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ABSTRACT: TheCalifornia Current System is thought to be particularly vulnerable to ocean acidification, yet pH remains

chronically undersampled along this coast, limiting our ability to assess the impacts of ocean acidification. To address this

observational gap, we integrated theDeep-Sea-DuraFET, a solid-state pH sensor, onto a Spray underwater glider. Over the

course of a year starting inApril 2019, we conducted sevenmissions in central California that spanned 161 glider days and.1600

dives to amaximumdepth of 1000m. The sensor accuracywas estimated to be6 0.01 based on comparisons to discrete samples

taken alongside the glider (n5 105), and the precision was60.0016. CO2 partial pressure, dissolved inorganic carbon, and

aragonite saturation state could be estimated from the pHdatawith uncertainty better than6 2.5%,6 8mmol kg21, and6 2%,

respectively. The sensor was stable to 60.01 for the first 9 months but exhibited a drift of 0.015 during the last mission. The

drift was correctable using a piecewise linear regression based on a reference pH field at 450m estimated from published

global empirical algorithms. These algorithms require accurate O2 as inputs; thus, protocols for a simple predeployment air

calibration that achieved accuracy of better than 1% were implemented. The glider observations revealed upwelling of

undersaturated waters with respect to aragonite to within 5m below the surface near Monterey Bay. These observations

highlight the importance of persistent observations through autonomous platforms in highly dynamic coastal environments.
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1. Introduction

The California Current System (CCS) is a hot spot for ocean

acidification (Hauri et al. 2009), and studies suggest that it is ex-

periencing rapid ocean acidification (Gruber et al. 2012; Osborne

et al. 2020), which could severely reduce habitats for organisms

that are sensitive to elevated CO2 levels. For example, a meta-

analysis for species group in the CCS revealed that 26 out of 34

functional groups responded negatively to higher CO2 levels

(Busch and McElhany 2016), including commercially important

organisms such as Dungeness crab (Miller et al. 2016), pink

shrimp (Dupont et al. 2014), and bivalves (Barton et al. 2012).

There is evidence that ocean acidification is already having ob-

servable impacts through widespread mortality of Pacific oyster

Crassostrea gigas (Barton et al. 2012, 2015) and severe shell dis-

solution of pteropod Limacina helicina (an important source of

food for salmon, cod, herring, and mackerel) (Bednar�sek et al.

2014). Survival of these pteropods also seems to be affected by

exposure history to high CO2 levels over the course of several

weeks (Bednar�sek et al. 2017), indicating the importance of ob-

serving andmodeling carbonate chemistry at high spatiotemporal

resolution. Despite these potential socioeconomic consequences

from ocean acidification, we still have a poor understanding of

the drivers that determine the spatial structure of pH along the

CCS over weekly (episodic upwelling), seasonal, and interan-

nual (e.g., El Niño) time scales. This makes it difficult to accu-

rately assess and track the impacts of ocean acidification in the

CCS. Monitoring efforts for ocean acidification have increased

(McLaughlin et al. 2015), however, most of these monitoring

sites are shore based and provide high temporal resolution but

limited spatial context, particularly in offshore waters where

high spatial variability in pH has been documented (Chavez and

Messié 2009).

Underwater gliders are an effective platform to collect sus-

tained, depth-resolved high resolution data, particularly in the

coastal ocean (Rudnick 2016). Glider observations typically

are made on spatiotemporal scales of hours and kilometers or

better, allowing them to resolve mesoscale (Martin et al. 2009)

and submesoscale (Rudnick and Cole 2011) processes.

Furthermore, they can capture seasonal to interannual or

decadal variability by occupying repeated transects over

time. For example, Spray gliders operating in the California

Underwater Glider Network (CUGN) have made sustained

observations along three lines in the CCS since 2007

(Rudnick et al. 2017) and have been used to study the impacts

of the 2014–15marine heat wave (Zaba andRudnick 2016) and

the El Niño of 2015–16 (Jacox et al. 2016). Glider observations

are also particularly useful for constraining data assimilating

models, and it has been demonstrated that assimilating glider

data can significantly improve model forecasting capabilities

(Pasmans et al. 2019). Biogeochemical sensors have been
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equipped onto gliders to measure parameters such as O2

(Pierce et al. 2012), nitrate (Evans et al. 2013; Vincent et al.

2018), bio-optics (Briggs et al. 2011), and zooplankton (Ohman

et al. 2019). However, examples of pH sensors on gliders are

still rare. Adding pH measurements to gliders operating in the

CUGN would be particularly useful for capturing the high

spatiotemporal variability in pH (Chavez et al. 2017), which

would significantly improve our ability to assess vulnerability

and impacts of ocean acidification as well as improve data as-

similative models in the CCS (Mattern et al. 2017; Moore

et al. 2017).

The Deep-Sea-DuraFET (DSD) is a potentiometric pH

sensor that consists of a Honeywell Ion Sensitive Field Effect

Transistor (ISFET) die and a Cl-Ion Selective Electrode (Cl-

ISE) as the reference electrode exposed directly to seawater,

which are housed in a pressure tolerant package (Johnson et al.

2016). This solid-state sensor has been demonstrated to have

excellent stability and performance in seawater (Martz et al.

2010) and is a proven technology capable of autonomous de-

ployments for years (Johnson et al. 2017). Currently over 180

biogeochemical profiling floats equipped with DSD pH sensors

have been deployed, mostly operating in the Southern Ocean.

The fleetwide accuracy of the pH from these floats after

implementing a robust and documented quality control (QC)

protocol is 0.005 6 0.013 (Johnson et al. 2017). The quality of

data from profiling floats is sufficient to resolve annual air–sea

CO2 fluxes (Gray et al. 2018; Bushinsky et al. 2019) and sea-

sonal cycles of derived carbonate parameters such as satura-

tion state (V) and pCO2 (Takeshita et al. 2018; Williams et al.

2018). However, the DSD was initially developed for profiling

floats, and DSD payloads for gliders are not widely available

for the community.

pH sensors have been operated on underwater gliders pre-

viously. For example, an ISFET and Cl-ISE pH sensor was

operated in the Mediterranean Sea on a Seaglider for 12 days

down to adepth of 1000m (Hemming et al. 2017). This ISFETwas

not manufactured by Honeywell and was described as a custom-

built ‘‘experimental’’ ISFET (Shitashima 2010; Shitashima et al.

2013). This system exhibited large sensor drift, and corrections

weremade post deployment for temperature and pressure effects.

Nonetheless, they were able to document spatiotemporal pH

variability in the Sardinian Sea for this prototype deployment.

More recently, a modified DSD was successfully operated on a

Slocum glider for deployments lasting weeks (Saba et al. 2019).

This system utilized the same sensing elements as the DSD (i.e.,

Honeywell ISFET and Cl-ISE), but the sensing elements were

integrated into a glider CTD payload that is specific to Slocum

gliders. As a result, this design is not easily adaptable for other

underwater glider types, thus an alternative design is required for

other glider types such as Spray (Sherman et al. 2001) and

Seagliders (Eriksen et al. 2001).

Here, we present results from operating the DSD pH sensor

on a Spray underwater glider over a year starting in April 2019

(Fig. 1). Seven deployments were conducted in the central CCS

nearMonterey Bay for a total of 161 glider days, and over 1600

dives to depths of up to 1000m. Sensor accuracy and perfor-

mance were assessed by comparing glider data to full water

column discrete samples taken alongside the glider. The

stability of the pH sensor was assessed by comparison to a deep

reference pH field estimated from published global empirical

algorithms. Accurate O2 data are required as an input for the

algorithms. Thus, protocols for achieving accurate O2 mea-

surements through predeployment air calibration and correc-

tion for slow response time errors without amplifying sensor

noise are also presented.

2. Methods

a. Integration of the DSD onto Spray

Spray is an underwater glider that is approximately 50 kg

and 2m in length (Sherman et al. 2001). The Spray hull consists

of an aluminum pressure case that houses the battery packs,

hydraulic system, compass, attitude sensor, and the micropro-

cessor controller. All scientific sensors are in the flooded aft

bay, where the external bladders are located. Spray profiles

vertically in the water column by adjusting its buoyancy by

pumping oil into, or out of an external bladder. The wings of

the vehicle provide lift, allowing it to travel horizontally at

approximately 20–30 cm s21. Spray is capable of profiling to

1000m, which takes approximately 6 h, and transits 6 km hor-

izontally per profile. Spray is typically programmed to collect

data only on ascent to conserve energy and to obtain the lowest

sensor noise levels (Davis et al. 2008). Spray ascends at a rate of

approximately 0.1m s21, and sensors are polled every 8 s. This

produces measurements with vertical resolution slightly better

than 1m. Once at the surface, Spray rolls 908 to expose the

antenna located in its wings to transmit data, receive com-

mands, and obtain a navigational fix. A typical Spray de-

ployment can last between 3 and 5 months, depending on

profiling depth, sensor suite, and profiling interval. Clark

electrode O2 sensors have been operated on Sprays (Ohman

et al. 2013), and more recently, O2 optodes [Sea-Bird

Electronics, Inc., (SBE) model 63] have been routinely op-

erated on Sprays for several years.

FIG. 1. The main map shows deployment tracks over seven

missions conducted since April 2019. The offshore transects follow

CalCOFI line 67. Different color lines represent separate missions.

The color scale indicates bottom depth. The inset shows the larger

study region, and the colored circles represent hydrography sta-

tions used to assess the empirical algorithms. Colors correspond to

different cruises and are consistent with Fig. 3. Dashed box shows

the domain for the main map.
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The DSD electrode was operated using custom electronics

designed at the Monterey Bay Aquarium Research Institute

(MBARI), updated based on the controller utilized on profil-

ing floats (Johnson et al. 2016). The ISFET circuitry was

powered with a dedicated battery, starting at least 1 week be-

fore deployment to allow sufficient time for the ISFET to warm

up, which typically takes several days. The pH controller was

powered using the main glider battery and communicated with

the glider controller using RS232. Each pHmeasurement takes

approximately 1Hz, consuming ;0.5 J. This allowed it to be

polled within the regular 8-s cycle and represents ,2% of the

overall power budget. The DSD electrode was placed in the

flooded aft bay (Fig. 2) and connected to the pH controller that

was placed in the pressure housing through an IE55 rubber

molded cable.

The DSD electrode was purchased from Sea-Bird Scientific,

where pressure and temperature coefficients were determined

following protocols outlined in Johnson et al. (2016). The

constant term of the reference potential (k0) is specific to each

electrode and electronics pair, thus the k0 was determined in

the laboratory prior to the first deployment using the same pH

controller that was installed into the glider. The electrode was

conditioned in natural, flowing seawater for 2 weeks prior to

determining k0 so that the reference electrode was fully

equilibrated with respect to bromide ion in seawater (Bresnahan

et al. 2014). Based on our experience, flowing seawater is im-

portant for this equilibration period, as the reference electrode

can absorb enough bromide ion to appreciably change its con-

centration in a recirculating container. The DSD electrode was

then operated for ;1 week, and discrete samples for pH were

taken twice a day to determine k0. The estimated uncertainty of

k0 is better than 100mV, which roughly equates to a pH of

;0.0015. Details for pH calculations for the DSD can be found

in Johnson et al. (2016).

The Spray payload for this study included aCTD, anO2 optode

(SBE63), a chlorophyll fluorometer (Seapoint), and a DSD pH

electrode, all plumbed into a pumped flow stream. A single Spray

glider was used for all missions. An SBE-5SM impeller pump was

used to pump seawater at 10mLs21. The DSD was plumbed di-

rectly downstreamof theO2 sensor (Fig. 2). Integrating the sensor

into a pumped flow stream has the benefit of improved sensor

response, combating biofouling, and protection from light, as

ISFETs are light sensitive (Hemming et al. 2017). A flow cell for

the DSD was machined out of black Delrin that could be easily

removed to enable access for sensor inspection and cleaning. On

one deployment, measurements were made on both the ascent

and descent with the same vertical resolution to assess pressure

hysteresis and sensor response time errors.

Decimated pH data were sent back to shore in real time with

0.001 resolution, along with diagnostic engineering data to

monitor sensor health. Real-time data are depth bin averaged

to reduce data transmission time, and full resolution data were

downloaded at recovery. Range and spike tests were per-

formed following protocols for pH profiling floats (Johnson

et al. 2018). Furthermore, we removed bad data based on visual

inspection of the data that was caused by a clogged CTD. To

date, the prototype pH sensor has produced .99% ‘‘good’’

qualified data. Real-time and quality controlled data are made

public through the Central and Northern California Ocean

Observing System (CeNCOOS) and the GliderViz data portal

operated at MBARI (http://www.mbari.org/gliderviz).

The pH data were assessed for sensor drift once deployed by

comparing sensor pH to a reference pH field at 450m calculated

using the Carbonate System and Nutrients Concentration from

FIG. 2. Schematic drawing of a Spray glider equipped with a DSD pH sensor. Detail A shows

the sensor configuration in the flooded aft sensor bay.
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Hydrological Properties and Oxygen Using a Neural Network

(CANYON-B) algorithm, with temperature, salinity, pressure,

oxygen, location, and date as inputs (Bittig et al. 2018b). The es-

timated uncertainty for CANYON-B pH is60.018. This is similar

to the approach utilized for profiling floats, except they use a

reference pH at deeper depths of 1500m (Johnson et al. 2017).

The depth of 450m was chosen because the CANYON-B pH

agreed best with hydrographic pH data at this depth in this region

of the CCS (see section 2c for details). If sensor drift were ob-

served, it could be corrected by adjusting the k0 as done for pro-

filing floats, and it is assumed that the temperature and pressure

coefficients do not change over time (Johnson et al. 2017).

Other carbonate parameters such as pCO2, dissolved in-

organic carbon (DIC), and saturation state with respect to

aragonite (VAr) can be derived by combining sensor pH and

estimated total alkalinity (TA) from empirical relationships

(Takeshita et al. 2015, 2018;Williams et al. 2017, 2018; Saba et al.

2019).Here, we utilizedCANYON-B to estimate TA, phosphate,

and silicate concentrations (Bittig et al. 2018b) as inputs to

CO2SYS (van Heuven et al. 2011) with carbonate equilibrium

constants from (Lueker et al. 2000), as recommended for best

practices (Dickson et al. 2007). To assess the uncertainty of the

derived parameters, we conducted a Monte Carlo error analysis

(100 simulations) on data fromamonthlongmission inApril 2019.

For each simulation, normally distributed errors were intro-

duced into pH (60.01), TA (66.8mmol kg21), and nutrient

concentrations (620%). See sections 2c and 3a for how the

uncertainties for TA and pH were determined, respectively.

High uncertainty in nutrient concentrations was arbitrarily

chosen to represent a worst case scenario, since it has been

demonstrated that derived variables are insensitive to nutrient

concentrations (Williams et al. 2017). The overall uncertainty

was calculated as one standard deviation of the simulations.

Note that this uncertainty analysis does not take into account the

errors that may be caused from the recently demonstrated in-

ternal inconsistency of spectrophotometric pH with the other

carbonate parameters (Patsavas et al. 2015; Williams et al. 2017;

Carter et al. 2018; Fong andDickson 2019; Takeshita et al. 2020).

b. Calibration of O2

Accurate O2 measurements are a prerequisite for accurately

estimating pH using empirical algorithms, as O2 is an input for

these algorithms. Approximately, a 1mmol kg21 bias in O2 leads

to a 0.0016 bias in the computed algorithm pH at depth

(Williams et al. 2016), thus an accuracy of 1%or better is desired

(Williams et al. 2017).However, optodeO2 sensors are known to

drift exponentially low during storage due to degraded O2 ac-

cessibility to the luminophore (D’Asaro andMcNeil 2013; Bittig

et al. 2018a) and can lead to biases of210% to220%at the time

of deployment (Takeshita et al. 2013). Fortunately, drift is

minimal once deployed (Johnson et al. 2015; Bittig and

Körtzinger 2017). The calibration error due to storage drift can

be corrected for by applying a gain correction:

O
2,corr

5G3O
2,raw

, (1)

where O2,corr is the corrected O2, G is the gain correction

factor, and O2,raw is the raw optode output (Johnson et al.

2015). Optodes can be calibrated by making measurements in

air with knowledge of total atmospheric pressure and humidity,

since the mole fraction of O2 in the atmosphere is constant

(Bushinsky and Emerson 2013). This approach has been suc-

cessfully applied in situ on profiling floats (Bittig and Körtzinger
2015; Johnson et al. 2015; Bushinsky et al. 2016) and gliders

(Nicholson and Feen 2017) to achieve accuracy of better than

1% at the surface. To utilize this approach in situ, however, the

optode must be removed from the pumped flow stream to be

exposed to the atmosphere at the surface. Unfortunately, this is

not currently possible for SBE63 optodes, as they are designed

to be plumbed into a pumped flow stream. Furthermore, re-

moving it from the pumped flow stream will result in larger

dynamic errors due to slow sensor response (Bittig et al. 2014;

Bittig and Körtzinger 2017), which is not ideal especially along

the coast of California where there are persistent, steep oxy-

clines (Chan et al. 2008).

As an alternative to in situ air calibrations, we conducted air

calibrations for the SBE63 optode directly prior to deployment

starting on the third mission. Atmospheric air was flushed

through the flow cell using an aquarium aeration pump, and the

atmospheric pressure and humidity was measured using a ba-

rometer (Digi-Sense 68000–49, 64 mb and 65% humidity).

Air was pumped through the flow cell for at least 30min before

calibration. Once stable sensor readings were verified, five

measurements were averaged to calculateG. The temperature

reading from the CTD was used for the air calibration. This

approach takes advantage of the fact that gliders are frequently

recovered, and thus, sensors can be recalibrated as necessary.

The predeployment calibration would correct for storage drift,

if detected. This simplified air calibration setup can achieve an

accuracy of 1%, based on a series of experiments, which are

summarized in the supplementary materials. Since no sys-

tematic changes in G was observed, we used the mean G to

calibrate O2 for all missions.

The slow response time of oxygen optodes can cause errors,

especially in regions with a high oxygen gradient (Takeshita

et al. 2013; Bittig et al. 2014). The response time (t) is depen-

dent on the flow rate across the optode membrane and tem-

perature (Bittig et al. 2014), and it can be calculated accurately

for the SBE63 in a pumped flow (Bittig and Körtzinger 2017).
In the temperature range of 28–208C, t ranges from approxi-

mately 30 to 40 s. Bittig et al. (2014) presented a method to

correct for sensor response time errors based on a single pole

inverse filter method and demonstrated it can accurately re-

construct in situ O2 profiles. However, this approach can am-

plify noise, particularly in stable parts of the water column such

as the mixed layer. For example, during a mission in February

2020, the precision (1s) in the well mixed surface layer in-

creased from 60.14 to 60.40mmol kg21 when the correction

was applied. While this level of noise may seem small, it could

introduce errors into sensitive calculations such as for air–sea

flux (Bushinsky et al. 2017) and net community production (Martz

et al. 2008; Plant et al. 2016), thus it should be minimized if pos-

sible. It is important to note that the Bittig et al. (2014) correction

on platformswith lower vertical resolution, such as profiling floats,

does not seem to noticeably increase instrumental noise, even on

continuous profiling mode floats that measure every 2m.
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The amplified noise can be minimized by filtering the data

prior to reconstruction (Gordon et al. 2020). The discretized

form of the inverse-filter approach in Bittig et al. (2014) can be

expressed as [by rearranging their Eq. (A3)]:

O
2,in

(t)1O
2,in

(t2 1)

2
5
O

2,opt
(t)1O

2,opt
(t2 1)

2
1t

DO
2,opt

Dt
and

(2)

DO
2,opt

Dt
5
O

2,opt
(t)2O

2,opt
(t2 1)

Dt
, (3)

where O2,in refers to the ‘‘real’’ in situ O2, O2,opt is the O2 mea-

sured by the optode, t represents time points, and Dt is the dif-

ference in time between t and t2 1. The [O2,in(t)1O2,in(t2 1)]/2

is then interpolated back onto the original time stamp. It is as-

sumed at O2,in 5 O2,opt at t 5 0. Here, we applied a 7-point run-

ningmean filter onDO2,opt/Dt prior toEq. (3) in order tominimize

instrumental noise from being amplified. This filter size was

chosen because it was the lowest to achieve similar standard de-

viation in themixed layer as the rawO2 output. However, filtering

the raw data has the downside of altering the structure of the

vertical distribution of O2 by reducing the peaks of finescale

structures, as well as steepening the oxycline. Therefore, we

only applied the running mean filter when DO2,opt/Dt ,
0.06mmolkg21 s21, or approximately 0.6mmolkg21m21. In this

region, this roughly represents ;40% of the water column, typi-

cally in the mixed layer or at depth. This threshold was chosen,

because the mean standard deviation of uncorrected O2,opt in a

well-mixed surface layer was 60.14, and this threshold corre-

sponds to ;4s. This ensures that instrumental noise will get fil-

tered, but environmental gradients that are significantly larger

than instrumental noise will not get filtered, preserving real oxy-

gen variability as much as possible.

c. Empirical algorithms

The accuracy of empirical algorithms to estimate pH andTA

along the central CCS was assessed using hydrographic data

from theWest Coast OceanAcidification (WCOA) 2016 cruise

(Alin et al. 2017), and from the two MBARI-led Central

California Coast pH, and Oxygen (C3PO) cruises in 2019.

Cruise data spanned transects from Point Conception to Point

Arena (Fig. 1). All cruises analyzed here utilized purified

metacresol purple indicator dye (Liu et al. 2011). pH estimated

using CANYON-B (pHCANYON-B) is derived from pH calcu-

lated from TA and DIC (Bittig et al. 2018b). However, there

is a known linear pH-dependent error between pH calculated

from TA and DIC compared to direct measurements of pH

using spectrophotometry, with a slope of approximately 0.04

(Carter et al. 2018; Fong and Dickson 2019; Takeshita et al.

2020). Therefore, a correction wasmade to pHCANYON-B based

on Eq. (1) in Carter et al. (2018) so it is consistent with spectro-

photometric pH measurements. pHCANYON-B showed slightly

better agreement with the discrete samples compared to the

multiple linear locally interpolatedpHregression (LIPHR)model

(Carter et al. 2018), thus it will be utilized hereafter. We utilized

the default acidification setting for LIPHR, which may have

contributed to the increased discrepancy. For example, modeling

results suggest that the acidification rate in the CCS is higher than

other parts of the ocean (Gruber et al. 2012). As density-specific

acidification rates are not available in this region, we could not

correct for this error.

Onaverage, thebottle pHandestimatedpHfromCANYON-B

agreed to better than 60.01 below about 200m (Fig. 3). All

three cruises showed similar patterns with depth, where very

close agreement (60.005, 1s) was observed between 350 and

550m depth. Below 550m the estimated pH was systematically

lower than the measured pH by about 0.01. The difference be-

tween the algorithm and WCOA16 was smaller relative to

C3PO, and this could reflect spatial differences in the two

cruises, as C3PO had higher sample density throughout the

study region. These comparisons suggest that estimated pH from

depths between 350 and 550m in the central to Northern

California region are accurate to better than 60.005, and thus

can be utilized to assess pH sensor drift from gliders. The typical

dive depth for our missions was 500m, thus sensor drift was

assessed at 450m. TA estimated from locally interpolated al-

kalinity regression (LIAR), version 2 (LIARV2; Carter et al.

2018), and CANYON-B had similar performances, with a

RMSE of 66.4 and 66.8mmol kg21 (n 5 1138), respectively.

For simplicity, we used CANYON-B-estimated TA to derive

other carbonate parameters.

d. Validation of glider pH and O2

Discrete samples for pH, TA, and O2 were collected

alongside the glider using a shipboard rosette on 14 different

occasions (n 5 168 for pH and TA, n 5 105 for O2), spanning

betweenApril 2019 andDecember 2019. Casts were conducted

at the time of recovery or in the middle of the mission.

FIG. 3. Depth profile of the residual between CANYON-B and

discrete samples of pH from the 2016 WCOA cruise (blue), C3PO

May (pink), and C3PO July (green). Large filled circles represent

50m binned averages.
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Comparison casts at the time of deployment were avoided, as a

small, warm-up drift over several hours is often observed at the

beginning of a deployment before stabilizing. All casts were

conducted within 3 km and 12 h (average 2 km and 3.3 h) from

the most recent glider surfacing. Samples were collected fol-

lowing standard protocols (Dickson 1996; Dickson et al. 2007).

pH was measured spectrophotometrically (Clayton and Byrne

1993) using purified metacresol purple indicator dye (Liu et al.

2011) with an automated benchtop system based on the design

in (Carter et al. 2013). Precision and accuracy are estimated to

be60.0007 and60.003, respectively. TAwasmeasured using a

semiautomated titrator (Metrohm 855) using an open-cell,

modified Gran titration (Dickson et al. 2003). Samples were

run in triplicate with an average precision and accuracy of

62mmol kg21. pH was converted to in situ conditions using

CO2SYS (van Heuven et al. 2011). O2 was measured via

Winkler Titration (Carpenter 1965) with a photometric end-

point detection. KIO3 standards were recrystallized 4 times to

remove impurities (Emerson 1999), and the titrant was stan-

dardized gravimetrically (Martz et al. 2012). The precision and

accuracy of the O2 measurements are estimated to be 60.5 and

61mmolkg21, respectively. Comparisons between glider data

and discrete samples were made on isopycnal surfaces, except for

the surface samples where they were compared at equal depths.

3. Results and discussion

a. Assessment of pH sensor performance

SinceApril of 2019, the pH-Spray conducted 7missions for a

total of 161 glider days, and over 1600 dives to a maximum

depth of 1000m, including three transects to 250–300 km off-

shore of Monterey Bay in April–May 2019, July–August 2019,

and February–March 2020; the transects followed California

Cooperative Oceanic Fisheries Investigations (CalCOFI) line

67 (Fig. 1). The pH data presented utilized the same k0 for all

deployments, which was determined prior to the first deploy-

ment. A typical pH profile from the glider from 29 May

(36.57538N, 122.5988W) is shown in Fig. 4.

In general, good agreement was observed between discrete

and glider pH, with amean difference of 0.0066 0.021 (1s, n5
155). However, it is important to be mindful that some of the

discrepancy between glider measurements and discrete sam-

ples are driven by real spatiotemporal differences between the

glider and bottle samples. To minimize such discrepancies,

samples where the temperature difference was greater than

0.18C (a proxy for different water masses), as well as two out-

liers were removed where the difference in pH was greater

than 0.05, leaving 112 samples for comparison. After applying

this criteria, the mean difference improved to 20.003 6 0.011

(1s), and we interpret this as the sensor accuracy. These dis-

crete samples were taken over ;8 months, demonstrating

consistent and accurate sensor behavior over multiple de-

ployment and recovery cycles, which is an enabling result for

routine glider operations.

For the first 9 months of deployments, glider pH agreed with

deep reference pH to better than 60.01, indicating minimal

sensor drift (Fig. 5). Although there were small offsets in pH on

the order of several milli-pH between deployments, pH was

stable throughout each deployment. These small offsets were

likely caused by either power cycling the ISFET circuitry, or

the dehydration/hydration cycle of the reference electrode

between deployments. However, two noticeable patterns

emerged in the last deployment. First, the DpH (pHspray –

pHCANYON-B) was different between dives to 550m com-

pared to those down to 1000 m, indicating the emergence

of a pressure hysteresis in the sensor performance. The

magnitude of this hysteresis was approximately 0.007. Some

previous deployments showed hysteresis effects as well, but

with smaller magnitudes (Fig. 5). It is not clear what caused

this pressure hysteresis effect to appear, but small pressure

FIG. 4. (left) A typical profile of pH by the glider collected 29 May 2019 (36.57538N, 122.5988W) (line) and

discrete samples (circles). (right) Glider pH vs discrete pH (n5 155) over 14 casts. Light gray and white circles were

not included in the comparison because they represent data where temperature discrepancies were .0.18C and

outliers (pH discrepancy . 0.05), respectively. Dark circles (n 5 112) were used for the comparison. Solid line

represents model II regression (slope 5 1.005), and the dashed line is 1:1.
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hysteresis effects have been observed in the laboratory

(Johnson et al. 2016; Takeshita et al. 2017). Second, a no-

ticeable positive drift in glider pH was observed during the

last mission, where the sensor drifted for several weeks and

then stabilized. The cause of this drift at this time is un-

known but is correctable by adjusting the k0 (constant term

in the calibration coefficient) using a piecewise linear re-

gression (two segments) so that the glider pH matches the

algorithm pH (Fig. 5); this approach has been demonstrated

to be effective for profiling floats (Johnson et al. 2016, 2017;

Takeshita et al. 2018). Unfortunately, discrete samples were

not collected alongside the glider for the last deployment,

thus this correction could not be validated. Future efforts

will focus on validating this drift correction approach.

Furthermore, we hypothesize that the drift was caused by

biofouling, and we plan to clean the pH sensor surface be-

tween deployments moving forwards.

Precision of the pH measurements were assessed by exam-

ining measurements in the mixed layer (Fig. 6). Assuming that

the mixed layer is homogeneous in pH, as well as temperature,

the precision of the instrument can be estimated as the vari-

ability (defined as 1s) of pH in the mixed layer for each profile.

We defined the mixed layer depth using a temperature

threshold criterion of DT 5 0.058, 0.18, and 0.28C, and the av-

erage mixed layer depth was 16, 20, and 23m, respectively.

Data from 250 to 300 km offshore in July 2019 were used (n 5
71 profiles), as this region had deeper mixed layers relative to

inshore, as well as has less dynamic coastal processes that in-

duces natural variability such as eddies and upwelling. The

median standard deviation of all pH profiles in the mixed layer

was 0.0008 6 0.0016 (DT 5 0.058C), 0.0011 6 0.0016 (DT 5
0.18C), and 0.0016 6 0.0016 (DT 5 0.28C). The near linear in-

crease between DT and variability in pH in the mixed layer

indicates that a larger temperature threshold incorporates real

vertical pH differences. Therefore, we use the smallest tem-

perature threshold of DT5 0.058C to estimate the mixed layer

depth. However, we report the precision of the pH sensor as

60.0016, calculated as double the observed variability in the

mixed layer as an upper limit to account for instrumental

variability. The precision of this instrument demonstrates its

ability to accurately capture fine spatial and temporal differ-

ences in carbonate parameters.

Sensor response timewas assessed on amission conducted in

December 2019 by collecting measurements on both the ascent

and descent approximately 50 km offshore of MBARI, as the

spatiotemporal variability at this site was lower than inside

Monterey Bay. Five dives were conducted to 1000m depth

while holding station and were used for this analysis. We limit

the analysis to these five dives as other dives in this mission

were conducted during transit, thus, would introduce additional

variability from spatial differences. However, comparisons be-

tween ascent and descent profiles have inherent uncertainties

that make it difficult to make quantitative conclusions about

response times. For example, internal waves can shoal or deepen

isopycnal surfaces (and associated chemical properties) between

the ascent and descent that lead to differences that are not re-

lated to sensor response time (Rudnick 2016). In addition, there

are submesoscale variabilities on the order of kilometers (Nam

et al. 2015) that will lead to differences in the two profiles due to

different water mass properties. Finally, water must flow around

the glider before it reaches the intake that is located on the

topside, thus can lead to increased noise and a delayed response

on the descent relative to the ascent (Davis et al. 2008). Given

these uncertainties, we interpret these profile comparisons as a

qualitative assessment of sensor response and acknowledge that

controlled laboratory studies are required to fully characterize

sensor response errors (Bittig et al. 2014).

In general, excellent reproducibility between up anddown casts

was observed below 500m where water properties were stable

and vertical gradients were small (Fig. 7). The mean discrepancy

for pH was 20.0001 6 0.0006 (1s; Table 1). However, since this

FIG. 5. A yearlong record (April 2019–April 2020) of the stability

of glider pH at 450m (reference depth) when the glider was outside

of Monterey Bay, defined as west of 122.38W. The difference be-

tween glider pH and reference pH from 500 and 1000m dives are

plotted in black and blue, respectively. Reference pH was calcu-

lated using CANYON-B (Bittig et al. 2018b). The yellow box

represents 60.01. Piecewise linear regression to correct for sensor

drift for the final deployment is shown in the red line.
FIG. 6. pH profiles of the upper 75m in July 2019 collected 250–

300 km offshore of Monterey Bay. Red dots indicate measure-

ments made in the mixed layer, defined with a temperature

threshold of DT 5 0.28C.
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part of the water column is relatively stable, it does not provide

much insight into sensor response times. On the other hand, it does

demonstrate that pressure hysteresis effects were minimal during

this mission. The discrepancy increased above 500m for all four

parameters, and the mean discrepancy for pH was 0.00126 0.0053

(1s). Large discrepancies in pH and O2 typically coincided with

discrepancies in temperature and salinity that could be as large as

0.58C and 0.1 salinity, respectively, suggesting the glider was

measuring different water masses at times. Nonetheless, on

average there was good agreement throughout the water col-

umn with no systematic patterns for pH. In particular, there

was no pronounced positive bias for pH in the upper 200m

where the vertical gradient is the greatest. If sensor response

time were a substantial source of error, we would expect a

positive trend in this part of the water column. Finally, the fact

that the discrete samples agreed with sensor pH throughout the

water column with no correction (Fig. 4) provides further support

that sensor response time is not amajor issue for this system.Given

this line of reasoning, we believe that sensor response errors in

pH is minimal, but further studies are required to verify this.

Each derived variable had distinct patterns in the propa-

gated overall uncertainty (Fig. 8). For example, pCO2 had a

relatively constant percent uncertainty (2.1%–2.5%) between

300 and 1400 matm, which translates to an absolute uncertainty

of66 to635matm over this range. Our uncertainty estimate at

400 matm (69 matm) is in good agreement with a bottom-up

uncertainty analysis for profiling float pH, where they esti-

mated 611 matm (Williams et al. 2017). The hooking feature

around 1200–1400 matm is due to the fact that there is a pCO2

maximum around 600m, whereas TA continues to steadily

increase from ;2230 to 2370mmol kg21 from the surface to

depth, thus the propagated uncertainty is slightly different

above and below the pCO2 maximum. However, the changing

absolute uncertainty could have implications for air–sea flux

studies in the coastal ocean. For example, we observed surface

pCO2 between 300 and 800matm across all of our deployments.

The percentage uncertainty results in a pCO2 error that is

dependent on the surface condition, thus ranges from 66 to

617 matm, and its implications for the calculated air–sea flux

should be considered accordingly. On the other hand, the un-

certainty for VAr decreased as CO2 levels increased and was

always better than 2%. Near atmospheric conditions, VAr

could be estimated to 60.05, whereas the uncertainty de-

creased to 60.02 near saturation (VAr 5 1). It is worth noting

that this is approaching the ‘‘climate quality’’ measurement

standards of 61%, set by the Global Ocean Acidification

Observing Network (Newton et al. 2014). Finally, the uncer-

tainty for derived DIC was relatively constant across all con-

ditions and ranged from 6.8 to 7.6mmol kg21.

Properly protecting the ISFET from solar irradiance is

critical, as it can cause large biases in themeasured pH near the

surface. Our earlier iteration of the flow cell during the de-

velopment phase prior to data presented here was 3D printed

with a semitransparent urethane resin, leading to erroneously

high readings due to light contamination near the surface

(Fig. 9). Light sensitivity for ISFETs have been previously re-

ported (Hemming et al. 2017), although their pH bias under

solar irradiation was negative. Based on our experience, the

light sensitivity is specific for each Honeywell ISFET, causes a

positive pH bias, and can be as large as .0.02 under ambient

room light conditions and.0.35 pH in sunlight for this ISFET.

This light contamination problem was significantly reduced,

but still noticeable when the flow cell was machined out of

black Delrin, and the tubing connecting the inlet and outlet

were switched to black Tygon. We discovered that the sunlight

contamination originated from the white-Delrin flow cap for

the SBE5SM pump, which was connected to the DSD flow cell

by ;2 in. (;5 cm) of opaque tubing. No light contamination

was observed when the flow cap for the pump was switched to

black Delrin. This demonstrates how sensitive the DSD is to

potential light contamination, and that it is imperative to pay

close attention to any potential light contamination pathways

and to verify this with monitoring the appropriate diagnostics

to obtain accurate pH measurements. In particular, the ISFET

base current increases when exposed to light.

Biofouling is always a challenge for successful operation of

autonomous platforms and sensors in the ocean. Visual inspection

TABLE 1. Mean 6 1s of the residual (descent minus ascent) of

temperature (8C), salinity, O2 (mmol kg21), and pHin in the upper

500m and the lower 500m.

1–500m 500–1000m

Temperature 0.038 6 0.107 20.011 6 0.018

Salinity 0.004 6 0.010 0.004 6 0.003

O2 3.13 6 2.34 0.02 6 0.20

pHin 0.0012 6 0.0053 20.0001 6 0.0006

FIG. 7. Residuals (descentminus ascent) for pH fromfive dives to

1000m outside Monterey Bay. Gray dots represent 1m binned

data,the red line represents the mean, and shaded error bars rep-

resent 61s.
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of the pH sensor after deployments, as well as the stability of deep

pH values (Fig. 5) indicate that biofouling was not a major issue

for our glider operations. This was true even through month long

summertime missions where large phytoplankton blooms were

present where surface O2 saturation was as high as 140%. The

sensors were not cleaned between deployments, except for a brief

deionized water rinse after each deployment. We believe that

having a pumped flow streamwith antifouling plugs in the CTD is

critical to effectively combat biofouling (Davis et al. 2008).

Furthermore, only collecting data on the ascent allows for the

antifouling compounds to permeate in the flow stream, further

increasing their effectiveness. However, the impact of biofouling

is likely to be dependent on deployment location, season, and

glider mission parameters. For example, Saba et al. (2019) re-

ported biofouling as a major limitation for pH glider missions

lasting only several weeks during summertime over the conti-

nental shelf on the East Coast of the United States. Likely, the

warmer water temperatures and shallow dive depths (tens of

meters) exacerbated the effects of biofouling, as their glider

mostly resided in the euphotic zone. The shallowest dives for our

glidermissions were 200m, which was approximately the depth of

their deepest dive. Thus, diving to depths that are significantly

deeper than the euphotic zone seems to be important tominimize

biofouling. If conducting deeper dives is not possible due to

shallow waters, additional antibiofouling measures are likely

necessary. Tubing could be made of copper or turning on the

pump only on the ascent could help antifouling plugs in the CTDs

to permeate the flow cell.

One of the benefits for glider operations is that sensors can

be easily replaced when sensor performance starts to degrade.

Furthermore, the failed sensor can be used to diagnose failure

mechanisms, which allow for refinement and improvement

toward a more robust sensor design. Currently DSDs are pri-

marily deployed on profiling floats, which are rarely recovered,

FIG. 9. Example of a light-contaminated pH profile in Monterey

Bay. pH from the glider and discrete samples is represented by the

black line and gray dots, respectively. A clear, positive bias in glider

pH is observed in the upper 40m due to light contamination.

FIG. 8. Propagated uncertainty for (top) pCO2 (expressed as a

percentage),(middle)VAr, and (bottom) DIC as a function of their

respective parameters from a month long mission in April 2019.

Uncertainties were calculated using Monte Carlo simulations (100

runs), assuming an uncertainty in pH, TA, and nutrients of 60.01,

66.8mmol kg21, and 620%, respectively.
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thus sensor failures cannot be diagnosed. Furthermore, there

can be lags of up to a year between sensor design modification

and float deployments, which hinders sensor refinement ef-

forts. Operating and testing refined designs on gliders can

shorten the time for this feedback loop, and thus lead to more

efficient sensor improvements.

b. O2

The sensor lag correction method proposed in this study

produced very similar results as the method described in Bittig

et al. (2014) to correct for sensor response (Fig. 10). Some 97.8%

of the data from both methods were within 0.5mmol kg21,

99.8% within 1mmol kg21, and 99.99%within 2mmol kg21. The

differences between the two methods occur in low O2 gradient

regions, where sensor noise was likely amplified using Bittig

et al. 2014. For example, the average precision (1s) in themixed

layer from a mission in February 2020 was 60.14, 60.16, and

60.40mmol kg21 (n 5 64 profiles) for raw O2,opt, O2 corrected

from this study, and O2 corrected using Bittig et al. (2018), re-

spectively. This demonstrates that the selective filtering method

proposed here prevented noise from getting amplified into the

corrected data. It is likely that the correction for sensor time

errors is more accurate for pumped optodes such as the SBE63

rather than optodes that are passively flushed through the ver-

tical movement of the platform, as the boundary layer thickness

can bemore accurately parameterized and their response time is

faster (Bittig and Körtzinger 2017). The downside of a pumped

optode is that it cannot be air calibrated in situ.

Consistent gain correction factors were obtained over 8months

and the mean G was 1.033 6 0.007 (1s, n 5 6). No systematic

trend over timewas detected, thus themeanGwas used to correct

O2 data from all missions. The comparison between glider and

bottle O2 are shown in Fig. 10. Similar to pH, comparisons were

only made when the temperature was consistent to 60.18C, and
four outliers were removed, leaving 62 comparisons. After

applying the sensor time response correction, the mean

difference between the glider and discrete O2 was22.16 2.9

(1s) mmol kg21, which is lower than 1% error relative to typical

surfaceO2 in this region. The slope of themodel II regression was

0.9966 0.004. The slight low bias of the correction could be due

to errors in the atmospheric pressure or humidity used for the air

calibration. In the future, we plan to utilize a barometer with

higher accuracy, as well as pumping prehumidified air through the

flow cell to ensure 100% humidity during calibration. If the re-

sponse time correction was not applied, the mean difference

was 23.0 6 3.7mmolkg21, and the distribution was skewed to-

ward negative biases where errors with magnitude greater than

10mmolkg21 were observed during high oxygen gradients. These

comparisons demonstrate that the calibration protocol and sensor

response time correction presented here are capable of achieving

accurate O2 throughout the water column.

The gain for the O2 sensor could have been calculated by di-

rectly measuring O2 using Winkler titrations (Carpenter 1965)

alongside the sensor pre and post deployment. While this would

provide the most accurate results, it would require detaching the

O2 sensor frequently, leading to potential failure mechanisms.

Furthermore, the research groups would need to maintain

equipment and expertise to conduct accurate Winkler titrations,

which is demanding, especially if measurements are not made

routinely. Finally, it is not always possible to conduct Winkler

calibrations directly prior to deployments, for example, for remote

deployments. Thus, our objective was to develop a simple cali-

bration protocol that can be implemented in any situationwithout

specialized equipment. While this approach cannot accurately

assess any potential sensor drift that occurred during the de-

ployment, it provides a simple and robust calibration protocol that

can be easily implemented by any research group. This approach

can also be adopted to any platform including shipboard under-

way measurements, moorings, wave gliders, and profiling floats.

c. Upwelling and submesoscale variability near

Monterey Bay

Glider observations over a year revealed highly dynamic,

submesoscale variability (spatial scales ,10 km) of pH in the

FIG. 10. (left) Difference in time-correctedO2 between this study and that of Bittig et al. (2014). (right) GliderO2

vs bottle O2 from 14 hydrocasts ranging from 0 to 1000m over 9 months. Glider O2 values were corrected for sensor

response time. Comparisons weremade only using the dark circles (n5 68). Light gray circles represent data where

the difference in temperature was .0.18C, and white circles represent four outliers. The solid line is 1:1.
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upper 300m along a transect to 250–300 km offshore from

Monterey Bay (Fig. 11). Six transects were collected over a

year (April–May 2019, July–August 2019, and February–

March 2020), including two during an upwelling event in

July–August 2019. During such events, isopycnal surfaces can

shoal by up to 100m, bringing deep, low-pH waters to the

surface. In fact, during one transect, corrosive waters with re-

spect to aragonite (V5 0.995, pH5 7.718) was observed in the

top 5m inside Monterey Bay. Furthermore, finescale sub-

mesoscale features were more prominent between 100 and

200m depth during these transects, which correlated with

spice. This suggests that these features were driven by different

proportion of water masses in the California Undercurrent

(Thomson and Krassovski 2010; Nam et al. 2015). Capturing

and understanding the variability of these water masses is im-

portant, as they serve as the source water for upwelling.

Autonomous glider observations are well suited to observe

these dynamics on seasonal (Nam et al. 2015) to interannual

(Bograd et al. 2015) time scales. Finally, the submesoscale

features in the midwater were highly dynamic, and changed on

time scales of days to weeks. For example, the saturation ho-

rizon deepened by 30–40m approximately 200 km offshore

within a couple of days in April 2019, as seen by comparing the

outgoing and incoming transects from that mission (Fig. 11).

Changes in finescale variability is observed from othermissions

as well. This highlights the importance of sustained, high-

spatiotemporal resolution observations obtainable by under-

water gliders in highly dynamic coastal systems such as

the CCS.

4. Conclusions

In this paper, we presented a Deep-Sea-DuraFET pH-sensor

payload for Spray gliders, which exhibited excellent accuracy

(60.011) and precision (60.0016) over multiple missions span-

ning about one year. The sensor was stable to better than6 0.01

between missions, except during the last mission when a drift of

0.015was observed.However, this drift could be corrected based

on a deep reference pH field at 450m computed from existing

global empirical algorithms. Protocols for achieving accurate O2

measurements that are necessary for these algorithms were also

developed. These extremely encouraging results demonstrate

the strong potential for this new technology to enable sustained,

autonomous high-resolution pH measurements in the coastal

ocean, where such observations are critically lacking.

There is currently a network of Spray gliders operating in the

CCS [California Underwater Glider Network (CUGN)], con-

sisting of three lines that have been continuously occupied since

2007, includingCalCOFI line 67 described in this paper, and two

new lines that were added in 2019 (Rudnick et al. 2017). If the

FIG. 11. pH contour plots of the upper 300m along a transect from Monterey Bay to 300 km offshore (Fig. 1),

using the cmocean color map (Thyng et al. 2016). The columns represent (left) outgoing and (right) incoming

transects from each mission. The black line represents the saturation horizon for VAr.
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CUGN gliders were equipped with pH sensors, it could lead to

sustained, high-resolution monitoring of coastal acidification

dynamics in the CCS. The DSD pH sensor would have minimal

impact on the power budget. The Sprays in the CUGN dive to

depths of 500m, enabling a robust sensor-drift correction at

450m, which is a critical component for obtaining accurate

measurements from an observational network. However, the

current CUGN Spray gliders are at payload capacity, thus

adding the DSD pH sensor would require removing a sensor or

adding a second glider on each line. Another possibility is to

transition to a glider with higher payload capabilities, like the

Spray 2 glider currently under development. The prospect of

enhancing the CUGN with pH observations is particularly ex-

citing, because biological and ecological impacts of acidification

dynamics can be studied. For example, the sustained glider pH

observations could provide insights into exposure history of

pteropods Limacina helicina to high CO2 conditions to better

assess the impacts of ocean acidification on this important or-

ganism (Bednar�sek et al. 2017). The collocation of glider ob-

servations with CalCOFI is in direct alignment with goals and

objectives outlined in the GOA-ON requirements (Newton

et al. 2014).

Looking forward, the modular design of this DSD-pH pay-

load makes it relatively straightforward to integrate onto other

glider types such as Seagliders (Eriksen et al. 2001), increasing

its potential for routine use by the wider oceanographic com-

munity. There is a growing number of sustained glider moni-

toring programs worldwide (Testor et al. 2019), thus providing

an opportunity to significantly enhance our global observa-

tional capacity for coastal acidification using this new tech-

nology. Further refinement in sensor design and reliability, as

well as close coordination and efficient knowledge transfer

through shared standard protocols, will be critical to achieve

this grand vision.
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