
datasets will not be in an estuary that filters out larger surface
gravity waves. In such conditions, we recommend using the
Shaw and Trowbridge (2001) or a similar method to remove
the high-frequency waves from the vertical velocity data be-
fore calculating the spectrum with these or any other method.

After eliminating invalid subsections, we treat the remain-
ing dissipation values as samples from a probability distribu-
tion. Using the SciPy gaussian_kde function (Virtanen et al.
2020) and Scott’s rule for determining bandwidth (Scott 2015),
we calculate a 1D Gaussian kernel-density estimate (KDE) of
the log;o of the dissipation values (appendix C, step 12). Scott’s
rule sets a bandwidth, & = m ™', based on the number of points
used, m, that estimates the theoretical bandwidth that would
produce a zero bias density estimate (Virtanen et al. 2020;
Scott 2015). The KDE itself is a smoothed estimate of the
continuous probability density function for the dissipation.
Because it is continuous, we find the dissipation value corre-
sponding to the peak probability of the KDE and select the
calculated dissipation value closest to that peak. (appendix C,
step 13). Three examples of a histogram and KDE can be
seen in Fig. 4a, including the burst shown in Fig. 2, which can
be seen in the last row.

This dissipation allows us to redefine our theoretical maximum
wavenumber bound using Eq. (19) (appendix C, step 14). If any
of the spectrum subsections used have more than one wavenum-
ber outside of the new bounds, we then repeat the process until
the subsections used to estimate the dissipation value satisfy the
bounds set by that dissipation value (appendix C, step 15). We
specify having more than one wavenumber outside of the
bounds in order to allow fits slightly outside of theoretical
bounds, similar to the approach taken by Bluteau et al.
(2011). In addition, if an iteration leads to a higher dissipation
value than the last, we force another iteration (appendix C, step
16) to include the new sections allowed by the relaxed upper
bound (forcing a hard cutoff after five iterations with an increas-
ing dissipation to avoid infinite loops).

6. Error analysis

Inherent in our dissipation calculation methods are several
sources of error, both statistical and systematic. Tracking each
individual source of error is difficult; however, here we pre-
sent three different approaches to identify and quantify many
of these errors and biases. This approach not only provides
detailed error quantification; it also addresses the generaliza-
tion of our methods by indicating which parameters may need
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represent the 15.2% error.

adjustment under different environmental conditions and
identifying overall areas for future improvement.

a. Semi-idealized model-based errors

For testing our spectrum calculation and dissipation fitting
methods, we can use our semi-idealized model to reveal gen-
eral patterns and determine an estimate of the total error.

We start by establishing the idealized spectrum and associ-
ated spatial data for dissipation values of €gea = 1078 1077,
107%,107°, 107%, and 1073 m? s, using Eq. (2). For each
dissipation value, we then use the observed along channel
velocity of each 30 min burst from all 3 ADVs to generate
semi-idealized temporal data as in section 4b, calculate a
wave corrected spectrum as in section 4d, and calculate a
dissipation value as in section 5. This gives us semi-idealized
dissipation values with our methods (e.,) for every data burst
and each dissipation level used for generating an ideal spec-
trum. To compare across dissipation levels, we calculate the
fractional error as

~ €ideal
€

€calc

eay)

€Iror =
calc

We choose to use the observed dissipation in the denominator
rather than the ideal dissipation to better match what is ob-
tained from real data. As Fig. 5a shows, a histogram of these
errors from all dissipation values tested and all measured ad-
vection velocities collapse to close to a Gaussian distribution
with a mean error of 2.3% and a standard deviation of 7.4%.
To determine a statistical error on our measurements, we use
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the half-width of the middle 95% of the error distribution in
Fig. S5a. This gives us an uncertainty on our dissipation meas-
urements of 15.2%, or slightly more than twice the standard
deviation. The 15.2% is our best estimate of the methodologi-
cal error of our dissipation values.

Breaking out these test dissipation calculations by the ideal
dissipation value used and the average advection speed, Fig. 5b
further shows that our method introduces some systematic biases.
Generally, higher advection speeds and higher dissipation val-
ues introduce a bias high. This bias also introduces the skew-
ness of the distribution compared to the Gaussian in Fig. 5a.
The source of these high biases is aliasing, which, because we
convert each 10 s spectrum to wavenumber space with a dif-
ferent advection velocity, gets spread out across the entire
spectrum. We do correct for aliasing in Eq. (7), but we only
limit the aliasing bias to less than 25%. We do not limit the
bias further because our tolerance test in Table 1 for the
Nyquist threshold factor shows that using a stricter cutoff
would lead to more noise. We also find that the strict cutoff
would lead to 128 fewer final dissipation values. So, we instead
note that a majority of these biases are within the 15.2% error
and are accounted for in our data analysis except for particu-
larly high dissipation values with high advection speeds. We
also observe that while the bias high is consistent for very high
dissipation values [O(10~) m? s~3], such high dissipation val-
ues are rarely observed in our data.

There is also a low bias at low dissipation values. Because
of our shallow water, at particularly low dissipation values,
the idealized inertial subrange practically does not exist. As a
result, our fitting algorithm for the idealized spectrum is fitting
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to the rolloff portions of the spectrum when our dissipation
values are low, which biases these low dissipation values
lower. This bias is generally smaller than the bias high at high
dissipation, so further corrections are not required. In addi-
tion, these low biases occur for particularly low dissipation
values (on the order of 1078 m? s~2), which are also rarely ob-
served in our data.

b. Noise-based errors

Because of the ideal spectrum used, our semi-idealized
model fails to capture two important sources of error. First,
nonturbulent physical processes and errors in our despiking
methods can introduce increased noise into the spectrum over
the ideal x? distribution. Second, white noise from the instru-
ment can bias the entire spectrum high (e.g., Voulgaris and
Trowbridge 1998).

To account for the former, our KDE dissipation fit ap-
proach provides a built in estimate of the variation introduced
by spectrum noise. We take the half-width of the middle 95%
of the final dissipation distribution used for estimating the
KDE as an initial estimate of the uncertainty. This is effec-
tively an estimate of the statistical uncertainty on our mea-
surement. The average statistical uncertainty for our final
dissipation estimates is around 7.8 %, which is comparable the
15.2% methodological uncertainty, suggesting that these error
estimates should be combined. However, these two uncertain-
ties are not independent, because the semi-idealized model is
already using the KDE dissipation fit approach. Calculating
the corresponding statistical uncertainty of the semi-idealized
model, we find an average contribution of 4.5% to the calcula-
tion of the methodological uncertainty, which is significant
enough to make these uncertainty calculations dependent.
Therefore, we record these two uncertainties separately and
note that the summation in quadrature of the two as if they
were independent provides an upper bound on the error while
the maximum of the statistical or methodological uncertainty
provides a lower bound on the error.

For the bias introduced by white noise, we first recall that
we are using the vertical velocity component, which is the
component with the lowest noise contribution for ADV’s
(e.g., Voulgaris and Trowbridge 1998). While we cannot iden-
tify an accurate noise level for many our bursts, about 20% of
our bursts from all three ADVs do exhibit a spectrum flatten-
ing, equivalent to spectrum noise of typically 10”°, and occa-
sionally 10~® m? s™>. Subtracting this noise level from our
spectra and recalculating dissipation values, we note that no-
ticeable effects only occur for dissipation values close to the
noise level and become negligible for dissipation values
greater than 1.5 orders of magnitude larger than the noise
value (dissipations around 10~7 m? s™3). For the lower dissi-
pation values, the bias can be on the same order of magnitude
or larger than the upper bound of our error range, which is on
average 18.7% for all of our data.

Because the white noise might bias our spectrum high while
the semi-idealized model indicates a bias low at the same
dissipation values, it is impossible to truly quantify the net
bias affects on our low dissipation values. Ultimately the
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error on our low dissipation values [=O(10”7)m? s3] may
be greater than the uncertainty we use. Therefore, we de-
termine that care must be taken interpreting dissipation
values below 1077 m? s in our particular dataset.

In summary, the total errors due to methodology and noise
place an absolute lower bound on the error of 15.2% and an
average upper bound on the error of 18.7%. Because the sta-
tistical error is sometimes greater than the systematic error,
the lower bound for any given dissipation measurement is the
maximum of systematic and statistical error, which on average
for our dataset is 17.5%. We also find an occasional burst with
significant statistical error that slightly increases our average
errors. Thus, the average error could be reduced if a maxi-
mum statistical error limit were imposed. Finally, particularly
high dissipation values [ = @(10™*)m? s3] can be biased high
by up to 25% due to aliasing and particularly low dissipation
values [=O(1077)m? s3] can have larger errors than calcu-
lated here due to a mixture of white noise and the effects of
fitting to the rolloff of the inertial subrange.

c. Sensitivity analysis

In addition to the sources of errors mentioned above, our
methods also introduce several changeable variables whose
impact on the final results need to be understood. For each of
these variables, we test them by selecting a high and low value
with which to redo our analysis to understand how our final
results on all 3 ADVs change. A summary of these changes
can be seen in Table 1.

For the expanding cutoff despiking algorithm (section 3b),
we use 3 predetermined constants. First, we choose to filter
out the low-pass signal with a cutoff frequency of 1/20 Hz.
Second, we incrementally expand the phase space cutoffs by
1% of the universal threshold. Third, we choose the stopping
point of the expansion where the density of points between
sequential cutoffs decreases by more than 95% of the previ-
ous value.

For our segmented spectrum calculation algorithm (section 4d),
we use 8 predetermined constants. For separating turbulent
from advection velocities, we use a frequency cutoff of 1/5 Hz
and segment the data into 10-s-long segments to avoid wave
contamination. When eliminating segments, we require the
mean current to be larger than 5 times the turbulent standard
deviation and the advection standard deviation to be less than
1.025 times the mean current. We further require that less
than 1% of the points used for calculating a spectrum be re-
placed spikes. We then eliminate the two lowest wavenum-
bers and any wavenumbers where we expect the spectral
values to be less than 4 times the spectral value at the Nyquist
frequency assuming a —5/3 slope. Finally, we bin average with
bin sizes of at least 50 points.

For the KDE-based inertial subrange fitting (section 5), we
further introduce six predetermined constants. For determin-
ing the bounds on the inertial subrange, we multiply the gen-
eration length scale by a factor of 1/2. When identifying
possible spectrum subsections to fit an inertial subrange to,
we require the subsection to contain at least 10 data points
and have wavenumbers that span at least a factor of 2.5



298

TABLE 1. Results of tolerance tests. Average change refers to the average of (epew —
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€original)/ €original, allowing us to estimate any

biases introduced by modifying the corresponding variable. Average absolute change refers to the same, but taking the absolute
value before calculating the average. This allows us to identify potential changes, even if no average bias is introduced.

Original Average Average absolute
Methods section Variable value New value change (%) change (%)

Despiking Low-pass signal filter frequency 1/20 Hz 1/30 Hz 0.3 7.5
1/10 Hz 3.6 8.5
Expansion step size factor 1% 0.5% -10.3 13.4
2% 21.9 241
Expansion density change end 95% 90% -1.8 5.0
99% 12 25
Spectrum calculation High/low separation frequency 1/5 Hz 1/10 Hz -1.3 39
2/5 Hz 2.9 4.9

Segment size 10s S5s 12.5 18.23
15s 19 16.0
Turbulence variance cutoff factor 5 2.5 3.7 6.9
10 —8.8 12.0
Wave variance cutoff 1.025 0.8 0.03 0.2

12 0.02 0.05
Unoriginal points allowed 1% 0.5% —4.5 7.8
2% 6.1 8.1
No. of low wavenumbers removed 2 0 1.9 5.7
4 2.7 6.8
Nyquist threshold factor 4 2 0.5 6.7

8 54 11

Bin size 50 points 25 points 5.7 16.9
75 points 22 5.4
Inertial subrange fitting Generation length scale factor 0.5 0.25 1.2 35
1 0.2 0.8
Min data points in subrange 10 5 0.3 1.2
15 12 1.9
Min subrange wavenumber span 2.5 1.25 8.1 20.5
5 —0.01 5.0
Max peak prominence 0.8 0.7 0.6 22
0.9 -0.1 15
Slope confidence interval 0.95% 0.9% 0.6 1.8
0.99% 0.2 2.0
KDE bandwith scale factor 1.0 0.8 0.02 0.2
12 0.02 0.2

(a quarter of a decade). For determining valid fits, we require
—5/3 to be within the 95% confidence interval of the slope
and that the maximum peak prominence of the data in the fit
be smaller than 0.8. When determining the final dissipation
value, we use Scott’s rule with no alterations to determine the
bandwidth for calculating the KDE (Scott 2015).

Reviewing the results in Table 1 shows that the dissipation
is not very sensitive to a majority of the variables when com-
pared to the 15.2% uncertainties we have already identified.
One notable exception is the expansion step size factor in the
despiking algorithm. For this particular variable, we tested
smaller incremental changes than shown in Table 1 and found
that there is a roughly consistent linear relationship between
the change in expansion step size factor and the average dissi-
pation change. This consistent and relatively strong relation-
ship between expansion step size and dissipation bias indicates
that careful consideration must be given to initial despiking to
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properly evaluate final dissipation uncertainty. We chose
our particular step size by closely examining plots similar to
Figs. 2a—d for many of our bursts, which does not guarantee
the selection is appropriate for other datasets. Such sensitivity
also points to an area for potential future methodological im-
provements, which we elaborate on in the discussion.

A few other variables introduce large average absolute
changes. Altering segment size when calculating spectra
seems to generally increase uncertainty in dissipation value.
This reflects the fact that too short of a segment reduces the
resolution of the inertial subrange while too long of a segment
introduces stronger 1G frequency bore driven bias. Similarly,
reducing the bin size during the spectrum calculation introdu-
ces large dissipation changes, likely because of the presence
of stronger noise in the final spectrum values due to lower
degrees of freedom. Finally, reducing the minimum range
between the minimum and maximum wavenumbers of the
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spectrum subsections when fitting the inertial subrange intro-
duces changes due to the fitting algorithm becoming much
more sensitive to the high-frequency portion of the spectrum,
which contains a large density of data points.

Two other variables with substantial sensitivities that might
be of interest to readers are the turbulence variance cutoff
and number of unoriginal points allowed. Both of these cut-
offs were chosen to match cutoffs used in other methods. The
turbulence variance cutoff is chosen to match that used by
George et al. (1994), and shows sensitivity because relaxing
this cutoff increases the number of segments with large vari-
ance included in calculating the spectrum. This increase in dis-
sipation also likely includes segments where the frozen
turbulence hypothesis is invalid, which is why we keep the
George et al. (1994) cutoff. The number of unoriginal points
allowed matches the fraction determined by Feddersen (2010)
as the point past which the specific interpolation method used
begins to matter. This sensitivity then tells us that our particu-
lar interpolation method would start to bias our dissipation
high if we had more unoriginal points included in the spec-
trum calculation.

7. Discussion

In this section, we highlight a few key results that we be-
lieve should be considered in future work measuring turbu-
lence using ADV data, including applicability of our methods
to other types of datasets and important directions for future
work.

For our despiking algorithm, we adapted the Islam and
Zhu (2013) expanding cutoff phase space method to reduce
the number of tunable parameters while still preventing the
elimination of real data as spikes during time periods of inter-
mittent variance. While our final algorithm is simplified rela-
tive to Islam and Zhu (2013), our tolerance tests show
significant sensitivity to one parameter. Islam and Zhu (2013)
also show significant sensitivity where the mean velocity
changes by over 15% with their bandwidth tests. This is not
equivalent to our sensitivity tests on the final dissipation
value. For a more direct comparison, we find that our mean
velocities change by less than 1% for all of our despiking sen-
sitivity tests, albeit over a smaller parameter change. With
this in mind, our despiking algorithm is a successful simplifi-
cation of the Islam and Zhu (2013) method that results in a
relatively robust algorithm for use in complex environmental
conditions.

While our mean velocities are relatively stable, the sensitiv-
ity of our final dissipation values highlights the inherent sub-
jectivity of despiking ADV data and how that subjectivity can
introduce hidden biases in turbulence calculations. The sub-
jectivity can be seen more clearly when looking at Fig. 2f,
where our expanded cutoffs appear to eliminate some valid
data for this particular data burst. So, while we find the pre-
sented algorithm to be the most reliable in the presence of
large IG frequency bores, or any other process that leads to
unpredictably intermittent velocity variance, we recommend
extra caution when determining the uncertainties of turbulence
calculations when using any despiking algorithm. Further, we

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:34 PM UTC

WHEELER AND GIDDINGS

299

look forward to future improvements in ADV despiking by
other researchers. We believe that the expanding cutoff ap-
proach has inherent limitations and that another promising
approach would be an adaptive algorithm that can identify
varying length bursts of data with consistent variance over
which to apply despiking rather than sticking with a prede-
fined burst length.

The segmented spectrum calculation approach here is very
specific to the presence of low-frequency velocity oscillations.
However, the result that our nonlinear velocity oscillations
can change the shape of a frequency spectrum, even at high
frequencies, suggests that careful consideration should be
given to the calculation of the spectrum before converting to
wavenumber space in situations with nonlinear processes.
Therefore, we recommend that future surf-zone turbulence
measurements, or measurements in the presence of other
nonlinear processes, carefully examine the assumptions of the
spectrum calculation methods used and consider applying our
segmented spectrum calculation in the case of nonlinear and
nonstationary velocity oscillations.

Our method for fitting an inertial subrange to a wavenum-
ber spectrum was not specific to the presence of IG frequency
bores. As a result, it can apply to any situation where dissipa-
tion estimates from spectra are performed, and is likely the
most widely applicable result of this paper. While the x* adjusted,
weighted least squares approach helps better account for non-
Gaussian errors, we believe the more important improvement
is the use of all possible fits to collectively determine the final
dissipation value through a KDE estimation. This avoids any
reliance on a single goodness of fit measurement, which could
be more easily affected by random variations not captured by
standard error analysis.

We also want to briefly mention that the presence of hori-
zontal length scales in the inertial subrange that are longer
that the water depth theoretically implies a level of anisot-
ropy. To our knowledge, any field deployment observing tur-
bulent dissipation generated by bottom boundary layers in
shallow water would find similar levels of anisotropy. How-
ever, we are not aware of any existing work to understand the
impacts that this has on inertial subrange derived dissipation
values. Therefore, while we believe our measurements are ac-
curate and comparable to past methods for measuring turbu-
lent dissipation, we also believe that future work examining
the impacts of anisotropic length scales on the inertial sub-
range would be valuable.

When we put all three methods together, we successfully
produce representative dissipation values that are consistent
between collocated instruments that are vertically separated
by 20 cm, lower and upper, and can be seen in Fig. 6. These
values display expected high values during strong tidal flows,
and even show elevated levels in the presence of large 1G
wave oscillations. The typical 15.2% uncertainty gives us con-
fidence in our results. We note the caveat that dissipation lev-
els around 1077 m? s> and below possibly have higher errors;
however, these make up a relatively small fraction of our
data. Specifically, 1.4% of the dissipation values from the two
collocated ADVs shown in Fig. 6 and 15.1% of all the dissipa-
tion values when including the third ADV. The percentage
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FIG. 6. Final results of despiking, spectrum calculation, and dissipation fitting algorithms combined. (a) The dissipa-

tion values from each of the two collocated instruments that are separated vertically by 20 cm. (b) The despiked, unfil-

tered, along-channel velocity from the lower ADV.

increases when we include the third ADV because it is lo-
cated farther upstream in deeper water, where the turbulence
is generally weaker.

Finally, our goal for this work was to measure turbulent dis-
sipation in the presence of large IG frequency bores. How-
ever, by necessity, our calculations were performed in 30 min
bursts, resulting in representative dissipation values that are
the average of instantaneous dissipation values raised to the
two-thirds power, then raised to the three-halves power as in
[zN(62/3/N)]3/ 2. When considering how the two-thirds power
affects an average, the representative dissipation will consis-
tently slightly underestimate the average dissipation. There-
fore, it is important to note that one of our hypotheses, and a
focus of future work, is that the IG frequency bores are in-
creasing turbulence in bursts as the bore passes the measure-
ment location. If this is true, then we are measuring a
representative dissipation that is likely a lower bound on the
turbulent energy produced by the IG bores.

8. Conclusions

Using data from a deployment in Los Pefiasquitos Lagoon
in February 2020, we develop several new algorithms to calcu-
late reliable turbulent dissipation values in the presence of
large IG frequency bores. We implement an expanded phase
space cutoff to remove spikes from nonstationary data. Then
we use a segmented spectrum approach to account for nonlin-
ear bore biases in producing wavenumber spectra from a sta-
tionary instrument. Finally, we use a Gaussian KDE approach
for fitting an inertial spectrum to avoid unnecessary errors
arising from selecting a single portion of the spectrum to fit to
for calculating dissipation values. The final 30 min representa-
tive dissipation values for two vertically separated, collocated
ADVs, using these methods, can be seen in Fig. 6. The code
and data presented in this paper have also been published
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to the University of California, San Diego, Library Digital
Collections (Wheeler et al. 2023) and to GitHub.

The despiking and spectral estimation methods introduced
here can be applied in other situations where nonlinear oscil-
lations and nonstationary data limit the application of more
standard approaches. The KDE dissipation calculation ap-
proach can be applied to any dataset where the inertial sub-
range must be located and fit to and provides a robust
methodology to finding an optimal fit. The error analysis pre-
sented provides a rigorous approach to assessing dissipation
calculations and highlights the need for further careful consid-
eration of despiking when measuring turbulent dissipation
with ADVs. Finally, successful observations of representative
dissipation values under large IG frequency bores opens the
door for future studies to understand turbulent processes and
the potential importance of these bores in nearshore and estu-
arine systems.
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APPENDIX A
Expanding Cutoff Despiking Algorithm

1) Use linear interpolation to fill any NaNs in data (from
correlation and SNR-based filtering or time periods
where the instrument was out of water), and store the lo-
cation of those NaNs.

2) Remove low-pass filtered signal to avoid contamination
from large nonturbulent signals. In our case, we found
that using a 1/20 Hz, fourth-order Butterworth filter
effectively eliminated contamination from IG waves
without introducing negative effects from filtering partic-
ularly large spikes.

3) Use central differences to calculate the first (xV) and
second (1®) derivatives for locating each point in phase
space as in Goring and Nikora (2002), their Egs. (7) and
(8), where in their notation the first and second deriva-
tives are Au and A%y, respectively.

4) Calculate the universal threshold cutoffs ¢® using the to-
tal number of data points n and the standard deviations
o for the corresponding derivative as in Goring and
Nikora (2002), their Eq. (2):

u(k) =V2Inn X o), (A1)

where k is denoting the number of derivatives.
5) Define the ith expanded cutoff for each dimension as

¢ = (1 +0.01i) X & (- (A2)

6) Starting with u—u" space, as a first step before calculat-
ing the elliptical ring density, define the number of
points within the ith expanded ellipse as

no2 u(l)
J
3,

l
Cu c uh)

(A3)

ufu(l)

where j is an index that iterates over all points.
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7) Then, for the ith expanded ellipse, define the elliptical
ring density of points in the ring between sequential cut-
offs as

P 1

u—u®

Pi

u—u®

i
Py—ym = ; : (A4)
o X (e, = et

8) To determine when to stop expanding the cutoff, first

calculate the fractional change in elliptical ring density
between sequential cutoffs as

i~1 i
i [

APL—:AI) = uuﬁiluu‘ (A5)

pu—u“)

9) Then, determine the last expanded cutoffs for u—u®

space, Ci_ ., and c as the cutoffs before the frac-

U— u“’7

tional ring density change exceeds 0.95:

= clApitly = 0.95. (A6)

10) Mark any points where the velocity exceeds the final
C o cutoff as spikes. This is a first pass, as described
by Parsheh et al. (2010), to avoid large spikes influencing
the derivatives at nearby data points and causing valid
data to look like more spikes.

11) If spikes are found, skip to step 18 for replacing those
spikes. If no spikes are found, proceed to step 12 to use
the full phase space detection method.

12) Mark any points that are outside the ellipse with major
and minor radii defined by C% and c , as spikes.

u-ul

13) Repeat steps 6-9 and 12 for uV-u® space. Note, steps
10 and 11 are skipped because the 1n1t1al, velocity-only-
based spike detection is only done for the u-u‘"-based
cutoffs.

14) Because of the correlation between the velocity and the
second derivative, calculate the principal axis rotation
angle 6 between the velocity and second derivative as in
Goring and Nikora (2002), their Eq. (9).

15) Rotate u—u® space to a—B space with the principal axis
rotation angle, where

z=(u+ixu?)xe (A7)
a = Real(z), (A8)

and
B = Imag(z). (A9)

16) Calculate the initial cutoffs for the rotated ellipse using
the solutions to the equations found in Goring and
Nikora (2002), their Egs. (10) and (11), as

0)> — in6)
¢, = \/(cucos ) (c.u(zi sin6) 7 (A10)
cos*6 — sin" 0
and
(c.0)* — (c, sin6)
= i o . All
B cos26 (A1)
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Repeat step 5 for the ¢, and cj cutoffs, then repeat
steps 6-9 and 12 for a—@B space to complete the full
phase space spike detection.

Replace each spike with the value of the last valid point.
If spikes were identified, return to step 3 in order to
repeat the phase space spike detection and spike re-
placement until no more spikes are detected. On rare oc-
casions, this loop will continue for a very long time, so
we recommend a maximum number of iterations al-
lowed (we use 100).

Record the location of any spikes that were replaced
through all iterations, add back the low-frequency signal,
return NaNs removed in step 1, and finish.

APPENDIX B
Segmented Spectrum Algorithm

Linearly interpolate any NaNs in the vertical and hori-
zontal velocity data.

Separate the high-frequency turbulent velocities ()
from all other lower-frequency advection velocities (it)
with an appropriate filter. In our case, we use a 1/5 Hz,
fourth-order Butterworth filter that separates low-
frequency advection velocities i, which include IG and
lower-frequency oscillations, from the high-frequency
turbulent velocities (v’ = u — it). These separated sig-
nals will be used for identifying bad segments and cor-
recting the magnitude of the spectrum.

Split the vertical velocity data along with both the low and
high-frequency horizontal velocity data into short segments
with N, data points each such that the velocity varies
little over each segment. We found that 10 s worked well
for our data, which, with our 16 Hz sampling rate, gives
Nqey = 160.

Calculate the average low-frequency horizontal advection

velocities, U, = zl ’“fu’/N and V= 2, ”jgv’/Nseg,

for each segment.

Calculate the advection speed for each segment as
g - Uszcg + VZ

Calculate the advection direction for each segment as

Oeg = tan’l(Vseg/Useg)

Rotate the low- and high-frequency horizontal velocities

of each segment into the mean advection direction,

keeping the primary components as ¥ and y'.

Calculate the standard deviations of the low- and high-

frequency rotated primary velocities for each segment

(o7, and o).

Eliminate any segments that fail to satisfy either of the

relations

ol = 1.025¢,, (B1)

or

Y
Ol = Cyegld-

(B2)

Count the number of unoriginal data points in each seg-

bad
ment, ng, .
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Eliminate the segment with the largest n% until the to-
tal number of bad points is less than 1% of the total re-
maining points:

k
d
2 n < 0.01N, 1,

i=1

(B3)

where / is the number of segments left.

For each remaining segment, detrend, multiply by a
Hanning window, Fourier transform, and calculate a power
spectrum of the vertical velocity in frequency space S, (w),
where o is the radian frequency. Thomson and Emery
(2014b) provides a good discussion for the effects of de-
trending and windowing on spectra.

Convert each remaining spectrum to wavenumber space
and correct magnitude as

S (w)c
SWW(K) = M (B4)
I(Ugeg/cseg)
and
k=2 (BS)

where [ is calculated according to Eq. (4).
Eliminate the two lowest wavenumber spectral values
for each segment to avoid low-frequency bias.

For each segment, eliminate any spectral values for
wavenumbers that are higher than
( —5/3 X 4) 3/5

max

Keutoff (B 6)
where knax is the highest wavenumber estimated for that
spectrum. This avoids significant aliasing from frequen-
cies above the Nyquist frequency.

Sort each remaining spectral value from all remaining
segments in increasing order by wavenumber.

Group sorted spectral values as evenly as possible into
M = floor(N/50) bins, where N is the total number of
spectral values left.

Calculate the mean spectral value for each bin. The de-
grees of freedom for these average estimates is then 2Ny,
where Ny, is the number of spectral values in the bin.
Calculate the corresponding wavenumbers of the aver-
aged spectral values, assuming an inertial subrange, us-

ing Eq. (8).
APPENDIX C
KDE Dissipation Fit Algorithm

Calculate the minimum and maximum wavenumber cut-
offs using Egs. (18) and (19), assuming a dissipation of
1073 m? s7>. This gives an initial estimate of where the
inertial subrange can be.

Find all possible continuous subsections of the spectrum
with wavenumbers (k;, I € [1, Ngc]) inside the wavenum-
ber cutoffs (kmin < K; < Kmax), With at least 10 spectral
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3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

values (Ngee = 10), and for which the wavenumbers span
at least a quarter of a decade (k, /k; = 2.5). Here, Ny
refers to the total number of spgétral values in a given
subsection and i refers to a specific spectral value in the
subsection.

For each subsection, convert spectrum to log space (x-y
space) using Egs. (13) and (14).

For each subsection, calculate the variance, oi(dbin,i) =
2/dbin,l., from the degrees of freedom dy;,; of each con-
verted spectral value (3,).

For each subsection, calculate a weighted least squares fit-
ted slope (ase, Where the subscript refers to the specific
subsection) to x; and J,, using the inverse of the variances
from step 4 as the weights. We follow the approach used
by Leo (1994).

Calculate the error on the fitted slope (oam). Again, we
follow Leo (1994).

Discard any subsection where |a,, = 1.960,

with 1.960 coming from the 97.5th percentile of the stan-

+ 503/,

sec

dard normal distribution.

For each remaining subsection, assume a slope of—5/3,
and use the weighted least squares approach to calculate
the y intercept (bsec).

Using those y intercepts, calculate dissipation values for
each remaining subsection () following Eq. (17).
Calculate the largest peak or valley prominence, using
the SciPy peak_prominences function (Virtanen et al.
2020), of the residual from Eq. (20) for each subsection.
Further discard any dissipation values from subsections
where the maximum prominence is =0.8. The remaining
dissipation values are now referred to as valid dissipa-
tion values.

Using the valid dissipation values (€
Gaussian KDE of log,e/alid,

Select the valid dissipation value that is closest to the
peak of the Gaussian KDE as the calculated dissipation
value (€ca1c)-

Repeat step 1 using the new dissipation value and Eq. (19)
to obtain a new maximum wavenumber cutoff.

If any of the subsections used to calculate the dissipation
values used for the Gaussian KDE have more than one
wavenumber outside of the new wavenumber cutoffs, se-
lect the subset of the valid dissipation values coming from
subsections entirely within the new cutoffs and repeat steps
12-14 until none of the subsections used have more than
one wavenumber outside of the final cutoffs. Note, we do
not need to repeat any of the other steps, because we have
already calculated all possible potential dissipation values
with the original nonstrict cutoffs. The repeat of steps
12-14 merely changes the number of valid subsections in-
cluded in the calculations due to the refined cutoff values.
If the final dissipation value is larger than the previous dis-
sipation value calculated, again repeat steps 12-15 until
the final dissipation value is smaller than the previous dis-
sipation value calculated. Note that this step has the po-
tential to loop infinitely, so we stop if this condition is
used five times.

valid
sec

), calculate a
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