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ABSTRACT

High-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex
dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal
and spatial scales of nearshore processes that impact event response activities and basic coastal ocean re-
search. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are pre-
dominately due to environmental effects, like increased external noise or low signal due to ocean surface
conditions. Many applications of these surface current data require that these gaps be filled, such as La-
grangian numerical models, to estimate material transport and dispersion. This study introduces a new pe-
nalized least squares regression method based on a three-dimensional discrete cosine transform method to
reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses
both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and
requires relatively low computer memory storage. This paper evaluates the method against two scenarios of
common data gaps found in HFR networks currently deployed around the world. The validation is based on
observed surface current maps along the mid-Atlantic coast of the United States with specific vectors removed
toreplicate these common gap scenarios. The evaluation shows that the new method is robust and particularly
well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is
shown that the real-time application of the method is suitable for filling data gaps in large oceanography
datasets with high accuracy.

1. Introduction surface, bottom, offshore, and inshore boundaries
(Robinson and Glenn 1999). In addition, tidal oscilla-
tions interacting with low-frequency features along the
offshore boundary contribute to the complexity of
the shelf dynamics that govern the exchange between
the coast and the deep ocean (Magnell et al. 1980). Wind
forcing is a large component in coastal ocean flow and
can quickly change the dynamics, resulting in the gen-
eration of large wave disturbances greater than or of
the same magnitude as the underlying low-frequency
current. High-frequency radars (HFRs) are commonly
Denotes Open Access content. used to observe and classify these complicated pro-
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The coastal ocean is an intricate system that forms
the boundary between the land and the deep ocean. This
environment consists of tightly linked chemical and
biological processes that coexist in a causal relationship
with complicated flow dynamics. As the water depth
decreases, physical forcing shifts from density gradients
to turbulent mixing and frictional forcing along the
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Mid-Atlantic Bight (MAB), a network of over 40 land-
based radar sites provides hourly maps of surface ocean
currents in support of oceanographic research and ap-
plications ranging from developing offshore wind en-
ergy (Seroka et al. 2013), pollution and storm response,
and U.S. Coast Guard search and rescue (Roarty et al.
2010). These radars can reliably measure currents from
a few kilometers off the coast out to 200km offshore
through a large range of weather and ocean conditions
(Fig. 1). The shore-based antenna approach provides
continuous temporal and broad spatial surface current
observations, enabling the delivery of data in real time.
Nearly every application of ocean monitoring requires,
to some extent, measurements of surface current
velocity maps.

While the coastal deployment of these networks pro-
vides some great advantages in setup, maintenance, cost,
and access, the remote sensed nature of the measurement
leads to sporadic gaps in data coverage in both time and
space. Each coastal site within an HFR network uses a
radio signal backscattered off the ocean surface to esti-
mate the velocity component in the direction of the an-
tenna. Data from overlapping sites are then geometrically
combined to provide a two-dimensional surface current
map over time. Throughout the community two primary
algorithms are used to combine individual site radial
component maps into total vector current maps, un-
weighted least squares (UWLS; Lipa and Barrick 1983),
and optimal interpolation (OI; Kim et al. 2007, 2008).
Gaps in the final surface current map are therefore de-
pendent on the coverage of each remote site that feeds
the combined product. Many research products and ap-
plications require that these data gaps be filled. For ex-
ample, to predict the material transport, the standard
approach is to run a Lagrangian numerical model.
Lagrangian applications provide an understanding of
transport in complex surface current fields (Peacock and
Haller 2013). Traditionally, Lagrangian applications
track the trajectories of individual particles determined
by time-evolving spatial current fields. Assuming that the
velocity field is observed for times ¢ over a finite interval
[#1, 1], the existence of missing values in HFR observa-
tion poses a major obstacle.

Several techniques have been used to fill the gaps in
either the UWLS or OI derived total vector maps. These
are implemented using covariance derived from normal
mode analysis (Lipphardt et al. 2000), open-boundary
modal analysis (OMA) (Kaplan and Lekien 2007),
and empirical orthogonal function (EOF) analysis
(Beckers and Rixen 2003; Alvera-Azcarate et al. 2005);
and using idealized or smoothed observed covariance
(Davis 1985). A comparison of these methods was given
by Yaremchuk and Sentchev (2009), who proposed to
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FIG. 1. Map showing the location of the HF radar stations used to
construct the MARACOOS surface current maps. The 70% data
coverage contour for 2012 (black) marks the best coverage domain
that is utilized by the DCT-PLS algorithm to fill data gaps, and the
100-m isobath (gray) are also shown.

add a cost function with the terms penalizing grid-scale
variability in the divergence and vorticity fields. How-
ever, the mapping methods mentioned above are
statistical techniques; therefore, their performance
depends on the accuracy of the covariance used for
interpolating the HFR data both in space and time.
Moreover, present mapping techniques often do not
make full use of the dynamical information from the
observations.

The goal of the present study is to design an HFR
interpolation algorithm capable of filling data gaps in
near-real time over the regional scales of a coastal
network. To do that we apply a penalized least squares
(PLS) regression as a real-time solution to fill gaps in the
total vector surface current estimates from an HFR
network as a postprocessing step on the derived total
vector fields from either the UWLS or OI approach.
PLS regression is based on a three-dimensional discrete
cosine transform (DCT) (Garcia 2010). The method has
been successfully applied to a global soil moisture
product derived from Earth observation satellites
(Wang et al. 2012). This method is introduced specifi-
cally to fill gaps as a required step in many post-
processing real-time applications, including particle
trajectories, search and rescue, and spill tracking.
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In practice, the occurrence of small data gaps due to
environmental factors are more frequent than the larger
dropouts due to significant hardware failure or power
and communication disruptions at individual radar
stations. The highly nonrandom occurrence of missing
values in HFR observations challenge their interpretation,
since the possible causes include—but are not limited to—
geometry of antenna setup, sea state, radio frequency
interference, and instrumentation failure. This paper in-
troduces the DCT-PLS technique to HFR gap filling and
evaluates it against common gap scenarios observed in
regional HFR networks. The paper is organized as fol-
lows. In the next section we describe the method and the
HFR network used in the evaluation. Section 3 describes
the gap-filling results and evaluation. We then discuss
these results and implications for application of the
method across similar regional networks deployed around
the world in section 4.

2. Methods
a. DCT-PLS gap-filling method applied to HFR data

According to Ohlmann (2007), a typical 2D instanta-
neous HFR velocity field can be expressed from HF
radar total vectors as

V(t,x) =V, . (tx)+V(tx),

where Vi (f, x) is the total HF radar velocity, which is
an average over time (f) and space (x); and V'(¢, x)
is largely a nondeterministic subgrid-scale velocity
component that is not necessarily uniform in space
and time.

In the study here, we introduce for the first time a
DCT-PLS method applied to HFR data processing. The
DCT-PLS method was originally proposed by Garcia
(2010, 2011), and we adapt it here for the purpose of
filling data gaps of HFR data for real-time and post-
processing. We now give an introduction of the DCT-
PLS algorithm. For more details on the mathematics of
the method, the reader is referred to Garcia (2010).

1) AUTOMATIC SMOOTHING WITH THE DCT-PLS
METHOD

The proposed method based on the penalized least
squares approach, combined with the DCT, allows for
automatic smoothing of multidimensional data that may
include outlying and missing data. Let us define the 2D
HFR m X n velocity field V = (u, v) surface current
(shown in the equation above), where u is the zonal
(east/west) component and v is the meridional (north/
south) component. First, we assume that the HFR data
are corrupted by noise only (no outliers, no missing
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data). Following Garcia (2010) the smoothed velocity
field V can be expressed as

V =IDCT2[I'-DCT2(V)],

where DCT2 and IDCT2 denote the type 1I 2D DCT
and its inverse (IDCT), respectively; and o stands for
the element-wise product. The filtering matrix I' is de-
fined by

= {1 +s[4—2cos(kml)7r—2cos(lnj)w]}_I,

where the subscript (k, [) refers to the position in the
2D HFR current field and the parameter s is a positive
scalar that controls the degree of smoothing. An un-
suitable selection for s causes under- or oversmoothed
velocities; as s increases, the smoothness of V also in-
creases. For small values of s, the value of V will be
dominated by noise. The value of the parameter s is
determined by minimizing the generalized cross vali-
dation (GVC) score method introduced by (Craven and
Wahba 1978). The GVC criterion makes the DCT-PLS
method fully automated.

r

ki

2) EFFECT OF THE SMOOTHNESS PARAMETER

Our goal is to find the best estimated y(f) from the
observed value y(¢) for the t=1, t,, ..., t, predictor,
where the index n refers to the number of predictors.

The technique is to minimize F to balance the in-
fidelity of the data measured by the residual sum of
square RSS =y — }7||2 and a penalty functional P(s)
evaluated by a square second-order difference derivative
s||Dy||*. The procedure is known as smoothing splines
(see Wahba 1990):

F(s)=RSS+ P =]y — || +s||Dy||.

The parameter s specifies the “constant” number s X n
of neighboring observation points used to calculate the
local fits. Thus, the bandwidth s determines the degree of
smoothness of the fitted data: Choosing too small an
s value leads to undersmoothing, whereas selecting an s
too large may result in oversmoothing of the fitted data
that ignores local features of the data, as shown in Fig. 2.
In the frequency domain, increasing the smoothness
parameter s reduces the low-pass-filter bandwidth. Ex-
tremely large values of s, which cause the loss of high-
frequency components, may happen with turbulence or
high shear flow.

The tuning parameter s controls the amount of regu-
larization, so choosing a good value of the tuning pa-
rameter is crucial. We can question what might be
considered a good choice of a tuning parameter.
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FIG. 2. Smoothness vs original HFR data from 1 Jan 2012 for
given s values 0.01, 0.1, 100, and o°. Increasing the smoothness
control parameter removes the high frequency. The mean HFR
velocity is obtained for s — oo.

A common solution to select the optimal value of s
is to use the cross-validation (CV) procedure. The
classical concept of CV consists of splitting the dataset
into a train set and a test set {t(i), y;, i=1, ..., n}. We fit
the model on the train set and test its predictive per-
formance on the test set. By testing the model on a dif-
ferent dataset than the one used for training, we avoid
overfitting.

There are many ways to split the initial set dataset
into parts like this. One possibility is to remove one
sample to form the train set and to put this one sample
into the test set. This is called leave-one-out (LOO)
cross validation. With N samples, we obtain N sets of
train and test sets. The cross validated is the average
performance on all these set decompositions.

The expected prediction error rate is defined as
E{F[yo, y(to;s, S-1)]}, where the CV score has to be
taken with respect to new data (fy, yo) from the same
source and all possible subsets minus one S_;. Those
prediction estimators are also linear in the observation
y(to;s, S—1) = H(s)y(ty), where H(s) provides a measure
of leverage. The average leverage is by definition in the
range of [0, 1]; weak smoothing occurs if the average
leverage is close to 1, while oversmoothing appears
when the average leverage is 0. A naive approach of the
problem selection of s is to select s equal to the value sy,
thus minimizing the CV score:

n Y NN 2
min(E{F[y 33551} =min{1 ZM}

G [-H(s)

We note that for each positive s = 0, there exists a unique
P(s) that optimizes the normalized mean-square error
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(NRMSE), so that the minimum of F(s) is also the so-
lution to the problem known as fair optimizer.

Craven and Wahba (1978) derived an alternative CV
criterion. The idea is to replace the weights factor by
their average value. This leads to a GCV criterion, which
is quickly calculated using

min(E{Fy,. y(t,;s,S_)1})

é by, — 3(t;s, S,l)]z/n
{1 —"Tr[H(s)]/n}*

Furthermore, Garcia (2010) reduced the computational
complexity and increased the speed of the GCV scores
by evenly spacing the data.

Thus, y can be expressed by

y =IDCT[I' X DCT(y)],

where T is given by I';; = (1 + s{2 — 2 cos[(i — 1)m/n]}?)
and F,‘,j =0ifi ?é]

However, the smoothing with the minimization of the
GVC score has no clear relation to the smoothing pa-
rameter and the gap-filling result in time or space. If the
variance of the magnitude of the HFR data is great, then
an oversmoothing might occur even with an extremely
small smoothing parameter (see Fig. 4). Similarly, in
Fig. 2, when a smaller smoothing pattern (10?) is used,
there is no relation to the gap filling. Both figures
demonstrate that there is no correlation between the
smoothing parameter and the actual smoothing achieved.

3) REPLACEMENT OF THE OUTLYING DATA WITH
THE DCT-PLS METHOD

The remote sensed nature of the HFR data can lead to
spurious vectors. These outliers are commonly the result
of a low signal-to-noise ratio due to either a weak return
signal often near the outer edges of the coverage or
heightened noise due to external sources. Neglecting
these outlying HFR current vectors can affect the
smoothed HFR field. To overcome the outlying data, the
DCT-PLS method uses a robust procedure that is almost
not influenced by the outliers. Garcia (2010) expressed
the robust procedure of the DCT-PLS method as

V =IDCT2{I'sDCT2[W"™ o (V — V) + V]}.

The method uses the initial current velocity (V = V) to
generate successive weights coefficients from bis-
quare weights (W™) of the residual current (V — V)
until V matches reasonably well Viy,;. We note that
the “‘robust” procedure discussed here avoids the
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weakness related to the linear model of the least
square techniques.

4) DEALING WITH MISSING VALUES AND MASKS

To utilize the algorithm, we first have to define the
best coverage domain. This was defined as the grid
points within the 70% data coverage from Fig. 1, which
was taken for the year 2012. Seventy percent was
chosen, as this was the highest contour that covered the
entire domain of the MAB. This best coverage is a
compromise of the data. Any data gaps within the best
coverage domain will be filled; however, if the real-
time measurement extends beyond the best coverage
domain, then the algorithm will remove it. So, it is
critical that an appropriate domain be chosen as input
to the algorithm. In the presence of missing data, the
corresponding weights coefficient is zero, while an ar-
bitrary value is assigned to the velocity. The DCT-PLS
method easily deals with missing and masked data by
introducing a second weight matrix W", defined by
zero if the velocity located in (k, /) is masked or missing
and 1 otherwise,

V = IDCT2{I's DCT2[W" s W™ o (V — V) + V]}.

This is the equation of the robust DCT-PLS method
used for HFR data.

b. HFR

HFR systems deployed along the coast use trans-
mitted radio signals (3-30 MHz) scattered off the ocean
surface to calculate radial components of the total sur-
face velocity at a given location (Barrick et al. 1977).
Peaks in the backscattered signal are the result of an
amplification of a reflected wave, at grazing incidence,
by surface gravity waves with a wavelength equal to half
that of the transmitted signal (Crombie 1955). The fre-
quency of the backscattered signal will be Doppler
shifted depending on the velocity of the scattering
surface. Using linear wave theory, the phase speed of
the surface waves can be separated from the total fre-
quency shift, leaving only that shift due to the surface
current component in the direction of the antenna
(Barrick et al. 1977). The radar software isolates the
strongest sea echo returns from the Bragg scattering
and uses that portion of the radar spectra to calculate
radial current velocities.

Opver a given time period, sites along the coast generate
radial maps of these component vectors with resolutions
on the order of 1-6 km in range and 5° in azimuth (Barrick
and Lipa 1997; Teague et al. 1997). The HF radar sites
in the Mid-Atlantic Regional Association Coastal Ocean
Observing System (MARACOOS) network are all
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TABLE 1. Typical characteristics of long, medium, and standard
range HF radar systems.

System type Radio frequency (MHz) Range (km)
Long range 4-6 180
Medium range 12-14 80
Standard range 24-26 30

SeaSonde direction-finding systems manufactured by
CODAR Ocean Sensors (Barrick 2008; Roarty et al.
2010). The direction-finding radars use a three-element
receive antenna mounted on a single post to determine
the direction of the incoming signals. Since the antenna
can resolve only the component of the current moving
toward or away from the site, information from at least
two sites must be geometrically combined to generate
total surface current maps.

The MARACOOS HF radar network consists of 43
SeaSonde-type radars (Fig. 1), 17 of which are long
range, 18 of which are standard range, and 8 of which are
medium range. Table 1 provides the typical character-
istics of the different types of systems. For the long-
range systems utilized in this study, the radar cell is
defined by a range resolution (As) of 6km and an azi-
muthal resolution (A®) of 5°. The maximum range is on
the order of 200km, and the effective bearing angles of
individual radars are different due to the coastline ge-
ometry. The focus of this study will be the broader
coverage provided by the lower-frequency long-range
network (Fig. 1).

Each site collects hourly measurements of the radial
component of the surface current and wave conditions
within a footprint local to the antenna. A suite of
CODAR software programs processes the received ra-
dar signals to generate the hourly radial current files at
each site. Further processing is used to combine the ra-
dials from two or more sites to produce total current
velocity maps. The existence of a total vector solution
depends strongly on the bearing angle diversity of the
radial velocities within a search radius at each vector
grid point. Since at least two radial velocities from dif-
ferent radar sites are required for a vector solution,
the regions with overlapping radar range cells from
multiple radar sites have better data coverage through
time. The regional radial-to-total processing is accom-
plished using an OI adaptation developed by Kim et al.
(2008) with the MATLAB HFR community toolbox,
HFR_Progs (Kohut et al. 2012; Kim et al. 2008). For this
method, we used an asymmetric search area stretched
parallel to the isobath direction and consistent with
the length scales of the currents in the region (Beardsley
and Boicourt 1981; Kohut et al. 2004). For quality as-
surance (QA), we require that both u and v component
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uncertainty be less than 60% of the expected variance
(Kohut et al. 2012). Each remote site was operated with
the quality assurance/quality control (QA/QC) recom-
mendations from the MARACOOS operators and the
Radiowave Operators Working Group (ROWG) com-
munity (Kohut et al. 2012). These are the same data
provided to the national HF radar server at the National
Oceanic and Atmospheric Administration (NOAA)
National Data Buoy Center (http://hfradar.ndbc.noaa.
gov/). Every hour the available radial velocities are
combined into a single total vector map on the national
network 6-km grid (Terrill et al. 2006). A total vector
was generated only if at least three radial velocities from
at least two remote sites were available to the combi-
nation algorithm.

c. The Mid-Atlantic Bight study site

For our study we used the MAB as a natural labora-
tory, as it has an extensive coastal HFR network that
supports both research and applications that depend on
reliable surface current data delivery. The seasonal
forcing cycles drive significant variability in the physical
environment of the MAB. Water masses originating
from the watershed, deep ocean, and northern latitudes
collide in the waters off New Jersey. Ocean fronts,
relatively narrow zones that separate these different
water types, are important both because of the role
they play in ocean dynamics and because they mark
some water mass boundaries. Their dynamical impor-
tance in the coastal ocean stems from their association
with strong currents, such as the equatorward jet ob-
served at the shelfbreak front off the east coast of North
America (Loder et al. 1998; Ullman and Cornillon 1999),
and with the strong vertical velocities that often occur
in coastal regions (Barth et al. 2005; Houghton and
Visbeck 1998).

From events lasting several hours to days on through
interannual and decadal scales, the variability of the
currents helps define the structure of the marine eco-
logical system. The physical structures within the MAB
are characterized by transport pathways and strong
hydrographic and velocity gradients that vary in space
and time. On longer scales of seasons to years, circu-
lation patterns drive persistent cross- and along-shelf
transport pathways (Kohut et al. 2004; Dzwonkowski
et al. 2009; Gong et al. 2010). On shorter scales of days
to weeks, upwelling and strong coastal storms can dis-
rupt or enhance these patterns (Kohut et al. 2006;
Dzwonkowski 2009).

d. HFR gap scenarios

The gap-filling method was tested for two scenarios
commonly observed in HFR-derived surface current
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F1G. 3. The ratio of spatial and temporal coverage of the
MARACOOS surface current maps for 2012 (blue line). The data
delivery target of the network for 80% spatial coverage at least
80% of the time (dashed black line).

maps. Based on a 7-yr dataset (MARACOOS; http://
maracoos.org/), the hourly coverage of the regional
HFR network in the Mid-Atlantic Bight is characterized
based on both spatial and temporal coverage. The op-
erational data coverage goal of the network is to provide
at least 80% spatial coverage 80% of the time. In this
metric, the percentage of spatial coverage is the pro-
portion of grid points within the data footprint beyond
the 15-m isobath and within 150km of the coast with
measured data. The measurements within the 15-m
isobath are excluded because the deep-water wave as-
sumption that the radar utilizes is no longer valid at
our operating frequency of 5 MHz. The points beyond
150 km are excluded, as this is the maximum range of the
radar stations during nighttime interference. The tem-
poral coverage can be variable between hours to a time
frame of years. This linked spatial temporal metric de-
scribes the typical coverage observed across the network
over our study period, January-December 2012 (Fig. 3).
Figure 3 shows that over much of the year, small spatial
gaps of less than 20% of the complete data footprint are
more common than larger gaps (>40%) observed dur-
ing significant hardware or communication disruptions.
These smaller data dropouts are isolated areas of the
data footprint due to local environmental factors. The
larger gaps observed less frequently are due to more
significant issues that remove one or more remote sites
from the network. In this analysis we define two sce-
narios that reproduce each of these situations. These
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FIG. 4. Surface current maps showing artificial gaps under scenario 1 for the (a) winter,
(b) spring, (c) summer, and (d) fall test periods.

more detrimental gaps will typically reduce the coverage
by at least 40%.

1) SCENARIO 1

The first scenario tested replicates a major hardware
or communication disruption that effectively removes
at least one site from the network. Observed gaps un-
der this scenario can be best described as a gap that
extends along the coast from the shore to the offshore
edge of the coverage, effectively splitting a single data
footprint into two. This is very uncommon and is pri-
marily due to a disruption in either the real-time
communication link or a hardware failure. The result
is a gap that stretches from the coast out to the edge of
the coverage (Fig. 4). The size of the band with no data
depends on the site spacing and the number of sites
that are not reporting data. For the purposes of this
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analysis, we are simulating a loss in contributing radials
from a single site in Sandy Hook, New Jersey, near the
apex of the MAB in the vicinity of the approaches to
New York Harbor.

2) SCENARIO 2

The second gap scenario tested replicates more
common situations in which each site is contributing
radial vectors, but there is a reduction in the number
of radial data from one or more of the sites (Fig. 5).
These dropouts could be due to a number of environ-
mental factors. The most common cause is an increase
in external noise that lowers the signal-to-noise ratio
and therefore limits the range a detectable signal can
be used to determine radial velocity (Barrick 1971).
For the long-range system, this is more common during
local nighttime hours, when the ionosphere effects
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FI1G. 5. Surface current maps showing artificial gaps under scenario 2 for the (a) winter,
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increase the range at which a given site receives ex-
ternal noise. Additional environmental factors like
local wind and waves could also reduce coverage.
These reductions in coverage from sites contributing
radials are manifested in the total vector maps as iso-
lated holes in the coverage. The size and location of the
gaps depend on the location and magnitude of the re-
duction of coverage from each individual site. To rep-
licate this in our evaluation, we chose three holes,
approximately 30-50km in diameter, that simulate
reduction in coverage from a site in the south, central,
and northern regions of the MAB coverage. Based on
our analysis of the 7-yr (2007-13) dataset in the MAB
coastal radar network, scenario 1 occurs less than 20%
of the time with gaps and the smaller, more isolated
gaps of scenario 2 represented by any of three gaps
shown in Fig. 5 occur 80% of the time with gaps (Fig. 3).
This analysis will quantify the accuracy of estimated
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vectors from our DCT-PLS method for each of these
scenarios.

3. Results
a. Gap-filling results

First, we verify that the new automatic gap-filling
method discussed in this paper is appropriate for HFR
data gap filling. To do this the DCT-PLS-filled vectors
were evaluated over time at grid points in the northern
MAB (Fig. 6a). The data coverage during January 2012
and the location of our two analysis points are shown in
Fig. 6a. The coverage shows high data returns over the
continental shelf with reduced coverage along the edge
of the data footprint well offshore near one of the
analysis points. The DCT-PLS algorithm was applied to
the entire spatial dataset over the month of January to
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FIG. 6. (a) HFR data coverage over January 2012.

day

The location of our two test sites with 39% (white

circle) and 76% (white triangle) are shown. (b) Time series of HFR observations (blue) and the corre-
sponding DCT-PLS model reconstructions (red) for the 76% coverage (white triangle). (c) Time series of
HFR observations (blue) and the corresponding DCT-PLS model reconstructions (green) for the 39%

coverage.

fill some of these data gaps. The two test sites fall along
the same line of longitude and originally possessed 39%
and 76% temporal data coverage. We chose these two
points to quantify the impact of the gap-filling algorithm
over the month. In Figs. 6b and 6¢, we show two time
series for our selected points in which the algorithm
filled the temporal gaps with information from the
grid surrounding these locations with higher temporal
coverage over the month. The more complete time
series of the DCT-PLS-filled values are shown in red
and green for the two test sites, respectively. The
method does a good job of filling gaps in the time se-
ries while retaining the integrity of the data in the
surrounding regions without gaps. In a spatiotemporal
dataset, the spatially continuous gaps can be tempo-
rally intermittent, or vice versa as in shown in Fig. 6.
Here the method takes advantage of the spatial and
temporal data provided by the HFR to fill gaps
in time.

The method was also tested against varied levels of
noise in the input data. Specifically, the DCT-PLS
method was analyzed on the HFR field with additive
Gaussian noise with a variance of (0.1 X Vmax)z. The
results of this test are shown in Fig. 7. An amount of 0%—
50% (using an increment of 5%) of clustered missing
data were included within the original HFR data field
from 1300:00 UTC 8 January 2012 using random Poisson
distribution, and 100 Monte Carlo simulations per con-
figuration were performed.

The performance of the methods is evaluated by using
the NRMSE. The NRMSE remained relatively low
(<28%) even with 50% of additional missing vectors
and was mostly influenced by the additive noise.
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Although this case represents an artificial HFR velocity
field, it clearly illustrates that the DCT-PLS method can
efficiently deal with a large percentage of clustered
missing data. In conclusion, these results demonstrate
that the DCT-PLS method is highly robust to clustered
missing data.

b. Comparison between DCT-PLS and OMA
methods

In practice, hardware and environmental factors lead
to gaps in HFR-derived surface current maps. In such
cases, local interpolations often fail over gap scenarios
highlighted in Figs. 4 and 5. As part of our DCT-PLS
evaluation, we computed interpolated vectors across the
large data gap due to one or two site outages within the
MAB network with both the DCT-PLS and OMA
methods during autumn (scenario 1; Fig. 4d). We im-
plemented the OMA in a way that could be run across
the entire domain in a real-time mode to address po-
tential gaps across the entire domain.

The OMA was performed with the OpenMA toolbox
developed by Kaplan and Lekien (2007). The applica-
tion of OMA to hourly current data is carried out in
several steps. First, modes are generated on a specific
domain with a continuous boundary. Next, the modes
are typically interpolated on the total current grid. The
next step is to fit data to the modes. This can be done
with either radial current measurements or total cur-
rents. After the fits the OMA currents are ready to be used.
We applied the OMA method to the MARACOOS
domain hourly sampling on a uniform grid with 6 km X
6 km intervals. The fits were performed using minimum
spatial scales of 6 km (all modes) on the total current
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measurements based on the OpenMA toolbox default
value of 200 modes. We acknowledge that the 200
modes fall short of the theoretical ~6000 total modes,
at least 3000 Dirichlet modes and 3000 Neumann
modes, needed resolve features approaching the grid
resolution over our domain. Given the computing
constraints and our intention to use the OMA as an al-
ternative to benchmark the DCT-PLS method in a real-
time data delivery setting, the available OMA tools will
fail to produce this large number of modes. So, we had to
reduce the number of modes to the toolbox default of
200. The OMA method has two primary input parame-
ters: the spatial length scale L, which defines the number
of modes used for the interpolation; and the diffusion
parameter “k,” which penalizes the magnitude of the
modes. The parameters used in our application of OMA
were L = 6km and k = 10,

We investigated the reconstruction of the missing
data performance of both algorithms on the fall sce-
nario 1 and analyzed the reconstruction of the current
patterns within the data gap (Fig. 8). A visual com-
parison showed that for this scenario, the DCT-PLS
method performed as well as and across much of the
domain better than the OMA interpolated vectors. The
velocity pattern of the DCT-PLS interpolated vectors
better replicated the patterns of the removed vectors
across much of the gap and were more realistic com-
pared to the OMA velocities. Table 2 presents the RMS
error statistics for the vector magnitude and direction
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comparison between these two methods and the with-
held vectors. We caution the reader that the quality of
the OMA interpolation is very dependent on the
number of modes selected. Our intention in this paper is
to see whether the new DCT-PLS application is com-
parable to the OMA application that has been more
widely applied to HFR gap filling over our entire
domain as a real-time tool. This required us to reduce
the number of modes to the toolbox default value of
200. Therefore, the OMA-derived fields will not be
able to resolve the finer spatial scales. In general the
DCT-PLS method had smaller RMS errors in both
scenarios across our four seasonal test periods. In
the OMA formulation, the number of modes is pro-
portional to (D/L)* (see Kaplan and Lekien 2007),
where D is the horizontal size of the domain and L is
the spatial length scale introduced previously. To
achieve a better reconstruction of the more spatially
complex current fields with OMA, we must increase
the number of modes by reducing L = 2-3 km, which
will require an increased k. This optimization of the
OMA for our specific region and data gap is beyond
the scope of this study. In addition, both the OMA and
DCT-PLS methods did not accurately represent the
small-scale features of the HFR velocity field, espe-
cially in scenario 1.

In conclusion, when a large data gap is present, the
DCT-PLS method with RMS differences between 3.5
and 18.9cms ™! and 14.4 and 204.3cms ™! for the vector
magnitude and phase, respectively, is better than the
OMA with RMS differences between 8.6 and 31.2cms
and 19.9° and 191° for the vector magnitude and phase,
respectively. These are lower averages on average be-
cause of the robust statistical ability of DCT-PLS to
estimate the current within the gap. Based on this basic
evaluation, the DCT-PLS method is comparable to
the OMA method, and in many regions of our test
scenario it produces more realistic interpolated vec-
tors. Since the DCT-PLS method does not require any
preprocessing, it is also more computationally efficient
to run on large HFR networks like that deployed in the
MAB. More work is needed to quantify the differences
and similarities of these two methods and others in
filling a variety of gaps in HFR networks. The details
of the comparison between the DCT-PLS method in-
troduced in this manuscript is discussed in more detail
in the following section.

c. Synthetic data validation of the DCT-PLS method

The evaluation of the interpolated fields is organized
into tests that replicate typical gap scenarios observed in
the coastal networks deployed around the world
(Lipphardt et al. 2000; Paduan and Rosenfeld 1996). The
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challenge we had in designing the evaluation of the
method was to artificially define the gaps so that we
could use the withheld data as truth. The size of the gaps
in each scenario was chosen based on the analysis de-
scribed in Fig. 3. Since the gaps represented in our two
scenarios do occur in the spatial time series, we could not
consistently identify observations to remove and use as
truth throughout the entire time series. As an alterna-
tive, we identified four maps with complete coverage
that represent the range of spatial complexity observed
in the maps over our 7-yr time series (Dzwonkowski
et al. 2009; Dzwonkowski 2009; Gong et al. 2010).
During the windier better mixed months of the fall and
winter, the maps tend to be more uniform compared to
the shorter decorrelation scales observed during the
calmer months of the spring and summer. These hourly
current maps sampled in each season provide the con-
sistent ground truth needed for our evaluation and the
variability in the flow fields representative of the entire
time series.

For scenarios 1 and 2, we evaluated these four velocity
fields by comparing the interpolated vectors to those
removed within each gap. The comparison between the
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removed vectors and the predicted values from our
method for each scenario is shown in Fig. 9. The scatter
shows a stronger agreement between the predicted
currents and the observed under scenario 2 repre-
senting the more common occurrence of small isolated
data gaps. Under this scenario the method performed
well with slopes for all four time periods above 0.7 for
both the u# and v components. The slopes less than one
indicate that, on average, the filled-in values were
slightly less than the observed velocities. For the less
frequent gap scenario 1, the method does not perform
as well with slopes below 0.35 and increased variance.
The comparison statistics between the removed and
predicted vectors across each of these scenarios are
shown in Table 2. For scenario 1, the RMS error be-
tween the DCT-PLS predicted and removed vector
magnitudes across the four time periods range from
3.4 to 18.9cms ', This variability across the time pe-
riods tested is shown in Fig. 10. The four time periods
represent a range in the characteristics of the flow
surrounding the gap. They were chosen to represent
the typical structure observed throughout the year in
the MAB (Gong et al. 2010). The lowest correlation in
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TABLE 2. RMS error between the DCT-PLS and OMA estimated velocities and the removed observations over each scenario and season.

Scenario 1

DCT-PLS magnitude (cms ™)

DCT-PLS direction (°)

OMA magnitude (cms™?) OMA direction (°)

Winter 18.9 204.3 313 191.0
Spring 53 414 8.7 94.4
Summer 6.1 14.4 8.6 20.0
Fall 35 30.8 12.8 104.9
Scenario 2
DCT-PLS magnitude (cms ™) DCT-PLS direction (°) OMA magnitude (cms ™) OMA direction (°)
Winter 14.4 105.1 345 169.8
Spring 5.2 66.7 11.6 91.5
Summer 8.4 28.5 23.1 35.0
Fall 9.1 76.7 12.2 110.8

the winter is characterized by broad scatter with slopes
close to zero for both the u and v components (Fig. 10).
The highest correlation occurred in the summer with a
slope closer to 1, particularly in the north/south com-
ponent (0.82).

In contrast to the large range of values seen in scenario
1, the correlation of the interpolated vectors in scenario
2 was more consistent. Similarly, the scatterplots all
show a more concentrated distribution along a line closer
to the target 1:1 line (Fig. 11). The exception was the fall
test, when the slopes for both components fell below 0.5.
In the winter, the correlation was the highest observed at
0.95 with slopes for both components above 0.7. The
relatively high winter RMS differences reported in Table
2 compared to the other seasons tested over scenario 2
are due to the small number of points above the 1:1 line
(Fig. 11a). Because of the faster currents in this winter
scenario, these points bias the RMS difference statistics
high compared to the majority of filled values in this test
that fall on the 1:1 line.

4. Discussions and conclusions

In this study we introduced an efficient automated
DCT-PLS method for filling data gaps in the HFR ocean
spatiotemporal dataset applied to the MARACOOS
domain. The procedure explicitly utilizes both spatial
and temporal information to derive the statistical model
and to predict the missing values.

The evaluation highlights the sensitivity of the gap-
filling method to the vectors surrounding the gaps. In
our analysis we chose two scenarios to replicate the
conditions typically observed in coastal networks oper-
ating around the world. The band scenario is a less
common occurrence in which either a communication or
hardware failure causes a gap in the coverage that
stretches from the coast to the outer edge of the cover-
age. In this scenario we saw a large range in the accuracy
of the interpolated vectors. Since this scenario by defi-
nition does not have observed vectors surrounding the
gap, the quality of the interpolated vectors is dependent
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on the spatial structure of the flow on either side of the
data gap. For those times when the flow was uniform and
flowing along the gap, the comparison was quite good
with a correlation of 0.7. If the flow was not uniform or
flowing mostly across the band, then the lack of vectors
nearshore and offshore of the band reduced the quality
of the interpolated vectors. This is most evident in the
wintertime image with flow around the band moving
mostly across the band.

Scenario 2 tested gaps that are much more typical in
regional networks. Under this scenario the gaps are
smaller and isolated within complete coverage. They
occur when environmental conditions reduce the
range of individual coastal sites. Under this scenario
the comparison on average was much better. Unlike
the band scenario, observed currents that informed the
interpolation method surrounded these gaps. With in-
formation surrounding the gap, the method performed
better. The flow characteristics did impact the quality
of the interpolated vectors with the highest correlation
observed when the flow was largely uniform across the
gap. As the complexity of the flow reached scales
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equivalent to the size of the gap, the correlation
dropped.

The user, however, should be aware of some limita-
tions of the automatic gap-filling procedure. The method
was tested as a gap-filling solution to a real-time HFR
data stream. Consequently, the GVC criterion was ap-
plied for the fully automated smoothing algorithm.
Therefore, good results are expected for a Gaussian noise
with zero mean and constant variance (scenario 2).
Garcia (2011) and Wahba (1990) reported that the GVC
criterion is fairly well adapted to non-Gaussian noise and
nonhomogeneous variances. Additionally, the GVC cri-
terion may cause problems when the area of missing data
size is large with incomplete surrounding data coverage
(scenario 1). Under these conditions, the automated ap-
plication of the method may lead to poorly predicted
vectors. In this case, the best smoothing parameter will
need to be determined manually based on the specific gap
location and size. As a consequence, the efficiency of
the automated gap filling depends specifically upon the
original data and on the properties of the additive noise,
as shown above.
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We have evaluated the DCT-PLS method for filling
gaps inherent in HFR real-time data streams. The
method is shown to be a robust solution for the most
common gap scenarios characterized as holes, approxi-
mately 30-50km in diameter, in the data coverage
with observations completely surrounding the gap. Un-
der the less common scenario in which more significant
outages can remove entire sites from a coastal network,
the effectiveness of the method depends on the char-
acteristics of the surrounding flow. Individual HFR
network operators will need to assess the scales of var-
iability in their operating area to determine the optimal
way to apply this method in either a real-time or post-
processed application.
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