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ABSTRACT: Flood-related risks to people and property are expected to increase in the future due to environmental and

demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design

and implementation of flood riskmanagement strategies. Here we develop an integratedmodeling framework to assess projected

changes in regional riverine flood inundation risks. The framework samples climatemodel outputs to force a hydrologicmodel and

generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the

uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of

Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing

with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin,

and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty

dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic

uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and

dynamic flood-risk assessments and help to inform the design of risk-management strategies.

KEYWORDS: Hydrology; Climate prediction; Communications/decision making; Flood events; Risk assessment

1. Introduction

Floods drive major damages to communities across the

globe, with an estimated annual average loss of U.S. $104

billion (UNISDR 2015). These impacts are expected to rise in

the future as the climate is changing and urbanization is

changing exposure (Alfieri et al. 2015; Hirabayashi et al. 2013;

Wing et al. 2018; Winsemius et al. 2016). There is increasing

interest in improving the understanding and quantification of

future flood hazards in a changing climate (Judi et al. 2018;

Gangrade et al. 2020; FSF 2020). There is also growing rec-

ognition of the critical need to enhance the communication of

flood hazards and its associated uncertainties to inform

stakeholders and the design and implementation of flood risk

management strategies (Collet et al. 2018; Kundzewicz et al.

2018; Sanders et al. 2020). The design of flood-risk manage-

ment strategies can be improved by information about future

flood hazards that is based on the best current understanding of

the future climate system (Alfonso et al. 2016; Sorribas et al.

2016; Srikrishnan et al. 2019; Zarekarizi et al. 2020).

In the United States, the Federal Emergency Management

Agency (FEMA) is responsible for producing Flood Insurance

Rate Maps (FIRMs) specifying the boundaries of zones

deemed to be most vulnerable to fluvial and coastal flooding

(FEMA 2019). The most common delineations are the 100-

and 500-yr floodplain boundary, which depict the inundation

extent for floods assessed to have a 1% and 0.2%, respectively,

chance of being reached or exceeded in any given year. These

estimates are widely used by federal, state, and local agencies

in the United States for setting national-level flood insurance

requirements and managing development in the floodplain at

the community level (FEMA 2019).

The FEMA flood maps can provide very useful information,

but they are also subject to several limitations (Bales and

Wagner 2009; Merwade et al. 2006, 2008; Pappenberger et al.

2005, 2006). For one, they do not account for uncertainties

associated with the estimation and mapping of flood inunda-

tion (Merwade et al. 2008; Lin et al. 2013) and assume that the

flood-event time series is stationary (Villarini et al. 2009).

Historical records often reveal nonstationarity due to multiple

factors such as changes in precipitation patterns, land cover

alterations, and water transfers, among others (Jovanovic et al.

2016, 2017, 2018). Here we design, test, and discuss a framework

to derive probabilistic flood inundation projections that accounts

for key nonstationarities associated with climate change.

Flood risk can be assessed in terms of hazard, exposure, and

vulnerability (Arnell andGosling 2014; Hirabayashi et al. 2013;

Ruhi et al. 2018; Wing et al. 2018; Keller et al. 2020). Hazard

refers to the nature, magnitude, and probability of a flood

event. Exposure in this case characterizes factors such as the

population and value of assets within the floodplain that are

likely to experience flooding. Vulnerability characterizes how

sensitive the impacts are for a given hazard and exposure. A

sound understanding of these risk drivers is important to in-

form the design of risk management strategies, for example,

deciding when and where to acquire land, or floodproofing
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infrastructure. Past flood risk assessments have focused on the

global scale (Alfieri et al. 2017; Hirabayashi et al. 2013;

Jongman et al. 2015; Winsemius et al. 2016; Ward et al. 2015),

continental scale (Alfieri et al. 2015; Feyen et al. 2012; Wing

et al. 2018), or local watershed scale (Cheng et al. 2017; Dibike

and Coulibaly 2005; Dobler et al. 2012; Wu et al. 2014).

Recently,Wing et al. (2018) presented estimates of current and

future flood risk across the United States. This study finds that

nearly 41 million of the U.S. population live within the 1%

annual exceedance probability floodplain (compared to only

13 million when calculated using the FEMA flood maps). This

difference is largely due to the inclusion of small streams by

Wing et al. (2018) that have not been mapped by FEMA. The

future flood risk estimates byWing et al. (2018) do not account

for future climate projections. These estimates were recently

expanded by Bates et al. (2021) to include future climate

projections andmultiple types of flooding—fluvial, pluvial, and

coastal. However, they did not try to quantify the key sources

of uncertainty in flood inundation projections. In addition,

most hydrological responses to extreme events are highly re-

gional, and water resources management is often carried out at

river basin scales (Hattermann et al. 2017; Varis et al. 2004).

Local decision-making scales require local information (Aich

et al. 2016; Collet et al. 2018; Demaria et al. 2016; Huang et al.

2013; de Moel et al. 2015).

The main objective of this study is to develop an inte-

grated hydroclimatic modeling framework to assess regional

flood hazards and exposure for future climatic conditions.

The framework combines five main components: 1) statisti-

cally downscaled daily precipitation and near-surface temper-

ature projections (Pierce et al. 2014); 2) the National Oceanic

and Atmospheric Administration’s (NOAA) Hydrology

Laboratory–Research Distributed Hydrologic Model (HL-

RDHM) (Koren et al. 2004); 3) the Generalized Pareto dis-

tribution (GPD)-based extreme value model (Coles 2001); 4)

the LISFLOOD-FP hydraulic model (Neal et al. 2012); and

5) a uncertainty quantification methods applied to these com-

ponents. The framework involves hydrologic modeling driven

by climate ensembles to generate streamflow projections; sta-

tistical modeling to estimate flood peaks; hydraulic modeling

to estimate water surface elevations; terrain analysis tomap the

inundation extents; and uncertainty decomposition to quantify the

key uncertainty sources in flood inundation projections. We im-

plement this integrated hydroclimatic modeling framework for a

regional-scale case study to analyze two interrelated questions: 1)

How does climate change alter regional flood hazard and expo-

sure projections? and 2)What drives the total uncertainty in flood

inundation projections? In this study, we focus on the hazard and

exposure components of flood risk.

Flood inundation projections are subject to multiple sources

of uncertainty. These sources include projections of future

climate, as well as hydrologic and hydraulic modeling. Previous

studies highlight the dominating influence of climate model–

driven uncertainty relative to the total uncertainty in extreme

flood projections (Hirabayashi et al. 2013; Vetter et al. 2017).

Most studies focus on quantifying individual sources of un-

certainties in extreme flood projections (Bosshard et al. 2013;

Qi et al. 2016), and are silent on the relation between individual

sources of uncertainty and the total uncertainty of flood in-

undation projections (Kim et al. 2019). In addition, previous

studies often ignore the effects of hydraulic modeling and

mapping on flood inundation extents when assessing climate

change impacts on flood projections (Bosshard et al. 2013; Kim

et al. 2019). Thus, the relative contribution of hydraulic un-

certainty to the total flood inundation projection uncertainty

is often unknown. Here we quantify key uncertainties in the

flood inundation projection chain, including uncertainties in

climate model outputs, hydrologic and hydraulic modeling

for a case study.

To implement the proposed modeling framework, we assess

flood hazards and exposure across the state of Pennsylvania,

which is located in the Mid-Atlantic region of the United

States. Flooding has been the most frequent and most dam-

aging natural disaster in Pennsylvania (PEMA 2017), causing

an average $92 million loss a year during 1996 and 2014

(USDOE 2015). Regionally, there is strong evidence of rising

temperatures, altered precipitation patterns (Hayhoe et al.

2018; Shortle et al. 2015), and increasing intensity of flood

events (Sagarika et al. 2014; Zhang et al. 2010). Historical cli-

mate records show that temperatures in Pennsylvania have

already increased by more than 1.88F since the early twentieth

century (Shortle et al. 2015). Similarly, average annual pre-

cipitation in Pennsylvania has increased by approximately 10%

over the past 100 years and, by 2050, it is expected to increase

by 8% (Kang and Sridhar 2018; Shortle et al. 2015). There has

been an increase in the frequency and magnitude of dam-

aging flood occurrence in communities across Pennsylvania.

For instance, the most destructive floods in the Susquehanna

and Delaware River basins have occurred in recent years,

each associated with different flood-generating mecha-

nisms: Hurricane Ivan (September 2004), late winter–early

spring extratropical systems (April 2005), warm-season

convective systems (June 2006), and tropical storm Lee

(September 2011) (Armstrong et al. 2014; Smith et al. 2010,

2011). There is a critical need to better understand future

flood risks in Pennsylvania (Iulo et al. 2020).

The remainder of the paper is organized as follows. Section 2

presents the methods used in this study. The main results and

their implications are examined in section 3. Last, section 4

summarizes key findings.

2. Materials and methods

We develop and implement an integrated hydroclimatic

modeling framework consisting of downscaled climate model

outputs, a hydrologic model, a nonstationary extreme value

model, a hydraulic model, and uncertainty quantification (Fig. 1).

The proposed framework uses downscaled climate projections for

precipitation and temperature to force the NOAA’s HL-RDHM

(Koren et al. 2004) resulting in future projected streamflow at

selected gauged locations in Pennsylvania. The projected

streamflow is statistically postprocessed to compute extreme

flows with 100-yr return periods. The 100-yr flood peaks are

used as boundary conditions to the hydraulic model LISFLOOD-

FP (Bates et al. 2013) to generate flood inundation projections.

Finally, the flood inundation projections are used to analyze flood
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hazards and exposure.Next, we describe the datasets,models, and

techniques involved in our overall workflow (Fig. 1).

a. Datasets

For the observational datasets, we use multisensor pre-

cipitation estimates (MPEs), gridded near-surface air tem-

perature, and streamflow observations at selected U.S.

Geological Survey (USGS) gauges. These observational

datasets are used to calibrate the hydrological model. We

use hourly gridded MPEs and near-surface air temperature

data at 4 3 4 km2 from the NOAA’s Middle Atlantic River

ForecastCenter. Similar to theNationalCenters forEnvironmental

Prediction’s Stage-IV dataset (Prat and Nelson 2015), the MPEs

provided by the River Forecast Center represent a continuous

time series of hourly, gridded precipitation observations at 4 3
4km2 cells. The gridded near-surface air temperature data at 43
4km2 resolution were developed by the River Forecast Center by

combining multiple temperature observation networks as de-

scribed by Siddique and Mejia (2017). We obtained daily

streamflow observations for the selected gauged locations from

the USGS (https://waterdata.usgs.gov/nwis/rt).

For the climate ensemble, we use the localized constructed

analogs (LOCA; Pierce et al. 2014) of daily precipitation and

near-surface temperature outputs for 13 general circulation

models from the Coupled Model Intercomparison Project

CMIP5 datasets. The CMIP5 outputs are for model runs forced

by emissions corresponding to Representative Concentration

Pathway scenario 8.5 (RCP8.5) (Taylor et al. 2012; Meinshausen

et al. 2011). The 13 considered climate models are CESM1-

CAM5, CanESM2, EC-EARTH, GFDL-ESM2M, GISS-E2-R,

HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-

MR, MPI-ESM-LR, MPI-ESM-MR, BCC-CSM1-1, and INM-

CM4 (Table 1). These climate models are selected since they

demonstrate improved skill and reliability across theNortheast

region (Demaria et al. 2016). The downscaledmodel outputs are at

6 3 6 km2 spatial resolution and provided at https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html.

We use bilinear interpolation to transform the climate model out-

puts to the 43 4km2 grid cell resolution of the hydrological model.

b. Hydrological model

We use the NOAA’s HL-RDHM as the hydrological model

(Koren et al. 2004). HL-RDHM is a spatially distributed concep-

tualmodel, where the basin system is divided into regularly spaced,

square grid cells to sample spatial heterogeneity and variability.

We run HL-RDHM at a spatial resolution of 4 3 4km2.

FIG. 1. Flowchart illustrating the general methodological approach for flood inundation risk

projections. The approach starts with the climate model outputs, which are used to drive the

hydrologic model and generate streamflow projections. Together with the statistical and hy-

draulic model, the projected streamflow is then used tomap the uncertainty of flood inundation

projections for extreme flood events. DEM 5 digital elevation model.
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Within HL-RDHM, we use the Sacramento Soil Moisture

Accounting model with Heat Transfer (SAC-HT) to represent

hillslope runoff generation, and the SNOW-17 submodel is

used to represent snow accumulation and melting. The hill-

slope runoff, generated at each grid cell by SAC-HT and

SNOW-17, is routed to the stream network using a nonlinear

kinematic wave algorithm (Koren et al. 2004; Smith et al.

2012). Likewise, we route flows in the stream network down-

stream using a similar nonlinear kinematic wave algorithm that

accounts for parameterized stream cross-section shapes (Smith

et al. 2012; Koren et al. 2004). HL-RDHM has successfully

been used before to predict and map flood events under a wide

range of conditions within our study area (Gomez et al. 2019;

Sharma et al. 2018; Siddique andMejia 2017; Zarzar et al. 2018).

Following previous studies (Koren et al. 2004; Reed et al.

2004), we calibrate HL-RHDM by adjusting a subset of model

parameters. Specifically, we select ten out of the 17 SAC-HT pa-

rameters based upon prior experience and preliminary parameter

sensitivity tests. The adjusted parameters are associated with

baseflow, percolation, evaporation, storm runoff and channel

routing. To calibrate the selected HL-RDHM parameters, we

multiply each a priori parameter field by a factor. It is these mul-

tiplying factors that are actually calibrated, not the parameter

values in each grid cell. We calibrate the model at the outlet of

major river basins in Pennsylvania. Thus, the scaling factors (mul-

tipliers) for the nested subbasins within the calibrated ones remain

the same. The multiplying factors are adjusted manually first; once

themanual changes donot yieldnoticeable improvements inmodel

performance, the factors are optimized using the automatic tech-

nique of stepwise line search (SLS) (Kuzmin 2009; Kuzmin et al.

2008). We use this approach as it is readily available within HL-

RDHM and has been shown to provide reliable parameter esti-

mates (Kuzmin 2009; Kuzmin et al. 2008; Sharma et al. 2018;

SiddiqueandMejia 2017).Weoptimize theobjective function (OF)

OF5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i51

m

[q
i
2 s

i
(V)]2

s
, (1)

where qi and si denote the daily observed and simulated flows

at time i, respectively; V is the parameter vector being esti-

mated; and m is the total number of days used for calibration.

To assess the performance of HL-RDHM, we compare the

daily simulated flows with daily observed flows from USGS

gauges. The model is calibrated during 2008–12 at selected

USGS gauge stations for the major river basins in Pennsylvania.

We use the year 2007 to spin up the model. We validate the

model performance by randomly selecting a set of 26 uncali-

brated gauge stations for the same time period of 2008–12. This

approach is adopted to ensure the streamflow simulation per-

formance is reasonable for basins with different sizes.We do not

calibrate each gauged basin because of computational and time

constraints.

We obtain the simulated flows by forcing the model with

gridded precipitation and near-surface temperature observations.

For calibration, we use 24-hourly precipitation accumulations to

force HL-RDHM and generate daily flows. The meteorological

datasets used to calibrate the model may not fully resolve the

variability of the meteorological forcing. This is an area, together

with calibration approaches, of continued improvement.

To assess the quality of the streamflow simulations fromHL-

RDHM, we employ the modified correlation coefficient (Rm)

(McCuen and Snyder 1975) and Nash–Sutcliffe efficiency (NSE)

(Nash and Sutcliffe 1970) as performance measures. Overall, the

performanceof the simulated streamflow is deemed satisfactory at

both the calibration and validation gauge stations (Fig. 2). TheRm

for the calibration stations is greater than 0.90. Likewise, the NSE

ranges from 0.75 to 0.85 for the calibration stations (Fig. 2). The

Rm for the validation stations ranges from;0.80 to 0.95, while the

NSE ranges from ;0.60 to 0.75 (Fig. 2).

c. Nonstationary extreme value analysis of flood events

Statistical distributions of extreme floods are widely used

to inform flood-sensitive infrastructure design, floodplain

mapping, risk assessment and environmental management

(Bopp et al. 2020; Bracken et al. 2018; Villarini et al. 2009).

Traditional approaches for extreme flood estimation use his-

torical records and assume stationarity in streamflow time series

(FEMA 2019). In a changing climate, however, traditional ap-

proaches can lead to poor hazard estimates (Pralle 2019).Herewe

compute extreme floods allowing for nonstationary conditions.

For this, we use the peak over threshold approach with a Poisson

point process parameterization of the GPD (Coles 2001). As

TABLE 1. The 13 models of the Coupled Model Intercomparison Project phase 5 (CMIP5) used in this study.

Modeling center (or group) Institute ID Model name

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1

Community Earth System Model Contributors NSF-DOE-NCAR CESM1-CAM5

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2

EC-EARTH consortium EC-EARTH EC-EARTH

NOAA/Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R

Met Office Hadley Centre MOHC HadGEM2-CC

Met Office Hadley Centre MOHC HadGEM2-ES

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-LR

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-MR

Institute of Numerical Mathematics INM INM-CM4
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opposed to selecting a single peak flood per year, the peak over

threshold approach enables us to use daily streamflow data that

exceed a specified threshold to fit the GPD model parameters.

This approach allows us to consider more information about the

extremes. We use a constant threshold m equal to the 95th per-

centile of the daily maximum flow (Lang et al. 1999).

The probability density function for the GPD model is de-

fined by

f [x(t);m(t),s(t), j(t)]5
1

s(t)

h
11 j(t)

x(t)2m(t)

s(t)

i2� 1

j(t)
11

�
,

(2)

where x is the daily streamflow observations for current flood

peak estimates or the projected daily streamflow for future

flood peaks, s is the scale parameter that governs the width of

the distribution, and j is the shape parameter that governs the

heaviness of the distribution’s tail, all as functions of time t. The

Poisson process governs the probability p of observing n ex-

ceedances of threshold ? during a time interval Dt:

p[n(t); l(t)]5
[l(t)Dt]n(t)

n(t)!
exp[2l(t)Dt] , (3)

where l is the Poisson rate parameter. We incorporate po-

tential nonstationary into the GPD model by allowing the

model parameters to covary with time (Papoulis and Pillai

2002; Koutsoyiannis 2006) such that

l(t)5l
0
1 l

1
(t) ,

s(t)5 exp[s
0
1s

1
(t)],

j(t)5 j
0
1 j

1
(t) , (4)

where l0, l1, s0, s1, j0, and j1 are regression parameters.

Further, if l15 s15 j15 0, theGPD parameters l(t), s(t), and

j(t) are constant, yielding a stationary statistical model.

We adopt a Bayesian approach and use Markov chain

Monte Carlo sampling for parameter estimation (Stephenson

and Tawn 2004). This approach combines the knowledge

brought by a prior distribution and the observations into

the parameters’ posterior distribution. We produce 105

iterations for one MCMC chain and remove the first 25 000

iterations to account for burn-in. We develop separate

GPD models for the period of 1981–2017 and 2020–99 to

estimate 100-yr flood peaks in 2017 and 2099, respectively.

The stationary GPD model for the period of 1981–2017 is

based on historical streamflow observations. The nonsta-

tionary GPD model for the period of 2020–99 is based on

flow projections obtained by forcing HL-RDHM with the

GCM outputs.

d. Regionalization of the 100-yr flood peaks

To map the flood extent for an entire region with the

LISFLOOD-FP hydraulic model, we need to estimate the

100-yr flood peak for any river location within that region since

these estimates are used as boundary conditions by the

LISFLOOD-FP. From the flood frequency analysis with the

GPD distribution, we obtain estimates of the 100-yr flood peak

at selected gauged locations. To regionalize these estimates, we

use a scaling relationship between the 100-yr peak Qp and the

drainage area A:

Q
p
5bAa , (5)

where b is the proportionality constant and a the scaling ex-

ponent. The parameters in Eq. (5) are estimated using ordinary

least squares (England et al. 2018; Smith et al. 2011).

e. Flood inundation mapping

We use the LISFLOOD-FP hydraulic model (Bates et al.

2013) with the subgrid formulation to simulate and project

flood inundations along rivers in Pennsylvania. LISFLOOD-

FP is a 2D hydraulic model for subcritical flow that solves the

local inertial form of the shallow water equations using a finite

difference method on a staggered grid. The model requires as

input ground elevation data describing the floodplain topog-

raphy, channel bathymetry information (river width, depth,

and shape), and inflow to themodeling domain as the boundary

condition information. To apply LISFLOOD-FP, we use the

subgrid-scale hydrodynamic scheme of Neal et al. (2012) to

solve the momentum and continuity equations for both chan-

nel and floodplain flow. The scheme operates on a rectangular

grid mesh of the same resolution as the input DEM, using a

finite difference scheme to solve the governing equations.

River width and depth are assumed to be uniform along the

reach. The cells’ water depths are updated using mass fluxes

between cells while ensuring mass conservation. To configure

LISFLOOD-FP, we use floodplain topography information

from the Pennsylvania Spatial Data Access archive (PASDA;

https://www.pasda.psu.edu/), and extreme flood events from

the nonstationary GPDmodel and scaling relationship in Eq. (5).

We run LISFLOOD-FP for all rivers in Pennsylvania using a

30-m digital elevation model (DEM) from PASDA. In addi-

tion, we use other DEM resolutions, 1 and 10m, at selected

FIG. 2. Map illustrating the major river basins in Pennsylvania. The

map also shows the hydrologic model calibration and validation gauge

stations, and the corresponding performance of the hydrologic simu-

lations based on the Nash–Sutcliffe efficiency (NSE) index.
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locations as part of our uncertainty analysis (section 2g). Peak

flows with 100-yr return period are used as the inflow boundary

condition. Channel bathymetry is estimated using regional,

hydraulic-geometry scaling relationships from previous studies

(Cinotto 2003; Chaplin 2005; Clune et al. 2018; Roland and

Hoffman 2011). This approach is useful when bathymetry data

are not available (Mejia and Reed 2011a,b). We use a constant

Manning’s roughness value of 0.045 for both the channel and

floodplain. The chosenManning’s roughness value is similar to

values previously used for rivers in Pennsylvania (Newlin and

Hayes 2015). Structural flood mitigation barriers, such as le-

vees are not explicitly incorporated into the hydraulic analysis.

This decision ismade sincemany levee systems in Pennsylvania

are near their design life, and most of these systems have not

been properly rehabilitated and were designed using outdated

statistical flood estimates (PIRC 2018). Furthermore, it is

challenging to evaluate in advance whether levees will perform

as intended under current and future climatic conditions,

since a levee system’s failure may be defined by idiosyncratic

causes. An alternative would be to compare model simulations

with and without flood mitigation barriers, where levees are

incorporated into LISFLOOD-FP following approach by

Bates et al. (2021). Such an alternative is outside the scope of

this study.

f. Flood hazards and exposure analysis

We assess flood hazards and exposure in all cities and bor-

oughs in Pennsylvania for current and projected future climatic

conditions. Pennsylvania has 959 boroughs and 56 cities.

Boroughs are defined as incorporated political subdivisions

and are mostly less populous than cities. Most of the boroughs

in Pennsylvania have populations under 5000, though there are

some exceptions. Some major cities in Pennsylvania include

Philadelphia (with more than one million residents), Pittsburgh,

and Scranton.

We characterize flood hazards by the extent of flooding

resulting from the 100-yr flood peak. We calculate flood ex-

posure from the population within the flood extent. Flood

hazards and exposure are both expressed as percentages. The

percent hazard is the flood inundation area standardized to the

total area of a city/borough. The percent exposure is the pop-

ulation in the flood inundation area standardized to the total

population of a city/borough.We use population from the 2010

U.S. Census Bureau data (U.S. Census Bureau 2010). For a

particular borough/city, we disaggregate the total population

based on the urban development intensity of each developed

grid cell in the 2011 National Land Cover Database (Homer

et al. 2012). The National Land Cover Database provides the

definitive Landsat-based, 30-m resolution, land cover database

for the United States.

g. Assessing key uncertainties of the flood

inundation projections

To assess key uncertainties in flood inundation projections,

we use a cumulative uncertainty approach (Kim et al. 2019).

This approach decomposes the total uncertainty to individual

uncertainty sources, such that the sumof the uncertainties from

individual sources is equal to the total uncertainty in flood

inundation projections. We consider uncertainty from three

key sources in the flood inundation projection chain: climate,

hydrology, and hydraulics. Climate uncertainty in this case is

the uncertainty sampled by the information derived from the

global climate model runs. Hydrologic uncertainty refers to the

uncertainty in the GPD model parameters obtained using

Bayesian inference. Hydraulic uncertainty is sampled by the

topographic uncertainty due to the choice of different DEM

resolutions: 1, 10, and 30m.

For the uncertainty assessment, we compute the stage un-

certainty as the contribution to uncertainty from each of the

three stages (climate, hydrology and hydraulic) in the flood

inundation projection chain. This analysis samples a relatively

small subset of potentially important uncertainties. For ex-

ample, we sample just a subset of climate models, initial

conditions, and climate model parameters (Sriver et al. 2015).

Further, the analysis accounts for the hydrologic uncertainty

associated with the GPD’s parameters while the HL-RDHM

model’s parameters are fixed. We sample hydraulic uncer-

tainty by considering the topographic uncertainty due to the

choice of different DEM resolutions. Such consideration

neglects the contribution of potentially important uncer-

tainties, including channel width, channel shape, and channel

roughness.

To characterize the stage uncertainty, we first compute the

conditional cumulative uncertainty up to a particular stage,

which is defined as the variation in the projected flood inun-

dation extent due to the modeling choices up to that stage,

while the choices beyond that stage are fixed. For instance,

conditional cumulative uncertainty up to the hydrology

stage represents the variation in flood inundation projec-

tions due to the choice of different GCM outputs and GPD

parameters, while the DEM resolution is fixed. Then the

marginal cumulative uncertainty up to a particular stage is

computed as an average of conditional cumulative uncer-

tainties. Finally, we compute the uncertainty of each stage

as the difference between successive marginal cumulative

uncertainties.

Specifically, we calculate stage uncertainty as follows. We

denote by K the total number of stages in the flood inun-

dation projection chain, in this case K 5 3 (climate, hy-

drology, and hydraulic stage). For a particular stage k, there

are xk models/scenarios. The cumulative uncertainty up to

stage k is defined as the variation in the projected values due

to the choice of models/scenarios up to stage k, while the

models/scenarios after stage k are fixed. The cumulative

uncertainty up to stage k is denoted byUcum(x1, . . . , xk). For

the specific models/scenarios of stage k, we let P(x1, x2, . . . ,

xK) be the projected value using the models/scenarios xk,

k 5 1, . . . , K. For a given model/scenario after stage k, the

set of projected values are

q
xk11,...,xK

5 [P(x
1
, . . . , x

k
, x

k11
, . . . , x

K
): x

j
2 x

j
, j5 1, . . . ,k].

(6)

Then Ucum(qxk11,:::,xK) can be interpreted as the conditional cu-

mulative uncertainty up to stage k while the models/scenarios

after stage k are fixed as xk11, . . . , xK. The marginal cumulative
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uncertainty up to stage k is the average of conditional cumula-

tive uncertainties defined as

Ucum(x
1
, . . . , x

k
)5

1

P
K

j5k11

n
j

�
xk112xk11

� � � �
xK2 xK

U(q
xk11,...,xk

). (7)

Since the cumulative uncertainty increases monotonically

(Kim et al. 2019), we can define the uncertainty of each stage as

the difference between successive cumulative uncertainties.

That is, the uncertainty of stage k, denoted by Ucum(xk), is

defined as

Ucum(x
k
)5Ucum (x

1
, . . . , x

k
)2Ucum(x

1
, . . . , x

k21
). (8)

The uncertainty of each stage is the amount of contribution to

the cumulative uncertainty. Also, the sum of uncertainties of

individual stages is always equal to the total uncertainty

Ucum(x1, . . . , xk). The uncertainty of stage k can also be defined

as the sum of the variation of the main effect of stage k and the

variations of the interactions between stage k and stages af-

ter k.

The stage uncertainty and cumulative uncertainty are

both expressed in terms of the range (Chen et al. 2011) and

standard deviation (Bosshard et al. 2013) of the projected

flood inundation extents. For a real number y5qxk11,...,xK

and a set of y{y1, . . . , yn}, the range and standard deviation

are defined as

range5max
1#i#n

y
i
2min

1#i#n
y
i
, (9)

standard deviation5
1

n
�
i51

n

(y
i
2 y) , (10)

where y5 (1/n)�n

i51yi.

3. Results and discussion

a. Regional flood frequency analysis

We summarize the results obtained from the regional flood

frequency analysis using the scaling relationship between the

100-yr flood peak Qp and the drainage area A. For years 2017

and 2099, we find that the scaling of the 100-yr flood peaks with

drainage area performs reasonably well with a Pearson corre-

lation coefficient R exceeding 0.9 (Fig. 3). The years 2017 and

2099 are used for all our flood risk analyses and results. Figure 3

shows the mean 100-yr flood peak estimates and projections in

years 2017 and 2099, respectively, as well as the estimates under

the stationary assumption for historical flood records. Flood peak

estimates and projections in years 2017 and 2099 are based on the

estimated and projected streamflow, respectively, obtained by

forcing HL-RDHM with the climate models’ outputs.

The nature of the scaling relationships (Fig. 3) has implica-

tions for flood-riskmanagement. Based on the power-law fits in

Fig. 3, the ratio between the 100-yr flood peak for 2099, Qp,2099,

and 2017,Qp,2017, isQp,2099/Qp,20175 1.50A20.0196. The ratio of the

flood peaks indicates that the drainage area has a small and slightly

negative amplification effect on future flood peaks since the value

of the scaling exponent for the ratio,20.0196, is small. The ratio of

the flood peaks also shows that the flood-peak amplification as-

sociated with climate projections is mainly due to the value of the

proportionality constants in the power-law fits. Taken together,

these results suggest that future increases in flood peaks from cli-

mate projections tend to have a disproportionate effect on smaller

basins. Many flood-related management decisions, for example,

those associated with stormwater management, are made in

smaller basins, which adds urgency to the need of adapting local

flood regulations and design standards to account for potentially

changing climate conditions. In addition, the regionalized flood

frequency approach allows estimating flood peaks in areas with

missing or poor quality of records, facilitating the analysis of both

gauged and ungauged river and stream networks.

The stationary assumption underestimates the 100-yr flood

peaks relative to the nonstationary flood peaks (Fig. 3). In

other words: assuming stationary flood peaks can underesti-

mate actual flood hazards in our analysis. For example, the

flood hazards further increase with the nonstationary flood

peak projections for the year 2099 relative to the 2017 non-

stationary flood estimates (Fig. 3). As compared to the flood

peak estimates for 2017, the projected flood peak is higher, in

terms of absolute values, in the case of larger basins, as implied

by the scaling relationships obtained.

b. Flood hazard and exposure from future

climatic conditions

Our results suggest that most cities (Figs. 4a,b) and boroughs

(Figs. 4c,d) in Pennsylvania are projected to face higher flood

FIG. 3. Scaling of the 100-yr flood peak with the drainage area for

locations in Pennsylvania. The scaling relationship is shown for

current (2017) and projected flood peak estimates (2099). Flood

peak estimates for year 2017 are based on the historical flood

records under the stationary and nonstationary assumption. The

flood peaks for 2099 depict the mean flood projections, and the

corresponding error bar represents the maximum and minimum

projected flood peak. The solid lines represent the best fit line

under the stationary assumption (gray line) as well as the nonsta-

tionary assumption in 2017 (black line) and 2099 (brown line).
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hazards and exposure under future climatic conditions in the

year 2099. Populous cities, however, seem to have relatively

lower flood hazards and exposure. For instance, the three

largest cities (Philadelphia, Pittsburgh, and Scranton) show

relatively low projected flood hazards and exposure compared

to smaller cities (Figs. 4a,b). Our analysis suggests that these

cities have less than 25% projected flood hazards and exposure

in 2099.

Some of the cities with the highest projected flood hazards

include Sunbury,Williamsport, LockHaven,Warren, Bradford,

Wilkes Barre, Johnstown, York, and Connellsville (Fig. 4a; refer

to Table S1 in the online supplemental material). These cities

are projected to have more than 50% flood hazards and expo-

sure. The top three cities with the highest projected flood

hazards are Lock Haven, Williamsport, and Sunbury (Fig. 4a),

which are all located along the West Branch Susquehanna

River. Importantly, based on NOAA’s National Centers for

Environmental Information (NCEI) storm events database

(https://www.ncdc.noaa.gov/stormevents/), these three cities

have all experienced a substantial number of flood events over

time, including events within the last decade, suggesting that

our flood hazard metric can capture hotspot areas prone to

flooding within Pennsylvania. Specifically, the West Branch

Susquehanna River at Williamsport has experienced 40 flood

events between 1864 and 2018 (NCEI 2020). Lock Haven has

experienced 21 flood events between 1889 and 2010, while

Sunbury has experienced 14 flood events between 1936 and

2011 (NCEI 2020). The cities with the highest projected ex-

posure include Bradford, Sunbury, and Bethlehem (Fig. 4b),

which are also cities with high flood hazards. Of all the con-

sidered cities, Sunbury demonstrates the highest projected

flood hazards and exposure (Figs. 4a,b). Sunbury is located at

the confluence between the West and North Branch of the

Susquehanna River. This makes Sunbury particularly vulner-

able to flooding as flood events can occur in either branch of the

Susquehanna River (FCSMA 2020).

Boroughs around the high hazards/exposure cities tend to

have higher hazards and exposure (Figs. 4c,d). For example,

most of the boroughs around the cities of Lock Haven,

Williamsport, and Sunbury, and particularly along the West

Branch Susquehanna River, show higher flood hazards and

exposure. Boroughs along the West Branch Susquehanna

River, including Duboistown, Montgomery, Muncy, South

Williamsport, Lewisburg, Milton, and Selinsgrove are pro-

jected to have more than 50% flood hazards and exposure

(refer to Table S2). Neighboring boroughs to the largest met-

ropolitan area (Philadelphia) generally have lower flood haz-

ards and exposure. For example, most of the boroughs around

Philadelphia are projected to have less than 25% flood hazards

and exposure.

Some of the projected flood hazards and exposure tend to be

spatially clustered (Fig. 4). By visually inspecting our flood

FIG. 4. Projected flood hazard and exposure in year 2099 for all the (a),(b) cities and (c),(d) boroughs in

Pennsylvania. Hazard (%) indicates the inundation area standardized to the total area of a city or borough.

Exposure (%) indicates the population in the projected flood inundation extents standardized to the total pop-

ulation of a city or borough. There are 959 boroughs and 56 cities in Pennsylvania.
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hazards and exposure maps (Fig. 4), we identify the most sa-

lient clusters. The high hazards and exposure clusters are pri-

marily concentrated along theWest Branch of the Susquehanna

River, the southwest portion of the Susquehanna basin (also

called Juniata subbasin), the lower portion of the Allegheny

basin (Figs. 2 and 4), and the central portion of Delaware River

basin. The historical records associated with these clusters show

that these areas are prone to frequent and severe flooding. For

example, themainstem of the Susquehanna andDelawareRiver

have experienced several devastating floods in past decades,

with the four most recent events in the years 2004, 2005, 2006

and 2011 (Gitro et al. 2014; Suro et al. 2009). These historical

events caused record to near-record flood crests along most of

the streams and rivers throughout the main stem Susquehanna

and Delaware River. For instance, for the Susquehanna

and Delaware River flood event of 2004, peak discharges

on the unregulated reaches remained below a 50-yr re-

currence interval, while at the regulated reaches it equaled

or exceed the estimated 100-yr recurrence interval (Brooks

2005). Many communities that were flooded during the

2004, 2005, and 2006 floods were again flooded in 2011

(Gitro et al. 2014).

Several factors, including development, stormwater man-

agement, floodplain encroachment and reservoir management,

have been hypothesized as contributing and exacerbating fac-

tors for recent flooding in the Susquehanna and Delaware

River basins (Brooks 2005; DRBC 2006). Many of these his-

torical flood events have been caused by different flood gen-

erating mechanisms: Hurricane Ivan (September 2004), late

winter–early spring extratropical systems (April 2005), warm-

season convective systems (June 2006), and Tropical Storm

Lee (September 2011) (Smith et al. 2010, 2011). The impor-

tance of tropical cyclone projections points to an important

caveat as well as a research need. This is because resolving the

relevant scales and physical mechanisms is still challenging in

climate models (Strachan et al. 2013; Knutson et al. 2015; Gori

et al. 2020). Global climatemodel outputs do not resolve all the

weather and climate phenomena relevant to flood-producing

rainfall events. Nonetheless, current climate projections,

such as CMIP data, provide valuable data to inform flood risk

assessments. As global climate models are constantly evolv-

ing, it is important to develop flood-risk assessment meth-

odologies that can facilitate the incorporation of climate

projection data. This is in part our aimwith this regional flood

risk approach. An alternative is to employ approaches that

statistically combine climate projections with other sources

of data, such as tropical storms’ simulations, to improve

the representation of flood-producing rainfall events not

captured by the latest climate projection datasets (Bates

et al. 2021).

Our integrated modeling framework enables a quantitative

(and approximate) assessment of flood hazards and exposure

of cities and boroughs for projected future climatic conditions.

Traditionally, flood hazard estimates are only produced under

existing conditions using historic flood records to characterize

current risks (FEMA 2019). By using GCM projections, we

sample key effects of changing climatic conditions to estimate

how flood hazards and exposure can change over the decades

across cities and boroughs in Pennsylvania. Specifically, we

demonstrate amethod that leverages an interconnected system

of data, models, and analyses to provide nonstationary riverine

flood hazard information from local to regional scale. Climate-

informed flood hazard projections provide a more complete

picture of decision-relevant information for the management

of flood risks.

c. Flood risk from future climatic conditions

The intersection of flood hazards and exposure informs

flood-risk assessments (Arnell and Gosling 2014; Hirabayashi

et al. 2013; Ruhi et al. 2018; Wing et al. 2018). Flood risk in-

creases with increasing hazards and exposure. We find a strong

correlation (R. 0.90) between the projected flood hazards and

exposure for boroughs (Fig. 5a) and cities (Fig. 5b). Cities with

higher flood hazard tend to result in higher exposure, with

cities in the Lehigh Valley such as Bethlehem being an ex-

ception (Figs. 4a,b and 5b). For the city of Bethlehem, flood

hazard of approximately 40% is projected to result in about

75% of exposure. Bethlehem is one of the most populous cities

in Pennsylvania, with development mostly concentrated on

both sides of the Lehigh River and Monocacy Creek, which

flow through the city. Flood risk in Bethlehem is driven by the

compounding effects of floods in the Lehigh River and/or

Monocacy Creek. The Lehigh River at Bethlehem has recor-

ded 15 flood events since 1902, while the Lehigh River Valley

itself has experienced 129 flood events between 1950 and 2011

(NCEI 2020).

For boroughs (Fig. 5a), the relation between hazards and

exposure generally shifts above the one-to-one line, indicating

higher exposure for a particular hazard. Increasing exposure

with projected flood hazards further suggests that development

in the boroughs tends to be concentrated in flood-prone areas.

Thus, boroughs may be particularly impacted by the projected

increase in flood hazards. This kind of information can be of

potential use for borough planning authorities that review

regulatory changes in flood hazard zones. Such changes could

include, for example, redirecting land development, revisiting

flood insurance requirements and/or reducing potential risk by

promoting adaptation measures in potential risk zones (Pralle

2019; UNISDR 2015).

Cities and boroughs with highest flood hazards and exposure

in current climatic conditions are projected to be roughly the

same from future climatic conditions (Fig. 6). In Fig. 6, we show

the rank correlation for both flood hazards and exposure be-

tween the years 2017 and 2099. The rank correlation for bor-

oughs is shown in Figs. 6a and 6b and cities in Figs. 6c and 6d.

We find a strong rank correlation (R . 0.95) for both flood

hazards and exposure between years 2017 and 2099. This im-

plies that cities and boroughs with high flood hazard and ex-

posure in 2017 are projected to be approximately in the same

overall situation in 2099 (Fig. 6). However, the frequency dis-

tribution for 2099 indicates a heavy tail for both hazards and

exposure (see insets in Fig. 6). Based on the frequency distri-

bution of boroughs and cities for flood hazards and exposure in

2017 and 2099 (Fig. 6), flood risk is projected to increase in 2099

compared to 2017. Also, the number of cities and boroughs

with high hazards and exposure is projected to increase in 2099.
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For instance, the number of boroughs with hazards greater

than 60% is projected to increase from 96 in 2017 to 170 in 2099

(Fig. 6a), and in terms of exposure, the number of boroughs is

projected to increase from 175 in 2017 to 259 in 2099 (Fig. 6b).

Moreover, there is no city with exposure greater than 80% in

2017 (refer inset in Fig. 6d); however, there is one city

(Sunbury) with exposure projected to be greater than 80%

in 2099.

Our results suggest that flood hazards are increasing under

the considered future climate conditions. Changing flood

hazards may call for changes in flood-mitigation and flood-

adaptation strategies, including floodplain restoration and

protection, climate-informed engineering standards, and

the use of structural and nonstructural measures (de Moel

et al. 2015). These strategies aim to decrease the exposure of

people and property to damaging floods by limiting devel-

opment within high flood risk areas. Indeed, projected flood

risk information, such as our flood hazard and exposure

metrics, should be valuable to stakeholders (e.g., planners,

decision-makers, and engineers) charged with designing and

implementing policies and laws at both local and regional

level.

Our estimates of flood hazards and exposure do not consider

the effects of structural mitigation measures, such as dams and

levees, on flood inundation. Dams and levees play an impor-

tant role in reducing existing flood risk atmany locations within

Pennsylvania (PIRC 2018). By evaluating scenarios with and

without structural mitigation measures, additional valuable

information could be provided to stakeholders. However, it

should also be recognized that the ability of dams and levees to

provide adequate flood protection in the future in unknown,

sincemany of these systems are in need of urgent rehabilitation

and investment (PIRC 2018).

d. Uncertainty quantification in flood inundation
projections

We use a case study to quantify the contribution of key

sources of uncertainties to the projected flood inundation ex-

tents. We focus on Selinsgrove, a riverine community along the

main stem of the Susquehanna River, with a total area of

4.92 km2 and a population of 5654 in 2010 (U.S. Census Bureau

2010). Figure 7 compares the 100-yr flood inundation extents in

the borough of Selinsgrove based on the stationary flood peak

estimate from FEMA, nonstationary flood peak estimate in

2017, and nonstationary flood peak projection for years 2060

and 2099. We find that the FEMA 100-yr flood extent is less

than the projected flood hazard under nonstationary condi-

tions in 2017 derived in this study (Fig. 7). Maybe more im-

portantly, the projected flood hazards increase with future

projections (Fig. 7).

We quantify both the individual and combined sources of

uncertainty in different stages of the flood inundation projec-

tion chain, including the climate, hydrologic and hydraulic

stage. Figure 8 summarizes the uncertainty quantification re-

sults for the 100-yr flood inundation extent in year 2099 using

two uncertainty measures: range (Fig. 8a) and standard devi-

ation (Fig. 8b). In Fig. 8, the percentage in the bracket under

stage uncertainty indicates the proportion of the uncertainty

of each stage contributed to the total uncertainty, while the

percentage in the bracket under cumulative uncertainty in-

dicates the proportion of the cumulative uncertainty up to a

particular stage.

FIG. 5. Correlation between the projected flood hazard and exposure in year 2099 for (a) boroughs and (b) cities.

The black line represents the 1:1 fit. Hazard (%) indicates the inundation area standardized to the total area of a city

or borough. Exposure (%) indicates the population in the projected flood inundation extents standardized to the

total population of a city or borough. The value of the correlation coefficient between hazard and exposure is 0.91

for boroughs and 0.94 for cities.
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The total range of projected flood inundation extent in

Selinsgrove suggested by this analysis is 0.37 km2, with an in-

undation extent varying from 2.33 to 2.70 km2 (Fig. 8a). The

range in flood inundation extent by just considering the sam-

pling uncertainties in climate model outputs is 0.23 km2.

Cumulative uncertainty in the hydrologic stage is 0.33 km2. The

cumulative uncertainty in the hydrologic stage is the range of

flood inundation extent that considers both climate and hy-

drologic uncertainties, while keeping the hydraulic stage con-

stant. Thus, the hydrologic stage alone contributes 0.1 km2

uncertainty in flood inundation extent. The difference between

the total uncertainty in the projected flood inundation extents

and cumulative uncertainty in hydrologic stage provides the

hydraulic stage uncertainty. The range of the projected flood

inundation extents due to the hydraulic stage alone is 0.04 km2.

We analyze the uncertainty decomposition results using

two measures—range and standard deviation—and arrive at

broadly comparable results (Fig. 8). The effects of the con-

sidered climate uncertainty dominate the effects of hydrologic

and hydraulic uncertainties for both metrics. For instance,

when we use the range of the projected flood inundation ex-

tents as the uncertainty measure above 60% of the total un-

certainty is contributed by the climate model outputs. Thus,

reducing the uncertainty in projections of future climate would

make a substantial contribution to reducing overall uncer-

tainty in flood inundation projections. The hydrologic stage

FIG. 6. Rank correlation between years 2017 and 2099 for the flood hazard and exposure of (a),(b) boroughs and

(c),(d) cities. The insets show the frequency distribution of standardized flood hazard and exposure for boroughs

and cities.
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comprises the second largest uncertainty source, which ac-

counts for more than 25% of the total uncertainty. The

combined contribution of climate and hydrologic uncertainty

is about 90% of the total uncertainty. The hydraulic stage

alone represents about 10% of the total uncertainty.

Flood inundation projections are uncertain and depend on

the magnitudes and interactions of the uncertainties in the

different stages (e.g., climate, hydrologic, and hydraulic) of the

projection chain. Prior studies addressing sources of uncer-

tainty in flood projections have focused on quantifying the

climate and hydrologic uncertainty. These studies provide

important insights but are often silent on the relative contri-

bution of hydraulic uncertainty in the flood-inundation pro-

jection chain (Bosshard et al. 2013; Qi et al. 2016; Kim et al.

2019). Our results indicate that all of the investigated uncer-

tainty sources (i.e., climate, hydrologic, and hydraulic) make

sizeable contributions. Indeed, both uncertainty measures in-

dicate that the hydraulic uncertainty has a nonnegligible in-

fluence on the projected flood inundation extent. Neglecting

the contribution of hydraulic uncertainty in climate change

impact assessment can overestimate the relative importance of

climate and hydrologic uncertainties.

4. Summary and conclusions

We design, implement, and test an integrated framework to

assess regional riverine flood inundation risks in a changing

climate. Regional flood inundation modeling can inform the

assessment of flood risk across localities and can identify po-

tential risk hotspots. We focus on a case study for the U.S. state

of Pennsylvania where many communities have experienced

an increase in the frequency and magnitude of floods and as-

sociated damages (Shortle et al. 2020). Although the case study

focuses on Pennsylvania, the framework is general and can be

applied to other regions.

The proposed framework links climate model outputs, a

hydrologic model, a statistical model, and a hydraulic

model. In this implementation, we use downscaled climate

projections for precipitation and temperature from CMIP5

models to force the National Oceanic and Atmospheric

Administration’s (NOAA) Hydrology Laboratory-Research

Distributed Hydrologic Model (HL-RDHM) and produce

streamflow projections. We fit the generalized Pareto distri-

bution (GPD) to the projected streamflow and compute extreme

flows with a 100-yr return period. We use the 100-yr flood peak

as a boundary condition for the hydraulic model LISFLOOD-

FP and to generate flood inundation projections. Finally, the

flood inundation projections are used to perform flood haz-

ards and exposure analyses. Our regional flood hazards and

exposure assessment for Pennsylvania suggests four main

conclusions:

1) Assuming a stationary climate can underestimate regional

flood risk.

2) Future flood peak alterations due to climate change are

projected to be greater for smaller basins, which capture the

spatial scale at which many flood-related infrastructure

decisions are made.

3) Most cities and boroughs in Pennsylvania are projected to

face higher flood risk under projected future climate con-

ditions. Flood risks are relatively higher in smaller cities and

boroughs compared to the largest cities. However, the cities

and boroughs with highest flood risk in 2017 are projected

to be roughly the same in 2099.

4) Climate uncertainty is the dominant contributor to flood

hazard uncertainties. The hydrologic stage is the second

largest uncertainty source. We also find that hydraulic

uncertainty has an important influence on extreme flood

uncertainty. Neglecting the contribution of hydraulic un-

certainty to the total uncertainty in climate change impact

assessment could lead to overconfident estimates of flood

hazard uncertainty.

This study provides an integrated, multimodel and multi-

scale framework to develop local-to-regional-scale flood-risk

information in a changing climate. Avenues for future work to

overcome limitations in our study include (i) the explicit in-

clusion of relevant physical infrastructure in the hydrologic and

hydraulic model, and (ii) a more comprehensive uncertainty

quantification by incorporating additional sources of uncer-

tainties, including different emission and land use cover sce-

narios, climate and hydrologic models, downscaling approaches,

sets of hydrologic and hydraulic model parameters, and channel

boundary conditions (e.g., channel geometry, erosion and sedi-

ment deposition).Given the substantial power of adaptation and

mitigation measures to reduce flood hazards and exposures, our

results approximate the upper envelope of possible flood risks.

FIG. 7. The 100-yr flood inundation extents in the borough of

Selinsgrove, Pennsylvania, using FEMA stationary flood peak

estimates (FEMA 2019), nonstationary flood peak estimates in

year 2017, and nonstationary flood peak projections for years

2060 and 2099. FEMA 5 Federal Emergency Management

Agency.

2270 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:16 PM UTC



For making real-world decisions, more detailed studies are

needed that account for adaptation and mitigation measures,

such as the effect of dams and levees on flood risk.
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