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ABSTRACT: Flood-related risks to people and property are expected to increase in the future due to environmental and
demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design
and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected
changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and
generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the
uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of
Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing
with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin,
and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty
dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic
uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and
dynamic flood-risk assessments and help to inform the design of risk-management strategies.
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1. Introduction and 500-yr floodplain boundary, which depict the inundation
extent for floods assessed to have a 1% and 0.2%, respectively,
chance of being reached or exceeded in any given year. These
estimates are widely used by federal, state, and local agencies
in the United States for setting national-level flood insurance
requirements and managing development in the floodplain at
the community level (FEMA 2019).

The FEMA flood maps can provide very useful information,
but they are also subject to several limitations (Bales and
Wagner 2009; Merwade et al. 2006, 2008; Pappenberger et al.
2005, 2006). For one, they do not account for uncertainties
associated with the estimation and mapping of flood inunda-

Floods drive major damages to communities across the
globe, with an estimated annual average loss of U.S. $104
billion (UNISDR 2015). These impacts are expected to rise in
the future as the climate is changing and urbanization is
changing exposure (Alfieri et al. 2015; Hirabayashi et al. 2013;
Wing et al. 2018; Winsemius et al. 2016). There is increasing
interest in improving the understanding and quantification of
future flood hazards in a changing climate (Judi et al. 2018;
Gangrade et al. 2020; FSF 2020). There is also growing rec-
ognition of the critical need to enhance the communication of
flood hazards and its associated uncertainties to inform )
stakeholders and the design and implementation of flood risk tion (Merwade et al. 2008; Lin et al. 2013) and assume that the

management strategies (Collet et al. 2018; Kundzewicz et al. ﬂc?od—efvent time series is stationary .(Villgrini et al. 2099)'
2018; Sanders et al. 2020). The design of flood-risk manage- Historical records often reveal nonsta-tlonarlty due to multiple
factors such as changes in precipitation patterns, land cover

alterations, and water transfers, among others (Jovanovic et al.
2016,2017,2018). Here we design, test, and discuss a framework

ment strategies can be improved by information about future
flood hazards that is based on the best current understanding of
the future climate system (Alfonso et al. 2016; Sorribas et al.

2016; Srikrishnan et al. 2019; Zarekarizi et al. 2020). to derive probabilistic flood inundation projections that accounts
In the United States, the Federal Emergency Management for key nonstationarities associated with climate change.
Agency (FEMA)) is responsible for producing Flood Insurance Flood risk can be assessed in terms of hazard, exposure, and

Rate Maps (FIRMs) specifying the boundaries of zones vulnerability (Arnell and Gosling 2014; Hirabayashi et al. 2013;
deemed to be most vulnerable to fluvial and coastal flooding Ruhi et al. 2018; Wing et al. 2018; Keller et al. 2020). Hazard

(FEMA 2019). The most common delineations are the 100- ~ refers to the nature, magnitude, and probability of a flood
event. Exposure in this case characterizes factors such as the

population and value of assets within the floodplain that are

? Supplemental information related to this paper is available at jikely to experience flooding. Vulnerability characterizes how
the Journals Online website: https://doi.org/10.1175/JHM-D-20- sensitive the impacts are for a given hazard and exposure. A

0238.51. sound understanding of these risk drivers is important to in-
form the design of risk management strategies, for example,
Corresponding author: Alfonso Mejia, aim127@psu.edu deciding when and where to acquire land, or floodproofing
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infrastructure. Past flood risk assessments have focused on the
global scale (Alfieri et al. 2017; Hirabayashi et al. 2013;
Jongman et al. 2015; Winsemius et al. 2016; Ward et al. 2015),
continental scale (Alfieri et al. 2015; Feyen et al. 2012; Wing
et al. 2018), or local watershed scale (Cheng et al. 2017; Dibike
and Coulibaly 2005; Dobler et al. 2012; Wu et al. 2014).
Recently, Wing et al. (2018) presented estimates of current and
future flood risk across the United States. This study finds that
nearly 41 million of the U.S. population live within the 1%
annual exceedance probability floodplain (compared to only
13 million when calculated using the FEMA flood maps). This
difference is largely due to the inclusion of small streams by
Wing et al. (2018) that have not been mapped by FEMA. The
future flood risk estimates by Wing et al. (2018) do not account
for future climate projections. These estimates were recently
expanded by Bates et al. (2021) to include future climate
projections and multiple types of flooding—fluvial, pluvial, and
coastal. However, they did not try to quantify the key sources
of uncertainty in flood inundation projections. In addition,
most hydrological responses to extreme events are highly re-
gional, and water resources management is often carried out at
river basin scales (Hattermann et al. 2017; Varis et al. 2004).
Local decision-making scales require local information (Aich
et al. 2016; Collet et al. 2018; Demaria et al. 2016; Huang et al.
2013; de Moel et al. 2015).

The main objective of this study is to develop an inte-
grated hydroclimatic modeling framework to assess regional
flood hazards and exposure for future climatic conditions.
The framework combines five main components: 1) statisti-
cally downscaled daily precipitation and near-surface temper-
ature projections (Pierce et al. 2014); 2) the National Oceanic
and Atmospheric Administration’s (NOAA) Hydrology
Laboratory—Research Distributed Hydrologic Model (HL-
RDHM) (Koren et al. 2004); 3) the Generalized Pareto dis-
tribution (GPD)-based extreme value model (Coles 2001); 4)
the LISFLOOD-FP hydraulic model (Neal et al. 2012); and
5) a uncertainty quantification methods applied to these com-
ponents. The framework involves hydrologic modeling driven
by climate ensembles to generate streamflow projections; sta-
tistical modeling to estimate flood peaks; hydraulic modeling
to estimate water surface elevations; terrain analysis to map the
inundation extents; and uncertainty decomposition to quantify the
key uncertainty sources in flood inundation projections. We im-
plement this integrated hydroclimatic modeling framework for a
regional-scale case study to analyze two interrelated questions: 1)
How does climate change alter regional flood hazard and expo-
sure projections? and 2) What drives the total uncertainty in flood
inundation projections? In this study, we focus on the hazard and
exposure components of flood risk.

Flood inundation projections are subject to multiple sources
of uncertainty. These sources include projections of future
climate, as well as hydrologic and hydraulic modeling. Previous
studies highlight the dominating influence of climate model—
driven uncertainty relative to the total uncertainty in extreme
flood projections (Hirabayashi et al. 2013; Vetter et al. 2017).
Most studies focus on quantifying individual sources of un-
certainties in extreme flood projections (Bosshard et al. 2013;
Qietal.2016), and are silent on the relation between individual
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sources of uncertainty and the total uncertainty of flood in-
undation projections (Kim et al. 2019). In addition, previous
studies often ignore the effects of hydraulic modeling and
mapping on flood inundation extents when assessing climate
change impacts on flood projections (Bosshard et al. 2013; Kim
et al. 2019). Thus, the relative contribution of hydraulic un-
certainty to the total flood inundation projection uncertainty
is often unknown. Here we quantify key uncertainties in the
flood inundation projection chain, including uncertainties in
climate model outputs, hydrologic and hydraulic modeling
for a case study.

To implement the proposed modeling framework, we assess
flood hazards and exposure across the state of Pennsylvania,
which is located in the Mid-Atlantic region of the United
States. Flooding has been the most frequent and most dam-
aging natural disaster in Pennsylvania (PEMA 2017), causing
an average $92 million loss a year during 1996 and 2014
(USDOE 2015). Regionally, there is strong evidence of rising
temperatures, altered precipitation patterns (Hayhoe et al.
2018; Shortle et al. 2015), and increasing intensity of flood
events (Sagarika et al. 2014; Zhang et al. 2010). Historical cli-
mate records show that temperatures in Pennsylvania have
already increased by more than 1.8°F since the early twentieth
century (Shortle et al. 2015). Similarly, average annual pre-
cipitation in Pennsylvania has increased by approximately 10%
over the past 100 years and, by 2050, it is expected to increase
by 8% (Kang and Sridhar 2018; Shortle et al. 2015). There has
been an increase in the frequency and magnitude of dam-
aging flood occurrence in communities across Pennsylvania.
For instance, the most destructive floods in the Susquehanna
and Delaware River basins have occurred in recent years,
each associated with different flood-generating mecha-
nisms: Hurricane Ivan (September 2004), late winter—early
spring extratropical systems (April 2005), warm-season
convective systems (June 2006), and tropical storm Lee
(September 2011) (Armstrong et al. 2014; Smith et al. 2010,
2011). There is a critical need to better understand future
flood risks in Pennsylvania (Tulo et al. 2020).

The remainder of the paper is organized as follows. Section 2
presents the methods used in this study. The main results and
their implications are examined in section 3. Last, section 4
summarizes key findings.

2. Materials and methods

We develop and implement an integrated hydroclimatic
modeling framework consisting of downscaled climate model
outputs, a hydrologic model, a nonstationary extreme value
model, a hydraulic model, and uncertainty quantification (Fig. 1).
The proposed framework uses downscaled climate projections for
precipitation and temperature to force the NOAA’s HL-RDHM
(Koren et al. 2004) resulting in future projected streamflow at
selected gauged locations in Pennsylvania. The projected
streamflow is statistically postprocessed to compute extreme
flows with 100-yr return periods. The 100-yr flood peaks are
used as boundary conditions to the hydraulic model LISFLOOD-
FP (Bates et al. 2013) to generate flood inundation projections.
Finally, the flood inundation projections are used to analyze flood
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FI1G. 1. Flowchart illustrating the general methodological approach for flood inundation risk
projections. The approach starts with the climate model outputs, which are used to drive the
hydrologic model and generate streamflow projections. Together with the statistical and hy-
draulic model, the projected streamflow is then used to map the uncertainty of flood inundation
projections for extreme flood events. DEM = digital elevation model.

hazards and exposure. Next, we describe the datasets, models, and
techniques involved in our overall workflow (Fig. 1).

a. Datasets

For the observational datasets, we use multisensor pre-
cipitation estimates (MPEs), gridded near-surface air tem-
perature, and streamflow observations at selected U.S.
Geological Survey (USGS) gauges. These observational
datasets are used to calibrate the hydrological model. We
use hourly gridded MPEs and near-surface air temperature
data at 4 X 4km?® from the NOAA’s Middle Atlantic River
Forecast Center. Similar to the National Centers for Environmental
Prediction’s Stage-IV dataset (Prat and Nelson 2015), the MPEs
provided by the River Forecast Center represent a continuous
time series of hourly, gridded precipitation observations at 4 X
4km? cells. The gridded near-surface air temperature data at 4 X
4km? resolution were developed by the River Forecast Center by
combining multiple temperature observation networks as de-
scribed by Siddique and Mejia (2017). We obtained daily
streamflow observations for the selected gauged locations from
the USGS (https://waterdata.usgs.gov/nwis/rt).

For the climate ensemble, we use the localized constructed
analogs (LOCA; Pierce et al. 2014) of daily precipitation and
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near-surface temperature outputs for 13 general circulation
models from the Coupled Model Intercomparison Project
CMIPS datasets. The CMIPS outputs are for model runs forced
by emissions corresponding to Representative Concentration
Pathway scenario 8.5 (RCP8.5) (Taylor et al. 2012; Meinshausen
et al. 2011). The 13 considered climate models are CESMI1-
CAMS, CanESM2, EC-EARTH, GFDL-ESM2M, GISS-E2-R,
HadGEM2-CC, HadGEM2-ES, IPSL-CMSA-LR, IPSL-CMS5A-
MR, MPI-ESM-LR, MPI-ESM-MR, BCC-CSM1-1, and INM-
CM4 (Table 1). These climate models are selected since they
demonstrate improved skill and reliability across the Northeast
region (Demaria et al. 2016). The downscaled model outputs are at
6 X 6km?® spatial resolution and provided at https:/gdo-
dep.ucllnl.org/downscaled_cmip_projections/dcpInterface.html.
We use bilinear interpolation to transform the climate model out-
puts to the 4 X 4km? grid cell resolution of the hydrological model.

b. Hydrological model

We use the NOAA’s HL-RDHM as the hydrological model
(Koren et al. 2004). HL-RDHM is a spatially distributed concep-
tual model, where the basin system is divided into regularly spaced,
square grid cells to sample spatial heterogeneity and variability.
We run HL-RDHM at a spatial resolution of 4 X 4 km?.
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TABLE 1. The 13 models of the Coupled Model Intercomparison Project phase 5 (CMIPS5) used in this study.

Modeling center (or group) Institute ID Model name
Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1
Community Earth System Model Contributors NSF-DOE-NCAR CESM1-CAMS
Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2
EC-EARTH consortium EC-EARTH EC-EARTH
NOAA/Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M
NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R
Met Office Hadley Centre MOHC HadGEM2-CC
Met Office Hadley Centre MOHC HadGEM2-ES
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR
Max-Planck-Institut fiir Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-LR
Max-Planck-Institut fiir Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-MR
Institute of Numerical Mathematics INM INM-CM4

Within HL-RDHM, we use the Sacramento Soil Moisture
Accounting model with Heat Transfer (SAC-HT) to represent
hillslope runoff generation, and the SNOW-17 submodel is
used to represent snow accumulation and melting. The hill-
slope runoff, generated at each grid cell by SAC-HT and
SNOW-17, is routed to the stream network using a nonlinear
kinematic wave algorithm (Koren et al. 2004; Smith et al.
2012). Likewise, we route flows in the stream network down-
stream using a similar nonlinear kinematic wave algorithm that
accounts for parameterized stream cross-section shapes (Smith
et al. 2012; Koren et al. 2004). HL-RDHM has successfully
been used before to predict and map flood events under a wide
range of conditions within our study area (Gomez et al. 2019;
Sharma et al. 2018; Siddique and Mejia 2017; Zarzar et al. 2018).

Following previous studies (Koren et al. 2004; Reed et al.
2004), we calibrate HL-RHDM by adjusting a subset of model
parameters. Specifically, we select ten out of the 17 SAC-HT pa-
rameters based upon prior experience and preliminary parameter
sensitivity tests. The adjusted parameters are associated with
baseflow, percolation, evaporation, storm runoff and channel
routing. To calibrate the selected HL-RDHM parameters, we
multiply each a priori parameter field by a factor. It is these mul-
tiplying factors that are actually calibrated, not the parameter
values in each grid cell. We calibrate the model at the outlet of
major river basins in Pennsylvania. Thus, the scaling factors (mul-
tipliers) for the nested subbasins within the calibrated ones remain
the same. The multiplying factors are adjusted manually first; once
the manual changes do not yield noticeable improvements in model
performance, the factors are optimized using the automatic tech-
nique of stepwise line search (SLS) (Kuzmin 2009; Kuzmin et al.
2008). We use this approach as it is readily available within HL-
RDHM and has been shown to provide reliable parameter esti-
mates (Kuzmin 2009; Kuzmin et al. 2008; Sharma et al. 2018;
Siddique and Mejia 2017). We optimize the objective function (OF)

j

OF =/ X [g, ~ (@), (1)

where ¢; and s; denote the daily observed and simulated flows
at time i, respectively; € is the parameter vector being esti-
mated; and m is the total number of days used for calibration.
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To assess the performance of HL-RDHM, we compare the
daily simulated flows with daily observed flows from USGS
gauges. The model is calibrated during 2008-12 at selected
USGS gauge stations for the major river basins in Pennsylvania.
We use the year 2007 to spin up the model. We validate the
model performance by randomly selecting a set of 26 uncali-
brated gauge stations for the same time period of 2008-12. This
approach is adopted to ensure the streamflow simulation per-
formance is reasonable for basins with different sizes. We do not
calibrate each gauged basin because of computational and time
constraints.

We obtain the simulated flows by forcing the model with
gridded precipitation and near-surface temperature observations.
For calibration, we use 24-hourly precipitation accumulations to
force HL-RDHM and generate daily flows. The meteorological
datasets used to calibrate the model may not fully resolve the
variability of the meteorological forcing. This is an area, together
with calibration approaches, of continued improvement.

To assess the quality of the streamflow simulations from HL-
RDHM, we employ the modified correlation coefficient (R,,)
(McCuen and Snyder 1975) and Nash-Sutcliffe efficiency (NSE)
(Nash and Sutcliffe 1970) as performance measures. Overall, the
performance of the simulated streamflow is deemed satisfactory at
both the calibration and validation gauge stations (Fig. 2). The R,,,
for the calibration stations is greater than 0.90. Likewise, the NSE
ranges from 0.75 to 0.85 for the calibration stations (Fig. 2). The
R, for the validation stations ranges from ~0.80 to 0.95, while the
NSE ranges from ~0.60 to 0.75 (Fig. 2).

c. Nonstationary extreme value analysis of flood events

Statistical distributions of extreme floods are widely used
to inform flood-sensitive infrastructure design, floodplain
mapping, risk assessment and environmental management
(Bopp et al. 2020; Bracken et al. 2018; Villarini et al. 2009).
Traditional approaches for extreme flood estimation use his-
torical records and assume stationarity in streamflow time series
(FEMA 2019). In a changing climate, however, traditional ap-
proaches can lead to poor hazard estimates (Pralle 2019). Here we
compute extreme floods allowing for nonstationary conditions.
For this, we use the peak over threshold approach with a Poisson
point process parameterization of the GPD (Coles 2001). As
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FIG. 2. Map illustrating the major river basins in Pennsylvania. The
map also shows the hydrologic model calibration and validation gauge
stations, and the corresponding performance of the hydrologic simu-
lations based on the Nash-Sutcliffe efficiency (NSE) index.

opposed to selecting a single peak flood per year, the peak over
threshold approach enables us to use daily streamflow data that
exceed a specified threshold to fit the GPD model parameters.
This approach allows us to consider more information about the
extremes. We use a constant threshold u equal to the 95th per-
centile of the daily maximum flow (Lang et al. 1999).

The probability density function for the GPD model is de-
fined by

1
Fe0:0.00.601 = 5 [1+ 600 M) o] ,
@)

where x is the daily streamflow observations for current flood
peak estimates or the projected daily streamflow for future
flood peaks, o is the scale parameter that governs the width of
the distribution, and ¢ is the shape parameter that governs the
heaviness of the distribution’s tail, all as functions of time ¢. The
Poisson process governs the probability p of observing n ex-
ceedances of threshold ? during a time interval At:

n(t)
pln@:A )] =%exp{—w)m], 3)

where A is the Poisson rate parameter. We incorporate po-
tential nonstationary into the GPD model by allowing the
model parameters to covary with time (Papoulis and Pillai
2002; Koutsoyiannis 2006) such that

A=A+ A,(0),
o(t) = exp[(r0 +o, o],
ED) =& +£,(0), 4

where Ao, Ay, 0g, 01, &, and &; are regression parameters.
Further,if A; = oy = ¢; = 0, the GPD parameters A(¢), o(f), and
&(1) are constant, yielding a stationary statistical model.
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We adopt a Bayesian approach and use Markov chain
Monte Carlo sampling for parameter estimation (Stephenson
and Tawn 2004). This approach combines the knowledge
brought by a prior distribution and the observations into
the parameters’ posterior distribution. We produce 10°
iterations for one MCMC chain and remove the first 25 000
iterations to account for burn-in. We develop separate
GPD models for the period of 1981-2017 and 2020-99 to
estimate 100-yr flood peaks in 2017 and 2099, respectively.
The stationary GPD model for the period of 1981-2017 is
based on historical streamflow observations. The nonsta-
tionary GPD model for the period of 2020-99 is based on
flow projections obtained by forcing HL-RDHM with the
GCM outputs.

d. Regionalization of the 100-yr flood peaks

To map the flood extent for an entire region with the
LISFLOOD-FP hydraulic model, we need to estimate the
100-yr flood peak for any river location within that region since
these estimates are used as boundary conditions by the
LISFLOOD-FP. From the flood frequency analysis with the
GPD distribution, we obtain estimates of the 100-yr flood peak
atselected gauged locations. To regionalize these estimates, we
use a scaling relationship between the 100-yr peak O, and the
drainage area A:

0, =pA*, 5)

where B is the proportionality constant and « the scaling ex-
ponent. The parameters in Eq. (5) are estimated using ordinary
least squares (England et al. 2018; Smith et al. 2011).

e. Flood inundation mapping

We use the LISFLOOD-FP hydraulic model (Bates et al.
2013) with the subgrid formulation to simulate and project
flood inundations along rivers in Pennsylvania. LISFLOOD-
FP is a 2D hydraulic model for subcritical flow that solves the
local inertial form of the shallow water equations using a finite
difference method on a staggered grid. The model requires as
input ground elevation data describing the floodplain topog-
raphy, channel bathymetry information (river width, depth,
and shape), and inflow to the modeling domain as the boundary
condition information. To apply LISFLOOD-FP, we use the
subgrid-scale hydrodynamic scheme of Neal et al. (2012) to
solve the momentum and continuity equations for both chan-
nel and floodplain flow. The scheme operates on a rectangular
grid mesh of the same resolution as the input DEM, using a
finite difference scheme to solve the governing equations.
River width and depth are assumed to be uniform along the
reach. The cells’ water depths are updated using mass fluxes
between cells while ensuring mass conservation. To configure
LISFLOOD-FP, we use floodplain topography information
from the Pennsylvania Spatial Data Access archive (PASDA,;
https://www.pasda.psu.edu/), and extreme flood events from
the nonstationary GPD model and scaling relationship in Eq. (5).

We run LISFLOOD-FP for all rivers in Pennsylvania using a
30-m digital elevation model (DEM) from PASDA. In addi-
tion, we use other DEM resolutions, 1 and 10m, at selected
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locations as part of our uncertainty analysis (section 2g). Peak
flows with 100-yr return period are used as the inflow boundary
condition. Channel bathymetry is estimated using regional,
hydraulic-geometry scaling relationships from previous studies
(Cinotto 2003; Chaplin 2005; Clune et al. 2018; Roland and
Hoffman 2011). This approach is useful when bathymetry data
are not available (Mejia and Reed 2011a,b). We use a constant
Manning’s roughness value of 0.045 for both the channel and
floodplain. The chosen Manning’s roughness value is similar to
values previously used for rivers in Pennsylvania (Newlin and
Hayes 2015). Structural flood mitigation barriers, such as le-
vees are not explicitly incorporated into the hydraulic analysis.
This decision is made since many levee systems in Pennsylvania
are near their design life, and most of these systems have not
been properly rehabilitated and were designed using outdated
statistical flood estimates (PIRC 2018). Furthermore, it is
challenging to evaluate in advance whether levees will perform
as intended under current and future climatic conditions,
since a levee system’s failure may be defined by idiosyncratic
causes. An alternative would be to compare model simulations
with and without flood mitigation barriers, where levees are
incorporated into LISFLOOD-FP following approach by
Bates et al. (2021). Such an alternative is outside the scope of
this study.

f- Flood hazards and exposure analysis

We assess flood hazards and exposure in all cities and bor-
oughs in Pennsylvania for current and projected future climatic
conditions. Pennsylvania has 959 boroughs and 56 cities.
Boroughs are defined as incorporated political subdivisions
and are mostly less populous than cities. Most of the boroughs
in Pennsylvania have populations under 5000, though there are
some exceptions. Some major cities in Pennsylvania include
Philadelphia (with more than one million residents), Pittsburgh,
and Scranton.

We characterize flood hazards by the extent of flooding
resulting from the 100-yr flood peak. We calculate flood ex-
posure from the population within the flood extent. Flood
hazards and exposure are both expressed as percentages. The
percent hazard is the flood inundation area standardized to the
total area of a city/borough. The percent exposure is the pop-
ulation in the flood inundation area standardized to the total
population of a city/borough. We use population from the 2010
U.S. Census Bureau data (U.S. Census Bureau 2010). For a
particular borough/city, we disaggregate the total population
based on the urban development intensity of each developed
grid cell in the 2011 National Land Cover Database (Homer
et al. 2012). The National Land Cover Database provides the
definitive Landsat-based, 30-m resolution, land cover database
for the United States.

g. Assessing key uncertainties of the flood
inundation projections

To assess key uncertainties in flood inundation projections,
we use a cumulative uncertainty approach (Kim et al. 2019).
This approach decomposes the total uncertainty to individual
uncertainty sources, such that the sum of the uncertainties from
individual sources is equal to the total uncertainty in flood
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inundation projections. We consider uncertainty from three
key sources in the flood inundation projection chain: climate,
hydrology, and hydraulics. Climate uncertainty in this case is
the uncertainty sampled by the information derived from the
global climate model runs. Hydrologic uncertainty refers to the
uncertainty in the GPD model parameters obtained using
Bayesian inference. Hydraulic uncertainty is sampled by the
topographic uncertainty due to the choice of different DEM
resolutions: 1, 10, and 30 m.

For the uncertainty assessment, we compute the stage un-
certainty as the contribution to uncertainty from each of the
three stages (climate, hydrology and hydraulic) in the flood
inundation projection chain. This analysis samples a relatively
small subset of potentially important uncertainties. For ex-
ample, we sample just a subset of climate models, initial
conditions, and climate model parameters (Sriver et al. 2015).
Further, the analysis accounts for the hydrologic uncertainty
associated with the GPD’s parameters while the HL-RDHM
model’s parameters are fixed. We sample hydraulic uncer-
tainty by considering the topographic uncertainty due to the
choice of different DEM resolutions. Such consideration
neglects the contribution of potentially important uncer-
tainties, including channel width, channel shape, and channel
roughness.

To characterize the stage uncertainty, we first compute the
conditional cumulative uncertainty up to a particular stage,
which is defined as the variation in the projected flood inun-
dation extent due to the modeling choices up to that stage,
while the choices beyond that stage are fixed. For instance,
conditional cumulative uncertainty up to the hydrology
stage represents the variation in flood inundation projec-
tions due to the choice of different GCM outputs and GPD
parameters, while the DEM resolution is fixed. Then the
marginal cumulative uncertainty up to a particular stage is
computed as an average of conditional cumulative uncer-
tainties. Finally, we compute the uncertainty of each stage
as the difference between successive marginal cumulative
uncertainties.

Specifically, we calculate stage uncertainty as follows. We
denote by K the total number of stages in the flood inun-
dation projection chain, in this case K = 3 (climate, hy-
drology, and hydraulic stage). For a particular stage k, there
are y; models/scenarios. The cumulative uncertainty up to
stage k is defined as the variation in the projected values due
to the choice of models/scenarios up to stage k, while the
models/scenarios after stage k are fixed. The cumulative
uncertainty up to stage k is denoted by U™ (x4, - . ., xx)- For
the specific models/scenarios of stage k, we let P(xq, x, ...,
xx) be the projected value using the models/scenarios x,
k=1,..., K. For a given model/scenario after stage k, the
set of projected values are

q =[P(x,,..

XX ,xK):x,,E)(,,,j:L...,k].

(6)
Then U™ (qy,.,...x,) can be interpreted as the conditional cu-

mulative uncertainty up to stage k while the models/scenarios
after stage k are fixed as xx 1, . .. , Xx. The marginal cumulative

Xpp1eXg k127
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FIG. 3. Scaling of the 100-yr flood peak with the drainage area for
locations in Pennsylvania. The scaling relationship is shown for
current (2017) and projected flood peak estimates (2099). Flood
peak estimates for year 2017 are based on the historical flood
records under the stationary and nonstationary assumption. The
flood peaks for 2099 depict the mean flood projections, and the
corresponding error bar represents the maximum and minimum
projected flood peak. The solid lines represent the best fit line
under the stationary assumption (gray line) as well as the nonsta-
tionary assumption in 2017 (black line) and 2099 (brown line).

uncertainty up to stage k is the average of conditional cumula-
tive uncertainties defined as

1
U ) = X 3 Ul ) ()
X1 EXe+1 Yk € XK
I I n.
=i !

Since the cumulative uncertainty increases monotonically
(Kim et al. 2019), we can define the uncertainty of each stage as
the difference between successive cumulative uncertainties.
That is, the uncertainty of stage k, denoted by U™ (xx), is
defined as

UCUm(Xk) — UCl.lm (Xl, .

~7Xk)_Ucum(X17""Xk_1)' (8)

The uncertainty of each stage is the amount of contribution to
the cumulative uncertainty. Also, the sum of uncertainties of
individual stages is always equal to the total uncertainty
U™ (x1, - - -, xx)- The uncertainty of stage k can also be defined
as the sum of the variation of the main effect of stage k and the
variations of the interactions between stage k and stages af-
ter k.

The stage uncertainty and cumulative uncertainty are
both expressed in terms of the range (Chen et al. 2011) and
standard deviation (Bosshard et al. 2013) of the projected
flood inundation extents. For a real number y=gq,_, .
and a set of y{yy, ..., y,}, the range and standard deviation
are defined as
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range = max y, —min _,_ v, )

1=i=n

standard deviation = 1 Z()’,- -y, (10)
ni=1

where 5 = (1/n) Y, yi.

3. Results and discussion
a. Regional flood frequency analysis

We summarize the results obtained from the regional flood
frequency analysis using the scaling relationship between the
100-yr flood peak Q, and the drainage area A. For years 2017
and 2099, we find that the scaling of the 100-yr flood peaks with
drainage area performs reasonably well with a Pearson corre-
lation coefficient R exceeding 0.9 (Fig. 3). The years 2017 and
2099 are used for all our flood risk analyses and results. Figure 3
shows the mean 100-yr flood peak estimates and projections in
years 2017 and 2099, respectively, as well as the estimates under
the stationary assumption for historical flood records. Flood peak
estimates and projections in years 2017 and 2099 are based on the
estimated and projected streamflow, respectively, obtained by
forcing HL-RDHM with the climate models’ outputs.

The nature of the scaling relationships (Fig. 3) has implica-
tions for flood-risk management. Based on the power-law fits in
Fig. 3, the ratio between the 100-yr flood peak for 2099, Q,, 5099,
and 2017, Q2017 i Qp2009/Cpao17 = 1.50A~ 1%, The ratio of the
flood peaks indicates that the drainage area has a small and slightly
negative amplification effect on future flood peaks since the value
of the scaling exponent for the ratio, —0.0196, is small. The ratio of
the flood peaks also shows that the flood-peak amplification as-
sociated with climate projections is mainly due to the value of the
proportionality constants in the power-law fits. Taken together,
these results suggest that future increases in flood peaks from cli-
mate projections tend to have a disproportionate effect on smaller
basins. Many flood-related management decisions, for example,
those associated with stormwater management, are made in
smaller basins, which adds urgency to the need of adapting local
flood regulations and design standards to account for potentially
changing climate conditions. In addition, the regionalized flood
frequency approach allows estimating flood peaks in areas with
missing or poor quality of records, facilitating the analysis of both
gauged and ungauged river and stream networks.

The stationary assumption underestimates the 100-yr flood
peaks relative to the nonstationary flood peaks (Fig. 3). In
other words: assuming stationary flood peaks can underesti-
mate actual flood hazards in our analysis. For example, the
flood hazards further increase with the nonstationary flood
peak projections for the year 2099 relative to the 2017 non-
stationary flood estimates (Fig. 3). As compared to the flood
peak estimates for 2017, the projected flood peak is higher, in
terms of absolute values, in the case of larger basins, as implied
by the scaling relationships obtained.

b. Flood hazard and exposure from future
climatic conditions

Our results suggest that most cities (Figs. 4a,b) and boroughs
(Figs. 4c,d) in Pennsylvania are projected to face higher flood
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FIG. 4. Projected flood hazard and exposure in year 2099 for all the (a),(b) cities and (c),(d) boroughs in
Pennsylvania. Hazard (%) indicates the inundation area standardized to the total area of a city or borough.
Exposure (%) indicates the population in the projected flood inundation extents standardized to the total pop-
ulation of a city or borough. There are 959 boroughs and 56 cities in Pennsylvania.

hazards and exposure under future climatic conditions in the
year 2099. Populous cities, however, seem to have relatively
lower flood hazards and exposure. For instance, the three
largest cities (Philadelphia, Pittsburgh, and Scranton) show
relatively low projected flood hazards and exposure compared
to smaller cities (Figs. 4a,b). Our analysis suggests that these
cities have less than 25% projected flood hazards and exposure
in 2099.

Some of the cities with the highest projected flood hazards
include Sunbury, Williamsport, Lock Haven, Warren, Bradford,
Wilkes Barre, Johnstown, York, and Connellsville (Fig. 4a; refer
to Table S1 in the online supplemental material). These cities
are projected to have more than 50% flood hazards and expo-
sure. The top three cities with the highest projected flood
hazards are Lock Haven, Williamsport, and Sunbury (Fig. 4a),
which are all located along the West Branch Susquehanna
River. Importantly, based on NOAA’s National Centers for
Environmental Information (NCEI) storm events database
(https://www.ncdc.noaa.gov/stormevents/), these three cities
have all experienced a substantial number of flood events over
time, including events within the last decade, suggesting that
our flood hazard metric can capture hotspot areas prone to
flooding within Pennsylvania. Specifically, the West Branch
Susquehanna River at Williamsport has experienced 40 flood
events between 1864 and 2018 (NCEI 2020). Lock Haven has
experienced 21 flood events between 1889 and 2010, while
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Sunbury has experienced 14 flood events between 1936 and
2011 (NCEI 2020). The cities with the highest projected ex-
posure include Bradford, Sunbury, and Bethlehem (Fig. 4b),
which are also cities with high flood hazards. Of all the con-
sidered cities, Sunbury demonstrates the highest projected
flood hazards and exposure (Figs. 4a,b). Sunbury is located at
the confluence between the West and North Branch of the
Susquehanna River. This makes Sunbury particularly vulner-
able to flooding as flood events can occur in either branch of the
Susquehanna River (FCSMA 2020).

Boroughs around the high hazards/exposure cities tend to
have higher hazards and exposure (Figs. 4c,d). For example,
most of the boroughs around the cities of Lock Haven,
Williamsport, and Sunbury, and particularly along the West
Branch Susquehanna River, show higher flood hazards and
exposure. Boroughs along the West Branch Susquehanna
River, including Duboistown, Montgomery, Muncy, South
Williamsport, Lewisburg, Milton, and Selinsgrove are pro-
jected to have more than 50% flood hazards and exposure
(refer to Table S2). Neighboring boroughs to the largest met-
ropolitan area (Philadelphia) generally have lower flood haz-
ards and exposure. For example, most of the boroughs around
Philadelphia are projected to have less than 25% flood hazards
and exposure.

Some of the projected flood hazards and exposure tend to be
spatially clustered (Fig. 4). By visually inspecting our flood
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hazards and exposure maps (Fig. 4), we identify the most sa-
lient clusters. The high hazards and exposure clusters are pri-
marily concentrated along the West Branch of the Susquehanna
River, the southwest portion of the Susquehanna basin (also
called Juniata subbasin), the lower portion of the Allegheny
basin (Figs. 2 and 4), and the central portion of Delaware River
basin. The historical records associated with these clusters show
that these areas are prone to frequent and severe flooding. For
example, the mainstem of the Susquehanna and Delaware River
have experienced several devastating floods in past decades,
with the four most recent events in the years 2004, 2005, 2006
and 2011 (Gitro et al. 2014; Suro et al. 2009). These historical
events caused record to near-record flood crests along most of
the streams and rivers throughout the main stem Susquehanna
and Delaware River. For instance, for the Susquehanna
and Delaware River flood event of 2004, peak discharges
on the unregulated reaches remained below a 50-yr re-
currence interval, while at the regulated reaches it equaled
or exceed the estimated 100-yr recurrence interval (Brooks
2005). Many communities that were flooded during the
2004, 2005, and 2006 floods were again flooded in 2011
(Gitro et al. 2014).

Several factors, including development, stormwater man-
agement, floodplain encroachment and reservoir management,
have been hypothesized as contributing and exacerbating fac-
tors for recent flooding in the Susquehanna and Delaware
River basins (Brooks 2005; DRBC 2006). Many of these his-
torical flood events have been caused by different flood gen-
erating mechanisms: Hurricane Ivan (September 2004), late
winter—early spring extratropical systems (April 2005), warm-
season convective systems (June 2006), and Tropical Storm
Lee (September 2011) (Smith et al. 2010, 2011). The impor-
tance of tropical cyclone projections points to an important
caveat as well as a research need. This is because resolving the
relevant scales and physical mechanisms is still challenging in
climate models (Strachan et al. 2013; Knutson et al. 2015; Gori
et al. 2020). Global climate model outputs do not resolve all the
weather and climate phenomena relevant to flood-producing
rainfall events. Nonetheless, current climate projections,
such as CMIP data, provide valuable data to inform flood risk
assessments. As global climate models are constantly evolv-
ing, it is important to develop flood-risk assessment meth-
odologies that can facilitate the incorporation of climate
projection data. This is in part our aim with this regional flood
risk approach. An alternative is to employ approaches that
statistically combine climate projections with other sources
of data, such as tropical storms’ simulations, to improve
the representation of flood-producing rainfall events not
captured by the latest climate projection datasets (Bates
et al. 2021).

Our integrated modeling framework enables a quantitative
(and approximate) assessment of flood hazards and exposure
of cities and boroughs for projected future climatic conditions.
Traditionally, flood hazard estimates are only produced under
existing conditions using historic flood records to characterize
current risks (FEMA 2019). By using GCM projections, we
sample key effects of changing climatic conditions to estimate
how flood hazards and exposure can change over the decades
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across cities and boroughs in Pennsylvania. Specifically, we
demonstrate a method that leverages an interconnected system
of data, models, and analyses to provide nonstationary riverine
flood hazard information from local to regional scale. Climate-
informed flood hazard projections provide a more complete
picture of decision-relevant information for the management
of flood risks.

¢. Flood risk from future climatic conditions

The intersection of flood hazards and exposure informs
flood-risk assessments (Arnell and Gosling 2014; Hirabayashi
et al. 2013; Ruhi et al. 2018; Wing et al. 2018). Flood risk in-
creases with increasing hazards and exposure. We find a strong
correlation (R > 0.90) between the projected flood hazards and
exposure for boroughs (Fig. 5a) and cities (Fig. 5b). Cities with
higher flood hazard tend to result in higher exposure, with
cities in the Lehigh Valley such as Bethlehem being an ex-
ception (Figs. 4a,b and 5b). For the city of Bethlehem, flood
hazard of approximately 40% is projected to result in about
75% of exposure. Bethlehem is one of the most populous cities
in Pennsylvania, with development mostly concentrated on
both sides of the Lehigh River and Monocacy Creek, which
flow through the city. Flood risk in Bethlehem is driven by the
compounding effects of floods in the Lehigh River and/or
Monocacy Creek. The Lehigh River at Bethlehem has recor-
ded 15 flood events since 1902, while the Lehigh River Valley
itself has experienced 129 flood events between 1950 and 2011
(NCEI 2020).

For boroughs (Fig. 5a), the relation between hazards and
exposure generally shifts above the one-to-one line, indicating
higher exposure for a particular hazard. Increasing exposure
with projected flood hazards further suggests that development
in the boroughs tends to be concentrated in flood-prone areas.
Thus, boroughs may be particularly impacted by the projected
increase in flood hazards. This kind of information can be of
potential use for borough planning authorities that review
regulatory changes in flood hazard zones. Such changes could
include, for example, redirecting land development, revisiting
flood insurance requirements and/or reducing potential risk by
promoting adaptation measures in potential risk zones (Pralle
2019; UNISDR 2015).

Cities and boroughs with highest flood hazards and exposure
in current climatic conditions are projected to be roughly the
same from future climatic conditions (Fig. 6). In Fig. 6, we show
the rank correlation for both flood hazards and exposure be-
tween the years 2017 and 2099. The rank correlation for bor-
oughs is shown in Figs. 6a and 6b and cities in Figs. 6¢ and 6d.
We find a strong rank correlation (R > 0.95) for both flood
hazards and exposure between years 2017 and 2099. This im-
plies that cities and boroughs with high flood hazard and ex-
posure in 2017 are projected to be approximately in the same
overall situation in 2099 (Fig. 6). However, the frequency dis-
tribution for 2099 indicates a heavy tail for both hazards and
exposure (see insets in Fig. 6). Based on the frequency distri-
bution of boroughs and cities for flood hazards and exposure in
2017 and 2099 (Fig. 6), flood risk is projected to increase in 2099
compared to 2017. Also, the number of cities and boroughs
with high hazards and exposure is projected to increase in 2099.
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for boroughs and 0.94 for cities.

For instance, the number of boroughs with hazards greater
than 60% is projected to increase from 96 in 2017 to 170 in 2099
(Fig. 6a), and in terms of exposure, the number of boroughs is
projected to increase from 175 in 2017 to 259 in 2099 (Fig. 6b).
Moreover, there is no city with exposure greater than 80% in
2017 (refer inset in Fig. 6d); however, there is one city
(Sunbury) with exposure projected to be greater than 80%
in 2099.

Our results suggest that flood hazards are increasing under
the considered future climate conditions. Changing flood
hazards may call for changes in flood-mitigation and flood-
adaptation strategies, including floodplain restoration and
protection, climate-informed engineering standards, and
the use of structural and nonstructural measures (de Moel
etal.2015). These strategies aim to decrease the exposure of
people and property to damaging floods by limiting devel-
opment within high flood risk areas. Indeed, projected flood
risk information, such as our flood hazard and exposure
metrics, should be valuable to stakeholders (e.g., planners,
decision-makers, and engineers) charged with designing and
implementing policies and laws at both local and regional
level.

Our estimates of flood hazards and exposure do not consider
the effects of structural mitigation measures, such as dams and
levees, on flood inundation. Dams and levees play an impor-
tant role in reducing existing flood risk at many locations within
Pennsylvania (PIRC 2018). By evaluating scenarios with and
without structural mitigation measures, additional valuable
information could be provided to stakeholders. However, it
should also be recognized that the ability of dams and levees to
provide adequate flood protection in the future in unknown,
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since many of these systems are in need of urgent rehabilitation
and investment (PIRC 2018).

d. Uncertainty quantification in flood inundation
projections

We use a case study to quantify the contribution of key
sources of uncertainties to the projected flood inundation ex-
tents. We focus on Selinsgrove, a riverine community along the
main stem of the Susquehanna River, with a total area of
4.92 km? and a population of 5654 in 2010 (U.S. Census Bureau
2010). Figure 7 compares the 100-yr flood inundation extents in
the borough of Selinsgrove based on the stationary flood peak
estimate from FEMA, nonstationary flood peak estimate in
2017, and nonstationary flood peak projection for years 2060
and 2099. We find that the FEMA 100-yr flood extent is less
than the projected flood hazard under nonstationary condi-
tions in 2017 derived in this study (Fig. 7). Maybe more im-
portantly, the projected flood hazards increase with future
projections (Fig. 7).

We quantify both the individual and combined sources of
uncertainty in different stages of the flood inundation projec-
tion chain, including the climate, hydrologic and hydraulic
stage. Figure 8 summarizes the uncertainty quantification re-
sults for the 100-yr flood inundation extent in year 2099 using
two uncertainty measures: range (Fig. 8a) and standard devi-
ation (Fig. 8b). In Fig. 8, the percentage in the bracket under
stage uncertainty indicates the proportion of the uncertainty
of each stage contributed to the total uncertainty, while the
percentage in the bracket under cumulative uncertainty in-
dicates the proportion of the cumulative uncertainty up to a
particular stage.
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FIG. 6. Rank correlation between years 2017 and 2099 for the flood hazard and exposure of (a),(b) boroughs and
(c),(d) cities. The insets show the frequency distribution of standardized flood hazard and exposure for boroughs

and cities.

The total range of projected flood inundation extent in
Selinsgrove suggested by this analysis is 0.37 km?, with an in-
undation extent varying from 2.33 to 2.70km? (Fig. 8a). The
range in flood inundation extent by just considering the sam-
pling uncertainties in climate model outputs is 0.23km?
Cumulative uncertainty in the hydrologic stage is 0.33 km?. The
cumulative uncertainty in the hydrologic stage is the range of
flood inundation extent that considers both climate and hy-
drologic uncertainties, while keeping the hydraulic stage con-
stant. Thus, the hydrologic stage alone contributes 0.1 km?
uncertainty in flood inundation extent. The difference between
the total uncertainty in the projected flood inundation extents
and cumulative uncertainty in hydrologic stage provides the
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hydraulic stage uncertainty. The range of the projected flood
inundation extents due to the hydraulic stage alone is 0.04 km?.

We analyze the uncertainty decomposition results using
two measures—range and standard deviation—and arrive at
broadly comparable results (Fig. 8). The effects of the con-
sidered climate uncertainty dominate the effects of hydrologic
and hydraulic uncertainties for both metrics. For instance,
when we use the range of the projected flood inundation ex-
tents as the uncertainty measure above 60% of the total un-
certainty is contributed by the climate model outputs. Thus,
reducing the uncertainty in projections of future climate would
make a substantial contribution to reducing overall uncer-
tainty in flood inundation projections. The hydrologic stage
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FIG. 7. The 100-yr flood inundation extents in the borough of
Selinsgrove, Pennsylvania, using FEMA stationary flood peak
estimates (FEMA 2019), nonstationary flood peak estimates in
year 2017, and nonstationary flood peak projections for years
2060 and 2099. FEMA = Federal Emergency Management
Agency.

comprises the second largest uncertainty source, which ac-
counts for more than 25% of the total uncertainty. The
combined contribution of climate and hydrologic uncertainty
is about 90% of the total uncertainty. The hydraulic stage
alone represents about 10% of the total uncertainty.

Flood inundation projections are uncertain and depend on
the magnitudes and interactions of the uncertainties in the
different stages (e.g., climate, hydrologic, and hydraulic) of the
projection chain. Prior studies addressing sources of uncer-
tainty in flood projections have focused on quantifying the
climate and hydrologic uncertainty. These studies provide
important insights but are often silent on the relative contri-
bution of hydraulic uncertainty in the flood-inundation pro-
jection chain (Bosshard et al. 2013; Qi et al. 2016; Kim et al.
2019). Our results indicate that all of the investigated uncer-
tainty sources (i.e., climate, hydrologic, and hydraulic) make
sizeable contributions. Indeed, both uncertainty measures in-
dicate that the hydraulic uncertainty has a nonnegligible in-
fluence on the projected flood inundation extent. Neglecting
the contribution of hydraulic uncertainty in climate change
impact assessment can overestimate the relative importance of
climate and hydrologic uncertainties.

4. Summary and conclusions

We design, implement, and test an integrated framework to
assess regional riverine flood inundation risks in a changing
climate. Regional flood inundation modeling can inform the
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assessment of flood risk across localities and can identify po-
tential risk hotspots. We focus on a case study for the U.S. state
of Pennsylvania where many communities have experienced
an increase in the frequency and magnitude of floods and as-
sociated damages (Shortle et al. 2020). Although the case study
focuses on Pennsylvania, the framework is general and can be
applied to other regions.

The proposed framework links climate model outputs, a
hydrologic model, a statistical model, and a hydraulic
model. In this implementation, we use downscaled climate
projections for precipitation and temperature from CMIP5
models to force the National Oceanic and Atmospheric
Administration’s (NOAA) Hydrology Laboratory-Research
Distributed Hydrologic Model (HL-RDHM) and produce
streamflow projections. We fit the generalized Pareto distri-
bution (GPD) to the projected streamflow and compute extreme
flows with a 100-yr return period. We use the 100-yr flood peak
as a boundary condition for the hydraulic model LISFLOOD-
FP and to generate flood inundation projections. Finally, the
flood inundation projections are used to perform flood haz-
ards and exposure analyses. Our regional flood hazards and
exposure assessment for Pennsylvania suggests four main
conclusions:

1) Assuming a stationary climate can underestimate regional
flood risk.

2) Future flood peak alterations due to climate change are
projected to be greater for smaller basins, which capture the
spatial scale at which many flood-related infrastructure
decisions are made.

3) Most cities and boroughs in Pennsylvania are projected to
face higher flood risk under projected future climate con-
ditions. Flood risks are relatively higher in smaller cities and
boroughs compared to the largest cities. However, the cities
and boroughs with highest flood risk in 2017 are projected
to be roughly the same in 2099.

4) Climate uncertainty is the dominant contributor to flood
hazard uncertainties. The hydrologic stage is the second
largest uncertainty source. We also find that hydraulic
uncertainty has an important influence on extreme flood
uncertainty. Neglecting the contribution of hydraulic un-
certainty to the total uncertainty in climate change impact
assessment could lead to overconfident estimates of flood
hazard uncertainty.

This study provides an integrated, multimodel and multi-
scale framework to develop local-to-regional-scale flood-risk
information in a changing climate. Avenues for future work to
overcome limitations in our study include (i) the explicit in-
clusion of relevant physical infrastructure in the hydrologic and
hydraulic model, and (ii) a more comprehensive uncertainty
quantification by incorporating additional sources of uncer-
tainties, including different emission and land use cover sce-
narios, climate and hydrologic models, downscaling approaches,
sets of hydrologic and hydraulic model parameters, and channel
boundary conditions (e.g., channel geometry, erosion and sedi-
ment deposition). Given the substantial power of adaptation and
mitigation measures to reduce flood hazards and exposures, our
results approximate the upper envelope of possible flood risks.
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a) ) b) Projected flood inundation (Range, km?)
Stage_ CumUIa_t'Ve Cumulative Stage
uncertainty uncertainty Stage uncertainty | uncertainty
63 % Climate 63 % Climate 0.23 0.23
9% Climate + Hydrology + Hydraulic 100 "/; Hydraulic 0.37 0.04
Fraction of considered uncertainty (Range) Projected flood inundation
c) d) (Standard deviation)
Cumulative Stage
Stage uncertainty | uncertainty
74 % (E i 74 % Climate 0.026 0.026
8 % Climate + Hydrology + Hydraulic 100 % Hydraulic 0.035 0.0026

Fraction of considered uncertainty (Standard deviation)

F1G. 8. Decomposition of the uncertainty in the projected flood inundation extents for year 2099 using two
different measures: (a),(b) range and (c),(d) standard deviation. The individual and combined sources of uncer-
tainties (climate, hydrology, and hydraulics) in the flood inundation projection chain are shown. In (a) and (c) the
percentage values under stage uncertainty indicate the proportion of the uncertainty that each stage contributes to
the total uncertainty; the percentage values under cumulative uncertainty indicate the proportion of the cumulative
uncertainty up to that particular stage. The individual stage uncertainty and cumulative uncertainties up to the
corresponding stage are shown using range in (b) and standard deviation in (d).

For making real-world decisions, more detailed studies are
needed that account for adaptation and mitigation measures,
such as the effect of dams and levees on flood risk.
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