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ABSTRACT: Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from
drifter clusters using three approaches. At submesoscale horizontal length scalesO (1–10)km, kinematic properties become
as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O (hours to days). By
simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calcula-
tions due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation
methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become
as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and as-
pect ratio) are determined and error functions estimated empirically and theoretically. The most robust method}a
two-dimensional, linear least squares fit}is applied to the first few days of a drifter dataset from the Bay of Bengal.
Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of
clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy
with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the
two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of
drifter observations, while also highlighting challenges and limitations.

SIGNIFICANCE STATEMENT: The purpose of this study is to provide insights and guidance for computing horizontal
velocity gradients from clusters (i.e., three or more) of Lagrangian surface ocean drifters. The uncertainty in velocity gradi-
ent estimates depends strongly on the shape deformation of drifter clusters by the ocean currents. We propose criteria for
drifter cluster length scales and aspect ratios to reduce uncertainties and develop ways of estimating the magnitude of the
resulting errors. The findings are applied to a real ocean dataset from the Bay of Bengal.

KEYWORDS: Indian Ocean; Eddies; Frontogenesis/frontolysis; Fronts; Lagrangian circulation/transport; Ocean
circulation; Ocean dynamics

1. Introduction

Measuring kinematic properties is of particular interest at
submesoscales (0.1–10 km length scales), where lateral buoy-
ancy gradients are intensified by surface forcing, topographic
interaction, frontogenesis, baroclinic instability, and turbulent
thermal wind. Large local Rossby number Ro5 z=f ∼O (1)
can be generated, where z 5 yx 2 uy is the relative vorticity and
f is the Coriolis frequency (e.g., Thomas et al. 2008; McWilliams
2016), along with other kinematic properties. It has been estab-
lished from both theory (e.g., Rudnick 2001) and modeling
(e.g., Mahadevan and Tandon 2006; Ramachandran et al. 2018)
that energetic submesoscale turbulence develops positively
skewed relative vorticity ofO (f ), lateral strain rate ofO (f ), and
horizontal convergence that leads to vertical velocities of
O (100)m day21 (e.g., Shcherbina et al. 2013; Ruiz et al. 2019).

In the past decade, a growing number of experiments (e.g.,
Poje et al. 2014; Berta et al. 2016; Tarry et al. 2021) have

deployed large numbers of drifters to measure dispersion
characteristics of submesoscale flows and their kinematic
properties. Kinematic properties can be derived from sets of
at least three synchronous velocity measurements in space.
Three methods that have historically been applied to drifter
datasets are the focus of this study: Saucier (1955) derived
divergence from three wind measurements in the atmosphere
assuming that the area spanned by the weather stations must be
conserved (e.g., Niiler et al. 1989; Fahrbach et al. 1986). Kawai
(1985a,b) used Stokes’s and Gauss’s theorems to compute area-
averaged vorticity and divergence by taking the line integral of
velocity around the circumference of a polygon of drifters.
Müller et al. (1988) and Lien and Müller (1992) used a similar
approach on triangles of acoustic Doppler current profiler
(ADCP) measurements to compute vorticity and divergence at
different depths. Molinari and Kirwan (1975) and Okubo and
Ebbesmeyer (1976) fitted horizontal drifter velocities with a
bilinear function to yield the velocity gradients. As the number
of drifters exceeds three, this method minimizes the error of
the fit in a least squares (LS) sense and provides an estimate of
uncertainty}both of which are reasons why this method is mostCorresponding author: Sebastian Essink, sessink@uw.edu
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broadly used (e.g., Fahrbach et al. 1986; Paduan and Niiler 1990;
Swenson et al. 1992; Righi and Strub 2001; Tarry et al. 2021).
More recently, Oscroft et al. (2020) extended the LS method to
also fit parameters in time to a slowly varying mesoscale velocity
and derived a velocity decomposition into mesoscale and subme-
soscale contributions. The challenge is that, since true velocity
fields are unknown (particularly at small scales), kinematic
property errors are difficult to estimate. The choice of method
is also motivated by usability and computational cost, so that
large numbers of drifter trajectories can be analyzed.

The goal of this study is to estimate kinematic properties
from clusters of drifters. First, we evaluate the performance of
the above three methods by estimating the kinematic proper-
ties using synthetic drifters in a numerical model and compute
error estimates. Then, we apply the criteria and guidance to a
real ocean dataset from the Bay of Bengal.

However, measuring spatial derivatives of velocity is challenging
in the ocean because it requires simultaneous measurements in
space. Shipboard velocity measurements only capture variability
in the along-track direction, therefore, missing one component
of the two-dimensional gradient (e.g., Callies and Ferrari
2013). Shcherbina et al. (2013) found vertical vorticity and
strain rate exceeding O (f ) in the near-surface ocean using one
of the first two-ship surveys. High-frequency (HF) and X-band
radar systems (e.g., Kirincich et al. 2013; Horstmann et al. 2015;
Lund et al. 2012) are able to capture velocity fields at subkilom-
eter horizontal and subhourly temporal resolution. In coastal
regions, for example, these were used to map statistics of kine-
matic properties of submesoscale eddies (Kirincich 2016). Ae-
rial imagery taken from planes and drones are promising to
resolve submesoscale variability and infer currents at a high
spatial resolution (e.g., Marmorino et al. 2018, 2010; Karimova
and Gade 2016).

Discrete spatial measurements of velocity will likely generate
uncertainty in the velocity gradient estimates, regardless of the
measurement platform andmethod. This is largely due to the vari-
ability of kinematic properties at unresolved scales, which causes
significant aliasing (e.g., Lien and Müller 1992; Müller et al. 1988).
Wavenumber spectra at scales below ∼10 km in the ocean are
underobserved and limited by horizontal resolution of the mea-
surement platforms. In addition, Kunze et al. (1990) found using
ADCP measurements that discrete velocity measurements in
space make it difficult to differentiate between divergence and
vorticity. For example, when using Stokes’s theorem to compute
vorticity on the perimeter of discrete velocity measurements, di-
vergence at scales below the separation scale of individual meas-
urements can contaminate the vorticity estimate, and vice versa.

Previous studies using drifter-based methods reported several
operational challenges (e.g., Kirwan 1988) because drifter clus-
ters are advected by the flow and deform. Kinematic proper-
ties in regions of the strongest velocity gradients are the most
challenging to capture and often only observable for a short
period of time until the drifter clusters become too deformed.
Since the kinematic properties are a function of scale, the
signal-to-noise ratio strongly depends on the length scale of the
drifter clusters (e.g., Righi and Strub 2001; Paduan and Niiler
1990; Ohlmann et al. 2017; Berta et al. 2016). Hormann et al.
(2016) were able to compute mesoscale vorticity with the Saucier

method from the same dataset used in this study but retrieved
ambiguous noisy estimates at scales L , 10 km. Ohlmann et al.
(2017) and Righi and Strub (2001) further noted that elongated
and deformed clusters induce larger errors of the kinematic
properties. Spydell et al. (2019) used stationary global positioning
system (GPS) beacons and the LS method to estimate the error
of vorticity purely due to the GPS error. Tarry et al. (2021) found
the GPS vorticity error to be as large as the submesoscale signal,
even for fast-reporting GPS beacons. Alignment of drifters in
the direction of fronts biases the sampling toward regions of
larger shear and convergence (e.g., Pearson et al. 2019), and is
unfavorable when trying to estimate cross-frontal gradients.

A nonhydrostatic Boussinesq model is spun up from a
strong lateral buoyancy gradient (Mahadevan et al. 1996a,b).
Synthetic drifter clusters are introduced in the model’s surface
flow to sample the velocity field. Cluster characteristics, such
as the number of drifters per cluster N, the aspect ratio a, and
the cluster length scale L, are varied systematically to investi-
gate the error in the kinematic-property estimation for each
of the three methods. This idealized sensitivity study helps
to constrain the sources of error, and ascertain the parame-
ter dependence on N, L, and a, which can be evaluated
when working with observational drifter data, and aid in the
interpretation of the kinematic property results. Errors due
to GPS uncertainties and cluster shape deformation are also
estimated with the same set of parameters (i.e., N, L, and a).

Using the insights from the numerical model, we apply the
LS method to a large, high-resolution near-surface drifter
dataset collected in the Bay of Bengal as part of the Air–Sea
Interactions Regional Initiative (ASIRI) (Wijesekera et al.
2016; Lucas et al. 2014; Hormann et al. 2016; Essink et al.
2019)}a predecessor of the ongoing program, Monsoon Intra-
seasonal Oscillations in the Bay of Bengal (MISO-BOB) (Shroyer
et al. 2021). ASIRI’s primary goal has been to study processes in
the upper ocean to better understand their role for air–sea fluxes
and the monsoon (Lucas et al. 2014; Wijesekera et al. 2016). In
2015, drifters were deployed across a freshwater-dominated den-
sity front with the goal of better understanding the processes that
disperse the freshwater (Essink et al. 2019; Hormann et al. 2016)
originating from major rivers in the northern bay and intense pre-
cipitation during the monsoon (Mahadevan et al. 2016).

This study is organized as follows. In section 2, the drifter da-
taset, the numerical model, and the methods for estimating the
velocity gradients are described. In section 3, the methods are
tested in the numerical model and the sensitivity to the geome-
try of drifter clusters is determined using a known velocity field.
Error functions due to shape deformation and GPS error are
estimated. In section 4, we describe how the observed drifter
clusters deform, present time series and maps of the estimated
kinematic properties and relate them to the observed ocean
physics. A summary and conclusions are provided in section 5.

2. Data and methods

a. Bay of Bengal drifter dataset

A total of 46 drifters (one of which failed upon deployment)
were released in the northern Bay of Bengal, at the edge of a
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strong cyclonic eddy and across a freshwater-dominated den-
sity front (Hormann et al. 2016; Essink et al. 2019) (Fig. 1).
Surface Velocity Program (SVP) drifters drogued at 15-m
depth minimize Stokes drift by surface gravity waves and wind
slippage (Niiler et al. 1995; Centurioni 2018). Since mixed
layers were shallow (see Fig. 1b), this drogue depth might
affect the extent to which mixed layer currents are sampled.
All drifters were equipped with a thermistor centimeters below
the surface. Thirty-six drifters carried an additional conductivity
sensor at about 0.5-m depth to infer salinity (Hormann et al.
2015, 2016) and allowing to compute near-surface density which
is largely controlled by changes in salinity in the Bay of Bengal
(e.g., Jaeger and Mahadevan 2018; Mahadevan et al. 2016).

The drifters were programmed to report GPS positions at
5-min intervals during the first month of deployment and at
30-min intervals thereafter, sufficient to resolve submesoscale
variability. To resolve flow patterns at length scales from 1 to
30 km, the drifters were released in tight clusters of four drifters
with O (1)km initial separation. Ten clusters formed a larger
swarm spanning an area of about 30 km2 (Hormann et al.
2016). The following analysis is an expansion of the work in
Hormann et al. (2016), where this dataset was used to

provide first estimates of the kinematic properties using the
Saucier method.

b. Numerical model

The nonhydrostatic Process Study Ocean Model (PSOM)
(Mahadevan et al. 1996a,b) was used to simulate a submeso-
scale flow field, initialized with a strong density front mea-
sured in the northern Bay of Bengal in 2013 with a profiling
conductivity–temperature–depth (CTD) probe. The model
initial condition is characterized by a north–south buoyancy
gradient set up by riverine freshwater in the northern bay,
similar to conditions during the 2015 field campaign (Jaeger
and Mahadevan 2018) during which the drifter data were
collected.

The model is in channel configuration, periodic in east–west
and with solid boundaries in the north–south direction, span-
ning a 320 3 190 km2 area with a 1000-m flat bottom. The
horizontal grid resolution is Dx 5 Dy 5 1 km, sufficient to re-
solve submesoscale variability. The vertical coordinate is ex-
ponentially stretched over 35 levels with Dz ≈ 2 m at the
surface and Dz ≈ 100 m at the bottom. The simulation is
stepped forward with a time step of Dt ≈ 5 min. A constant-
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FIG. 1. (a) Map of the Bay of Bengal on 23 Aug 2015, one week before the drifter deployments. Sea surface salinity
from the Soil Moisture Active Passive (SMAP) mission is shown in color (Entekhabi et al. 2010). Light (dark) con-
tours are positive (negative) sea level anomalies from delayed-time, gridded 0.258 Copernicus Marine Environment
Monitoring Service (CMEMS) data (Traon et al. 1998; Ducet et al. 2000). The drifter release location is marked by
the red triangle. (b) Example north–south CTD section of salinity with density contours collected on 15 Sep 2015
along a section shown as a thick black line in (a). (c) Two months of drifter trajectories released at the red triangle
overlaid onto CMEMS sea level anomalies with days after deployment are shown in color.
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diffusivity along-isopycnal mixing is used with k ≈ 1 m2 s21

(Redi 1982) and a “K profile parameterization” (KPP) for
vertical mixing (Large et al. 1994).

The simulation is forced with realistic wind stress and heat
fluxes measured by a mooring at 188N in the Bay of Bengal
(Weller et al. 2016). The surface forcing counteracts a loss of
eddy kinetic energy. During initialization, the north–south
front becomes unstable to shear and baroclinic instability and
breaks up into smaller eddies with diameters of O (1–10)km.
After about 30 days, the domain-averaged kinetic energy
changes slowly, mean mixed layer depth stabilizes at ∼50 m,
and a fully eddying flow field emerges.

Examples of the spun-up density and vorticity fields are
shown in Fig. 2. Stirring by eddies generates elongated filaments
of sharp density gradient with vorticity of up to 5f. The distribu-
tion of vorticity is positively skewed; that is, larger positive flow
features being more frequent than negative eddies. Further-
more, positive-vorticity filaments and fronts are associated with
strong downward velocity in their vicinity (not shown).

The model is a process study model with limited spatial domain.
We do not claim that it models the Bay of Bengal accurately
because it is missing the large-scale circulation context, topogra-
phy, and large-scale atmospheric forcing that other regional
models would include. All of these can change the nature and
length scale of fronts. In the model, the smallest scales (or the
sharpest fronts) are set by the resolved physics that provide
frontogenetic tendencies and the resolved and unresolved pro-
cesses that mix to dissipate fronts. Our model only parameter-
izes subgrid-scale mixing, so the frontal scale is close to the grid
scale (like it is the case in many models).

c. Estimation of kinematic properties

The two-dimensional velocity gradient tensor Gij 5 ­ui/­xj
of the horizontal velocity ui can be written as the sum of sym-
metric and antisymmetric parts, Gsym 5 (Gij 1 Gji)/2, and

Ganti 5 (Gij 2 Gji)/2. The antisymmetric part describes the
rotations of a fluid parcel. Its two nonzero components are
6z/2, where z is the vertical component of the relative vortic-
ity. The trace of the symmetric part is the horizontal diver-
gence d 5Gsym

ii and its off-diagonal components Gsym
iÞj are the

shear and normal strain rates. The eigenvalues of G are the
rates at which two particles separate, subject to the divergence,
strain, and shear of the flow. The sum of the eigenvalues is
equal to the divergence d. Vorticity, horizontal divergence,
shear, and normal strain rates are defined as z ≡ yx 2 uy,
d ≡ ux 1 yy, Ss ≡ yx 1 uy, and Sn ≡ ux 2 yy, respectively. Lat-
eral strain rate is defined as S ≡ �����������

S2s 1 S2n
√

.
We focus on the three methods that have previously been

applied to drifter observations: (i) the Saucier method based
on the area rate of change of a drifter cluster first documented
by Saucier (1953, 1955), (ii) the Kawai method (e.g., Kawai
1985a,b) based on Stokes’s and Gauss’s theorems, and (iii)
the LS method (e.g., Molinari and Kirwan 1975). All of these
methods require at least three measurements (i.e., N $ 3) of
velocity and position in space.

The Saucier method (Saucier 1953, 1955), first applied to
wind measurements at three weather stations separated by
O (100)km, assumes that properties between the stations are
conserved. Divergence can then be derived by evaluating the
rate of change of the area A spanned by the stations:

d 5
1

A(t)
A(t 1 Dt) 2 A(t)

Dt
, (1)

where t is time and Dt set by the sampling period. By rotat-
ing the coordinate system, Saucier (1953) transformed the
expression for vorticity into an expression for the divergence
of the rotated velocity (u′, y ′), z 5 yx 2 uy → u′x 1 y′y 5
(1=A′){[A′(t1Dt)2A′(t)]=Dt}, which can be evaluated like
above. Analogously, normal and shear strain rates can be com-
puted by applying a different rotation.

FIG. 2. Three-dimensional image of the fully spun-up numerical simulation. Front and top faces of the domain are shown of (a) density
anomaly, s0 5 r 2 1000 kg m23, showing a ∼50-m mixed layer and strong cross-domain density gradients and (b) relative vorticity z nor-
malized by the Coriolis frequency f showing strong filaments and eddies that reach vorticity magnitudes of up to 5f. Overlaid black dots
are examples of drifter clusters at random positions. (c) Zoom onto a filament with drifter clusters, each made up of three drifters.
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Kawai (1985a) used Stokes’s and Gauss’s theorems to esti-
mate divergence and vorticity by evaluating path integrals
around the area spanned by a drifter cluster:

d 5
1
A

�
ddA 5

1
A

�
(u · dn), (2)

z 5
1
A

�
zdA 5

1
A

�
(u · dt), (3)

where overbars are averages over the cluster-spanned area,
tangential (t) and normal (n) unit vectors relative to the
perimeter of A. In practice, the drifter velocities are
interpolated onto the polygon edges; that is, the midpoints
between drifter positions. The number of drifters involved
and the distance they are apart are important for how
well the true path integral can be computed with discrete
measurements.

Molinari and Kirwan (1975) and Okubo and Ebbesmeyer
(1976) developed a bilinear fit to the drifter velocities to determine
the velocity gradients. At each instant in time, six parameters
are fitted: two mean-flow components (u, y) and four two-
dimensional velocity gradient components. At least three
points (i.e., N $ 3) for each velocity component are needed to
solve this system.

The method can be derived from a Taylor expansion of
each drifter’s velocity (ui, ni) about the center of mass (x, y)
of a drifter cluster, which gives the following system of
equations:

ui 5 u 1
­u
­x

(xi 2 x) 1 ­u
­y

(yi 2 y) 1 O (Dx2), (4)

yi 5 y 1
­y

­x
(xi 2 x) 1 ­y

­y
(yi 2 y) 1 O (Dx2), (5)

where (xi, yi) is each drifter’s position. The expansion is trun-
cated at the first order, with the error scaling like O (Dx2),
making this a linear method. The linear method implies that
parameters are homogeneous across the length scale of a
drifter cluster. The residual represents higher-order terms
and can be attributed to turbulent motions as described in
Molinari and Kirwan (1975).

We rewrite Eq. (4) inmatrix form, usingCu 5 (u,­u=­x,­u=­y),
Cy 5 (y,­y=­x,­y=­y) and distance matrix Q5 (1,xi 2x,yi 2 y)
which contains the distances in x and y relative to the cluster
center of mass. The terms U′ and V′ now contain the O (Dx2)
terms representing turbulence at scales smaller than the poly-
gon scale:

U 5 QCu 1 U′, (6)

V 5 QCy 1 V′: (7)

To solve (6) and (7), we assumed thatU′ andV′ are negligible
at small separations Dx and Dy. The values of Cu and Cn can
be found by minimizing the sum of squares ||QCu 2 Q||2 and
||QCn 2 V||2.

The coefficient vectors of the bilinear fit, Cu and Cn, contain
the mean-flow components and spatial derivatives of the hori-
zontal velocity. These can be combined into the vertical com-
ponent of the vorticity z, the divergence d, and the lateral
strain rate S.

3. Model-based evaluation of methods

We use the three methods above to compute the kinematic
properties of the model velocity field, compare their accuracy,
and identify the uncertainties associated with sparse spatial
data and the geometry of drifter clusters. We also compute
theoretical and empirical error functions.

a. Comparison of methods

The kinematic properties are calculated for synthetic
drifter clusters, each of which can be described by the num-
ber of drifters N, the cluster length scale L, and its aspect
ratio a as defined below. For each set of parameters, a total
of 10 000 clusters of synthetic drifters are seeded in the
model domain (Fig. 2a) at random locations and with ran-
dom orientations.

Note that the synthetic drifters are not advected by the
flow, so that natural deformation of drifter clusters by con-
vergences or shear flows is eliminated entirely and drifters do
not sample the flow in a biased way like actual drifters would
(e.g., Pearson et al. 2019). Instead, synthetic drifters only sample
the model’s velocity field with a cubic spline interpolation at
the drifters’ position. The parameter space of cluster shapes
will be explored systematically by choosing N, L, and a.

We define the length scale of a drifter cluster as the root-
mean-square (rms) distance between all pairs of drifters
L ≡ �����������

〈(xi2xj)2〉
√

, where the angle brackets indicate the mean
over all pairs in a cluster; L is normalized by the flow length
scale Lu, which is determined from the horizontal wave-
number spectra of velocity and velocity gradients (Fig. 3).
We expect Lu to be a fair representation for both velocity
components because the grid is regular in both horizontal
directions. In the model simulation the flow length scale is
Lu ≈ 5 km.

The aspect ratio a 5 kmin/kmax is defined as the ratio of minor
and major eigenvalues kmin/kmax of the position covariance
matrix cov(X, XT), where X is the matrix of positions (cf. Choi
et al. 2017; Spydell et al. 2019). A circular cluster has an aspect
ratio of one, an ellipsoidal cluster a , 1, and a colinear cluster
a ≈ 0.

The estimated kinematic properties are compared to the true
model kinematic properties by averaging over the drifter cluster
area; for example, for the vorticity zm ≡ 1=A

�
zdA. We regress

the estimate against the “true” values in the numerical model to
compute the coefficient of determinationR2, whereR is Pearson’s
correlation coefficient defined as R5 cov(X, Y)/[std(X)std(Y)] for
two populations X and Y. R2 determines how much of the total
variance is captured by the regression model. A second, more
practical metric is the rms error of this regression; the vorticity er-
ror is �rms 5

���������
(z2zm)2

√
, where zm is the area-averaged model

vorticity.
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All three methods estimate the kinematic properties from
the model velocity field (Fig. 4) with high correlations be-
tween the estimated and model values; that is, R2 5 0.96.
However, even under ideal conditions (i.e., small length scales
L/Lu 5 0.2, and large aspect ratios a 5 1), the Saucier and
Kawai methods produce rms vorticity errors of 0.53 and 0.61,
respectively. The sign and magnitude of the vorticity can be
predicted, but the Saucier and Kawai methods underesti-
mate the vorticity when the magnitude of the true vorticity
is large, perhaps because the largest values occur at the
smallest scales. The reason why the Saucier and Kawai
methods underpredict vorticity without systematic bias at
true zero vorticity may be that they are area-averaged estima-
tors, whereas the LS method performs better at recovering the
vorticity.

On the contrary, the LS method produces smaller rms
errors, � 5 0.29, at the same correlation R2 5 0.96. Espe-
cially when the vorticity is small, the LS method appears to
perform more robustly. The error dependencies on N, a,
and L also hold for lateral strain rate and divergence with
similar functional forms (not shown). This is due to the fact
that the error here is largely due to nonconstant velocity
gradients at and below the cluster length scale L and sys-
tematic errors are zero. For the remainder of this section,
we use the LS method, which we identify as the most robust
method.

b. Impact of unresolved flow length scales

To vary the dominant length scale of variability of the veloc-
ity field, we filter the model fields with a two-dimensional
Gaussian filter resulting in smooth velocity fields below Lu 5 8
and 15 km (Fig. 3). These are typical length scales at submeso-
scale fronts (e.g., Hormann et al. 2016). Filtering the model out-
put, by smearing out the vorticity field, might not be equivalent
to varying the dominant length scale in evolving simulations
and likely produces smoother fields below the filter length
scale. Nevertheless, this exercise is illuminating to better under-
stand the uncertainty in drifter cluster-based velocity gradient
estimates.

As above, we use the coefficient of determination R2 and
the rms error �rms to evaluate the performance of the estimate
(Fig. 5). Figure 5 shows the vorticity fields for the three test
cases: the original model run with Dx 5 Dy 5 1 km, the 2-km
filtered field, and the 5-km filtered field. The LS estimate of
vorticity in all three cases is well correlated with the true vor-
ticity field, with R2 values ranging from 0.8 to 0.99 and p val-
ues below 1024. As long as the cluster length scales are small
relative to the scale of the flow features, the estimates im-
prove and R2 increases. Analogously, when the cluster length
scales are small relative to the scale of a flow features, the rms
errors decrease.

The relationship between the rolloff length scale of low-pass
filtered model fields and the cluster length scale becomes more
explicit in wavenumber spectra. As shown in Fig. 3, filtering re-
moves variability below the filter length scale such that velocity
and vorticity fields are smooth. In other words, velocity gra-
dients are constant across drifter clusters, consistent with the LS
assumptions of a linear velocity field. The original model fields
drop off steeper than k22 below about 5 km. The two filtered
fields drop off at 8 or 15 km, respectively, explaining why larger
clusters were able to perform better in estimating the velocity
gradients.

c. Sensitivity to shape

The shape of the drifter clusters significantly influences the
estimates of the kinematic properties. In the numerical model,
we vary the cluster shapes systematically, compute the kinematic
properties, and evaluate the uncertainties.

For each shape configuration with L, a, and N, 10 000
synthetic drifter clusters are randomly positioned and ran-
domly oriented in the model to compute the kinematic
properties. The resulting distributions of the estimates al-
low us to determine the uncertainties and sensitivity to the
cluster shapes.

Figure 6 shows the sensitivity of the LS estimates to the
shape of the drifter clusters in the model. Each data point rep-
resents an experiment with 10 000 model clusters of fixed
L, a, andN. As L/Lu increases (Figs. 6a,d), the vorticity errors
grow logarithmically. As soon as the drifter clusters become
larger than L/Lu . 2 and �rms ∼ 1, the estimates become in-
creasingly meaningless as the variability at smaller scales is
aliased into the signal. R2 approximately decreases like 1/L,
suggesting that the kinematic properties can only be estimated

FIG. 3. Wavenumber spectra of the model velocity |u|, vorticity z,
divergence d, and lateral strain rate S as a function of horizontal
wavenumber kh. Two spatially filtered vorticity fields, 2 and 5 km,
are shown with dotted lines. One-dimensional spectra were computed
from two-dimensional wavenumber spectra by transformation to polar
coordinates and integration over azimuths, and bin averaging into
10 bins per decade. Each spectrum is normalized by its maximum
value for better comparison of spectral slopes and rolloffs. Vertical line
at kh 5 1/Lu 5 1/5 cpkm indicates the wavenumber of the original
model velocity, above which the kinematic property spectra are
smooth, and the red vertical lines indicate Lu 5 8 km and Lu5 15 km
of the spatially filtered fields.
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accurately if the clusters have small length scales that are
smaller or approximately equal to Lu.

This relationship becomes clearer when considering the fil-
tered velocity fields in Fig. 5. The linear regression works well
if the clusters are smaller than the dominant length scale Lu,
resulting in large R2. The Gaussian filtering removes variability
below the filter scale, such that Lu increases. Since L remains
unchanged in these comparisons, L/Lu decreases and there is
progressively less aliasing or impact of unresolved scales in the
filtered cases.

The aspect ratio a also affects the velocity gradient esti-
mates, but to a lesser extent than L/Lu. As the drifter clusters
elongate and a decreases, R2 decreases and �rms increases, par-
ticularly in the extreme cases with a , 0.2. In addition to the
elongation of the clusters, the direction of elongation relative to
the direction of the velocity gradients is important. If the clus-
ters are elongated perpendicular to the velocity gradients, the
ability to compute the gradients accurately is largely diminished.
While this is possible to address in a model, the cluster orienta-
tion is challenging to determine in drifter observations because
the direction of the velocity gradients is usually not known.

Last, the number of drifters N per cluster theoretically in-
creases the accuracy of the estimates but as N increases, R2

and �rms show only a weak or no dependence on N (Figs. 6b,c).
We find that N 5 3 is slightly worse than N 5 6 or 9 but we
cannot find a functional dependence. The impact of N, however,
might be more pronounced when there is systematic error on
the velocity data, which is absent here, because it could reduce
the residual using least squares. Okubo and Ebbesmeyer (1976)
determined that at least six drifters are needed to yield reason-
able results for the vorticity and divergence estimates. It is worth
mentioning that although an increase in N reduces the uncer-
tainty of the LS method, this does not imply an increase in
accuracy.

d. Estimating error functions

Summing up the findings of the previous section, we show
in Fig. 6 that the vorticity error increases with L/Lu, where Lu

is the decorrelation scale of the velocity field. In Fig. 5, we
show that when Lu is increased, for example by low-pass fil-
tering in space or by a shift in dynamic regime in the real
ocean, the vorticity estimation improves.

1) EMPIRICAL RESULTS

We can use the sensitivity study and information in Fig. 6 to
construct a vorticity error function with independent variables
a and L. It consists of saturating functions that are inspired by
the theoretical functions derived below:

�(L,a)RMS 5 c0 1 c1
Lu

L
1 2 exp 2c2

L
Lu

( )[ ]

1 c3
L2

u

L2 exp 2c4
L
Lu

( )
1 c5 1 2 exp(2c6a)

[ ]
,

(8)

where the coefficients (c0 5 1.363, c1 5 20.267, c2 5 7.380,
c3 5 20.003, c4 5 0.162, c5 5 20.156, c6 5 3.154) have been
determined by least squares fitting and the number of
drifters per cluster has been set to N 5 6.

2) THEORETICAL EXPECTATIONS

The LS method computes an average velocity gradient ux . If
the true ux is constant over the drifter cluster, ux(x0)5 ux . If ux is
nonconstant, the LS methods generates errors. Since instrument
errors are zero in the numerical model, all errors described in this
section and in Fig. 6 are due to nonconstant velocity gradients.

a b c

FIG. 4. Comparison of drifter-estimated, normalized vorticity to true model vorticity using (a) the Saucier method based on the area
rate of change, (b) the LS method, and (c) the Kawai method based on Stokes’s theorem. For each comparison, 10 000 synthetic drifter
clusters were released with length scale L/Lu 5 0.2, aspect ratio a 5 1, and N5 6 drifters per cluster. The coefficient of determination R2,
p value, and rms error �rms are shown in the upper-left corner of each panel.
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For simplicity we consider the LS method as a spatial low-pass
filter that computes an average velocity gradient over the length
scale of a drifter cluster:

ux 5
1
L

�x01L=2

x02L=2

du
dx

dx 5
1
L

u x0 1
L
2

( )
2 u x0 2

L
2

( )[ ]
: (9)

If we assume that the velocity gradient ux(x0) is distributed
with a covariance function C(n) ≡ 〈ux(x0)ux(x 1 n)〉, so that
the lagged correlation function is ruxux 5 C(n)= u2x

〈 〉
, we can

compute statistics on the average velocity gradient. The other
components of the two-dimensional velocity gradient are
assumed to behave analogously.

Using the expression above, the variance of the LS velocity
gradient can be rewritten using the expression for the variance
as

〈[ux (x0)]2〉 5 1
L

�x01L=2

x02L=2

�x01L=2

x02L=2

du(x1)
dx1

du(x2)
dx2

dx1dx2, (10)

5
4〈u2x〉
L2

�L=
��
2

√

0

�L=
��
2

√
2s

0
ruxux (n)dnds: (11)

The correlation between estimated ux and true ux is

〈ux (x0)ux(x0)〉 5 1
L

�x01L=2

x02L=2

du
dx

dx, (12)

5
2〈u2x〉
L

�L=2

0
ruxux (n)dn: (13)

Assuming a covariance function C(n) 5 exp(2|n|/Lu),
where Lu is the flow decorrelation scale, we can solve for the
variance and correlation, respectively:

FIG. 5. Vorticity normalized by f of the (a) original simulation with Lu 5 5 km (as in Fig. 2b) and (b),(c) the Gaussian filtered field with
Lu 5 8 km and Lu 5 15 km, respectively. (d)–(f) The performance of the LS vorticity estimates using drifters in the 5-km, 8-km filtered,
and 15-km filtered model fields. A linear regression between the true model vorticity and estimated vorticity and the rms error �rms are
used to evaluate the performance.
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〈[ux (x0)]2〉 5 4〈u2x〉L2
u

L2

L��
2

√
Lu

1 exp
L��
2

√
Lu

( )
2 1

[ ]
, (14)

ux (x0)ux(x0)
〈 〉

5
2〈u2x〉Lu

L
1 2 exp

L��
2

√
Lu

( )[ ]
: (15)

The rms error is a combination of the two functions 11 and 13
above:

�RMS 5 〈[ux (x0) 2 ux(x0)]2〉

5 〈[ux (x0)]2〉 2 2〈ux (x0)ux(x0)〉 1 〈u2x〉: (16)

In Fig. 7, the variance, correlations and rms errors are
shown as a function of L. At large L/Lu, that is, when the
cluster length scale is much larger than the flow decorrela-
tion scale, the error saturates. The rms error asymptotes
to the total velocity gradient variance. At small L/Lu, the
mean variance and correlation decrease like 1/L and the
rms error increases like L. A similar behavior has been ob-
served in the empirical curves suggesting that L/Lu is the
dominant parameter with much larger influence on the error
and correlation than a and N (Fig. 7c). The mismatch in
magnitude between theoretical and empirical might stem
from the fact that the theoretical curves are only derived for
one-dimensional gradients and an symmetric covariance function
around zero.

The theoretical considerations here show that the primary
sources of error are nonconstant velocity gradients below the
scale of a drifter cluster. When the background gradient is not
constant across a cluster, that is, if u(x1 x′, y1 y′)Þu(x, y)1
ux(x,y)x′ 1 uy(x,y)y′, the accuracy is limited by the LS assump-
tion being violated and not by the noise.

4. Application to drifter observations

For the subsequent analysis of the SVP drifters in the Bay
of Bengal using the LS method, we choose N 5 6 drifters per
cluster as a compromise between horizontal resolution and
availability of clusters that meet the aspect-ratio and length
scale criteria (cf. Okubo and Ebbesmeyer 1976). These crite-
ria suggest that submesoscale flows will not be sufficiently re-
solved for too large L/Lu . 2 and a , 0.1. If we assume that
Lu 5 5 km like in the numerical model and require L/Lu , 2
we arrive at a maximum length scale of L 5 10 km which has
also been estimated based on a cross-correlation analysis in
Hormann et al. (2016) and a pair dispersion analysis in Essink
et al. (2019). It is likely an upper bound for submesoscale
flows, but might not be for the resolved velocity gradients.
These two conditions are only met during the first few days af-
ter the drifter deployments.

a. Error due to GPS uncertainty

The velocity error due to GPS uncertainty sun will cause ad-
ditional uncertainties in the kinematic property calculations.

d e f

cba

FIG. 6. Sensitivity analysis of the vorticity estimates based on drifter cluster shape. Each parameter set, consisting of normalized length
scale L/Lu where Lu is set to 5 km, aspect ratio a, and number of drifters N, was used to estimate the vorticity from 10000 synthetic clus-
ters. (a)–(c) The coefficients of determination R2. (d)–(f) The rms errors �rms normalized by the rms vorticity rms(z) between the modeled
and estimated vorticities. Black vertical lines indicate the parameter limits, L/Lu 5 2 and a 5 0.1, used in the analysis of the observational
drifter data in section 4.
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Spydell et al. (2019) determined from stationary GPS beacons
how sun affects the vorticity error for a drifter cluster:

sz 5

�����������������������������������
s2
uy

k2minN
1 1

k2min

k2max

( )
(1 2 ruy)

√√
, (17)

where kmin and kmax are the lengths of the minor and major
axes of the drifter cluster, a 5 kmin/kmax the cluster’s aspect
ratio, N the number of drifters per cluster, and run the correla-
tion coefficient between velocities derived from different GPS
beacons. We can safely assume run 5 0 to simplify the expres-
sion, so that s2

z will be an upper bound for the vorticity error
variance.

Drifter GPS accuracy of the position improves with runtime
but the position components stabilize with a rms error of sx ≈ 5 m
after several minutes. The propagation of position uncertain-
ties yields estimates of the velocity errors of suy ≈ 0.01 m s21

(cf. Hormann et al. 2016; Maximenko et al. 2013; Centurioni
2018). For a regular (i.e., a 5 1) six-drifter cluster of L 5 5 km,
the vorticity error due to GPS uncertainty is about sz 5 0.03f
while an elongated cluster with a 5 0.1 gives sz 5 0.2f. For
small aspect ratios a , 0.1, the GPS uncertainty becomes large;
that is, as large as the estimated eddy vorticity which is consis-
tent with our findings for the method error �RMS determined
above.

The error variability due to GPS uncertainty, within the
range of scales and aspect ratios considered here, is lower
than that of the rms error computed for each method above,
which varies between 0 and 1f. Only when method uncer-
tainty is low, the GPS uncertainty will control the total error.
The GPS error function (17) increases with a and decreases
with N and L.

b. Cluster geometry

The kinematic properties will be computed on clusters with
N5 6 drifters. There are over 8 million possible combinations
for 45 drifters, every 5 min. Reducing this number in a physi-
cally meaningful way is a challenge to large drifter releases

and has computational relevance. In this study, we filter all
combinations in space with the length scale and aspect-ratio
criteria described above; that is, L/Lu , 2 and a . 0.1.

On average, the drifter cluster sizes grow monotonically
over the first month after deployment in the Bay of Bengal
(Fig. 8a). The mean length scale L initially grows rapidly
(approximately as e0.2t ). Here, the most energetic motions are
mesoscale eddies that are about 100 km in diameter, larger
than the deformation radius LD 5 60 km. The initial 3–4 days
after deployment suggest exponential growth, consistent with
the nonlocal regime found using pair dispersion statistics
(cf. Essink et al. 2019). Similar behavior and an analogy to
pair dispersion was found by LaCasce and Ohlmann (2003),
who derived an expression to relate pair separations to cluster
length scales.

After deployment at t5 0 days, when a large fraction of the
drifter clusters has an aspect ratio of a , 0.5, the clusters
elongate dramatically (Fig. 8b) as drifters wrap around the pe-
rimeter of the dominant mesoscale eddy (Fig. 1c), the length
scales increase and the aspect ratios collapse most rapidly.
Within 2 days, the clusters stretch out until at least 75% have
an aspect ratio of a , 0.1, equivalent to a major axis 10 times
larger than the minor axis. The exponential e-folding time
with which this occurs is about two days, roughly consistent
with the e-folding time scale computed from drifter-pair statis-
tics (Essink et al. 2019). LaCasce and Ohlmann (2003) ob-
served a similar change in cluster aspect ratios for drifters in
the Gulf of Mexico. Their aspect ratio, defined as the ratio of
the base and height of a triangle, becomes on the order of 10
(approximately inverse of a) with a time scale of 2 days.

Based on the sensitivity analysis (section 3), the ensemble-
mean L and a (Fig. 8) predict low coefficients of determina-
tion R2 and large rms errors �RMS for the estimated velocity
gradients. Three additional challenges for drifters in the ocean
can be hypothesized: (i) small-scale variability, with nonconst-
ant velocity gradients across the cluster-scale L will violate the
LS assumptions, (ii) velocity correlations between pairs and
clusters of drifters decrease substantially within only a few
days (cf. Beron-Vera and LaCasce 2016; Essink et al. 2019),

a b c

FIG. 7. Theoretical predictions from sampling a known, space-lagged covariance function of velocity gradients for (a) variance
〈[ux (x0)]2〉, (b) correlation 〈ux (x0)ux(x0)〉, and (c) rms error �RMS as estimated in Eqs. (14)–(16). In (c), the empirical error from fitting to
the numerical results is also plotted. All quantities are normalized by the total variance 〈u2x〉. These curves should be compared to Fig. 6.
The vertical black lines indicate the L/Lu threshold above which the rms error saturates at its maximum.
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and (iii) position and velocity measurements will be subject to
noise. Therefore, the estimation of the kinematic properties
can only be successful for a few days after deployment.

c. Composite maps of kinematic properties

By spatially binning the drifter-derived kinematic proper-
ties, we map vorticity, lateral strain rate, and divergence in
space. The longitudinal and latitudinal length scales of each
bin are chosen to be 10 km, consistent with Hormann et al.
(2016) and Essink et al. (2019) and equal to 2Lu. The median
of all data in each latitude–longitude bin is shown in color in
Fig. 9. This binning procedure reduces the degree of redun-
dancy because individual drifters can be part of multiple clus-
ters. Plotting maps of the kinematic properties presumes that
the vorticity, divergence, and strain rate vary slowly over the
chosen ∼3-day period. The near-surface density estimates from
the drifters are also shown in Fig. 9a. Consistent with other ob-
servations during the 2015 ASIRI field experiment, the freshwa-
ter-dominated density front stands out in the spatial maps.
Relatively fresh waters originating from rivers and rain in the
northern bay are advected southward in plumes and stirred by
mesoscale eddies.

The vorticity and lateral strain rate maps reflect the north–south
pattern in the density gradients (Figs. 9b,d,f). A sharp change of
the vorticity values and sign occurs where the density transitions

from denser to fresher waters, with the largest values of vorticity
and lateral strain rate occurring at the edge of the density front.
The vorticity distribution across the density front is consistent
with a frontal jet in geostrophic balance, with negative vorticity
on the lighter side and positive vorticity on the denser side of the
front. This agreement between the density and vorticity patterns
is robust since the density is derived from drifter sensor measure-
ments while the kinematic properties are independently esti-
mated from the drifters’ GPS positions. The divergence shows a
less clear pattern when plotted in space. However, some of the
structures are consistent with the vorticity and lateral strain rate
fields.

The large-scale patterns further show the dominant cyclonic
mesoscale eddy that was present during the period of the ex-
periment (see Fig. 1c), which is also reflected in the drifter
trajectories (cf. Hormann et al. 2016; Essink et al. 2019).
Within the eddy, the vorticity field is mostly positive, espe-
cially at later times during the drifter experiment, when the in-
fluence of the density gradients weakens (see Fig. 9b). The
cyclonic background vorticity likely biases the cluster-scale
vorticity estimates, particularly when the small-scale vorticity
is weak. Furthermore, a positively skewed vorticity distribu-
tion is expected as observed in previous experiments (e.g.,
Rudnick 2001; Shcherbina et al. 2013).

During the first few days, we observe a banded pattern in the
vorticity and divergence maps that is not reflected in the den-
sity field (see Figs. 9b,d). This banded pattern has a horizontal
wavelength of approximately 30 km, about 0.1f amplitude, and
alternating positive and negative values with vorticity leading
divergence by about 6–12 h. Although challenging to pinpoint
with this dataset considering the Lagrangian space–time alias-
ing of spatial maps, this is likely due to diurnal heating and
cooling of the surface ocean and an associated diurnal pattern
of the eddy viscosity (e.g., Thushara and Vinayachandran
2014). Changes in the eddy viscosity in the surface layer modu-
late the ageostrophic frontogenetic flow, and thus the horizon-
tal divergence. Previous experiments have attributed this
phenomenon to frontal adjustment to the turbulent thermal
wind balance (Dauhajre and McWilliams 2018; McWilliams
2016) and recent observations and simulations in the Gulf of
Mexico provide similar evidence (e.g., Johnson et al. 2020a,b).

d. Temporal variability

Figure 10 shows time series of the kinematic properties
computed as the mean of all drifter clusters available at each
point in time. Before computing the mean time series over all
clusters, the time series of each cluster are filtered with a 4-h
running mean to focus on the diurnal and submesoscale vari-
ability and to remove high-frequency noise. The time series
of the kinematic properties show high variability as indicated by
the confidence intervals plotted around the mean values (Fig. 10).
The tails of the distributions at each instant in time, particu-
larly for submesoscale currents, reach O (f ) vorticity and lat-
eral strain rate magnitudes. Since the drifter clusters traveled
as a coherent group during the initial phase of the experiment,
sampled similar flow features, and drifter velocities are correlated

a

b

c

FIG. 8. Time evolution of (a) mean length scales L/Lu and
(b) mean aspect ratios a of all (N 5 6) (blue) and selected (yellow)
(a . 0.1, L/Lu , 2) in the Bay of Bengal. (c) Number of available
clusters that fulfill the criteria (a . 0.1, L/Lu , 2). The shaded re-
gions shows the 3-day window favorable for further analysis with
enough clusters available to obtain meaningful statistics.
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(Essink et al. 2019), computing such time series is a reasonable
approach.

Since the divergence is the difference of two large horizontal-
shear terms, its estimation is often noisier and produces larger
uncertainties than estimates of vorticity. Systematic errors
such as from GPS uncertainty can therefore significantly deteri-
orate divergence estimates (Spydell et al. 2019) (see section 4a).

The confidence in vorticity estimates is more robust since
they tend to be of larger magnitude than the divergence rel-
ative to the magnitude of errors (Paduan and Niiler 1990).
In the past, the shallow water vorticity equation, neglecting
wind stress at the surface, was used to infer the divergence
from time series of vorticity (e.g., Paduan and Niiler 1990;
Swenson et al. 1992):

a b

c d

e  f

FIG. 9. Composite spatial maps over 3 days after the drifter deployments (i.e., 3–6 Sep 2015) of (a) density anomaly
r0, (b) vertical vorticity z/f, (c) length scale L/Lu, (d) divergence d/f, (e) aspect ratio a, and (f) lateral strain rate s/f.
Maps show the median value of latitude–longitude (5 km 3 5 km) hexagonal bins containing at least three data
points. Overlaid are contours of the density anomaly r0 in gray that are also shown in (a) and contours of sea surface
salinity from SMAP (4 Sep 2015).
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D(z 1 f )
Dt

1 (z 1 f )d 5 0, (18)

where d is the horizontal gradient of the velocity as defined
previously, which is the term for the stretching of columns of
the absolute vorticity f1 z.

In our drifter dataset, the divergence estimates from the
shallow water vorticity equation agree well with the estimated
divergence from the drifter clusters during the initial deploy-
ment phase (Fig. 10). During this period, the drifter clusters
are still small and regular, and the kinematic property estimates
are expected to be reliable. The consistency between the esti-
mates using the shallow water potential vorticity equation and
the independent estimates using the LS method demonstrates
the robustness of our divergence estimates.

Periodic patterns at diurnal period occur in all three kine-
matic properties. Most notably, the alternating peaks and
troughs in the vorticity and divergence mirror the banded pat-
terns observed in the spatial maps (Fig. 10). Diurnal cycling of

vorticity and divergence is related to adjustment to the turbu-
lent thermal wind balance and arises at restratifying fronts
(Johnson et al. 2020a,b). It has recently been described in both
observations and modeling studies (Dauhajre and McWilliams
2018; Sun et al. 2020). An Ekman layer in a lateral density gra-
dient, such as the front observed here, has an ageostrophic
flow which is frontogenetic. If the viscosity is modulated by the
diurnal cycle, then the frontogenesis rate and convergence are
also modulated (Wenegrat and McPhaden 2016; McWilliams
2016).

Other processes such as inertial oscillations and tides are
unlikely to create this variability. Barotropic tides in the region
are dominated by semidiurnal constituents and generally
weak, so unlikely to generate diurnal peak-to-peak vorticity
fluctuations of O (f ). Inertial motions have a period of about
20 h at 178N, which is far from diurnal even when considering
the shift to higher frequencies due to the 0.2f cyclonic eddy
vorticity.

The decreasing magnitude of the fluctuations can be attrib-
uted to the fact that the clusters become larger over time (Fig.
8) or that the amplitude of atmospheric forcing weakens. Al-
though overcast and rapidly passing storm systems are com-
mon in the waning monsoon season, the wind speed and
direction did not change over the experiment period presented
here. Large clusters act like a spatial low-pass filter on the vor-
ticity signal (as discussed above), therefore reduce the magni-
tude, and smear out flow features. Figure 8 suggests that the
average cluster length scale increased to 40 km in about three
days, which could account for the decrease in kinematic prop-
erty fluctuations. In addition, the aspect ratios also tend to be-
come small after a few days, decreasing confidence in the late-
time behavior. After 3–4 days the kinematic properties not
only become unreliable but also reflect vastly larger scales
than the frontal and mesoscale processes described above.

5. Summary and conclusions

We evaluated three methods to estimate kinematic proper-
ties from drifter clusters in a numerical model and applied the
findings to a drifter dataset collected in the Bay of Bengal.

Our analyses indicate that the LS method proposed by
Okubo and Ebbesmeyer (1976) and Molinari and Kirwan
(1975) provides the most robust results. Using synthetic
drifters in a model flow field, we find that the cluster length
scale L and aspect ratio a have the largest impact on the un-
certainties, likely caused by (i) violation of the linear assump-
tion of the LS method by inhomogeneous velocity gradients
across drifter clusters and (ii) aliasing of unresolved scales
(and the fact that variance of velocity gradients might increase
at small scales). The magnitude of those errors becomes large
[i.e., O (f )] as soon as the drifter clusters are too elongated or
too large to resolve the variability in the flow field.

Clusters with small aspect ratios a , 0.1 cause the largest
errors. Therefore, regions of greatest interest like submeso-
scale fronts are challenging to measure because this is where
convergence and horizontal shear are strongest, leading to
substantial deformation and elongation of the drifter clusters.

a

b

c

d

e

f

FIG. 10. A 3-day time series of the drifter experiment for the pe-
riod 3–6 Sep 2015 showing (a) the mean length scale L/Lu, where
Lu 5 5 km, (b) the mean aspect ratio, (c) the theoretical and empir-
ical error calculated from section 3d, (d) the mean vertical vorticity
z/f, (e) the mean divergence d/f, and (f) the mean lateral strain rate
S/f. The shaded regions indicate the 95% confidence interval deter-
mined directly from the distribution of estimates for each cluster.
Vertical dotted lines indicate 24-h periods, and horizontal dotted
lines indicate L/Lu , 2 and a . 0.1.
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Uncorrelated velocity noise also impacts the kinematic
property estimates (Spydell et al. 2019). The total known un-
certainty is the sum of rms errors due to the method and GPS
uncertainties � 5 �RMS 1 sz. The kinematic property error sz

due to GPS uncertainty increases with a and decreases with L
and N. Although the GPS uncertainty [i.e., O (0:1)f ] is smaller
than the method uncertainty for the observations presented
here, higher-accuracy GPS algorithms will improve our ability
to do these calculations (Haza et al. 2014; Spydell et al. 2019).

Drifters in the Bay of Bengal measured positively skewed
vorticity with maximum values of f, negatively skewed diver-
gence with minimum values of2f, and collocated lateral strain
rate with maximum values of f. These are consistent with ship-
board measurements in the region and reflect the influence of
a prevailing cyclonic mesoscale eddy as well as a north–south
density front.

At the perimeter of the eddy, a banded pattern parallel to
the front with a diurnal period and a horizontal wavelength of
about 20 km was observed. The freshwater-dominated front
was likely intensified due to shear at the perimeter of the cy-
clonic eddy. Adjustment to the turbulent thermal wind balance
generates banded patterns as a response to diurnal surface
forcing and an associated change in surface viscosity. Ongoing
investigations within the MISO-BOB program will elucidate
further details of the diurnal variability in the Bay of Bengal
(Shroyer et al. 2021).

Numerical modeling and observational data were combined
to provide guidance on which drifter clusters are useful for
the computation of velocity gradients and which can be sorted
out. As a result, we propose practical criteria for length scales
and aspect ratios that can serve as reference for future
studies.

Improvements can be made with enhanced GPS accuracy,
larger numbers of independent drifter trajectories, and shal-
lower drogue depths with the caveat of introducing more
noise due to wind and waves (Poulain et al. 2022). The depen-
dence of the trajectories on initial conditions calls for repeat
deployments which will increase confidence in the statistics of
associated kinematic properties.

This study complements the insights gained from the first
estimates of the kinematic properties using the Saucier method
(Hormann et al. 2016) as well as pair dispersion statistics in the
submesoscale range (Essink et al. 2019) based on the used
drifter dataset. More work is needed to use multidrifter analyses
to further constrain submesoscale flow conditions and, in partic-
ular, retrieve information on the dynamics at submesoscales.
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