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ABSTRACT: This study assessed multimodel subseasonal precipitation forecasts (SPFs) from eight subseasonal experi-

ment (SubX) models over the contiguous United States (CONUS) and explored the generalized extreme value distribution

(GEV)-based ensemble model output statistics (EMOS) framework for postprocessing multimodel ensemble SPF. The

results showed that the SubX SPF skill varied by location and season, and the skill was relatively high in the western coastal

region, north-central region, and Florida peninsula. The forecast skill was higher during winter than summer seasons,

especially for lead week 3 in the northwest region. While no individual model consistently outperformed the others, the

simple multimodel ensemble (MME) demonstrated a higher skill than any individual model. The GEV-based EMOS

approach dramatically improved the MME subseasonal precipitation forecast skill at long lead times. The continuous

ranked probability score (CRPS) was improved by approximately 20% in week 3 and 43% in lead week 4; the 5-mm Brier

skill score (BSS) was improved by 59.2% in lead week 3 and 50.9% in lead week 4, with the largest improvements occurring

in the northwestern, north-central, and southeastern CONUS. Regarding the relative contributions of the individual SubX

model to the predictive skill, the NCEP model was given the highest weight at the shortest lead time, but the weight

decreased dramatically with the increase in lead time, while the CESM, EMC, NCEP, and GMAO models were given

approximately equal weights for lead weeks 2–4. The presence of activeMJO conditions notably increased the forecast skill

in the north-central region during weeks 3–4, while the ENSO phases influenced the skill mostly in the southern regions.

KEYWORDS: Ensembles; Forecast verification/skill; Probabilistic Quantitative Precipitation Forecasting (PQPF);

Postprocessing

1. Introduction

Precipitation is arguably the most crucial component in the

hydrologic cycle and atmospheric circulation. Its spatiotem-

poral variations directly affect the global water resources and

energy balance (Donat et al. 2016; Q. Sun et al. 2018). Many

natural disaster predictions can greatly benefit from accurate

precipitation forecasting, such as early warnings of flash

droughts and heavy rains, debris flows, and landslide hazards,

and can inform decision-making processes for water resource

management (Borga et al. 2014; Zhu et al. 2019; Feng andChao

2020). However, accurate precipitation forecasting remains a

challenging task because of its strong spatiotemporal hetero-

geneity.With advances in data assimilation, model physics, and

ensemble forecasting techniques, numerical weather predic-

tion and seasonal climate forecast have made great progress in

recent decades, resulting in skillful precipitation forecast-

ing with a 1–2-week lead time (Bauer et al. 2015) and im-

proved seasonal predictions with a 1–12-month lead time

(Yuan and Wood 2012). Weather forecasting is determined

mostly by the initial atmospheric conditions (Vitart et al.

2008), whereas seasonal climate prediction is strongly influ-

enced by atmosphere–ocean coupling processes and bound-

ary conditions, such as sea surface temperature (Troccoli

2010), soil moisture (Koster et al. 2004), and stratosphere–

troposphere interactions (Scaife et al. 2016). Subseasonal

precipitation forecasts (SPF) are particularly challenging

because the subseasonal time scale is too short to be favored

by initial conditions and too long to be influenced by

boundary conditions. However, SPF covers the critical time

horizon of many hazardous events (White et al. 2015; Mo and

Lettenmaier 2016), such as flash droughts, heat waves, and

dry and wet spells. A skillful SPF will provide valuable in-

formation for early warnings and decision-making regarding

natural hazard preparedness, risk reduction, and mitigation

of socioeconomic loss.

To bridge this forecast gap, two subseasonal retrospective

forecast (reforecast) datasets have been developed to date.

One is the Subseasonal to Seasonal Prediction Project (S2S)

launched by the World Weather Research Programme/World

Climate Research Programme (Vitart et al. 2017), and the

other is the newly launched Subseasonal Experiment (SubX),

whichwas initiated by theU.S.NationalOceanic andAtmospheric

Administration (NOAA) climate testbed project (Pegion

et al. 2019). Both datasets include multiple state-of-the-art

numerical models that are devoted to advancing subseasonal

forecasting (White et al. 2017; Wang and Robertson 2018).

The multimodel ensemble has a higher skill level than most

individual models since it is able to increase the forecast

confidence by reducing system errors (Hagedorn et al. 2005;

Medina et al. 2018). The SubX datasets provide not only

subseasonal reforecast archives but also real-time forecasts from

eight cutting-edge numerical weather prediction models. While

SubX’s ability to forecast subseasonal temperatures and pre-

cipitation has been investigated globally (Pegion et al. 2019),Corresponding author: Di Tian, tiandi@auburn.edu
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SubX models and their multimodel ensemble have not been

comprehensively evaluated in different climate regions over the

contiguous United States (CONUS).

Since all models are a simplification of reality, systematic

biases and uncertainties are inevitably introduced into model

predictions (Murphy et al. 2004). Thus, postprocessing (some-

times also referred to calibration) of model forecasts has been

widely adopted to address this issue (Kirtman et al. 2014; Li et al.

2017; Duan and Phillips 2010). Many statistical postprocessing

methods have been developed to postprocess short- to medium-

range precipitation forecasts by reducing systematic biases

while improving the inadequate representation of forecasting

uncertainties (e.g., Li et al. 2017; Scheuerer and Hamill 2015).

In recent years, several statistical methods, such as Bayesian

approaches, have been employed to postprocess subseasonal

precipitation forecasts and have achieved improved perfor-

mance (Specq and Batté 2020; Li et al. 2020). However, these

techniques mostly focus on postprocessing single-model sub-

seasonal forecasts, and they take the ensemble mean of sub-

seasonal forecasts without fully considering their spread, which

can reduce systematic errors to some extent but may not

fully improve the adequate representation of forecasting

uncertainties. In contrast, the generalized extreme value

distribution (GEV)-based ensemble model output statistics

(EMOS) postprocessing scheme (Scheuerer 2014) has the

advantage of being able to efficiently postprocess multi-

model ensemble (MME) forecasts considering both the mean

and the spread of multimodel ensemble forecasts. Although

short- to medium-range predictions have been successfully

postprocessed by EMOS (Scheuerer andHamill 2015; Vigaud

et al. 2017, 2018, 2020; Medina and Tian 2020), a study fo-

cusing on postprocessing both the mean and spread of multi-

model ensemble subseasonal forecasts by EMOS is still

missing in the current literature.

El Niño–Southern Oscillation (ENSO) and the Madden–

Julian oscillation (MJO) are large-scale phenomena that pro-

vide sources of subseasonal predictability with great impacts

on subseasonal precipitation over different regions and seasons

(viz., teleconnections) (Jones et al. 2011; Li and Robertson

2015; Tian et al. 2017; DelSole et al. 2017; Kim et al. 2019; Pan

et al. 2019). For example, most S2S models showed high pre-

diction skill levels in Southern California during El Niño years,

while during La Niña years, most models showed better sub-

seasonal skill levels in Oregon. Active MJO events can change

the spatial pattern of precipitation (Pan et al. 2019). Over the

Maritime Continent area, theMJO can modulate precipitation

when ENSO is in a neutral year, while this effect can be

weakened by strong ENSO events (Li and Robertson 2015).

Given the teleconnections fromMJO and ENSO, studies have

detected their notable impacts on subseasonal precipitation

forecast skill levels, focusing either on evaluating a single

model (Tian et al. 2017) or on a specific region on the coast of

the western U.S. (Pan et al. 2019). As a step forward, this study

further examines the importance of the MJO and ENSO to the

skill level of the multimodel ensemble (MME) subseasonal

precipitation forecast (SPF) over the CONUS.

The aims of this paper are 1) to comprehensively evaluate

the SPF skill levels of individual and MME forecasts from

SubX in different climatic regions over the CONUS, 2) to ex-

plore the potential of using EMOS method for postprocessing

the MME SPFs, and 3) to examine the effects of ENSO and

MJO on theMMESPFs skill level over the CONUS. This work

aims to postprocess multimodel ensemble subseasonal pre-

cipitation forecasts, but also provides a systematic skill evalu-

ation as well as examining the effects of ENSO andMJOon the

multimodel ensemble subseasonal precipitation forecast skill

over the CONUS.

2. Data and methodology

a. Study area

Our study area covers nine climate regions across the CONUS

(Fig. 1). These nine climate regions were defined by the National

Centers for Environmental Information (NCEI) (Karl and Koss

1984) as follows: Northwest (NW), West (W), West North

Central (WNC), Southwest (SW), Upper Midwest (UMW),

Central (C), South (S), Northeast (NE), and Southeast (SE)

regions. The topography and climate conditions vary sig-

nificantly among these regions.

b. Dataset

In this study, we used the SubX precipitation retrospective

forecast (reforecast) dataset at 18 3 18 over the CONUS (Pegion

et al. 2019), which is available at http://iridl.ldeo.columbia.edu/

SOURCES/. Table 1 shows the basic information of the SubX

data, which includes reforecast runs from eight state-of-the-art

subseasonal numerical forecast models. Considering the avail-

ability of data,we chose the study period of 1999–2014 and a lead

time of 1–4 weeks. The weekly mean of daily precipitation re-

forecastwas producedby averaging daily precipitation over each

week. Since the eight SubX models had different initialization

dates and forecast lead times (Table 1), we constructed

multimodel ensembles by combining all the forecasts initial-

ized on different but closest dates over the course of 1 week,

and the multimodel ensembles were verified for the same

week. This type of processing is called a lagged average en-

semble and has been widely applied in weather and seasonal

forecasting (DelSole et al. 2017). Figure 2 provides a dem-

onstration of the lagged average ensemble, taking the SubX

CESE-30LCESM1, EMC-GEFS, and NRL-NESM datasets

as an example. For the CESE-30LCESM1 dataset, since the

forecast is initiated every week, matching with observations,

the weekly mean of daily precipitation forecast is obtained by

averaging daily precipitation over all seven days for each

week. For EMC-GEFS and NRL-NESM, since the initiali-

zation time is different, there are less than seven days that fall

within the same time period as CESE-30LCESM1. We search

out the forecast initialization time that is closest to CESE-

30LCESM1, and then obtain the weekly mean of daily pre-

cipitation over the same time period as CESE-30LCESM1. In

this case, the weekly value is made up of less than seven daily

values, since the model run does not cover the full week.

While this might slightly influence the evaluation results,

this allows us to obtain consistent subseasonal forecast from

SubX model datasets for the follow-up multimodel ensemble
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forecasting and EMOS postprocessing. The multimodel

ensemble (MME) forecast at the weekly time scale was

generated by simply combining all the ensemble mean

forecasts of each SubX model, resulting in eight-member

ensemble forecasts. Simple MME is a common approach

that has been widely employed in previous studies (e.g.,

Pincus et al. 2008; Wanders and Wood 2016; Ma et al. 2018;

Pegion et al. 2019)

The observation-based daily precipitation of the Global

Precipitation Climatology Project (GPCP 1dd) version 1.3 at a

18 grid during the 1999–2014 period was used as the observa-

tional data for calibration and verification. This database is

constructed by obtaining instantaneous precipitation from the

threshold matched precipitation index (TMPI) for 408N–408S
threshold matched geo-IR dataset from the IR brightness

temperatures and rescaling the TOVS precipitation estimates

at higher latitudes (Huffman et al. 2001). Until now, it was

reported that this dataset presented an excellent performance

level that was able to meet the initialization requirement of

numerical models, to drive land surface models, to resolve the

advance and retreat of precipitation, and to validate model

forecasts (Vigaud et al. 2017; S. Sun et al. 2018).

The MJO index produced by the Australian Bureau of

Meteorology from 1999 to 2014was used to assess the impact of

this phenomenon on the predictions (http://www.bom.gov.au/

climate/mjo/graphics/rmm.74toRealtime.txt). This index is de-

rived from the two major principal components of the combined

fields of near-equatorially averaged 850-hPa zonalwind, 200-hPa

zonal wind, and outgoing longwave radiation (OLR) from an

empirical orthogonal function analysis (Wheeler and Hendon

2004). The OLR is a proxy for convection and can effectively

capture the baroclinic, convectively driven circulation in the

equatorial plane of the MJO (Madden and Julian 1972). The

OLR has been carefully validated and improved for inclusion in

the latest version of ACCESS (Bi et al. 2013; Sun et al. 2013).

These two leading principal components at a daily time step,

namely, real-time multivariate MJO series 1 (RMM1) and 2

(RMM2), defined eightMJOphases and anMJOamplitude.We

first evaluated the impact of MJO on prediction skill with RMM

threshold of 1.0, but there was no significant improvement for

most areas. After testing different RMM thresholds ranging

from 1.0 to 1.5, we found that the threshold value 1.5, indicating

strongest MJO events, is appropriate to substantially detect the

impact of MJO on prediction skill. Therefore, we finally defined

RMM amplitudes exceeding (below) 1.5 as active (no-active)

phases. In total, for the study period of 834 weeks, 269 weeks are

belonging to active MJO.

The ENSO index provided by the NOAAClimate Prediction

Center (https://origin.cpc.ncep.noaa.gov/products/analysis_

monitoring/ensostuff/ONI_v5.php) was derived from the monthly

FIG. 1. Nine climatic regions over the contiguous United States.

TABLE 1. Basic information of the eight subseasonal datasets. Note: ins means that model will be initialized four times every 7 days.

ID Model names

Ensemble

members Initial intervals Lead time (days) Timespan References

1 CESM-30LCESM1 10 7 days 45 1 Jan 1999 to 30 Dec 2015 Hurrell et al. (2013)

2 EMC-GEFS 11 7 days 35 6 Jan 1999 to 30 Dec 2015 Zhou et al. (2017),

Wei et al.(2008)

3 ESRL-FIM 4 7 days 32 6 Jan 1999 to 30 Dec 2015 Bleck et al. (2015)

4 ECCC-GEM 4 7 days 32 1 Jan 1999 to 28 Dec 2014 Lin et al. (2016)

5 GMAO-GEOS 4 5 days 45 1 Jan 1999 to 30 Dec 2015 Reichle and Liu (2014)

6 NCEP-CFSv2 4 1 days 45 1 Jan 1999 to 29 Dec 2015 Tian et al. (2017)

7 NRL-NESM 1 4 ins/7 days 45 2 Jan 1999 to 29 Dec 2015 Hogan et al. (2014)

8 RSMAS-CCSM4 3 2 ins/7 days 45 6 Jan 1999 to 30 Dec 2015 Gent et al. (2011)
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sea surface temperature (SST) anomalies in Niño-3.4 in the

area of 1708–1208W, 58S–58N. The ENSO data series was di-

vided into three categories, including the El Niño phase, La

Niña phase, and ENSO neutral, as defined by a standard

threshold of 60.58C. As the initial days of SubX models are

fixed, we divided the initial time lists into three categories by

determining whether they fall into a specific phase of ENSO.

There are 143, 392, and 299 sample days in El Niño, La Niña,
and ENSO neutral, respectively.

c. EMOS postprocessing methods

It is more difficult to formulate a suitable probabilisticmodel

for quantitative precipitation compared to other variables be-

cause the precipitation is nonnegative, may be equal to zero

with positive probability, and positively skewed for a nonzero

component. To satisfy these particular characteristics of pre-

cipitation, the generalized extreme distribution (GEV)-based

EMOSmethod was developed by Scheuerer (2014). This novel

approach can be considered as an ideal candidate for depicting

predictive distributions for quantitative precipitation thanks to

its reasonable choices of location, scale, and shape parameters.

Therefore, in this study, we used the GEV-based EMOS

method (Scheuerer 2014) to postprocess theMME subseasonal

precipitation forecasts at a weekly time scale.

As the MME only provides finite ensembles, it cannot

provide a full predictive density function (PDF), while the

EMOS method can make use of discrete forecast members to

produce a predictive PDF. Since precipitation has a special

distribution with different features, i.e., nonnegative, equal to

zero with positive probability, and positive skew, in the GEV

EMOS framework, the PDF is expressed as a left-censored

GEV distribution, i.e., GEV0(m, s, j), where m is the mean,

s is the scale factor, and j is the shape factor. The GEV0

model’s mean m is parameterized as follows:

m5 a1b
1
X

1
1 � � � 1b

m
X

m
1 sp

0
. (1)

The scale parameter s is parameterized as follows:

s5 c1 d3MD(X
1
, . . . ,X

m
). (2)

In Eqs. (1) and (2), X1, X2, . . . , Xm denote the means of each

model’s ensemble forecast for a given location and time, p0 is

the fraction of zero precipitation members, MD(X1, . . . ,Xm) is

Gini’s ensemble mean difference, and a, b1, . . . , bm, s, c, d, and

j are fitted to optimize themean continuous ranked probability

score (CRPS) between subseasonal precipitation forecasts and

observations over the specified training period, where b1, . . . ,

bm, are coefficients representing the weights for each model’s

ensemble mean forecast. Using the ensemble mean of each

model (X1,X2, . . .,Xm) helps reveal the weights of each model

(b1, . . . . bm), and therefore, it helps us understand their con-

tributions to the predictive skill.

The GEV has the cumulative density function (CDF) is as

follows:

G(y):5

8>><
>>:

exp

�
2
h
11 j

�y2m

s

�i21/j
�

for j 6¼ 0

exp
h
2exp

�y2m

s

�i
for j5 0

, (3)

where parameters m, s, and j characterize the location, scale,

and shape of the GEV. As in Scheuerer (2014), when j 2
(20.278, 1), the GEV has a positive skew, and its mean is equal

to the following:

m5

8><
>:

m1s
G(12 j)2 1

j
for j 6¼ 0

m1sg for j5 0

(4)

whereG denotes the gamma function and g’ 0.5772 is theEuler–

Mascheroni constant. For modeling precipitation amounts, GEV

is considered to be left-censored at zero, namely, a value below

zero is assigned to a zero value. The predictiveCDF then becomes

the following:

~G(y):5

�
G(y) for y$ 0

0 for y, 0
. (5)

If either j # 0 or j . 0 and m , (s/j), this distribution is

nonnegative and exactly zero with a positive probability. This

left-censored GEV distribution (GEV0) permits modeling

precipitation on the original scale without prior transformation

of the data. Specifically, in this study, the ensembleMOS pack-

age in ‘‘R’’ was used to implement the EMOS method consid-

ering the GEV0 probability distribution as a predictive function

FIG. 2. A demonstration of the lagged average ensemble, taking the SubX CESE-30LCESM1,

EMC-GEFS, and NRL-NESM datasets as an example.
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(Baran and Nemoda 2016). The detailed schematic of the GEV-

based EMOS approach for postprocessing eight SubX precipi-

tation datasets over the CONUS is shown in Fig. 3.

d. Forecast evaluation

We evaluated both deterministic and probabilistic fore-

casts of each SubX model, MME, and EMOS postprocessed

forecasts in nine climate regions across the CONUS. To

evaluate the deterministic forecast skill, two metrics, the

Pearson correlation coefficient (CORR) and Kling–Gupta

efficiency (KGE), were employed. The CORR, with a range

from 0 to 1, is a common metric describing the strength and

direction of the linear relationship between prediction and

observation. The KGE is an integrated performance statis-

tic incorporating linear correlation, relative bias, and vari-

ability (Gupta et al. 2009), and it spans from2‘ to 1, with an

expected value of 1 indicating perfect performance. A KGE

value greater than 20.41 indicates that using a model fore-

cast is better than using the mean value (Knoben et al. 2019).

The equations of the two statistical metrics are shown as

follows:

CORR5
�
N

i51

(y
obs,i

2 y
obs

)(y
pred,i

2 y
pred

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(y
obs,i

2 y
obs

)2�
N

i51

(y
pred,i

2 y
pred

)2

s (6)

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12CORR)2 1

�
12

s
pred

s
obs

�2

1

�
12

m
pred

m
obs

�2
s

(7)

where yobs,i and ypred,i refer to the observation and prediction at

the ith week, yobs and ypred refer to the mean value of all weekly

precipitation, and N is the number of total weeks from 1999 to

2014. The terms sobs and mobs denote the standard deviation

and mean of observational precipitation, respectively, and

spred and mpred denote the standard deviation and mean of the

predicted weekly precipitation, respectively.

To evaluate the probabilistic forecast skill, the CRPS and the

Brier skill score (BSS) were used in this study (Wilks 2011). The

CRPS is a standard measure for evaluating the reliability and

accuracy of probabilistic forecasts. It describes the integrals of

FIG. 3. Schematic diagram of the generalized extreme distribution (GEV) based EMOS approach for

postprocessing SubX precipitation over the CONUS.
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the squared difference between the cumulative distribution

function (CDF) of the probabilistic forecast fromMMEs and the

CDF of the observed values (Wang andRobertson 2018; Mishra

et al. 2018). The mean CRPS (CRPS) for each grid point is

calculated using the following equation,

CRPS5
1

N
CRPS5

1

N

ð
R

[F
pred

(x)2F
obs

(x)]2 dx

’
1

N

ð
R

[F̂
pred

(x)2F
obs

(x)]2 dx , (8)

where

F
obs

(x)5

�
0, x, observed value

1, x. observed value
, (9)

whereN is the total number of weeks, andFobs andFpred are the

CDFs of the observed precipitation and the predicted precip-

itation, respectively. The term F̂pred is an estimated Fpred pro-

duced by MME or EMOS. The CRPS is a negative orientation

metric, where better performance is indicated by smaller

values. If the predictive distribution is centered on the ob-

served values, it indicates an accurate forecast.

The Brier score (BS) was used to assess the probabilistic

forecast skill level for different precipitation events (Wilks

2011; De Felice et al. 2015; Bliefernicht et al. 2019). The BS is

defined as follows:

BS5
1

n
�
n

i51

( f
i
2 o

i
)
2
, (10)

where n is the total number of forecast-event pairs for a given

tercile-based precipitation category; fi is the ith forecast

probability, which is calculated as the percentage of forecast

members exceeding a certain threshold (e.g., 5-mm precipita-

tion); and oi is the ith observation probability and is a dichot-

omous event (0 or 1), i.e., if the observed value is greater than a

certain threshold, oi5 1; otherwise, oi5 0. The BS is between 0

and 1 with a smaller value denoting better performance.

The BSS was used to assess the forecasting skill relative to

climatology. The BSS can be defined as follows:

BSS5
BS2BS

clm

02BS
clm

5 12
BS

BS
clm

, (11)

where BSclm is the BS of the climatology and the BSS is

between 2‘ and 1. BSS , 0, BSS 5 0, and BSS . 0 indicate

worse, the same, and better predictive skills than the clima-

tology, respectively (Ma et al. 2017).

A ‘‘leave-one-year-out cross-validation’’ procedure was used

to evaluate the skill of EMOS postprocessing (Wilks 2011). This

method was robust in evaluating the skill of weather and climate

forecasts and was widely used by researchers (Barnston and van

denDool 1993;Monhart et al. 2018). For example, there were 16

years of available forecasts in our study. When forecasting pre-

cipitation for a givenweek of a year, all other years of datawith a

window of 6n weeks, i.e., 2n (weeks yr21) 3 15 (years) were

used as the training dataset, and the forecast target was used as

the evaluation data. This process was repeated from the first

week of the year to the last data point. The value of n was the

training period, which was determined by comparing the per-

formance values of different periods from 30 to 130 weeks using

the data from three randomly selected grid points in each cli-

mate region (total 27 sample grid points). In addition, the effects

of MJO or ENSO were assessed by comparing the forecast skill

during different MJO and ENSO phases.

e. Significance test

The significance level of prediction skill differences among

the different SubX models, MME and EMOS for each of the

nine climate regions, and the differences between the active and

inactive MJO and the El Niño phase and La Niña phase were

tested by using the one-way analysis of variance (ANOVA), the

least significant difference (LSD) test, and the F test (p, 0.05).

3. Results and discussion

a. Comparison of the SubX weekly precipitation forecasts
with observations

The intercomparison of SubX model forecasts and obser-

vations could reveal the discrepancies and consistencies of

model forecasts in depicting the spatial–temporal distribution

of subseasonal precipitation (Figs. 4 and 5). The spatial dis-

tribution of the weekly predicted precipitation of eight SubX

models is shown in Fig. 4, and the statistical percentage of bias

relative to observational precipitation is presented in Fig. 5a.

While the average observational weekly precipitation is ap-

proximately 15mm, it varies from more than 23.9mm in the

SE, with a subtropical humid climate, to less than 6.4mm in the

SW, with a plateau mountain climate (Fig. 4a9). In general,

the SubX precipitation forecasts from weeks 1 to 4 followed a

similar spatial distribution as that of the observations, all

showing a decreasing trend from the southeastern to western

CONUS, with the precipitation especially low in the west and

southwest regions, but relatively higher on the west coast of the

northwest region (Fig. 4). However, the eight models exhibited

great discrepancies in the weekly precipitation forecasts across

the CONUS. For week 1 (Figs. 4a0–a8 and 5), the EMC,

ECCC, NCEP, and NRL overpredicted precipitation com-

pared to the observations, with weekly mean values of 15.97,

16.36, 17.49, and 16.75mm and relative biases of 3.8%, 4.9%,

16.1%, and 9.4%, respectively. The CESM, ESRL, GMAO,

and RSMAS underpredicted precipitation, with mean values

of 12.65, 15.24, 13.07, and 14.46mm, and relative biases

of 213.9%, 23.1%, 216.2%, and 20.5%, respectively. It is

worth noting that the MME had the lowest bias (0.2%), indi-

cating that the simple average of all the models notably de-

creased the bias compared to the individual model, which

confirmed that the multimodel performed well with a smaller

bias than any individual forecast model. For week 2, the EMC,

ESRL, ECCC, and NCEP models overpredicted the precipi-

tation; the CESM,GMAO, NRL, andRSMAS underpredicted

the precipitation, with all except the NRL having bias in week

1. Compared to weeks 1–2, the precipitation for weeks 3–4 was

highly overpredicted by most models, especially for the EMC

(Fig. 4d2), ESRL (Fig. 4d3), and NCEP (Fig. 4d6). These large
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FIG. 4. Spatial pattern of weekly mean precipitation reforecasts for different lead times (weeks

1–4) from eight SubXmodels over theUnited States. The numbers in the parentheses are themean

weekly precipitation values over the United States.
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differences mainly occurred in the eastern United States,

specifically in the southeast and northeast regions. Overall, the

MME notably reduced the forecast biases compared to the

individual model.

b. Deterministic forecast skill of individual model and

MME forecasts from SubX

The SPF skills may vary by models, seasons, regions, and

phases and magnitudes of large-scale circulation patterns. To

compare the deterministic forecast skill of the SubX models,

we evaluate the correlation of each SubX model with the ob-

servational precipitation for weeks 3–4 over different climate

regions during winter and summer seasons (Fig. 6). The cor-

relation skill in winter for week 3 was higher than that in

summer, especially for CESM, EMC, and ESRL. These three

models also showed similar skills in week 4, while the perfor-

mance was much lower than that in week 3. This result was

consistent with the findings of previous studies, which reported

that SPF had a better performance in winter than in summer

seasons (Tian et al. 2017; Vigaud et al. 2017).

Figure 6 also demonstrates that the prediction skill of the

SubXmodels varied significantly by region.Most of themodels

showed satisfactory skill in the NW region in winter, especially

the CESM model, while moderate skill was presented in the

UMW, NE, S, and C regions. The high prediction skill in the

NW region is probably because it has distinct synoptic and

precipitation regimes than the eastern regions and is adjacent

to the Pacific Ocean. The precipitation variation in this region

is strongly affected by the ENSO or MJO through their influ-

ences on the Aleutian low, subtropical jets, and propagation of

extratropical wave trains (Schonher and Nicholson 1989; Mo

and Higgins 1998). A high prediction skill in the NW region

was also found in Pan et al. (2019), who showed skillful pre-

cipitation forecasts beyond week 2 in this region, especially

when the MJO was active.

Figures 7 and 5b show the correlations between the SPF and

the observations during all seasons. For week 1 (Figs. 7a1–a8),

the NCEP model showed the best performance among the

eight models, with a mean CORR 0.54, followed by the EMC

(CORR 0.51), ESRL (CORR 0.48), and CESM (CORR 0.47),

with the NW andWNC regions showing higher skills in the SW

and S. In contrast, the RSMAS, ECCC, and GMAO models

did not represent precipitation variation well, especially in the

SE region. However, the MME (Fig. 7a9) of all SubX models

showed a better skill (mean CORR 0.55) than any individu-

al model. For week 2, the EMC, CDSM, NCEP, and ESRL

FIG. 5. Distribution of SubX precipitation reforecast: (a) relative bias, (b) correlation, and (c) KGE for four lead times (weeks 1–4).

MME accounts for the average precipitation among the eight SubX models and in all seasons.
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models performed well, but the performance was greatly de-

creased compared to week 1; the MME had a CORR of 0.37,

indicating increased performance compared to the individual

model. For weeks 3–4, the CESM and EMC showed the best

skill with a higher CORR in the W, NW, and WNC. The NRL

performed the worst with a few negative CORRs found in the

eastern United States (Figs. 7c7,d7). Overall, the CORR de-

creased with an increasing lead time, while the MME consis-

tently improved the forecast performance during weeks 1–4.

The model errors can be directly related to the variability,

bias, and correlation between the observations and the SubX

forecasts. KGE considers all these aspects and is considered a

comprehensive metric for assessing the model performance

(Gupta et al. 2009). Figure 8 shows the KGE of SPF from each

SubX model. For week 1, all models matched well with the

observations, with the NCEP, CESM, ESRL, EMC, and

CESM showing better performance compared to the others

(KGE equals 0.39, 0.38, 0.37, and 0.35, respectively) (Figs. 8a1–

a8). However, many areas showed negative values in week 2,

especially in the southern CONUS (Figs. 8b1–b8). For weeks

3–4, approximately half of the grid points showed negative

KGE values, indicating poor performance in these areas, such

as NE, C, SW, and S (Figs. 8c1–c8,d1–d8). Relatively better

skills were found in theWest Coast region andmost parts of the

WNC. Compared with the individual model, the MME can

improve the prediction skill of weeks 1–4 (Figs. 8a9,b9,c9,d9).

Taking week 1 as an example, the KGE is generally improved

by the MME in most regions, especially in the W, NW, and

WNC regions (Fig. 8a9). Compared with RSMAS, the MME

resulted in a significant improvement of 82.6% (p , 0.05).

However, with an increase in lead time, the prediction skill of the

MME decreased rapidly from 0.42 in week 1 to 0.16, 0.05, and

0.03 in weeks 2–4, respectively. According to the discussion

above, we concluded that no individual model consistently

outperformed the others for all regions and weeks, while the

MME showed better skill than any individual model; thus,

suitable postprocessing techniques should combine the strengths

and weaknesses of each SubX model.

c. Skill of EMOS postprocessed forecasts

1) DETERMINING THE OPTIMAL TRAINING PERIOD FOR

EMOS POSTPROCESSING

Several factors influenced the performance of EMOS post-

processing, and the most important two factors were the

training period and the individual model skill (Ma et al. 2018;

Scheuerer 2014). For determining the optimal training period,

previous studies suggested that, if possible, larger training sam-

ples and longer training periods were favorable to optimize and

achieve amore stable parameter estimation for each verification

FIG. 6. Correlation of eight SubX models with observations in NCEI climate regions for lead

weeks 3–4 in winter and summer.
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FIG. 7. Maps of the correlation between the model [including the mean of multimodel ensemble

(MME)] forecasts of weekly precipitation and the observations in all seasons.
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FIG. 8. The same analysis as in Fig. 7, but for KGE.
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dataset (Ma et al. 2018; Wilson et al. 2007). On the other hand,

the shorter training period could improve the computational

efficiencywhile achieving similar performance to that of the long

training period. To evaluate the impact of the training period on

the postprocessed subseasonal forecast skill, 3 grid points in each

climate region, for a total of 27 grid points, were randomly

chosen for analysis in this study. Figure 9 shows the changes in

CORR and CPRS with different training periods ranging from

30 to 130 weeks. The results clearly show that the CORR and

CRPS generally increased from 30 weeks to approximately

80 weeks but tended to stabilize after 80 weeks. Therefore, by

considering the effectiveness and computational efficiency of the

EMOS method, training weeks of 100 were employed in the

SubX models across the CONUS.

2) DETERMINISTIC FORECAST SKILL OF EMOS
POSTPROCESSED FORECASTS

In this section, we compared the skill of EMOS post-

processed forecasts with simple MME forecasts. Figure 10

shows the difference between the EMOS and MME correla-

tion skills. Across the CONUS, the EMOS showed better

performance than the MME over most of the area but with

large spatial variations (Figs. 10c1–c4). On average, the pre-

diction skills in nine climate regions were significantly (p ,
0.05) improved by 12% for weeks 1–2 and 20% for weeks 3–4

compared with the MME forecast skill. For week 1, which lies

in the weather forecast horizon, the MME CORR values in all

regions were already high. Although the EMOS postprocess-

ingmethod improves the prediction skills in 98.1%of the areas,

the increase is relatively small, with an average increase of

9.6% (Figs. 10c1,d). For week 2, EMOS improved prediction

skill for more than 95% of the grid points, with an average

increase of 14.9%. Significant improvements were found in the

NE, UMW, and S regions, with values of 27.7%, 19.3%, and

16.5%, respectively (p , 0.05), while lower improvements

occurred mainly in the NW (7%, p. 0.05) (Fig. 10a2). Overall,

significant improvements were found across the CONUS, with

FIG. 9. Impact of training weeks on the correlation (CORR) and

continuous ranked probability score (CRPS) averaged over ran-

dom locations in each climate region.

FIG. 10. Spatial distribution of correlations for (a1)–(a4) multimodel ensembles (MME), (b1)–(b4) ensemble model output statistics

(EMOS), (c1)–(c4) percentage improvement by EMOS against MME, and (d) summary improvement in nine climate regions and the

CONUS. The number in the bottom right in the third column is the positive area as a percentage of the CONUS.
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values of 19.3% and 22.1% for week 3 and 4, respectively (p,
0.05). Similar to weeks 1–2, a large improvement in CORRwas

found in the NE, S, and UMW regions for weeks 3–4 but the

value was much larger than that in the first two weeks.

However, ;17% areas showed skill reduction, which mainly

occurred in the SW and SE regions, indicating that the pre-

diction skill of MME was better than that of EMOS in those

areas (Fig. 10).

For KGE, the improvement also varied by location and lead

time (Fig. 11). There was a significant improvement in the SE

and NC parts of the CONUS for week 1 (p, 0.05), accounting

for 70% of the total area, while for ;30% of the areas, a

negative improvement was found over the CONUS, which

mainly occurred in the NE, SW, and W regions (Fig. 11c1, p.
0.05). For weeks 2–4, at least 67.2% of the total areas showed

significant improvement for each week, and these sites were

mainly located in the S, C, and UMW regions (Figs. 11c2–c4).

In contrast, ;30% of the areas showed negative improve-

ments, indicating that the simple MME is the better choice for

these regions (Figs. 11c2–c4). In summary, our findings indi-

cated that EMOS postprocessing can significantly improve SPF

performance in most of the regions, particularly regarding the

correlation in the NE and S regions and the KGE in the S, C,

and UMW regions compared to the simple MME. However, it

is important to remember that we selected the CRPS as the

objective function to minimize the EMOS approach. Better

performance can be achieved with this CRPS-based method

compared to other metrics.

3) PROBABILISTIC FORECAST SKILL OF EMOS
POSTPROCESSED FORECASTS

For the SPF, improving the probabilistic forecasting skill is

the target for the EMOS optimization. To compare the prob-

abilistic forecasting performance of EMOS with respect to

MME, the probabilistic skill of CRPS for MME and EMOS

and their percentages of differences in each location and cli-

mate region were analyzed (Fig. 12). The MME in weeks 1–4

showed lower CRPS values in the SW, W, and WNC regions

(CRPS , 10) than in the SE and west coast regions of the

CONUS (CRPS . 20; Figs. 12a1–a4), suggesting a better

probabilistic forecast performance. With EMOS postprocess-

ing, in terms of the CRPS, the probabilistic precipitation

forecasts consistently improved across the CONUS for all lead

times (Figs. 12c1–c4). This result was reasonable since theEMOS

considered the CRPS as its objective function to be minimized

(Scheuerer 2014). Notable regions with more than 50% im-

provement were found in theNWandWNC regions, while theC,

SE, and S regions had relatively lower improvements, with values

FIG. 11. Includes the same analysis as that in Fig. 10, but for KGE.
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of approximately 40% (Fig. 12d). For weeks 3 and 4, the CRPS

improvement level across the CONUS were 43.2% and 44.7%,

respectively, which were only slightly lower than the improve-

ment for weeks 1–2.

Investigating the BSS at a certain threshold can help us

understand the ability of the models to predict a certain type of

precipitation event. As an example, we computed the BSS of

MME and EMOS in forecasting rainy events with a threshold

of 5mm day21 and investigated whether EMOS could improve

the forecast performance. For week 1, the prediction skill of

EMOS to 5mm day21 was significantly improved compared to

MME in the West Coast, NC, and Florida regions (Fig. 13,

p , 0.05). Most areas of the CONUS (83.6%) have positive

values, and only a small fraction (16.4%) show negative

values. Furthermore, for weeks 2–4, with the EMOS method,

approximately twice as many areas showed a positive BSS

compared to the MME results (Figs. 13a2–a4,b2–b4). The

percentages of the areas showing positive improvements for

weeks 2–4 were 78.7%, 59.2%, and 50.9%, respectively

(Figs. 13c1–c4), and those areas covered the majority of the

CONUS except the SW region. Overall, the improvement skill

decreases sharply with an increasing lead time. Especially for

week 4, only half of the areas have positive values for EMOS

improvement, which indicates that the MME can also capture

this event well over the remaining half of the areas. According to

these results, we can conclude that the EMOS can significantly

improve the 5mm day21 rainy event forecast, but with signifi-

cant spatial heterogeneity. EMOS can be used as an efficient

approach for improving the weekly probabilistic precipitation

forecast in the most northern areas, while the MME is an al-

ternative choice over the southern area.

4) EMOS WEIGHT COEFFICIENTS FOR INDIVIDUAL

SUBX MODELS

One of the advantages of the EMOS method is that the

weights assigned by EMOS can reflect the relative contribu-

tions of the subseasonal models to the predictive skill over a

training period. The better performing model was prone to

obtaining higher coefficients (Wilson et al. 2007), and the best

combination of skillful models would maximize the per-

formance of the EMOS. Thus, we examined the EMOS

weight coefficients of each SubXmodel, which provided the

performance-based contributions of each model in differ-

ent climate regions. Figure 14 shows the averaged weight

coefficients of b [Eq. (1)] over nine climate regions for

different lead times and SubX models. For week 1, the NCEP

model was given the highest weight coefficient in week 1 in all

NCEI regions, which was approximately 3–4 times higher than

the values of the other models, followed by CESM and EMC,

which had coefficient values of approximately 0.1. For a longer

lead time (weeks 2–4), however, the coefficient of NCEP de-

creased sharply, with six of the nine regions showing lower co-

efficients than theEMC.This resultmay bedue to the inaccurate

representation of MJO propagation in the NCEP model, which

degraded the subseasonal forecast skill (Wang et al. 2014).

Overall, the NCEPmodel was given the highest weight with the

FIG. 12. Spatial distribution of the CRPS skill levels for (a1)–(a4) MME, (b1)–(b4) EMOS, (c1)–(c4) the percentage improvement by

EMOS, and (d) the summary improvement in nine climate regions and the CONUS. The number in the bottom right in the third column is

the positive area as a percentage of the CONUS.
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short lead time, but the weight decreased dramatically with the

increase in lead time, while the CESM, EMC, NCEP, and

GMAOwere given approximately equal weights for weeks 2–4.

d. Effects of MJO and ENSO on SPF skill

To investigate the influence of MJO or ENSO, we examined

the weekly precipitation forecasting skill levels considering the

MJO or ENSO phases (Fig. 15). The daily threshold value for

the active MJO was defined as 1.5, and then the MJO data

series were divided into two parts: active and nonactive. These

two parts of the MJO data are significantly different at the p5
0.05 level. The week was considered MJO active if that week

had more than six days in which MJO was active. Then, the

CORR and CRPS of the MME under active MJO and non-

active MJO were calculated and compared at each grid point

(Figs. 15a1,a2,b1,b2). Comparing the MJO active versus non-

active periods, the CORR values in weeks 3–4 were higher in

the WNC, S (approximately 30% improvement), and eastern

SE regions (more than 80% at several locations) but the dif-

ferences were not obvious in the other areas. The CRPS was

significantly improved in most areas of the CONUS (except in

the W, SW, and S regions), with a mean improved value of 5%

over the CONUS. Significant improvement was found in the

central area, with a value of more than 17% (p, 0.05).We also

found that an active MJO improved the CORR and CRPS in

the West Coast region for week 3 but showed only a small

improvement for week 4. This result indicates that the MJO

positively influenced the long lead time predictions for the

northern and central areas of the CONUS. This result is con-

sistent with Pan et al. (2019), who found thatMJO events could

systematically modulate the West Coast’s precipitation distri-

bution, and a better representation of the MJO in forecasting

models could enhance the subseasonal precipitation forecast

skill level under active MJO conditions.

In addition to MJO, ENSO is another source of subseasonal

precipitation predictability (Vitart 2014). ENSO includes El

Niño (positive phase), La Niña (negative phase), and a neutral

phase. We first compared La Niña/El Niño versus neutral

conditions. The results showed there was no significant im-

provement (p . 0.05) over most climate regions of the

CONUS. When comparing La Niña versus El Niño conditions,

there are substantial differences (p , 0.05) for most climate

regions. Therefore, we compared the model performances

(CORR and CRPS) for weeks 3–4 during the El Niño phase

versus the La Niña phase (Figs. 15c1,c2,d1,d2) across the

CONUS. The results showed that the forecast during the La

FIG. 13. Spatial distribution of the BSS skill level for 5mm precipitation for (a1)–(a4) MME, (b1)–(b4) EMOS, and (c1)–(c4) the

percentage improvement by EMOS. The numbers in the bottom right in the first and second column refer to the percentage of positive

BSS over the CONUS, and those in the third column are the percentage of area showing positive improvement over the CONUS.
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Niña phase had a higher CORR in most of the CONUS com-

pared to that in the El Niño phase, particularly in the eastern

and southern CONUS for week 3 and in the western CONUS

for week 4. During La Niña, the forecast showed better CRPS

values in most southern and western areas, while the forecast

was better in the northern area during El Niño. DelSole et al.

(2017) also found that the most predictable components of

winter precipitation in CFSv2 were highly correlated with

ENSO. A high impact of ENSO on the SubX skill level was

found in the southwestern CONUS (Figs. 15c,d), which was

consistent with the findings of Vigaud et al. (2017), who found

similar effects of ENSO on the ECMWF, NCEP, and CMA

model forecasts.

5. Conclusions

The SPF represents a major challenge to bridge the gap

between weather- and climate-scale predictions. In this study,

we assessed the deterministic and probabilistic SPF skill from

eight state-of-the-art models under different conditions (in

terms of climate regions, lead times, and ENSO and MJO

patterns), and explored the potential of theGEV-based EMOS

framework to postprocess MME SPF skill. The skill of eight

SPF models was highly dependent on models, lead times, re-

gions, and MJO and ENSO conditions. All models showed

high skill levels for the short lead time (weeks 1–2), but the skill

decreased sharply for the longer lead time (weeks 3–4). For the

deterministic forecast skill, the EMC, ERSL, CESM, and

NCEP had relatively better performances than the other

models, with particularly high skill in the West Coast and

north-central CONUS. Overall, there was no individual model

that achieved a higher skill than the others for all lead times

and regions, while the MME obtained higher skill than any

individual model. For the subseasonal time scale of weeks 3–4,

the EMOS method can generally improve both the determin-

istic and probabilistic forecast skill levels compared to the

FIG. 14. Weight coefficient of the SubX models on EMOS for weeks 1–4.
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MME over most areas of the CONUS, with a mean per-

centage improvement of approximately 20% for CORR and

43% for CRPS (p , 0.05). The improvement of EMOS also

presents regional differences, and better performance mainly

occurs in the northern CONUS. In terms of the BSS at the

5-mm threshold, skill improvements due to EMOS were

found in the West Coast and northern CONUS, where the

original forecast skill was high. Regarding the relative con-

tributions of the individual SubX model to the predictive

skill, the NCEP model was given the highest weight at the

shortest lead time, but the weight decreased dramatically

with the increase in lead time, while the CESM, EMC, NCEP,

and GMAO models were given approximately equal weights

for lead weeks 2–4. While the performance of the EMOS

postprocessed SPFs varied by the lead time, the length of the

training period, and the model, it generated more accurate

and reliable forecasts at subseasonal time scales compared to

the MME forecasts and will be beneficial for real-world op-

erations. The presence of active MJO events notably in-

creased the forecast skill level in the north-central region

FIG. 15. Improvement of the deterministic (CORR) and probabilistic (CRPS) forecast skill levels for weeks 3–4

when comparing (a)–(b) the active MJO to the nonactive MJO and (c)–(d) the La Niña phases to the El

Niño phase.

OCTOBER 2021 L I E T AL . 2597

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:17 PM UTC



during weeks 3–4, while the ENSO phases influenced the skill

level mostly in the southern regions.
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