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ABSTRACT: This study assessed multimodel subseasonal precipitation forecasts (SPFs) from eight subseasonal experi-
ment (SubX) models over the contiguous United States (CONUS) and explored the generalized extreme value distribution
(GEV)-based ensemble model output statistics (EMOS) framework for postprocessing multimodel ensemble SPF. The
results showed that the SubX SPF skill varied by location and season, and the skill was relatively high in the western coastal
region, north-central region, and Florida peninsula. The forecast skill was higher during winter than summer seasons,
especially for lead week 3 in the northwest region. While no individual model consistently outperformed the others, the
simple multimodel ensemble (MME) demonstrated a higher skill than any individual model. The GEV-based EMOS
approach dramatically improved the MME subseasonal precipitation forecast skill at long lead times. The continuous
ranked probability score (CRPS) was improved by approximately 20% in week 3 and 43% in lead week 4; the 5-mm Brier
skill score (BSS) was improved by 59.2% in lead week 3 and 50.9% in lead week 4, with the largest improvements occurring
in the northwestern, north-central, and southeastern CONUS. Regarding the relative contributions of the individual SubX
model to the predictive skill, the NCEP model was given the highest weight at the shortest lead time, but the weight
decreased dramatically with the increase in lead time, while the CESM, EMC, NCEP, and GMAO models were given
approximately equal weights for lead weeks 2—4. The presence of active MJO conditions notably increased the forecast skill
in the north-central region during weeks 3—4, while the ENSO phases influenced the skill mostly in the southern regions.

KEYWORDS: Ensembles; Forecast verification/skill; Probabilistic Quantitative Precipitation Forecasting (PQPF);
Postprocessing

1. Introduction precipitation forecasts (SPF) are particularly challenging
because the subseasonal time scale is too short to be favored
by initial conditions and too long to be influenced by
boundary conditions. However, SPF covers the critical time
horizon of many hazardous events (White et al. 2015; Mo and
Lettenmaier 2016), such as flash droughts, heat waves, and
dry and wet spells. A skillful SPF will provide valuable in-
formation for early warnings and decision-making regarding
natural hazard preparedness, risk reduction, and mitigation
of socioeconomic loss.

To bridge this forecast gap, two subseasonal retrospective
forecast (reforecast) datasets have been developed to date.
One is the Subseasonal to Seasonal Prediction Project (S2S)
launched by the World Weather Research Programme/World
Climate Research Programme (Vitart et al. 2017), and the
other is the newly launched Subseasonal Experiment (SubX),
which was initiated by the U.S. National Oceanic and Atmospheric
Administration (NOAA) climate testbed project (Pegion
et al. 2019). Both datasets include multiple state-of-the-art
numerical models that are devoted to advancing subseasonal
forecasting (White et al. 2017; Wang and Robertson 2018).
The multimodel ensemble has a higher skill level than most
individual models since it is able to increase the forecast
confidence by reducing system errors (Hagedorn et al. 2005;
Medina et al. 2018). The SubX datasets provide not only
subseasonal reforecast archives but also real-time forecasts from
eight cutting-edge numerical weather prediction models. While
SubX’s ability to forecast subseasonal temperatures and pre-
Corresponding author: Di Tian, tiandi@auburn.edu cipitation has been investigated globally (Pegion et al. 2019),

Precipitation is arguably the most crucial component in the
hydrologic cycle and atmospheric circulation. Its spatiotem-
poral variations directly affect the global water resources and
energy balance (Donat et al. 2016; Q. Sun et al. 2018). Many
natural disaster predictions can greatly benefit from accurate
precipitation forecasting, such as early warnings of flash
droughts and heavy rains, debris flows, and landslide hazards,
and can inform decision-making processes for water resource
management (Borga et al. 2014; Zhu et al. 2019; Feng and Chao
2020). However, accurate precipitation forecasting remains a
challenging task because of its strong spatiotemporal hetero-
geneity. With advances in data assimilation, model physics, and
ensemble forecasting techniques, numerical weather predic-
tion and seasonal climate forecast have made great progress in
recent decades, resulting in skillful precipitation forecast-
ing with a 1-2-week lead time (Bauer et al. 2015) and im-
proved seasonal predictions with a 1-12-month lead time
(Yuan and Wood 2012). Weather forecasting is determined
mostly by the initial atmospheric conditions (Vitart et al.
2008), whereas seasonal climate prediction is strongly influ-
enced by atmosphere—ocean coupling processes and bound-
ary conditions, such as sea surface temperature (Troccoli
2010), soil moisture (Koster et al. 2004), and stratosphere—
troposphere interactions (Scaife et al. 2016). Subseasonal
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SubX models and their multimodel ensemble have not been
comprehensively evaluated in different climate regions over the
contiguous United States (CONUS).

Since all models are a simplification of reality, systematic
biases and uncertainties are inevitably introduced into model
predictions (Murphy et al. 2004). Thus, postprocessing (some-
times also referred to calibration) of model forecasts has been
widely adopted to address this issue (Kirtman et al. 2014; Li et al.
2017; Duan and Phillips 2010). Many statistical postprocessing
methods have been developed to postprocess short- to medium-
range precipitation forecasts by reducing systematic biases
while improving the inadequate representation of forecasting
uncertainties (e.g., Li et al. 2017; Scheuerer and Hamill 2015).
In recent years, several statistical methods, such as Bayesian
approaches, have been employed to postprocess subseasonal
precipitation forecasts and have achieved improved perfor-
mance (Specq and Batté 2020; Li et al. 2020). However, these
techniques mostly focus on postprocessing single-model sub-
seasonal forecasts, and they take the ensemble mean of sub-
seasonal forecasts without fully considering their spread, which
can reduce systematic errors to some extent but may not
fully improve the adequate representation of forecasting
uncertainties. In contrast, the generalized extreme value
distribution (GEV)-based ensemble model output statistics
(EMOS) postprocessing scheme (Scheuerer 2014) has the
advantage of being able to efficiently postprocess multi-
model ensemble (MME) forecasts considering both the mean
and the spread of multimodel ensemble forecasts. Although
short- to medium-range predictions have been successfully
postprocessed by EMOS (Scheuerer and Hamill 2015; Vigaud
et al. 2017, 2018, 2020; Medina and Tian 2020), a study fo-
cusing on postprocessing both the mean and spread of multi-
model ensemble subseasonal forecasts by EMOS is still
missing in the current literature.

El Nifio-Southern Oscillation (ENSO) and the Madden—
Julian oscillation (MJO) are large-scale phenomena that pro-
vide sources of subseasonal predictability with great impacts
on subseasonal precipitation over different regions and seasons
(viz., teleconnections) (Jones et al. 2011; Li and Robertson
2015; Tian et al. 2017; DelSole et al. 2017; Kim et al. 2019; Pan
et al. 2019). For example, most S2S models showed high pre-
diction skill levels in Southern California during El Nifio years,
while during La Nifia years, most models showed better sub-
seasonal skill levels in Oregon. Active MJO events can change
the spatial pattern of precipitation (Pan et al. 2019). Over the
Maritime Continent area, the MJO can modulate precipitation
when ENSO is in a neutral year, while this effect can be
weakened by strong ENSO events (Li and Robertson 2015).
Given the teleconnections from MJO and ENSO, studies have
detected their notable impacts on subseasonal precipitation
forecast skill levels, focusing either on evaluating a single
model (Tian et al. 2017) or on a specific region on the coast of
the western U.S. (Pan et al. 2019). As a step forward, this study
further examines the importance of the MJO and ENSO to the
skill level of the multimodel ensemble (MME) subseasonal
precipitation forecast (SPF) over the CONUS.

The aims of this paper are 1) to comprehensively evaluate
the SPF skill levels of individual and MME forecasts from
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SubX in different climatic regions over the CONUS, 2) to ex-
plore the potential of using EMOS method for postprocessing
the MME SPFs, and 3) to examine the effects of ENSO and
MJO on the MME SPFs skill level over the CONUS. This work
aims to postprocess multimodel ensemble subseasonal pre-
cipitation forecasts, but also provides a systematic skill evalu-
ation as well as examining the effects of ENSO and MJO on the
multimodel ensemble subseasonal precipitation forecast skill
over the CONUS.

2. Data and methodology
a. Study area

Our study area covers nine climate regions across the CONUS
(Fig. 1). These nine climate regions were defined by the National
Centers for Environmental Information (NCEI) (Karl and Koss
1984) as follows: Northwest (NW), West (W), West North
Central (WNC), Southwest (SW), Upper Midwest (UMW),
Central (C), South (S), Northeast (NE), and Southeast (SE)
regions. The topography and climate conditions vary sig-
nificantly among these regions.

b. Dataset

In this study, we used the SubX precipitation retrospective
forecast (reforecast) dataset at 1° X 1° over the CONUS (Pegion
et al. 2019), which is available at http://iridl.ldeo.columbia.edu/
SOURCES/. Table 1 shows the basic information of the SubX
data, which includes reforecast runs from eight state-of-the-art
subseasonal numerical forecast models. Considering the avail-
ability of data, we chose the study period of 1999-2014 and a lead
time of 1-4 weeks. The weekly mean of daily precipitation re-
forecast was produced by averaging daily precipitation over each
week. Since the eight SubX models had different initialization
dates and forecast lead times (Table 1), we constructed
multimodel ensembles by combining all the forecasts initial-
ized on different but closest dates over the course of 1 week,
and the multimodel ensembles were verified for the same
week. This type of processing is called a lagged average en-
semble and has been widely applied in weather and seasonal
forecasting (DelSole et al. 2017). Figure 2 provides a dem-
onstration of the lagged average ensemble, taking the SubX
CESE-30LCESM1, EMC-GEFS, and NRL-NESM datasets
as an example. For the CESE-30LCESM1 dataset, since the
forecast is initiated every week, matching with observations,
the weekly mean of daily precipitation forecast is obtained by
averaging daily precipitation over all seven days for each
week. For EMC-GEFS and NRL-NESM, since the initiali-
zation time is different, there are less than seven days that fall
within the same time period as CESE-30LCESM1. We search
out the forecast initialization time that is closest to CESE-
30LCESML1, and then obtain the weekly mean of daily pre-
cipitation over the same time period as CESE-30LCESM1. In
this case, the weekly value is made up of less than seven daily
values, since the model run does not cover the full week.
While this might slightly influence the evaluation results,
this allows us to obtain consistent subseasonal forecast from
SubX model datasets for the follow-up multimodel ensemble


http://iridl.ldeo.columbia.edu/SOURCES/
http://iridl.ldeo.columbia.edu/SOURCES/

OCTOBER 2021 LI ET AL. 2583
120° W 105° W 90° W 75° W
Northwest West North Central ' '
ol Upper Midwest Northeast
(=3
2 = (UMW) (NE)
=
=t
<
Central
West (©)
W)
z Southeast
ar DEM (m) Southwest (SE)
[-84-200 [N 1300-1600 (SW) South X
[ J200-400 | 1600-2000 (;;) . X
I +00-700 [ 2000-2300 WA= E
B 700-1000 [ 2300-2800 4
[ 1000-1300[___]2800-4334 g s o 1,500 eny .

FI1G. 1. Nine climatic regions over the contiguous United States.

forecasting and EMOS postprocessing. The multimodel
ensemble (MME) forecast at the weekly time scale was
generated by simply combining all the ensemble mean
forecasts of each SubX model, resulting in eight-member
ensemble forecasts. Simple MME is a common approach
that has been widely employed in previous studies (e.g.,
Pincus et al. 2008; Wanders and Wood 2016; Ma et al. 2018;
Pegion et al. 2019)

The observation-based daily precipitation of the Global
Precipitation Climatology Project (GPCP 1dd) version 1.3 at a
1° grid during the 1999-2014 period was used as the observa-
tional data for calibration and verification. This database is
constructed by obtaining instantaneous precipitation from the
threshold matched precipitation index (TMPI) for 40°N—40°S
threshold matched geo-IR dataset from the IR brightness
temperatures and rescaling the TOVS precipitation estimates
at higher latitudes (Huffman et al. 2001). Until now, it was
reported that this dataset presented an excellent performance
level that was able to meet the initialization requirement of
numerical models, to drive land surface models, to resolve the
advance and retreat of precipitation, and to validate model
forecasts (Vigaud et al. 2017; S. Sun et al. 2018).

The MJO index produced by the Australian Bureau of
Meteorology from 1999 to 2014 was used to assess the impact of
this phenomenon on the predictions (http:/www.bom.gov.au/

climate/mjo/graphics/rmm.74toRealtime.txt). This index is de-
rived from the two major principal components of the combined
fields of near-equatorially averaged 850-hPa zonal wind, 200-hPa
zonal wind, and outgoing longwave radiation (OLR) from an
empirical orthogonal function analysis (Wheeler and Hendon
2004). The OLR is a proxy for convection and can effectively
capture the baroclinic, convectively driven circulation in the
equatorial plane of the MJO (Madden and Julian 1972). The
OLR has been carefully validated and improved for inclusion in
the latest version of ACCESS (Bi et al. 2013; Sun et al. 2013).
These two leading principal components at a daily time step,
namely, real-time multivariate MJO series 1 (RMM1) and 2
(RMM2), defined eight MJO phases and an MJO amplitude. We
first evaluated the impact of MJO on prediction skill with RMM
threshold of 1.0, but there was no significant improvement for
most areas. After testing different RMM thresholds ranging
from 1.0 to 1.5, we found that the threshold value 1.5, indicating
strongest MJO events, is appropriate to substantially detect the
impact of MJO on prediction skill. Therefore, we finally defined
RMM amplitudes exceeding (below) 1.5 as active (no-active)
phases. In total, for the study period of 834 weeks, 269 weeks are
belonging to active MJO.

The ENSO index provided by the NOA A Climate Prediction
Center (https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php) was derived from the monthly

TABLE 1. Basic information of the eight subseasonal datasets. Note: ins means that model will be initialized four times every 7 days.

Ensemble
ID Model names members  Initial intervals  Lead time (days) Timespan References
1 CESM-30LCESM1 10 7 days 45 1 Jan 1999 to 30 Dec 2015  Hurrell et al. (2013)
2 EMC-GEFS 11 7 days 35 6 Jan 1999 to 30 Dec 2015  Zhou et al. (2017),
Wei et al.(2008)
3 ESRL-FIM 4 7 days 32 6 Jan 1999 to 30 Dec 2015  Bleck et al. (2015)
4 ECCC-GEM 4 7 days 32 1Jan 1999 to 28 Dec 2014  Lin et al. (2016)
5 GMAO-GEOS 4 5 days 45 1 Jan 1999 to 30 Dec 2015  Reichle and Liu (2014)
6  NCEP-CFSv2 4 1 days 45 1 Jan 1999 to 29 Dec 2015  Tian et al. (2017)
7 NRL-NESM 1 4 ins/7 days 45 2 Jan 1999 to 29 Dec 2015  Hogan et al. (2014)
8 RSMAS-CCSM4 3 2 ins/7 days 45 6 Jan 1999 to 30 Dec 2015  Gent et al. (2011)
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FIG. 2. A demonstration of the lagged average ensemble, taking the SubX CESE-30LCESM1,
EMC-GEEFS, and NRL-NESM datasets as an example.

sea surface temperature (SST) anomalies in Nifio-3.4 in the
area of 170°-120°W, 5°S-5°N. The ENSO data series was di-
vided into three categories, including the El Nifio phase, La
Nifia phase, and ENSO neutral, as defined by a standard
threshold of =0.5°C. As the initial days of SubX models are
fixed, we divided the initial time lists into three categories by
determining whether they fall into a specific phase of ENSO.
There are 143, 392, and 299 sample days in El Nifio, La Nifia,
and ENSO neutral, respectively.

c¢. EMOS postprocessing methods

Itis more difficult to formulate a suitable probabilistic model
for quantitative precipitation compared to other variables be-
cause the precipitation is nonnegative, may be equal to zero
with positive probability, and positively skewed for a nonzero
component. To satisfy these particular characteristics of pre-
cipitation, the generalized extreme distribution (GEV)-based
EMOS method was developed by Scheuerer (2014). This novel
approach can be considered as an ideal candidate for depicting
predictive distributions for quantitative precipitation thanks to
its reasonable choices of location, scale, and shape parameters.
Therefore, in this study, we used the GEV-based EMOS
method (Scheuerer 2014) to postprocess the MME subseasonal
precipitation forecasts at a weekly time scale.

As the MME only provides finite ensembles, it cannot
provide a full predictive density function (PDF), while the
EMOS method can make use of discrete forecast members to
produce a predictive PDF. Since precipitation has a special
distribution with different features, i.e., nonnegative, equal to
zero with positive probability, and positive skew, in the GEV
EMOS framework, the PDF is expressed as a left-censored
GEYV distribution, i.e., GEVy(m, o, £), where m is the mean,
o is the scale factor, and ¢ is the shape factor. The GEV,
model’s mean m is parameterized as follows:

m=a+bX +---+b X +sp,. D
The scale parameter o is parameterized as follows:
oc=c+dXMD(X,,...,X ). 2)

In Egs. (1) and (2), X3, X3, ..., X, denote the means of each
model’s ensemble forecast for a given location and time, p is
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the fraction of zero precipitation members, MD(X7, ..., X,,,) is
Gini’s ensemble mean difference, and a, by, ..., b,,, s, ¢, d, and
¢ are fitted to optimize the mean continuous ranked probability
score (CRPS) between subseasonal precipitation forecasts and
observations over the specified training period, where by, ...,
b, are coefficients representing the weights for each model’s
ensemble mean forecast. Using the ensemble mean of each
model (X1, X5, . .., X,,,) helps reveal the weights of each model
(by, ... . b,,), and therefore, it helps us understand their con-
tributions to the predictive skill.

The GEV has the cumulative density function (CDF) is as
follows:

ol —[1 46228V for 20
. ow{-[1+e(55)] ) o e
exp [—exp (%)] for ¢€=0

where parameters u, o, and ¢ characterize the location, scale,
and shape of the GEV. As in Scheuerer (2014), when ¢ €
(—0.278,1), the GEV has a positive skew, and its mean is equal
to the following:

ra-¢-1
Pt kN

m= 3 “4)

p+oy for £€=0
where I' denotes the gamma function and y =~ 0.5772 is the Euler—
Mascheroni constant. For modeling precipitation amounts, GEV
is considered to be left-censored at zero, namely, a value below
zero is assigned to a zero value. The predictive CDF then becomes
the following:

G(y) for

G(y);={ ; y=0

for y<o0 )

If either ¢ = 0 or ¢ > 0 and p < (0/é), this distribution is
nonnegative and exactly zero with a positive probability. This
left-censored GEV distribution (GEV,) permits modeling
precipitation on the original scale without prior transformation
of the data. Specifically, in this study, the ensembleMOS pack-
age in “R” was used to implement the EMOS method consid-
ering the GEV,, probability distribution as a predictive function
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FIG. 3. Schematic diagram of the generalized extreme distribution (GEV) based EMOS approach for
postprocessing SubX precipitation over the CONUS.

(Baran and Nemoda 2016). The detailed schematic of the GEV-
based EMOS approach for postprocessing eight SubX precipi-
tation datasets over the CONUS is shown in Fig. 3.

d. Forecast evaluation

We evaluated both deterministic and probabilistic fore-
casts of each SubX model, MME, and EMOS postprocessed
forecasts in nine climate regions across the CONUS. To
evaluate the deterministic forecast skill, two metrics, the
Pearson correlation coefficient (CORR) and Kling-Gupta
efficiency (KGE), were employed. The CORR, with a range
from O to 1, is a common metric describing the strength and
direction of the linear relationship between prediction and
observation. The KGE is an integrated performance statis-
tic incorporating linear correlation, relative bias, and vari-
ability (Gupta et al. 2009), and it spans from —to 1, with an
expected value of 1 indicating perfect performance. A KGE
value greater than —0.41 indicates that using a model fore-
cast is better than using the mean value (Knoben et al. 2019).
The equations of the two statistical metrics are shown as
follows:
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where yobs ; and ypreq ;i refer to the observation and prediction at
the ith week, Yous and ypreq refer to the mean value of all weekly
precipitation, and N is the number of total weeks from 1999 to
2014. The terms oops and wops denote the standard deviation
and mean of observational precipitation, respectively, and
Opred aNd ppreq denote the standard deviation and mean of the
predicted weekly precipitation, respectively.

To evaluate the probabilistic forecast skill, the CRPS and the
Brier skill score (BSS) were used in this study (Wilks 2011). The
CRPS is a standard measure for evaluating the reliability and
accuracy of probabilistic forecasts. It describes the integrals of

(6)
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the squared difference between the cumulative distribution
function (CDF) of the probabilistic forecast from MMEs and the
CDF of the observed values (Wang and Robertson 2018; Mishra
et al. 2018). The mean CRPS (CRPS) for each grid point is
calculated using the following equation,

— 1 1
CRPS = . CRPS = NJR [F, a(6) — Fyp )P dx
1 .
] [P = F T i, ®)
where
0,x < observed value
F = ? 9
s (%) { 1,x > observed value’ ©)

where Nis the total number of weeks, and Fops and Fireq are the
CDFs of the observed precipitation and the predicted precip-
itation, respectively. The term F pred 1S an estimated Feq pro-
duced by MME or EMOS. The CRPS is a negative orientation
metric, where better performance is indicated by smaller
values. If the predictive distribution is centered on the ob-
served values, it indicates an accurate forecast.

The Brier score (BS) was used to assess the probabilistic
forecast skill level for different precipitation events (Wilks
2011; De Felice et al. 2015; Bliefernicht et al. 2019). The BS is
defined as follows:

n
Bs=12(fi—oi)2, (10)
ni=1

where n is the total number of forecast-event pairs for a given
tercile-based precipitation category; f; is the ith forecast
probability, which is calculated as the percentage of forecast
members exceeding a certain threshold (e.g., 5-mm precipita-
tion); and o; is the ith observation probability and is a dichot-
omous event (0 or 1), i.e., if the observed value is greater than a
certain threshold, 0; = 1; otherwise, 0; = 0. The BS is between 0
and 1 with a smaller value denoting better performance.

The BSS was used to assess the forecasting skill relative to
climatology. The BSS can be defined as follows:

BS
— cm _ 1 _
BSS BS 1 BS

(11)
clm

where BS., is the BS of the climatology and the BSS is
between —cc and 1. BSS < 0, BSS = 0, and BSS > 0 indicate
worse, the same, and better predictive skills than the clima-
tology, respectively (Ma et al. 2017).

A “‘leave-one-year-out cross-validation” procedure was used
to evaluate the skill of EMOS postprocessing (Wilks 2011). This
method was robust in evaluating the skill of weather and climate
forecasts and was widely used by researchers (Barnston and van
den Dool 1993; Monhart et al. 2018). For example, there were 16
years of available forecasts in our study. When forecasting pre-
cipitation for a given week of a year, all other years of data with a
window of *n weeks, i.e., 2n (weeks yr™) X 15 (years) were
used as the training dataset, and the forecast target was used as
the evaluation data. This process was repeated from the first
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week of the year to the last data point. The value of n was the
training period, which was determined by comparing the per-
formance values of different periods from 30 to 130 weeks using
the data from three randomly selected grid points in each cli-
mate region (total 27 sample grid points). In addition, the effects
of MJO or ENSO were assessed by comparing the forecast skill
during different MJO and ENSO phases.

e. Significance test

The significance level of prediction skill differences among
the different SubX models, MME and EMOS for each of the
nine climate regions, and the differences between the active and
inactive MJO and the El Nifio phase and La Nifia phase were
tested by using the one-way analysis of variance (ANOVA), the
least significant difference (LSD) test, and the F test (p < 0.05).

3. Results and discussion

a. Comparison of the SubX weekly precipitation forecasts
with observations

The intercomparison of SubX model forecasts and obser-
vations could reveal the discrepancies and consistencies of
model forecasts in depicting the spatial-temporal distribution
of subseasonal precipitation (Figs. 4 and 5). The spatial dis-
tribution of the weekly predicted precipitation of eight SubX
models is shown in Fig. 4, and the statistical percentage of bias
relative to observational precipitation is presented in Fig. 5a.
While the average observational weekly precipitation is ap-
proximately 15 mm, it varies from more than 23.9mm in the
SE, with a subtropical humid climate, to less than 6.4 mm in the
SW, with a plateau mountain climate (Fig. 4a9). In general,
the SubX precipitation forecasts from weeks 1 to 4 followed a
similar spatial distribution as that of the observations, all
showing a decreasing trend from the southeastern to western
CONUS, with the precipitation especially low in the west and
southwest regions, but relatively higher on the west coast of the
northwest region (Fig. 4). However, the eight models exhibited
great discrepancies in the weekly precipitation forecasts across
the CONUS. For week 1 (Figs. 4a0-a8 and 5), the EMC,
ECCC, NCEP, and NRL overpredicted precipitation com-
pared to the observations, with weekly mean values of 15.97,
16.36, 17.49, and 16.75 mm and relative biases of 3.8%, 4.9%,
16.1%, and 9.4%, respectively. The CESM, ESRL, GMAO,
and RSMAS underpredicted precipitation, with mean values
of 12.65, 15.24, 13.07, and 14.46 mm, and relative biases
of —13.9%, —3.1%, —16.2%, and —0.5%, respectively. It is
worth noting that the MME had the lowest bias (0.2%), indi-
cating that the simple average of all the models notably de-
creased the bias compared to the individual model, which
confirmed that the multimodel performed well with a smaller
bias than any individual forecast model. For week 2, the EMC,
ESRL, ECCC, and NCEP models overpredicted the precipi-
tation; the CESM, GMAO, NRL, and RSMAS underpredicted
the precipitation, with all except the NRL having bias in week
1. Compared to weeks 1-2, the precipitation for weeks 3—4 was
highly overpredicted by most models, especially for the EMC
(Fig. 4d2), ESRL (Fig. 4d3), and NCEP (Fig. 4d6). These large
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F1G. 5. Distribution of SubX precipitation reforecast: (a) relative bias, (b) correlation, and (c) KGE for four lead times (weeks 1-4).
MME accounts for the average precipitation among the eight SubX models and in all seasons.

differences mainly occurred in the eastern United States,
specifically in the southeast and northeast regions. Overall, the
MME notably reduced the forecast biases compared to the
individual model.

b. Deterministic forecast skill of individual model and
MME forecasts from SubX

The SPF skills may vary by models, seasons, regions, and
phases and magnitudes of large-scale circulation patterns. To
compare the deterministic forecast skill of the SubX models,
we evaluate the correlation of each SubX model with the ob-
servational precipitation for weeks 3—4 over different climate
regions during winter and summer seasons (Fig. 6). The cor-
relation skill in winter for week 3 was higher than that in
summer, especially for CESM, EMC, and ESRL. These three
models also showed similar skills in week 4, while the perfor-
mance was much lower than that in week 3. This result was
consistent with the findings of previous studies, which reported
that SPF had a better performance in winter than in summer
seasons (Tian et al. 2017; Vigaud et al. 2017).

Figure 6 also demonstrates that the prediction skill of the
SubX models varied significantly by region. Most of the models
showed satisfactory skill in the NW region in winter, especially
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the CESM model, while moderate skill was presented in the
UMW, NE, S, and C regions. The high prediction skill in the
NW region is probably because it has distinct synoptic and
precipitation regimes than the eastern regions and is adjacent
to the Pacific Ocean. The precipitation variation in this region
is strongly affected by the ENSO or MJO through their influ-
ences on the Aleutian low, subtropical jets, and propagation of
extratropical wave trains (Schonher and Nicholson 1989; Mo
and Higgins 1998). A high prediction skill in the NW region
was also found in Pan et al. (2019), who showed skillful pre-
cipitation forecasts beyond week 2 in this region, especially
when the MJO was active.

Figures 7 and 5b show the correlations between the SPF and
the observations during all seasons. For week 1 (Figs. 7al-a8),
the NCEP model showed the best performance among the
eight models, with a mean CORR 0.54, followed by the EMC
(CORR 0.51), ESRL (CORR 0.48), and CESM (CORR 0.47),
with the NW and WNC regions showing higher skills in the SW
and S. In contrast, the RSMAS, ECCC, and GMAO models
did not represent precipitation variation well, especially in the
SE region. However, the MME (Fig. 7a9) of all SubX models
showed a better skill (mean CORR 0.55) than any individu-
al model. For week 2, the EMC, CDSM, NCEP, and ESRL



OCTOBER 2021

Winter

LI ET AL.

2589

s

ESR.
ECCC
GMAO

NCEP
NRL

-
2
g
=

N

I-

|
| |

EMCa Oz dzz
zg& g% @» ¥
= Correlation

-0.04 0 0.05 0.1

e

| |

(@] o] m v b O
ZEEEPE
=)
0.15 02 03
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models performed well, but the performance was greatly de-
creased compared to week 1; the MME had a CORR of 0.37,
indicating increased performance compared to the individual
model. For weeks 3—-4, the CESM and EMC showed the best
skill with a higher CORR in the W, NW, and WNC. The NRL
performed the worst with a few negative CORRs found in the
eastern United States (Figs. 7c¢7,d7). Overall, the CORR de-
creased with an increasing lead time, while the MME consis-
tently improved the forecast performance during weeks 1-4.
The model errors can be directly related to the variability,
bias, and correlation between the observations and the SubX
forecasts. KGE considers all these aspects and is considered a
comprehensive metric for assessing the model performance
(Gupta et al. 2009). Figure 8 shows the KGE of SPF from each
SubX model. For week 1, all models matched well with the
observations, with the NCEP, CESM, ESRL, EMC, and
CESM showing better performance compared to the others
(KGE equals 0.39, 0.38, 0.37, and 0.35, respectively) (Figs. 8al—
a8). However, many areas showed negative values in week 2,
especially in the southern CONUS (Figs. 8b1-b8). For weeks
3-4, approximately half of the grid points showed negative
KGE values, indicating poor performance in these areas, such
as NE, C, SW, and S (Figs. 8c1-c8,d1-d8). Relatively better
skills were found in the West Coast region and most parts of the
WNC. Compared with the individual model, the MME can
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improve the prediction skill of weeks 1-4 (Figs. 8a9,b9,¢9,d9).
Taking week 1 as an example, the KGE is generally improved
by the MME in most regions, especially in the W, NW, and
WNC regions (Fig. 829). Compared with RSMAS, the MME
resulted in a significant improvement of 82.6% (p < 0.05).
However, with an increase in lead time, the prediction skill of the
MME decreased rapidly from 0.42 in week 1 to 0.16, 0.05, and
0.03 in weeks 24, respectively. According to the discussion
above, we concluded that no individual model consistently
outperformed the others for all regions and weeks, while the
MME showed better skill than any individual model; thus,
suitable postprocessing techniques should combine the strengths
and weaknesses of each SubX model.

c. Skill of EMOS postprocessed forecasts

1) DETERMINING THE OPTIMAL TRAINING PERIOD FOR
EMOS POSTPROCESSING

Several factors influenced the performance of EMOS post-
processing, and the most important two factors were the
training period and the individual model skill (Ma et al. 2018;
Scheuerer 2014). For determining the optimal training period,
previous studies suggested that, if possible, larger training sam-
ples and longer training periods were favorable to optimize and
achieve a more stable parameter estimation for each verification
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dataset (Ma et al. 2018; Wilson et al. 2007). On the other hand,
the shorter training period could improve the computational
efficiency while achieving similar performance to that of the long
training period. To evaluate the impact of the training period on
the postprocessed subseasonal forecast skill, 3 grid points in each
climate region, for a total of 27 grid points, were randomly
chosen for analysis in this study. Figure 9 shows the changes in
CORR and CPRS with different training periods ranging from
30 to 130 weeks. The results clearly show that the CORR and
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CRPS generally increased from 30 weeks to approximately
80 weeks but tended to stabilize after 80 weeks. Therefore, by
considering the effectiveness and computational efficiency of the
EMOS method, training weeks of 100 were employed in the
SubX models across the CONUS.

2) DETERMINISTIC FORECAST SKILL OF EMOS
POSTPROCESSED FORECASTS

In this section, we compared the skill of EMOS post-
processed forecasts with simple MME forecasts. Figure 10
shows the difference between the EMOS and MME correla-
tion skills. Across the CONUS, the EMOS showed better
performance than the MME over most of the area but with
large spatial variations (Figs. 10cl-c4). On average, the pre-
diction skills in nine climate regions were significantly (p <
0.05) improved by 12% for weeks 1-2 and 20% for weeks 3-4
compared with the MME forecast skill. For week 1, which lies
in the weather forecast horizon, the MME CORR values in all
regions were already high. Although the EMOS postprocess-
ing method improves the prediction skills in 98.1% of the areas,
the increase is relatively small, with an average increase of
9.6% (Figs. 10c1,d). For week 2, EMOS improved prediction
skill for more than 95% of the grid points, with an average
increase of 14.9%. Significant improvements were found in the
NE, UMW, and S regions, with values of 27.7%, 19.3%, and
16.5%, respectively (p < 0.05), while lower improvements
occurred mainly in the NW (7%, p > 0.05) (Fig. 10a2). Overall,
significant improvements were found across the CONUS, with
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FIG. 11. Includes the same analysis as that in Fig. 10, but for KGE.

values of 19.3% and 22.1% for week 3 and 4, respectively (p <
0.05). Similar to weeks 1-2, a large improvement in CORR was
found in the NE, S, and UMW regions for weeks 3—4 but the
value was much larger than that in the first two weeks.
However, ~17% areas showed skill reduction, which mainly
occurred in the SW and SE regions, indicating that the pre-
diction skill of MME was better than that of EMOS in those
areas (Fig. 10).

For KGE, the improvement also varied by location and lead
time (Fig. 11). There was a significant improvement in the SE
and NC parts of the CONUS for week 1 (p < 0.05), accounting
for 70% of the total area, while for ~30% of the areas, a
negative improvement was found over the CONUS, which
mainly occurred in the NE, SW, and W regions (Fig. 11cl, p >
0.05). For weeks 24, at least 67.2% of the total areas showed
significant improvement for each week, and these sites were
mainly located in the S, C, and UMW regions (Figs. 11c2—c4).
In contrast, ~30% of the areas showed negative improve-
ments, indicating that the simple MME is the better choice for
these regions (Figs. 11c2—c4). In summary, our findings indi-
cated that EMOS postprocessing can significantly improve SPF
performance in most of the regions, particularly regarding the
correlation in the NE and S regions and the KGE in the S, C,
and UMW regions compared to the simple MME. However, it
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is important to remember that we selected the CRPS as the
objective function to minimize the EMOS approach. Better
performance can be achieved with this CRPS-based method
compared to other metrics.

3) PROBABILISTIC FORECAST SKILL OF EMOS
POSTPROCESSED FORECASTS

For the SPF, improving the probabilistic forecasting skill is
the target for the EMOS optimization. To compare the prob-
abilistic forecasting performance of EMOS with respect to
MME, the probabilistic skill of CRPS for MME and EMOS
and their percentages of differences in each location and cli-
mate region were analyzed (Fig. 12). The MME in weeks 1-4
showed lower CRPS values in the SW, W, and WNC regions
(CRPS < 10) than in the SE and west coast regions of the
CONUS (CRPS > 20; Figs. 12al-a4), suggesting a better
probabilistic forecast performance. With EMOS postprocess-
ing, in terms of the CRPS, the probabilistic precipitation
forecasts consistently improved across the CONUS for all lead
times (Figs. 12c1-c4). This result was reasonable since the EMOS
considered the CRPS as its objective function to be minimized
(Scheuerer 2014). Notable regions with more than 50% im-
provement were found in the NW and WNC regions, while the C,
SE, and S regions had relatively lower improvements, with values
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of approximately 40% (Fig. 12d). For weeks 3 and 4, the CRPS
improvement level across the CONUS were 43.2% and 44.7%,
respectively, which were only slightly lower than the improve-
ment for weeks 1-2.

Investigating the BSS at a certain threshold can help us
understand the ability of the models to predict a certain type of
precipitation event. As an example, we computed the BSS of
MME and EMOS in forecasting rainy events with a threshold
of 5mm day ' and investigated whether EMOS could improve
the forecast performance. For week 1, the prediction skill of
EMOS to 5mm day ™! was significantly improved compared to
MME in the West Coast, NC, and Florida regions (Fig. 13,
p < 0.05). Most areas of the CONUS (83.6%) have positive
values, and only a small fraction (16.4%) show negative
values. Furthermore, for weeks 2-4, with the EMOS method,
approximately twice as many areas showed a positive BSS
compared to the MME results (Figs. 13a2-a4,b2-b4). The
percentages of the areas showing positive improvements for
weeks 2-4 were 78.7%, 59.2%, and 50.9%, respectively
(Figs. 13cl-c4), and those areas covered the majority of the
CONUS except the SW region. Overall, the improvement skill
decreases sharply with an increasing lead time. Especially for
week 4, only half of the areas have positive values for EMOS
improvement, which indicates that the MME can also capture
this event well over the remaining half of the areas. According to
these results, we can conclude that the EMOS can significantly
improve the 5mm day ' rainy event forecast, but with signifi-
cant spatial heterogeneity. EMOS can be used as an efficient
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approach for improving the weekly probabilistic precipitation
forecast in the most northern areas, while the MME is an al-
ternative choice over the southern area.

4) EMOS WEIGHT COEFFICIENTS FOR INDIVIDUAL
SUBX MODELS

One of the advantages of the EMOS method is that the
weights assigned by EMOS can reflect the relative contribu-
tions of the subseasonal models to the predictive skill over a
training period. The better performing model was prone to
obtaining higher coefficients (Wilson et al. 2007), and the best
combination of skillful models would maximize the per-
formance of the EMOS. Thus, we examined the EMOS
weight coefficients of each SubX model, which provided the
performance-based contributions of each model in differ-
ent climate regions. Figure 14 shows the averaged weight
coefficients of b [Eq. (1)] over nine climate regions for
different lead times and SubX models. For week 1, the NCEP
model was given the highest weight coefficient in week 1 in all
NCEI regions, which was approximately 3—4 times higher than
the values of the other models, followed by CESM and EMC,
which had coefficient values of approximately 0.1. For a longer
lead time (weeks 2-4), however, the coefficient of NCEP de-
creased sharply, with six of the nine regions showing lower co-
efficients than the EMC. This result may be due to the inaccurate
representation of MJO propagation in the NCEP model, which
degraded the subseasonal forecast skill (Wang et al. 2014).
Overall, the NCEP model was given the highest weight with the
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short lead time, but the weight decreased dramatically with the
increase in lead time, while the CESM, EMC, NCEP, and
GMAO were given approximately equal weights for weeks 2—4.

d. Effects of MJO and ENSO on SPF skill

To investigate the influence of MJO or ENSO, we examined
the weekly precipitation forecasting skill levels considering the
MIJO or ENSO phases (Fig. 15). The daily threshold value for
the active MJO was defined as 1.5, and then the MJO data
series were divided into two parts: active and nonactive. These
two parts of the MJO data are significantly different at the p =
0.05 level. The week was considered MJO active if that week
had more than six days in which MJO was active. Then, the
CORR and CRPS of the MME under active MJO and non-
active MJO were calculated and compared at each grid point
(Figs. 15al,a2,b1,b2). Comparing the MJO active versus non-
active periods, the CORR values in weeks 3—4 were higher in
the WNC, S (approximately 30% improvement), and eastern
SE regions (more than 80% at several locations) but the dif-
ferences were not obvious in the other areas. The CRPS was
significantly improved in most areas of the CONUS (except in
the W, SW, and S regions), with a mean improved value of 5%
over the CONUS. Significant improvement was found in the
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central area, with a value of more than 17% (p < 0.05). We also
found that an active MJO improved the CORR and CRPS in
the West Coast region for week 3 but showed only a small
improvement for week 4. This result indicates that the MJO
positively influenced the long lead time predictions for the
northern and central areas of the CONUS. This result is con-
sistent with Pan et al. (2019), who found that MJO events could
systematically modulate the West Coast’s precipitation distri-
bution, and a better representation of the MJO in forecasting
models could enhance the subseasonal precipitation forecast
skill level under active MJO conditions.

In addition to MJO, ENSO is another source of subseasonal
precipitation predictability (Vitart 2014). ENSO includes El
Nifio (positive phase), La Nifia (negative phase), and a neutral
phase. We first compared La Nifia/El Nifio versus neutral
conditions. The results showed there was no significant im-
provement (p > 0.05) over most climate regions of the
CONUS. When comparing La Niiia versus El Nifio conditions,
there are substantial differences (p < 0.05) for most climate
regions. Therefore, we compared the model performances
(CORR and CRPS) for weeks 3—4 during the El Nifio phase
versus the La Nifia phase (Figs. 15c¢1,c2,d1,d2) across the
CONUS. The results showed that the forecast during the La
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Nifia phase had a higher CORR in most of the CONUS com-
pared to that in the El Nifio phase, particularly in the eastern
and southern CONUS for week 3 and in the western CONUS
for week 4. During La Nifia, the forecast showed better CRPS
values in most southern and western areas, while the forecast
was better in the northern area during El Nifio. DelSole et al.
(2017) also found that the most predictable components of
winter precipitation in CFSv2 were highly correlated with
ENSO. A high impact of ENSO on the SubX skill level was
found in the southwestern CONUS (Figs. 15c,d), which was
consistent with the findings of Vigaud et al. (2017), who found
similar effects of ENSO on the ECMWEF, NCEP, and CMA
model forecasts.

5. Conclusions

The SPF represents a major challenge to bridge the gap
between weather- and climate-scale predictions. In this study,
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we assessed the deterministic and probabilistic SPF skill from
eight state-of-the-art models under different conditions (in
terms of climate regions, lead times, and ENSO and MJO
patterns), and explored the potential of the GEV-based EMOS
framework to postprocess MME SPF skill. The skill of eight
SPF models was highly dependent on models, lead times, re-
gions, and MJO and ENSO conditions. All models showed
high skill levels for the short lead time (weeks 1-2), but the skill
decreased sharply for the longer lead time (weeks 3—4). For the
deterministic forecast skill, the EMC, ERSL, CESM, and
NCEP had relatively better performances than the other
models, with particularly high skill in the West Coast and
north-central CONUS. Overall, there was no individual model
that achieved a higher skill than the others for all lead times
and regions, while the MME obtained higher skill than any
individual model. For the subseasonal time scale of weeks 3—4,
the EMOS method can generally improve both the determin-
istic and probabilistic forecast skill levels compared to the
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Nifio phase.

MME over most areas of the CONUS, with a mean per-
centage improvement of approximately 20% for CORR and
43% for CRPS (p < 0.05). The improvement of EMOS also
presents regional differences, and better performance mainly
occurs in the northern CONUS. In terms of the BSS at the
5-mm threshold, skill improvements due to EMOS were
found in the West Coast and northern CONUS, where the
original forecast skill was high. Regarding the relative con-
tributions of the individual SubX model to the predictive
skill, the NCEP model was given the highest weight at the
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shortest lead time, but the weight decreased dramatically
with the increase in lead time, while the CESM, EMC, NCEP,
and GMAO models were given approximately equal weights
for lead weeks 2-4. While the performance of the EMOS
postprocessed SPFs varied by the lead time, the length of the
training period, and the model, it generated more accurate
and reliable forecasts at subseasonal time scales compared to
the MME forecasts and will be beneficial for real-world op-
erations. The presence of active MJO events notably in-
creased the forecast skill level in the north-central region
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during weeks 3—4, while the ENSO phases influenced the skill
level mostly in the southern regions.
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