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ABSTRACT: By modulating the moisture flux from ocean to adjacent land, the North Atlantic subtropical high (NASH)
western ridge significantly influences summer-season total precipitation over the conterminous United States (CONUS).
However, its influence on the frequency and intensity of daily rainfall events over the CONUS remains unclear. Here we
introduce a Bayesian statistical model to investigate the impacts of the NASH western ridge position on key statistics of
daily scale summer precipitation, including the intensity of rainfall events, the probability of precipitation occurrence,
and the probability of extreme values. These statistical quantities play a key role in characterizing both the impact of
wet extremes (e.g., the probability of floods) and dry extremes. By applying this model to historical rain gauge records
(1948-2019) covering the entire CONUS, we find that the western ridge of the NASH influences the frequency of rainfall as
well as the distribution of rainfall intensities over extended areas of the CONUS. In particular, we find that the NASH ridge
also modulates the frequency of extreme rainfall, especially that over part of the Southeast and Upper Midwest. Our
analysis underlines the importance of including the NASH western ridge position as a predictor for key statistical rainfall
properties to be used for hydrological applications. This result is especially relevant for projecting future changes in daily
rainfall regimes over the CONUS based on the predicted strengthening of the NASH in a warming climate.

SIGNIFICANCE STATEMENT: The purpose of this work is studying how the position of the North Atlantic sub-
tropical high (NASH) western ridge modulates summer daily precipitation statistics over the conterminous United
States (CONUS). We introduce a Bayesian statistical model describing daily precipitation frequency, intensity, and
probability of extremes. We find that the NASH is an important predictor for daily rainfall statistics over large areas of
the CONUS, in particular over the Southeast and Midwest. Since the NASH is predicted to strengthen in future climate
conditions, our results are particularly relevant for understanding the corresponding shift in the probability distribution
and occurrence of daily precipitation.

KEYWORDS: Hydrometeorology; Bayesian methods; Statistical techniques; Probabilistic Quantitative Precipitation
Forecasting (PQPF); Stochastic models; Climate variability

1. Introduction aggregation time scales (e.g., at the daily to hourly time scale)
in global circulation models, which remains a challenging task
(Schiermeier 2010), particularly for convection and heavy
precipitation events (van der Wiel et al. 2016). For these reasons,
elucidating the mechanisms of precipitation’s interannual vari-
ability and quantifying possible future changes in heavy rainfall
regimes remains a research question of primary importance.

In hydrological studies, the adoption of nonstationary sta-
tistical models of rainfall has been widely advocated (Milly
et al. 2008). However, a significant debate exists on their ap-
plications (Lins and Cohn 2011; Montanari and Koutsoyiannis
2014; Serinaldi and Kilsby 2015), since the benefit of including
climate-informed covariates in the statistical analysis is often
overshadowed by the additional uncertainty deriving from the
adoption of complex statistical models. Therefore, in order to
understand the changing character of precipitation and its
connection with climate variability, it is important to develop
statistical models for precipitation frequency and intensity that
are able to properly exploit relevant physical information in
order to reduce estimation uncertainty, while at the same time
providing a robust framework for deciding whether climate
Corresponding author: Enrico Zorzetto, ez6263@princeton.edu  variables should be included for operational purposes.

Understanding the changing character of precipitation and
flooding events in relation to both internal climate variability
and anthropogenic forcing is a challenging task (Allan and
Soden 2008; Westra et al. 2014; Mallakpour and Villarini 2015;
Sharma et al. 2018). Data-driven analyses are often limited by
the requirement of long and homogeneous rainfall records
(Papalexiou and Montanari 2019) and might not be represen-
tative of future climate scenarios. On the other hand, the in-
terannual variability in extreme precipitation frequency is
linked to the internal variability of the climate system but is
expected to be affected by warming conditions (Pendergrass
et al. 2017). Proper characterization of these possible changes
requires an adequate representation of precipitation at short
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FIG. 1. Historical average summer positions of the NASH western
ridge during the period 1948-2019 (colored markers) as com-
puted from the NCEP-NCAR reanalysis. The bold curve repre-
sents the average 1948-2019 summer position of the 1560-m
geopotential isoline used to define the climatological average of
the ridge over the same period.

For example, such physical information can be obtained
through the study of low-frequency climate variability and
seasonal-averaged synoptic conditions, which are better mod-
eled and predicted compared to short-duration rainfall accu-
mulations. A possible way forward to resolve this issue is
presented here. This work introduces a novel Bayesian statis-
tical framework to characterize the effects of large-scale cir-
culation on daily rainfall statistics. This approach is relevant for
downscaling climate projections and predicting future changes
in the probability of rainfall occurrence and intensity, including
extreme events. Here we tailor this model to the conterminous
United States (CONUS) and specifically use it to investigate
the role of the North Atlantic subtropical high (NASH) in
controlling frequency and intensity of daily summer precipi-
tation (see appendix F for a list of acronyms used throughout
the paper).

The NASH, also known as the Bermuda high, is a semi-
permanent high pressure system residing over the subtropical
North Atlantic. It intensifies in the summer, when its western
ridge extends into the CONUS, conveying moisture from
ocean to land (Gamble et al. 2008; Li et al. 2011; Li and Li
2013), while also impacting the track of tropical cyclones
(Kasahara 1959). In addition, from the potential vorticity view
(Hoskins 1991), the advection of planetary vorticity by southerly
wind along the western edge of the NASH has to be balanced by
the stretching of the air column that promotes upward motion
and precipitation (Wu and Liu 2003; Liu et al. 2004; Miyasaka
and Nakamura 2005). As a result, precipitation preferentially
occurs along the northern portion of the NASH western ridge
(L. Liet al. 2012). Therefore, the spatial variations of the NASH
western ridge (featured in Fig. 1 for the period 1948-2019) sig-
nificantly impact atmospheric moisture fluxes and the interan-
nual variation of total seasonal precipitation over extended
regions of the United States, and especially over the Southeast
(SE) (Liet al. 2011; L. Li et al. 2012; Li and Li 2013; Diem 2013).

At an interannual time scale, Diem (2006) noted that drier
summers tend to occur in the SE in correspondence with a
westward movement of the ridge. Furthermore, L. Li et al.
(2012) found that both longitudinal and latitudinal movement
of the ridge impact rainfall variation over extended areas of the
CONUS. In particular, a westward movement of the ridge with
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respect to its climatological position increases precipitation
variability, i.e., a condition in which the latitude of the ridge
itself has a stronger impact on U.S. precipitation. In this case
(western ridging) the meridional position of the ridge deter-
mines the sign and magnitude of the precipitation anomalies
over extended regions of the CONUS: the northwest (NW)
ridging deviates the moisture from the SE and the pushes the
upward motion northward to the Upper Midwest, which results
in dry summers over the SE, but wet conditions in the Upper
Midwest and Pacific Northwest regions. Changes of the op-
posite sign are observed for seasonal precipitation totals in
these regions in years characterized by the southwest (SW)
ridging [see Fig. 4 of L. Li et al. (2012) and Fig. 8 of Li and Li
(2013)]. In contrast, eastward ridging leads to reduced rainfall
variability over the CONUS, so that its latitudinal position is
not as relevant for seasonal rainfall.

How these seasonal-scale effects translate to the statistical
properties of precipitation at the daily scale is the main re-
search question to be addressed here. The effects of the NASH
ridge on daily precipitation statistics and the frequency of
heavy rainfall have been less studied than seasonal totals and
are more challenging to characterize. Katz et al. (2003)
introduced a family of stochastic daily weather models for
temperature and precipitation which account for the NASH
[therein defined as a pressure index termed Bermuda high in-
dex (BHI)] together with other climatic indices. Focusing on
the winter season, they found that BHI impacts the frequency
of precipitation occurrence in the SE, while significant effects
on the rainfall intensity were not detected. Keim (1997) and
Diem (2013) studied the correlation of the BHI with the fre-
quency of summer heavy precipitation events over the SE.
In particular, Diem (2013) found an increasing trend for rain-
fall variability, including in the frequency of heavy rainfall, for
the Atlanta region, without finding a similar pattern in the
circulation indexes examined. Recently, Nieto Ferreira and
Rickenbach (2020) studied the effect of the NASH western
ridge on summertime daily precipitation organization in the
SE, finding that it is more relevant for mesoscale rather than
for isolated precipitation features, and that NASH western
ridging in the SE quadrant is associated with more precipita-
tion along the coast and less precipitation inland, and the op-
posite occur in the case of NW ridging. Overall, these studies
suggest that the effects of the ridge position on daily rainfall
statistics are likely significant. However, a comprehensive
analysis of the NASH ridge effects over the CONUS is lacking
and motivates this work.

The method developed here builds on a recently developed
framework to study extreme values of daily rainfall sequences
(Marani and Ignaccolo 2015; Zorzetto et al. 2016; Marra et al.
2018; Miniussi et al. 2020a; Hosseini et al. 2020). Moreover,
here we use a Bayesian framework for model selection in order
to determine in which areas of the CONUS the adoption of
climate-informed statistical models for daily precipitation is
justified by historical observations, and which type of depen-
dence structure [e.g., the dependence on both latitude and
longitude of the ridge proposed by L. Li et al. (2012) as op-
posed to the simpler longitude dependence, or the BHI often
used in past studies (Katz et al. 2003; Diem 2006)] is more
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appropriate for capturing the NASH effect on daily precipi-
tation occurrence and intensity.

Based on this Bayesian model, we investigate the connection
between the position of the NASH western ridge and daily
precipitation statistics over the entire CONUS, focusing on the
effect on the probability distribution of rainfall intensity,
probability of occurrence, and probability of extreme values.
Instead of focusing on a two-value index (the BHI), here we
explicitly include NASH in our statistical model by modeling
continuously both the meridional and zonal positions of its
western ridge, in order to capture their potentially distinct ef-
fects on daily rainfall (L. Li et al. 2012), and to evaluate where,
and under which conditions, including this climate-scale fea-
ture improves the statistical representation of daily rainfall.
While the model structure presented here can be generalized
and applied to other climate indices, the NASH is a particularly
relevant case study. Indeed, the NASH has been found to have
intensified in recent years (W. Li et al. 2012): climate model
simulations predict that under warming conditions the NASH
will continue to intensify, with its ridge shifting westward (Li
et al. 2011), and that it will be especially enhanced during
spring (Song et al. 2018), thus potentially increasing the ex-
pected variability of precipitation over extended areas of the
CONUS (Bishop et al. 2019a,b). Therefore, developing sta-
tistical tools to downscale climate model simulations and
translate predicted shifts in the NASH climatology into im-
pacts on finescale rainfall statistics is an increasingly important
task. The statistical approach presented here serves as a step
forward in the characterization of these changes, with a focus
on their direct hydrological implications.

2. Data and methods

In this study we use rainfall data from the National Oceanic
and Atmospheric Administration (NOAA) U.S. Historical
Climatology Network (USHCN), a dataset consisting of daily
rainfall records from 1218 rain gauge stations covering the
entire CONUS (Menne et al. 2012b,a). This dataset is char-
acterized by a significant fraction of station records longer than
100 years of observations, with most rain gauge records com-
pletely covering the entire study period examined here (72
years from 1948 to 2019). After retrieving the dataset, obser-
vations characterized by low quality flags were excluded from
the analysis. Since our analysis is based on statistics represen-
tative of seasonal time intervals [V; = 92 daily observations per
year for June—August (JJA)], years characterized by more than
four missing daily observations in this period were removed
from the analysis. Then, only stations with at least 20 years of
“complete” summer seasons in the period 1948-2019 (i.e., with
less than four missing days in each season) were included in the
analysis (1196 out of 1218 sites).

The seasonal average position of the NASH western ridge is
here defined using the methodology proposed in L. Li et al.
(2012), where the reader is referred to for additional details.
Briefly, geopotential and velocity fields were obtained from the
National Center of Environment Prediction—National Center
of Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay
et al. 1996) for the period 1948-2019. The NASH ridge line was
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then defined as the location where the wind transitions from
having an easterly to a westerly velocity component. Its
intersection with the 1560-m geopotential isoline at 850 hPa
(representing the NASH boundary) defines the NASH western
ridge used in our analysis (Li et al. 2011). In the following
analyses the seasonal JJA average position of the NASH
western ridge is used, as shown in Fig. 1.

3. A Bayesian statistical model for daily rainfall
frequency and magnitudes

Here we introduce the Bayesian statistical model devel-
oped for describing the daily precipitation recorded at the
individual rain gauge sites. This approach models (i) seasonal
rainfall totals, (ii) the seasonal number of events, (iii) the daily
rainfall intensities, and (iv) the frequency of extreme daily
rainfall values at each gauged site. For each of these quantities,
we consider nested models of increasing complexity obtained
by including or not the effect of the latitudinal and longitudinal
variability of the NASH western ridge. For each variable and
each location, we then select the best model by means of an
information criterion described below, and based on these re-
sults we then characterize the spatial distribution of the NASH
ridge impacts on daily precipitation over the CONUS domain.

a. Notation

Let n; be the number of events observed over a season, de-
fined here as the number of days with a 24-h rainfall accumu-
lation recorded in excess of a threshold set to ¢ = 1 mm day .
This low threshold allows us to exclude from the analysis days
characterized by trace precipitation amounts that are not rel-
evant for our analysis, while allowing the statistical model to
better capture most of the distribution of daily rainfall inten-
sities. In our case the summer season is defined as the three
months JJA, with a total number of 92 daily observations per
year (thus N, = 92 is the seasonal number of rainfall accumu-
lations recorded in each year j), withj =1, ..., J, where J is the
number of years in a station record. We denote with &;; the
magnitude of the ith daily rainfall event in excess over g within
the jth time period withi =1, ..., n,. For each season, we are
also interested in investigating the distribution of the sea-
sonal total precipitation S; and the seasonal maximum rainfall
accumulation h!(m). We include as possible model covariates
the zonal and meridional positions of the NASH ridge.
Specifically, along latitudinal and longitudinal coordinates we
standardize the summer average ridge position in year j around
its JJA climatological mean

_Yiary ~ Mrar
nj o

*Lon, ~ MLoN
= ! ey

» Xy )
LAT 9LoN

where upat, oLaT and puyon, 0Lon are means and standard
deviations, respectively, of the position of the ridge in the zonal
and meridional directions (x_on; and ypar,, respectively)
represented in Fig. 1 for the 1948-2019 period.

b. Models for the dependence on the ridge position

Our objective is to model the dependence on the NASH
ridge location (normalized longitude x,,; and latitude y,;) of a
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set of parameters encoding the key statistical properties of the
local rainfall regimes. For each of these parameters, we test
four types of dependence encompassing the possible effects of
the NASH ridge position postulated in previous studies.
First, we consider a model in which the ridge position does
not impact rainfall intensity or frequency [No Dependence
model (NOD)]. Second, we consider a simple dependence
on the NASH ridge longitude [Longitude Dependence
model (LOND)], consistent with previous studies based on
the BHI, which measures the strength of the pressure dif-
ference between Bermuda and New Orleans (e.g., Katz et al.
2003). Conversely, the Latitude Dependence model (LATD),
represents the case of rainfall anomalies responding uniquely to
the latitude of the ridge. Finally, we consider a more complex
Longitude-Weighted Latitudinal Dependence model (LWLD),
which describes a dependence of the type found by Li et al.
(2011) for seasonal totals. In this formulation rainfall anomalies
still depend uniquely on the latitude of the ridge, but the strength
of this effect is modulated by the ridge longitudinal position.
Testing these different models over the entire CONUS will
elucidate the existence of possibly spatially variable mechanisms
of NASH dependence for daily scale rainfall. However, the
different complexity (e.g., different number of parameters) of
these different types of ridge dependence must be accounted for
when selecting the best model for a given location, as will be
described in section 3f. The mathematical formulation of these
dependence structures is reported in appendix A.

¢. Model for the seasonal number of events

We consider two models describing the probability of ob-
serving n; rainfall events during one summer: A simple bino-
mial model, and a Markov chain (MC) model. In the first case,
the occurrence of daily rainfall is completely described by a
single parameter representing the frequency of arrival of
rainfall events. While the binomial distribution is the most
parsimonious model, its adoption implies serial independence
in the sequence of wet—dry states which may not be justified in
general. Therefore, to test whether the NASH ridge position
also impacts the serial dependence properties of daily rainfall
occurrence, we consider a MC model to describe the occur-
rence of daily rainfall events, as often done in daily weather
generator models (Katz and Zheng 1999; Katz et al. 2003). This
model can be used to estimate the possible effect of the NASH
ridge position not only on the seasonal number of events n;, but
also on the persistence of wet and dry spells, which is captured
by a second parameter. For both models, the parameters de-
scribing rainfall rate of arrival and day-to-day memory are
allowed to depend on the ridge position through any of the four
dependence models introduced in section 3b. For a complete
description of the two models for n;, see appendix B.

d. Model for the daily event rainfall magnitudes

Several distributions have been proposed to model daily
rainfall accumulations and in particular its right tail (Papalexiou
et al. 2013). These include the gamma (Stechmann and Neelin
2014), stretched exponential, or mixture of normals distributions
(Li and Li 2013). Here we choose a stretched exponential or
Weibull distribution as this model (i) can be connected to the

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:17 PM UTC

JOURNAL OF HYDROMETEOROLOGY

VOLUME 22

physics of convective rainfall events (Wilson and Toumi 2005)
and (ii) it has been widely used and tested over the CONUS
(Marani and Ignaccolo 2015; Zorzetto et al. 2016; Papalexiou
et al. 2018; Marra et al. 2018), including in applications to re-
motely sensed rainfall datasets (Zorzetto and Marani 2019,
2020). Moreover, the argument by Wilson and Toumi (2005)
offers some insight on the expected value of its shape parameter
controlling the tail decay for convective rainfall, indicating a
subexponential behavior (i.e., a distribution characterized by a
“fatter tail” when compared to an exponential decay), but still
retaining a characteristic scale. This information is helpful in
characterizing the frequency of extremes from samples of
limited length (Zorzetto et al. 2016). The Weibull distribution
has two parameters which control its shape and scale (i.e.,
characteristic intensity of the events), respectively. In our
analysis, we assume a constant value for the shape parameter,
while allowing the (logarithm of the) scale to vary year-to-year
based on the position of the ridge as described in section 3b.
See appendix C for the complete model formulation for rainfall
intensity.

e. Posterior computation

Given the structure of the models above, the posterior
probability distribution of the quantities of interest is not
available analytically. Therefore, we approximate numerically
the posterior distribution using the Hamiltonian Monte Carlo
technique using the Stan language (Carpenter et al. 2017). For
each model and each site, we run four parallel Markov chain
Monte Carlo (MCMC) chains with 2000 iterations for each
chain, and discard the first half for each chain to account for the
burn-in period. Therefore, we obtain S = 4000 samples for the
posterior for each model parameters, which are used to com-
pute posterior predictive distribution of the quantities needed
to characterize the rainfall regime at each site and its depen-
dence on the ridge position.

f- Evaluation of predictive accuracy

For the purpose of this study we need to compare several
models of increasing complexity in order to evaluate whether
or not climatic information should be included in probabilistic
models of daily precipitation. In particular, for each study
site and rainfall variable we want to learn which of the pro-
posed dependence models is supported by the observations.
Therefore, the varying complexity of the different models must
be accounted for when evaluating their respective perfor-
mance. After fitting the models to the station data following
the procedure outlined in section 3e, we evaluate the likeli-
hood of observing the data (e.g., the seasonal number of events
n; or their intensities x;;) given the model parameters estimated
through the MCMC simulations. To correct for the tendency of
models of different complexity of overfitting the training data,
we employ the logarithm of the pseudomarginal likelihood
(Ipml), described in appendix E. This measure of predictive
accuracy provides an approximation to the model likelihood
for a leave-one-out observation (Gelfand and Dey 1994). This
model validation is performed independently for all the vari-
ables of interest (rainfall frequency, intensity, seasonal totals).
For each station site and rainfall variable, the model with the
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largest Ipml is selected as the best description of the local daily
rainfall distribution. Therefore, the spatial distribution of the
“best models” over the CONUS domain characterizes the ef-
fects of the ridge position.

g. Extreme value statistics

Once we have defined models for daily rainfall events oc-
currence and magnitudes, we can use them to estimate the
probability of extreme events. Here we focus our attention on
the LWLD model, using Eq. (B1) for the probability of event
occurrence, and Eq. (C1) to model daily event magnitudes,
which we assume independent and identically distributed
conditional to their occurrence. In this case using the Markov
Chain model for n; would not produce significant differences in
the statistics of extremes, so we use the simplest binomial
model for n;. To test to what extent the frequency of extremes
is impacted by NASH ridge position, we adopt the following
strategy: (i) we fit the LWLD models for both event occur-
rences and magnitudes to the historical data at each site; (ii) we
generate 100 years of synthetic data from the model specifi-
cation (posterior predictive distribution); Then (iii) we extract
the annual maxima values corresponding to two contrasting
scenarios: The NASH western ridge located in the NW quad-
rant (i.e., yv = 1, xy = —1) and the NASH western ridge lo-
cated in the SW quadrant (i.e., yy = —1, x5 = —1). For both
scenarios, the 100 generated summer maxima daily values are
extracted for each of the 4000 draws from the posterior dis-
tribution. Mean values and standard deviations are then com-
puted over the 4000 MCMC samples. As customary in extreme
value analysis, we compute the rainfall quantiles corresponding
to different values of return time 7,, which measures the average
recurrence intervals (in years) of an event characterized by a
given rainfall accumulation magnitude. Then, for a given return
time value, we compute the normalized differences in estimated
quantiles Agr, = [gaw(T}) — gsw(T;)]. To estimate the effect
size of these differences, we normalize them by either the
standard deviation of the 4000 MCMC replicates for the same
return-time value (o, (r,)) or by its expected value gsw(7}).
This procedure allows us to quantify how, based on the
LWLD model, a shift in the NASH ridge position from the
SW to the NW quadrant would impact the distribution of
extreme rainfall across the CONUS. To further test the ro-
bustness of this procedure, we implement an independent
model for the frequency of extreme values. We employ the
binomial model introduced in Eq. (B1) to model the fre-
quency of peaks over high thresholds (selected so as to have
an average of two and four excesses per year during JJA,
respectively) and compare the four models (NOD, LOND,
LATD, and LWLD). This analysis does not determine how
significant the effect of NASH ridge position is, but rather
provides a measure of the potential effect size. A rigorous
procedure for model selection is discussed next.

4. Results
a. Results for selected stations

We start by discussing an application of the model to the
station located in Chapel Hill (North Carolina), in the southeast
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Atlantic region, area where the effects of NASH have been
traditionally studied (Katz et al. 2003; Li and Li 2013). To test
whether the model for rainfall frequency n; and intensity h;;
provides a good fit to the data, we compare the samples ob-
served for the Chapel Hill station with synthetic data generated
after fitting the model, for the same historical positions of the
NASH ridge (Figs. 2a—f). These posterior predictive checks
show that overall the rainfall frequency and intensity are well
described by the model. Figure 2g shows that the dependence
of n; on the latitudinal ridge position appears coherently cap-
tured by the model, with northward NASH ridge anomalies
determining a shift of n; toward lower values, i.e., toward drier
conditions. The model also provides a good description of the
frequency of extreme rainfall for this site, which is quantified
by the daily rainfall magnitudes corresponding to different
values of return time. This is shown in Fig. 2h, which compares
historical observations and model-simulated values based on
the historical NASH ridge positions. If instead we consider
model predictions obtained by moving the ridge one standard
deviation northwest or southwest of its climatological average,
we find that for Chapel Hill the distribution of extreme rainfall
remains virtually unchanged (Fig. 2i). Therefore, for this site
the ridge position modulates rainfall frequency but does not
significantly impact the distribution of extreme daily rainfall.

This is not the case for other sites. For example, changes in
both rainfall frequency and extreme value statistics can be
observed for sample sites located in Mississippi (Figs. 3a—c),
Wisconsin (Figs. 3d-f), and Tennessee (Figs. 3g—i), regions
characterized by a strong dependence on the ridge location.

In the case of the Mississippi site, the dependence of the
number of events is similar to that of Chapel Hill, but in this
case an effect on extremes also appears, with a southwestern
position of the ridge leading to a shift in the distribution of
extreme rainfall toward larger values (Fig. 3c). A qualitatively
similar—albeit weaker in size—behavior is observed for the
Tennessee station (Fig. 3i). The Wisconsin site shows the op-
posite behavior, with a northwest ridge position corresponding
to an increase in extreme rainfall frequency when compared
to a southwestern ridge position (Fig. 3f). In this case the n;
ridge dependence appears weaker when compared to the other
sites (as also observed in Fig. 4b), and therefore the NASH-
induced shift in the distribution of seasonal maximum rainfall
is primarily driven by changes in the distribution of daily rainfall
intensities /;;. These results for selected stations are useful for
assessing the ability of the model in reproducing the distribution
of daily rainfall as well as for quantifying changes in rainfall fre-
quency and extreme value quantiles driven by anomalies in the
ridge position. We now extend the analysis to the entire CONUS
so as to investigate the spatial variability of these effects.

b. Rainfall frequency and intensity distributions

To gain insights on the effects of NASH ridge position on
U.S. summer precipitation over the entire CONUS, we start by
reporting its effect on seasonal total rainfall in JJA, although
this quantity has been the object of previous investigations
(e.g., Li et al. 2011). This analysis is made possible by means
of a model similar to that developed for daily precipitation
(described in appendix D), in which again the variability of a
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FIG. 2. Posterior predictive checks for the Chapel Hill (NC) station. (top) Observed samples with 100 MCMC replicates for (a) the
number of events n], (b) all daily rainfall values h,J, and (c) seasonal maxima values h( ) (kernel density estimation is used to represent
the pdfs of ;; and h ), while the histogram of n; is accompanied by mean and 0.9 probablhty bands of the MCMC samples). (d)—(f) The
corresponding cumulatlve distribution functions are reported. () The n; sample and MCMC draws (mean and 0.9 probability bands) as a
function of the NASH ridge latitude. (h) Comparison of the observed annual maxima sample A™ with the corresponding MCMC draws
obtained from the observed NASH ridge positions (black line represents the mean, and the shaded area the 1o intervals) as a function of
the return time. (i) Similarly, a comparison of the same annual maxima sample with MCMC replicates obtained under the scenario of a
ridge permanently in its NW position (y, = 1, x,, = —1, red line and 1o bands) and SW position (y,, = —1, x,, = —1, blue line and 1o bands).

stretched exponential scale parameter describes the effect of the NASH ridge longitude appears strongest in the Upper
NASH ridge on the characteristic magnitude of seasonal total Midwest, where an eastward shift of the ridge determines a
rainfall. coherent regional decrease in the expected total summer

Seasonal rainfall totals exhibit dependence on the NASH rainfall. An effect of the opposite sign is observed in other parts
ridge position over extended areas of the CONUS, as ex- of the country, e.g., along the East Coast, although it appears
pected from previous studies (Figs. 4a,b). The dependence on  weaker and less spatially coherent. Notably, this is the case for
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FIG. 3. As in Figs. 2g-i, but for three sample sites.

most of the SE, where the LOND is seldom selected as the  wetter summer associated to north or northwest shift of the
best dependence model (Fig. 4a). On the other hand, LWLD  ridge, respectively. In most of the West and particularly
is consistently selected as the best model throughout the SE, the Southwest the effects of the ridge position appear weak
where a northwestern shift in position of the ridge is associ- or nonexistent, so that the best model selected most fre-
ated with a drier summer (Fig. 4b). Under the same NASH quently is NOD, suggesting no relevant benefit in intro-
conditions, effects of the opposite sign are observed in the ducing any dependence on the ridge position in seasonal
Pacific Northwest and in the upper Michigan, Wisconsin, total rainfall models.

and Minnesota region, characterized by a dependence on The seasonal number of events exhibits an overall depen-
the NASH ridge latitude (LATD or LWLD models), with a  dence on the ridge position, which is qualitatively similar to
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that observed for seasonal rainfall totals. However, in the case
of n; the effect of NASH ridge appears stronger, more ex-
tended, and more coherent in space. Again, a longitude-only
dependence on the NASH ridge position characterizes the
Upper Midwest and part of the Northeast, with an eastward
shift of the ridge determining a decrease in the frequency of
daily rainfall events over the entire region (Fig. 4c).

Over the SE, LWLD is systematically selected as the best
model, with northward NASH ridge anomalies being associated
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FIG. 4. Effects of the NASH ridge position on the model parameters describing (a),(b) seasonal rainfall totals; (c),(d) the seasonal
number of events; and (e),(f) the daily rainfall characteristic intensity. (left) Stations where LOND is selected as the best dependence
model and (right) stations where LATD or LWLD are the best model. Stations for which the model considered does not have the best
performance (as quantified by the Ipml) are reported in the background as gray circles. The sign of the triangle markers indicates the effect
of a shift of the NASH ridge on the relevant model parameter. Upward triangles indicate that a shift in the NASH ridge position (an
eastward shift in the case of the LOND model, or a northward shift in the case of the LATD/LWLD models) would determine an increase
in the parameter value, i.e., wetter conditions [(a) and (b)], more frequent events [(c) and (d)], or more intense events [(e) and (f)], while
the opposite is the case for stations marked by downward triangles.
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to a decrease in the seasonal frequency of rainfall throughout
the SE (Fig. 4d). This finding is consistent with the NASH
primarily affecting the seasonal average advection of atmo-
spheric moisture to the region, without significantly changing
the mechanisms generating precipitation events at the daily
scale. The effect of NASH ridging on daily rainfall frequency
appears still relevant in the Lower Midwest (with a northward
anomaly again shifting the distribution of n; toward lower
values). However, in this region the dependence on the zonal
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position of the ridge does not seem to impact rainfall statistics
as it does in the SE, and the best model selected for most of this
region is LATD rather than LWLD. Conversely, the same
conditions of northward shift in the NASH ridge determine a
consistent increase in the precipitation occurrence rates over
the Pacific Northwest, where for a significant number of sta-
tions the best models are again LWLD and LATD, closer to
the coast and inland, respectively.

However, the wetter conditions found for seasonal totals in
the upper Michigan, Wisconsin, and Minnesota for a north-
ward shift of the NASH ridge do not appear to be as significant
in the case of n;, suggesting that instead they may originate
from a shift in the distribution of daily rainfall accumulations
toward larger values rather than from an increase in the sea-
sonal number of events. Conversely, the NASH effect ob-
served for the distribution of n; over the Pacific Northwest is
spatially coherent with that found for seasonal totals. Again,
in most of the western United States—except the Pacific
Northwest—there is little spatially coherent dependence on
the ridge position, and the model with no dependence is gen-
erally selected as having the best performance.

The effect of NASH ridge on the characteristic intensity of
daily rainfall [as represented by the x,; and y,; dependence
term of Weibull scale parameter, 8, in Eq. (C1)] appears more
limited and less coherent in space over most of the CONUS
(Figs. 4e,f) when compared to the effects observed for seasonal
totals and for the rainfall frequency of occurrence. However,
some localized effects of the NASH ridge position are never-
theless observed. Analyzing the dependence on the latitudinal
position of the ridge (LATD and LWLD models, Fig. 4f) re-
veals that an increased rainfall intensity over the upper
Michigan, Wisconsin, and Minnesota and a decrease in parts of
the South (Louisiana, Mississippi) are associated with north-
ward NASH ridge anomalies. The consistent effect observed
over upper Michigan, Wisconsin, and Minnesota confirms the
hypothesis that over this region changes in seasonal totals are
primarily driven by the NASH ridge position modulating the
intensity distribution of rainfall events rather than their fre-
quency of occurrence. The opposite occurs over the Pacific
Northwest region, where the ridge position is associated with
changes in rainfall frequency rather than in the distribution of
intensities. Moreover, a longitudinal dependence in the
Upper Midwest can be observed also in the case of daily
rainfall intensities, although it appears less spatially extended
when compared to the result obtained for rainfall frequency.
Therefore, in this case the effect of NASH on rainfall totals
appears to be primarily driven by changes in rainfall fre-
quency for most stations in the Upper Midwest (Fig. 4e).

To further characterize the effect of the NASH ridge posi-
tion on rainfall occurrence, we also test the Markov chain
model [Eq. (B4)], which describes not only the seasonal fre-
quency of daily rainfall events, but also the possible persistence
of wet and dry states. For the seasonal number of events
(Figs. 5a,b), the result appears consistent with that obtained for
the simpler binomial model. The variation of the serial corre-
lation of precipitation at 1-day temporal lag, on the other hand,
appears less spatially coherent, especially in the case of longi-
tudinal dependence on the ridge position (Fig. S5c). However,
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local spatially coherent effects of the NASH ridge latitude on
the persistence of wet and dry states can be observed for the
coastal Pacific Northwest region and for part of the Midwest
(Fig. 5d). Over these regions, a northward shift in the NASH
ridge position leads to increased temporal correlation of the
daily rainfall occurrence. The opposite effect is observed for
part of the SE. However, the sign of these changes is con-
trasting over most of the CONUS, so that overall the potential
effects of NASH ridge on the persistence of wet and dry states
are not as robust as those observed in the case of the seasonal
number of events.

c. NASH ridge effects on extreme rainfall

We now turn our attention to the probability of extreme
rainfall, examining the differences Aqy, between the distribu-
tions of seasonal maxima values generated in the case of a
stationary ridge in the NW and SW quadrants, respectively,
under the LWLD ridge dependence model. Figure 6 shows
Aqr, normalized by the standard deviation of the MCMC es-
timates for the same quantiles (o, , Fig. 6a) and by their ex-
pected values g7, (Fig. 6b). These quantities correspond to the
difference between the two extreme value estimates corre-
sponding to different ridge positions (e.g., those reported in
Fig. 3c, normalized either by the width of their credibility in-
tervals o, or by their expected value g7,).

For most of the stations over the CONUS, the effect of the
ridge on the distribution on extremes appears limited in size.
However, in several areas the dependence can be relevant.
A northward ridge anomaly determines a decreased proba-
bility of extremes in part of the Southeast, although the effect
seems more relevant for inland sites when compared with
coastal regions. A possible explanation for this behavior is that
coastal regions are more affected by tropical systems (Kunkel
et al. 2013), potentially lowering their dependence on the
NASH ridge position. An increased probability of extremes is
observed primarily at sites located in the Pacific Northwest or
in the Great Lakes region, where we also observed that the
distribution of daily rainfall values is impacted by the ridge
position. Note that this result for extreme rainfall depends on
the assumptions on the model used, with dependence on both
xpjand y,;. Namely, daily rainfall occurrence follows a binomial
distribution, and the intensities of daily events are independent
and distributed according to Eq. (C1). To independently test
the robustness of our results to these modeling assumptions, we
additionally examine the frequency of excesses over a high
threshold, fixed by imposing the condition that for each time
series, on average only four events exceed the threshold in each
season. The result of this analysis confirms the extreme pre-
cipitation anomalies predicted over the SE, Upper Midwest,
and Pacific Northwest (Fig. 7a). While the spatial distribution
of these anomalies is consistent with that predicted by the
Weibull model (Fig. 6b), the NASH ridge dependence in the
case of heavy rainfall appears less spatially extended when
compared to the effects observed for n; and seasonal totals S;.
The LOND model again predicts a decrease in heavy rainfall
events in the Upper Midwest (Fig. 7b), which is expected given
the similar effects observed for both precipitation frequency
(Fig. 4c) and intensity (Fig. 4e).
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FIG. 5. Effects of the NASH ridge position on the Markov chain model parameters describing the (a),(b) frequency of occurrence of
daily events, and (c),(d) the 1-day temporal autocorrelation of the wet—dry sequence. (left) Stations where LOND is selected as the best
dependence model, and (right) stations where LATD or LWLD are the best model. Stations for which the model considered does not have
the best performance (as quantified by the Ipml) are reported in the background as gray circles. The sign of the triangle markers indicates
the effect of a shift of the NASH ridge on the relevant model parameter. Upward triangles indicate that a shift in the NASH ridge position
(an eastward shift in the case of the LOND model, or a northward shift in the case of the LATD/LWLD models) would determine an
increase in the parameter value, i.e., more frequent events [(a) and (b)] of increased correlation of the wet—dry sequence [(c) and (d)],
while the opposite is the case for stations marked by downward triangles.

This analysis confirms the association of increased proba-
bility of intense daily rainfall over the Pacific Northwest with a
northward shift of the ridge, and a decrease over the SE under
the same conditions. The longitude dependence also in this
case appears relevant only over the Upper Midwest, where an
eastward movement of the NASH ridge leads to decreased
probability of threshold exceedance.

5. Discussion

We found that the NASH ridge primarily impacts the fre-
quency of summer rainfall over extended areas of the United
States, and to a smaller extent also modulates the intensity of
events at the daily scale. In large areas of the country, the lpml-
based framework for model selection suggests that including
zonal and meridional components of the ridge position is
supported by the data, even after accounting for the increased
model complexity. Over extended areas of the CONUS (pri-
marily over the Southeast; upper Michigan, Wisconsin, and
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Minnesota; and Pacific Northwest regions) the latitude of the
NASH western ridge significantly modulates the statistical
properties of daily rainfall. A notable exception is part of the
Midwest, where the longitudinal position of the ridge appears
more appropriate to explain the interannual variability of
summer precipitation. A qualitative summary of these effects
is reported in Table 1. The dependence detected for the dis-
tribution of event intensities is much weaker than that ob-
served for seasonal total rainfall and event occurrences, and
the stations for which this dependence is relevant are sparser.

Opverall, the impacts of the ridge appear much weaker over
most of the West. A noteworthy exception is our finding that the
impacts on precipitation daily statistics extend to the Pacific
Northwest, where the moisture flux from the Atlantic Ocean can
hardly reach. These counterintuitive results can be understood
by taking into account the remote factors that impact the NASH
western ridge movement. Studies have shown that the SW
ridging involves air-sea interaction over the Gulf of Mexico (Hu
et al. 2011; L. Li et al. 2012; Ryu and Hayhoe 2014), while the
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FIG. 6. Effect of the ridge position on extreme summer rainfall statistics. Differences Agr, between expected extreme rainfall quantiles
computed for NASH ridge permanently in the NW quadrant (y, = 1, x,, = —1) with respect the same quantiles computed for NASH ridge
permanently in the SW quadrant (y, = —1, x,, = —1). For each site, Agy, was normalized (a) by the standard deviation o, of the 4000
MCMC replicate samples or (b) by their expected values g7,. Results are reported for a 50-yr return time. Upward red triangles correspond
to locations where a NW ridge determines an increased probability of extremes larger than one oy, , while downward blue triangles
correspond to locations where a NW ridge determines a decrease in the probability of extremes of at least o, . Sites with variations of
smaller magnitude are reported in black, again with the direction of the triangle representing the sign of the change. The sign of the
triangle is proportional to the magnitude of Agr,/o,, .

not to be interpreted as a direct result of NW ridging, but rather
of the wave train pattern that leads to NW ridging.

NW ridge shows association with Pacific decadal oscillation
(PDO; L. Li et al. 2012). With a positive phase of PDO, the

warm SSTA over the northeastern Pacific excited a barotropic
wave train emanating from the northwestern coast of the United
States, propagating downstream and converging over the SE.
The wave train is featured by a low pressure over the Pacific
Northwest and a high pressure over the SE, and thus leads to

Our results are in agreement with previous studies focusing
on summer precipitation totals (L. Li et al. 2012) and show how
frequency and characteristic intensity of daily rainfall con-
tribute to the observed precipitation anomalies over a season.

The results of this analysis underline the importance of in-

cluding the position of the NASH ridge in stochastic modeling
of daily precipitation over the CONUS. This is especially

opposite precipitation anomalies over the two regions. Thus, the
observed precipitation anomalies over the Pacific Northwest are
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FIG. 7. Effects of the NASH ridge position on the frequency of rainfall events exceeding high thresholds, selected so that on
average 4 events per year exceed the threshold during JJA. (a) Stations where LOND is selected as the best dependence model;
(b) stations where LATD or LWLD are the best model. Stations for which the model considered does not have the best per-
formance (as quantified by the Ipml) are reported in the background as gray circles. The sign of the triangle markers indicates the
effect of a shift of the NASH ridge on the relevant model parameter. Upward triangles indicate that a shift in the NASH ridge
position (an eastward shift in the case of the LOND model, or a northward shift in the case of the LATD/LWLD models) would
determine an increase in the frequency of threshold exceedance for a given JJA season, while the opposite is the case for stations
marked by downward triangles.
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TABLE 1. Summary of the best models over representative regions of the CONUS for rainfall intensity, frequency of occurrence,
and seasonal totals.

Region Intensity (h;;) Frequency (n;) Totals (S))
Southeast NOD/LWLD/LATD LATD/LWLD LATD/LWLD
Upper Wisconsin and Minnesota LWLD/LATD NOD LWLD/LATD
Central and Upper Midwest, part of Northeast NOD/LOND LOND LOND
Pacific Northwest NOD LATD/LWLD LATD/LWLD
West NOD NOD NOD

relevant for hydrological applications and for predicting daily
scale rainfall variability in future climate conditions. Notably,
given the strengthening of the NASH predicted under warming
climate conditions (W. Li et al. 2012), accounting for its effects
on rainfall variability will become increasingly important. The
statistical framework proposed here and its application to
historical records over the CONUS suggest the opportunity of
adopting such an approach to learn the relation between the
NASH and daily rainfall statistics, and in turn use this in-
formation to downscale climate model outputs to character-
ize the statistical properties of daily rainfall under future
climate conditions.

Modeling seasonal extreme values by assuming event
independence and a Weibull distribution of daily accu-
mulations, we show that the effects of the NASH ridge
position on frequency and intensity of events also affect
the distribution of extreme rainfall. To further test this
result, we run a similar analysis modeling the frequency
of the largest peaks over threshold for each time series,
and we find that the spatial distribution of rainfall
anomalies is consistent with the Weibull model. In par-
ticular, northwestern ridging is connected with a de-
creased probability of extreme summer rainfall over the
Southeast and parts of the Midwest, while an effect of
opposite sign—although weaker and lesser in extent—is
observed in the Upper Midwest (western Great Lakes
region, primarily Minnesota and Wisconsin). In this re-
gion the NASH ridge position affects the intensity more
than the frequency of daily rainfall events.

Itis noteworthy that the analyses here have been performed
independently for each observed time series and thus should be
interpreted as representative of the rainfall field at a point in
space. As a consequence, the regional effects listed in Table 1
remain qualitative. To extend our results over extended
regions, a spatial version of the model proposed here should be
specified. A simple example of this extension is the “borrowing
strength” approach (Katz et al. 2003), which consists in pulling
together observations by nearby stations assuming that they
exhibit a similar response to NASH ridge anomalies. This
method can be applied over a region of interest to determine
the best local dependence model, in general leading to re-
duced uncertainty when compared to single-station analyses.
However, we note that specifying spatial models does require
additional assumptions on the dependence structure of the
rainfall field. Since our analysis here is primarily diagnostic, we
prefer to not introduce additional complexity to the model, and
instead use the spatial distribution of the results for under-
standing the spatially varying effects of the NASH ridge.
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6. Conclusions

Our analysis supports the usage of the NASH western ridge
position as a relevant predictor in stochastic simulations of
rainfall fields, in downscaling climate model simulations, and in
risk analyses involving both “wet”” and ““dry”’ rainfall extremes.
After testing different model dependence structures, we rec-
ommend selecting a best model (e.g., using lpml) separately for
rainfall occurrence and intensities, as we have shown that these
can have different responses to the ridge position. Overall, we
found that latitude-dependent models are to be preferred in
most of the Southeast, Upper Midwest, and Pacific Northwest.
The longitude dependence model is applicable to large parts of
the Midwest, while for most of the western United States a sim-
pler model with no dependence is to be preferred, except in the
part of the Pacific Northwest. The statistical approach developed
here could be adopted with minor modifications to investigate the
regional impacts of other climate features, and to account for the
interplay of different precipitation mechanisms (Marra et al.
2019; Miniussi et al. 2020b). For example, relevant physical in-
formation that could be captured include the occurrence of at-
mospheric river events over the western United States and
western Europe (Lavers and Villarini 2015), or the frequency of
cold air intrusion events associated with heavy orographic rainfall
(Eghdami and Barros 2019). Another future research direction
motivated by the present work is the extension of this statistical
framework to precipitation at shorter aggregation time scales,
which is further complicated by the lack of long instrumental
records, and by the need of accurately capturing the time corre-
lation structure of the precipitation process (Marra et al. 2020).
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APPENDIX A

Dependence Models

Here we formulate the four dependence models on the ridge
position introduced in section 3b. The dependence on (x,,;, y»;)
of a generic real model parameter «; € R (describing, e.g., daily
rainfall frequency or intensity in year j) is represented through
one of the following four relations:

o g ¥ =, (A
a}LOND) = (o, +ax,)=F,(x,laga), (A2)
a}(LATD) = (e, +ayy,) =F,0,la,a), (A3)
a](LWLD) =i |, + ayym.m

g (A4)

= F, (5,0, o),

with @, a,, a, real parameters encoding the dependence of «;
on the ridge position (x,;, y,;). The functions F,, F,, and F,,
here simply express whether there is a dependence on x,,j, y,,;j or
both. Equation (A1) represents the case of No Dependence
(NOD model), i.e., of a constant parameter «g in each year.
Equations (A2) and (A3) represent the case of a parameter
depending only on the ridge longitudinal or latitudinal position,
respectively, while in Eq. (A4) the y,; dependence is modulated by
sigmoid function of the normalized ridge longitude x,,;. In all four
cases, /(-) is a generic link function that can be used to generalize
the model outlined in Egs. (Al)-(A4) to the possible case of
nonlinear dependence on the ridge position, or to the case of a
parameter «; with support different than the real line R. In
Eq. (A4), the exponential term produces a sigmoid function which,
varying between 0 and 1, determines the strength of the longitu-
dinal dependence term a,x,,;. For example, in the case of negative
a,, the dependence on y,,;is more relevant when the ridge is located
westward of its mean longitudinal position, while it approaches
zero as the ridge moves eastward. The opposite occurs when «, >
0, and in both cases the absolute value |, | determines the scale of
this effect. We specify a normal prior distribution for «,, with unit
variance and centered around zero [a, ~ N(0, 1)]. Analogously,
we choose a similar prior distribution for the parameter [a, ~
N(0, 1)] controlling the y,,; dependence. These prior distributions
are symmetric around zero, so that all information on the sign of
the dependence is directly obtained from rainfall observations.

APPENDIX B

Models for the Seasonal Number of Events

The simplest model considered here is a binomial distribution
for n;. For a season of N, days (e.g., N, = 92 for our case JJA), the
probability mass function of observing n; events thus reads

. Nt ; N —n
p(nj|m,)=Bin(n|m, . N,) = n (L=, )", (Bl)

Different models can be obtained based on the choice of the
parameters m,; € (0, 1). In the simplest model with no NASH
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ridge dependence (NOD), m,; =, V j=1,..,Jis the only
parameter describing the distribution of the n;. To include the
possible effects of the longitudinal and latitudinal positions of
the NASH ridge on the distribution of #;, we adopt the LWLD
model specification for ,,;

1

;= ¥(n,,;) = 1+exp(—m,)’ (B2)
1
nnj = Mo + Tlnyynj 1+ exp(_n X ) (B3)
nx”" nj

Finally, we have the case of y,; dependence only (LATD) with
Nnj = Mno T MayYnj> and the case of x,; dependence (LOND) with
My = Npo T M- In the LWLD, LOND, and LATD cases, the
link function ¢ defined in Eq. (B2) introduces a nonlinear depen-
dence of the distribution of the seasonal number of events on the
ridge position, so that the rate of rainfall occurrence 7, is defined
in the interval (0, 1). Equation (B3) includes the dependence on the
latitude of the ridge position through the linear predictor ,,y,,;,
but this dependence is further modulated by the longitude of the
ridge through the function of x,;, which, as discussed earlier, can
reduce or completely eliminate the model dependence on the
latitude y,,; based on the longitudinal position of the NASH ridge.
The parameters of the LWLD are therefore 1,0, 9y, and 1., to
which we assign weakly informative Gaussian prior distributions.
The second model considered for #; is a Markov chain with
transition probabilities between daily wet and dry states are
defined as
Py =PU, =kl _ =i, (B4)
where J, is the binary state at time ¢, which can have value 0
(dry) or 1 (wet); pi is the transition probability from state i to
state k, with i, k = 0, 1. Note that this simple MC (without
NASH ridge dependence, NOD) model is completely de-
scribed by two parameters. We take these to be the wet fraction
MO = p1/BM and the 1-day lag serial correlation g™ =
P11 — Po1- Note that also in the case of this MC model we can
construct models of increasing complexity which account for
the position of the NASH ridge. As noted in Katz et al. (2003),
this conditioning yields an overall model structure unconditional
from the NASH ridge position which is more complex than the
simple MC. In this case we can again define a LOND, LATD,
and LWLD versions of the MC model by first transforming the
parameters from (0, 1) to the real line R through the functions
7™M =111 + exp(—n )] and BM = 1/[1 + exp(—pM)]
for year j. Note that here for simplicity we limit our analysis to
the physically relevant case ,BJ(-MC) € (0, 1), thus excluding the
possibility of anticorrelated wet—dry sequences at the daily time
scale. The four dependence models for the parameters n}MC) and
p(.MC) are summarized in Table B1, with F, F,,, and F, as defined
in Egs. (A2)-(A4), respectively.
APPENDIX C

Model for the Daily Event Rainfall Magnitudes

We model the magnitudes of daily rainfall accumulations #;;
in excess of ¢ = 1mm day ™! in year j with a two-parameter
Weibull distribution with probability distribution
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TABLE B1. Dependence models for the parameters of the Markov chain described in appendix B.

Model Rainfall rate parameter Correlation parameter
NOD ;MC) ](MC)
LOND ](MC) =F, (x |77(MC) n)(CMC)) /(MC) =F, (X |p(MC) pEMC))
MC MC) MC MC
LATD . J( )= =F (y'lflnﬂc §MC)) . PJ( )= =F,(yuj |P( . ) P§MC))
M M M
LWLD 77]( )= Fay (X, yru|"7( ) U§MC)» M) P,( )= Fuy (X, yn/|P( ) P;MC) . M)

(1)
Yi(h)"’
ron o) =2 (3] e
]

J

"
(‘) } v

with scale and shape parameters 5; € R® and y, € R", re-
spectively. For all dependence models, we do not allow the
Weibull shape parameter to vary (y;=vy V j=1,...,J),
thus assuming that the position of the NASH ridge primarily
affects the characteristic intensity of the daily events, which
is encoded in the seasonal Weibull scale parameters §;. For
the scale parameter we have ;=86 V j=1,...,J (NOD
model), log(8;) = Fy(x,j|8o, 6,) (LOND model), log(s;) =
F,(¥4jl80, 6,) (LATD model), and log(8;) = Fy,(Xpj, Ynjl80, 8y,
§,) (LWLD model).

APPENDIX D

Model for the Seasonal Total Rainfall Accumulations

We model seasonal total rainfall amounts using a Weibull
distribution (Laherrere and Sornette 1998; Sornette 2006) with
pdf defined in Eq. (C1). We include an atom of probability in
zero corresponding to the case of a completely dry season,
modeled through a binomial random variable with a small
prior probability of observing a completely dry summer. The
distribution of the seasonal rainfall total in year j is thus de-
scribed by the Weibull shape and scale parameters y*) € R*
and 81(.'0 € R*, and by a binomial rate parameter 7 < (0, 1)
representing the probability of a completely dry summer. Here
we assume that the parameters 7 and ¥ do not depend on
the NASH ridge positions, and we choose a weakly infor-
mative prior for Y. For 7 we select a prior distribution
with most of the mass close to zero (as ordinarily we do not
expect many completely dry summers). For the scale pa-
rameter, we introduce the four dependence models intro-
duced in Egs. (A1)-(A4). First, the NOD model with no
dependence on the ridge position (6() =69 vj=1,.,1).
Second, the LOND model where 8(7) only depends on the
ridge longitude: log(s{”) = F. (xn,|5§;>, 8%)). Third, LATD
with log(8{) = Fy(y,,,m(“ 8%). Last, the LWLD model with
108(8\") = Fry (X, yuj183, 89, 8)).

APPENDIX E

Evaluation of Predictive Accuracy

Following Gelman et al. (2013), the log posterior predictive
density (Ippd) for a sample of observations y;, j = 1, ..., M
(where y; could be, e.g., daily rainfall occurrences n; or

Brought to you by NOAA Central Library |

intensities /) given a statistical model p(y6) with parame-
ters 6¢) can be computed from § MCMC draws as

M s
topd = Y. log 3 p0:/6). (E1)
However, this quantity overestimates the predictive perfor-
mance of a model as it does not assess a model’s tendency to
overfit the sample used for calibration. To correct for this here
we use the logarithm of the pseudomarginal likelihood (Ipml)
(Gelfand and Dey 1994):

M

Ipml = Y log(CPO,), (E2)
i=1

where CPO; is the conditional predictive ordinate (Gelfand
et al. 1992; Gelfand and Dey 1994), which estimates the leave-
one-out probability of observing a value y; given that y_; has
been observed. CPO; can be computed as the geometric mean
of the likelihood of the data given the model. From § MCMC

samples,

131 !
CPO, ~ {Egp(y \9(”)] . (E3)

When comparing the four difference types of dependence on
the NASH ridge position considered here [Egs. (Al)-(A4)],
the model with the largest value of Ipml is considered the best
model for a given station record. Note that using the lppd [Eq.
(E1)] would consistently select the most complex model (i.e., the
model with dependence on both x,,; and y,;, or the model with
longitudinal dependence only). For a comparison of the results
obtained using lppd and lpml for each variable considered here,
we refer the reader to the online supplemental material.

APPENDIX F

List of Acronyms

NASH North Atlantic subtropical high

CONUS  Conterminous United States

BHI Bermuda high index

USHCN  U.S. Historical Climatology Network

JJA June-August (months)

NOD No Dependence (model)

LOND Longitudinal Dependence (model)

LATD Latitudinal Dependence (model)

LWLD  Longitude-Weighted Latitudinal Dependence (model)
MC Markov chain
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MCMC  Markov chain Monte Carlo

Ippd Log posterior predictive density
Ipml Log posterior marginal likelihood
CPO Conditional predictive ordinate
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