
Blending Noah, SMOS, and in Situ Soil Moisture Using Multiple Weighting and
Sampling Schemes

NING ZHANG,a,b STEVEN M. QUIRING,a AND TRENT W. FORD
c

aDepartment of Geography, The Ohio State University, Columbus, Ohio
bUniversity of California Agriculture and Natural Resources, Davis, California

c Illinois State Water Survey, University of Illinois at Urbana–Champaign, Urbana, Illinois

(Manuscript received 17 May 2020, in final form 30 April 2021)

ABSTRACT: Soil moisture can be obtained from in situ measurements, satellite observations, and model simulations.

This study evaluates the importance of in situ observations in soil moisture blending, and compares different weighting

and sampling methods for combining model, satellite, and in situ soil moisture data to generate an accurate and spatially

continuous soil moisture product at 4-km resolution. Four different datasets are used: the antecedent precipitation index

(API); KAPI, which incorporates in situ soil moisture observations with the API using regression kriging; SMOS L3 soil

moisture; and model-simulated soil moisture from the Noah model as part of the North American Land Data

Assimilation System (NLDAS). Triple collocation, least squares weighting, and equal weighting are used to generate

blended soil moisture products. An enumerated weighting scheme is designed to investigate the impact of different

weighting schemes. The sensitivity of the blended soil moisture products to sampling schemes, station density, and data

formats (absolute, anomalies, and percentiles) are also investigated. The results reveal that KAPI outperforms API. This

indicates that incorporating in situ soil moisture improves the accuracy of the blended soil moisture products. There are

no statistically significant (p . 0.05) differences between blended soil moisture using triple collocation and equal

weighting approaches, and both methods provide suboptimal weighting. Optimal weighting is achieved by assigning

larger weights to KAPI and smaller weights to SMOS. Using multiple sources of soil moisture is helpful for reducing

uncertainty and improving accuracy, especially when the sampling density is low, or the sampling stations are less

representative. These results are consistent regardless of how soil moisture is represented (absolute, anomalies, or

percentiles).

KEYWORDS: Soil moisture; Measurements; Remote sensing; Sampling; Surface observations; Model comparison

1. Introduction

Soil moisture is a critical component of the climate system.

It modulates the exchange of water and energy between

land and atmosphere through evapotranspiration (Seneviratne

et al. 2010). Soil moisture has great value for understanding

and predicting soil erosion and water quality (Abbaspour

et al. 2015; Keesstra et al. 2016), agricultural and water re-

source management (Dobriyal et al. 2012; Pittelkow et al.

2015), runoff and flooding prediction (Brocca et al. 2010;

Wanders et al. 2014), and drought monitoring (Dai 2013;

Wang et al. 2011).

There are three primary sources of soil moisture informa-

tion: remote sensing (RS) observations, land surface models

(LSMs), and in situ measurements. Microwave remote sensing

is responsive to surface (;5 cm) soil moisture in regions with

sparse to moderate vegetation density. The passive microwave

satellites that are currently in orbit include the Soil Moisture

and Ocean Salinity (SMOS) satellite (launched 2009; 35-km

resolution; Kerr et al. 2001), the Advanced Microwave

Scanning Radiometer 2 (AMSR-2) (25-km resolution; Imaoka

et al. 2010) onboard the GCOM-W1 satellite, and the Soil

Moisture Active Passive (SMAP) satellite (launched 2015;

3-, 9-, and 36-km resolution; Entekhabi et al. 2010). The

Advanced Scatterometer onboard the Meteorological

Operational (MetOp-A/B/C) satellite series (launched 2006,

2012, and 2018 respectively, 25-km resolution) is an active

microwave satellite in orbit (Cartwright and Fraser 2021;

Wagner et al. 2013). While these sensors have a coarser spatial

resolution, they provide greater spatial coverage and more

frequent revisit times. In contrast, the active synthetic ap-

erture radar (SAR) systems—such as the one onboard the

RADARSAT-2 satellite (launched 2007; 3-m resolution)

(Lievens and Verhoest 2012) and the ones onboard the

Sentinel-1 (A/B) satellite constellation (launched in 2014

and 2016, respectively; 5-m resolution) (Paloscia et al.

2013)—provide soil moisture information at finer spatial

resolution, but with limited spatial coverage and less fre-

quent revisit times.

A limitation of all microwave RS soil moisture datasets is

that they can only measure soil moisture in the top 5 cm (or

less) of the soil due to the limited penetration depth of mi-

crowave signals. In addition, they cannot detect soil moisture

under snow or ice, or in frozen soils. There are also challenges

with retrievals in areas with complex topography, dense veg-

etation, near water bodies, or cities (Parinussa et al. 2011;

Wagner et al. 1999).
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Models can provide a valuable source of spatially con-

tinuous soil moisture, and, unlike satellites, they can rep-

resent root zone moisture conditions. The NOAA Climate

Prediction Center (CPC) (Huang et al. 1996), Global Land

Data Assimilation System (GLDAS) (Rodell et al. 2004)

andNorthAmerican LandDataAssimilation System (NLDAS)

(Mitchell et al. 2004) all provide model-simulated soil mois-

ture at various depths and time scales. Compared with in situ

measurements, Chen et al. (2013) found all four GLDAS

LSMs systematically underestimate the surface soil moisture

in the Tibetan Plateau. Ford and Quiring (2019) compared

the modeled soil moisture from NLDAS phase 2 (NLDAS-2)

and CPC with in situ measurements and found that the

NLDAS-2 models consistently performed better than the

CPC model.

Similar to RS soil moisture, model-simulated soil moisture

is difficult to validate because of the scale mismatch with

in situ observations. The in situ networks are typically not

dense enough to adequately resolve soil moisture variability

within each LSM pixel. In addition, there are systematic

differences between different soil moisture models, and their

reliability varies significantly from model to model, and over

time and space (Ford and Quiring 2019; Spennemann et al.

2015). Models generally perform well in representing the

variations in soil moisture and soil moisture anomalies

(Albergel et al. 2012; Downer and Ogden 2003; Meng and

Quiring 2008), but they tend to have large biases in simulating

the absolute volumetric water content of the soil (Bi et al.

2016; Xia et al. 2015).

In situ soil moisture measurements from field campaigns

and regional and national soil moisture monitoring net-

works are invaluable for calibrating and validating LSMs

and RS-based soil moisture datasets and other hydrological

and climatological studies. Great efforts have been made to

assemble, homogenize, and standardize in situ soil moisture

measurements from different networks, time frames, sen-

sors, depths, and formats (Cosh et al. 2016; Dorigo et al.

2013; Ford and Quiring 2014; Zhang et al. 2017a). Currently,

the coordinated in situ soil moisture networks include

the International Soil Moisture Network (ISMN) (Dorigo

et al. 2011), the North American Soil Moisture Database

(NASMD) (Quiring et al. 2016), and the National Soil

Moisture Network (Ford et al. 2020, manuscript submitted

to J. Hydrometeor.). Despite these efforts, the number of

stations that measure soil moisture continuously are still

very limited globally. In addition, since in situ stations

provide a point measurement, this limits their application at

larger spatial scales.

In summary, each source of soil moisture data has its

strengths and weaknesses. The advantage of in situ observa-

tions is that they are the only direct measurement of soil

moisture, and thus are often used as a benchmark for models

and satellites. The primary disadvantages of in situ observa-

tions are that they typically have a sparse spatial density and,

as a point measurement, they have limited spatial representa-

tiveness. Similarly, model and satellite remote sensing soil

moisture have the advantage of representing a larger spatial

area and, for themost part, a finer spatial resolution. Of course,

the primary disadvantage of models and satellites is that there

can be a large discrepancy between different models and sen-

sors, and the satellites with the highest temporal resolution are

confined to near-surface soil moisture and have degraded

performance under dense vegetation or in frozen soils. Given

the advantages and disadvantages of each source of soil

moisture information, they can improve soil moisture moni-

toring if they are combined.

Multiple methods have been developed to blend in situ,

modeled, and remotely sensed soil moisture. Data assimilation

is one popular approach to generate soil moisture using ob-

servations and models. For example, the SMAP L4 product is

based on a data assimilation system that combines SMAP

L-band brightness temperature observations with the NASA

Catchment land surface model (Reichle et al. 2020). While

there are many advantages to data assimilation, it is compli-

cated and computationally expensive to implement. As an

alternative, a number of statistical methods, including triple

collocation (TC) (Stoffelen 1998) with least squares weighting

(LSW) and equal weighting (arithmetic average of parent da-

tasets), have been adopted for blending soil moisture for op-

erational and experimental datasets (Yilmaz et al. 2012; Zeng

et al. 2016). One example is the European Space Agency’s

Climate Initiative for Soil Moisture (ESA CCI SM), which

uses a least squares merging scheme with uncertainty charac-

terization to merge multiple sources of soil moisture (Gruber

et al. 2019).

The motivation of this study is the gradually enhanced re-

gional and national in situ soil moisture network, which pro-

vides the opportunity with other data sources to improve the

accuracy and usability of soil moisture monitoring. Blending

with in situ soil moisture observations can provide a number of

advantages to blending solely based on remote sensing and

modeleddatasets. For example, remote sensing soilmoisture—and

soil moisture products generated via data assimilation—typically

have a 3–7-day data latency. This latency is acceptable for

many applications, such as drought monitoring and monthly or

seasonal climate outlooks. However, the longer latency is

problematic for applications requiring more rapid updates,

including flash flood forecasting and field condition monitoring

for agriculture. In addition, soil moisture products based en-

tirely on remote sensing observations do not represent soil

moisture conditions in the primary root zone. Although we do

not examine root zone soil moisture in this study, the methods

are easily applicable for blending root zone soil moisture from

in situ and model sources. Last, many blended remote sensing–

model datasets are available with superdaily temporal resolu-

tion (e.g., every 2–3 days). This is a limitation for two primary

reasons. First, most meteorological data, such as temperature,

precipitation, and humidity, are updated at daily or subdaily

time scales. Daily scale soil moisture better matches these data

for hydrological analysis and crop modeling. Second, when

standardizing soil moisture using anomalies, percentiles, or

similar, the robustness of the standardization is sensitive to the

historical soil moisture record length (Ford et al. 2016). This is

particularly the case for representing soil moisture extremes,

important for drought and flood modeling. Therefore, having

a 3-day temporal resolution reduces the historical data record
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by 3 times versus a daily resolution product, which can result in

less representative standardization.

Despite these advantages, in situ data have not been used

as widely as remote sensing and modeled soil moisture in

operational or experimental blended datasets. Therefore,

there is a need to understand better the advantages and

limitations of including in situ soil moisture when blending

remote sensing and modeled data. It is important to note

that a primary motivation of this study is to test the feasibility

of blending in situ, remote sensing, and model soil moisture.

This will ultimately complement but not replace the wealth of

blended and/or assimilated remote sensing–model soil mois-

ture datasets.

In addition, our understanding of the sensitivity of blended

soil moisture data to weighting schemes is lacking. In par-

ticular, it is helpful to determine whether the commonly used

approaches (e.g., TC, equal weighting) generate optimal

weights and how different weighing schemes impact hybrid

results. The objective of this study is threefold: 1) to evaluate

the effect of incorporating in situ observations into soil

moisture blending; 2) to assess the sensitivity to different

blending and weighting schemes; and 3) to investigate the

impact of sampling schemes, station density, and different

data format (e.g., absolute, anomalies, and percentiles) on

soil moisture blending.

2. Study area and data

This study is conducted in the south-central region of the

United States, covering four states, Texas, Oklahoma,

Arkansas, and Louisiana, with a total area of ;1 150 400 km2.

The south-central United States is an important agricultural

region in the United States, but it is also drought-prone (Tian

and Quiring 2019). For example, the four states account for

about 10% of national winter wheat production in 2017

(National Agricultural Statistics Service). According to the

Köppen climate classification, the climate of this region varies

fromwarm temperate (about three-fourths of the region) in the

east to the arid (about one-fourth of the region) in the west

(Kottek et al. 2006). The annual average temperature gradu-

ally decreases from south (278C) to north (138C), and the mean

annual precipitation gradually increases fromwest (,25 cm) to

east (.190 cm).

This study uses in situ measurements of soil moisture,

satellite-observed soil moisture, model-simulated soil mois-

ture, precipitation, and air temperature. To facilitate compar-

ison, a common period of record from January 2011 to

December 2018 was used for all datasets. All the gridded

datasets are resampled to a 4-km spatial resolution to match

PRISM data, which have the highest spatial resolution among

the gridded data used in this study. The final blended soil

moisture is also generated at 4-km resolution.

a. In situ soil moisture measurements

The in situ soil moisture data were collected from four

sparse networks: the Oklahoma Mesonet (OKM), West Texas

Mesonet (WTM), Soil Climate Analysis Network (SCAN),

and Climate Reference Network (CRN). Daily soil moisture

measurements were obtained from the North American Soil

Moisture Database (NASMD) in the units of volumetric water

content (m3m23) (Quiring et al. 2016). Since different net-

works collect data at different time intervals ranging from

every 5min to once per day, for consistency, a single morning

measurement (7 a.m. LST) was extracted to represent the daily

value. This is not ideal, but it is reasonable for applications in

which diurnal variations in soil water content are inconse-

quential, such as drought monitoring. The raw measurements

have passed through a quality assurance and quality control

(QAQC) process (Ford and Quiring 2014), and flagged values

been removed and filled. The near-surface measurements

(5 cm) from a total of 209 stations (Fig. 1) were obtained for

this study. The daily in situ soil moisture data are available

from 2011 to 2018.

b. SMOS L3 soil moisture

The SMOS satellite was launched in 2009 as part of the ESA

Explorer Opportunity science mission. It is dedicated to pro-

viding surface (top;5 cm) soil moisture mapping with a target

accuracy of 0.04m3m23 (Kerr et al. 2001). The SMOS Level 3

(L3) soil moisture product used in this study was obtained from

the SMOS Data Center (http://www.catds.fr/sipad). It is gen-

erated at 1-day intervals at a global extent with a spatial res-

olution of 0.258. The SMOS L3 products are available from

2010 to the present. Compared with the SMOS level 2 (L2)

product, which was produced using a single-orbit algorithm,

the SMOS L3 products are produced using the multiorbit al-

gorithm, which enhances the retrievals at the border of the

swath (Al Bitar et al. 2017). The SMOS L3 products include

both ascending [morning; about 0600 local time (LT)] and

FIG. 1. Study area and location of stations where in situ soil

moisture measurements are made. Stations are color coded ac-

cording to the network they are part of: West Texas Mesonet

(WTM; green), Oklahoma Mesonet (OKM; yellow), Soil Climate

Analysis Network (SCAN; red), and Climate Reference Network

(CRN; blue). A total of 209 stations are presented here, among

which 84 stations (indicated by crossed circles) are selected using

stratified random sampling for modeling, while the remaining 125

stations were used for out-of-sample validation.
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descending (evening; about 1800 LT) overpasses. To be

consistent with the daily in situ measurements, which are

generated by extracting morning (0700 LT) measurements

each day, the ascending SMOS L3 product is used. The

nearest neighbor assignment is used to resample SMOS L3

soil moisture from 25 to 4 km to match the spatial resolution

of the other datasets.

c. NLDAS-2 Noah soil moisture

This study uses simulated soil moisture from the NLDAS-2

Noah model. The Noah model provides hourly soil moisture

fields at 1/88 grid from 1979 to the present. TheNoahmodel has

four soil layers, 0–10, 10–40, 40–100, and 100–200 cm, but only

the top layer is used in this study. Details about the NLDAS-2

configuration of the Noah LSM can be found in Xia et al.

(2012). To be consistent with the in situ measurements, the

Noah output at 0700 LT is extracted each day to represent the

daily soil moisture, and the data from 2011 to 2018 are adopted

to match the record length of the in situ data. Finally, the

nearest neighbor method is used to resample the simulated soil

moisture from 12.5 to 4 km to match the other datasets.

d. PRISM climate data

The PRISM (Parameter-elevation Regressions on Independent

Slopes Model) datasets are developed by Oregon State

University’s PRISMClimate Group (Daly et al. 2008). PRISM

uses surface stations and a weighted regression scheme to

generate a daily updated spatial mapping of precipitation

and temperature over the contiguous United States. There

are more than 13 000 quality-controlled surface stations used

for precipitation interpolation and more than 10 000 stations

used for temperature interpolation (Daly et al. 2008). The

climatological normal (average monthly and annual conditions

over 1981–2010) and monthly and daily data are available at

4-km and 800-m resolution from 1981 to the present.

The 4-km daily precipitation from PRISM is used in this

study. Since there is a strong coupling between soil moisture

and precipitation (Koster et al. 2004), the latter has been

widely used as an important input to estimate the former in

various LSMs (Liang et al. 1996; Liu et al. 2018; Xia et al. 2012).

Here, the antecedent precipitation index (API) is used as a

soil moisture approximation. The API is calculated solely

based on precipitation. The kriged API (KAPI) uses the API

and in situ measurements of soil moisture that are incorpo-

rated using regression kriging. The API index is introduced

in section 2e(2), and regression kriging is introduced in

section 2e(3).

e. Data preparation

The data preparation methods are summarized in Fig. 2.

1) ANOMALIES AND PERCENTILES

The volumetric water content of the soil varies as a function

of weather conditions, soil characteristics, vegetation, and to-

pography, among other factors, and so it cannot be directly

compared between different locations. Therefore, we calculate

anomalies and percentiles for all datasets (in situ, SMOS,

NLDAS, API, and KAPI) to standardize soil moisture and

make them comparable in space and time (Ford et al. 2015;

Zhang et al. 2017a).

Anomalies are calculated by removing the climatological

mean from the absolute soil moisture each day (Crow and

van den Berg 2010). The climatological mean is calculated

using a moving-window approach (Chen et al. 2017), which

FIG. 2. Schematic diagram showing the methodological framework of this study.
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averages all available soil moisture estimates across all years

within a 31-day window (Dong et al. 2018) centered on the

target day.

Percentiles are also calculated using an empirical probability

distribution function and moving window approach. On each

day of the year, all soil moisture measurements that fall

within a 31-day window centered on that day are used to

construct the empirical probability distribution function. Ford

et al. (2016) found that sample sizes between 93 and 186 daily

soil moisture observations were required to generate robust

percentiles. In our case, all datasets are extracted from 2011

to 2018 (8 years), which provides a large enough sample (n 5
248) to generate robust percentiles. Percentiles range from 0

(or 0%) to 1 (or 100%), which corresponds to the driest (0%)

and wettest (100%) soil conditions at a specific site over the

entire study period during the 31-day window centered on the

target date.

2) ANTECEDENT PRECIPITATION INDEX

The antecedent precipitation index is a precipitation-based

moisture index. It is used to indicate the wetness of a location

and serves as an approximation of soil moisture. It has been

widely applied in drought monitoring (Crow et al. 2012a),

runoff forecasting (Anctil et al. 2004), crop yield prediction

(Zhang et al. 2017b), and soil moisture estimation using data

assimilation approach (Afshar et al. 2019; Yilmaz and Crow

2013). TheAPI uses the preceding precipitation to estimate the

current moisture status, and it is formulated as (Kohler and

Linsley 1951)

API(i)5API(i2 1)3 k1PPT(i) , (1)

where API(i) is the API on day i, PPT(i) is the precipitation

occurring on day i, and k is an empirical decay factor between

0.80 and 0.98 (Heggen 2001). In this study, a set of k values

(from 0.80 to 0.99) is tested to determine the optimal k value

that results in the highest correlation between API and soil

moisture based on all 209 stations. The highest correlation (r5
0.45) is achieved using k 5 0.92. Therefore, k 5 0.92 is used in

this study for API calculation.

3) REGRESSION KRIGING

Regression kriging (RK) is one of the most popular and

robust spatial interpolation techniques for the digital

mapping of soil properties (Keskin and Grunwald 2018).

Previous studies demonstrate that RK usually outperforms

nongeostatistical methods (Li and Heap 2011; Mishra et al.

2010; Yang et al. 2019), ordinary kriging (Hengl et al. 2004),

and cokriging (Eldeiry and Garcia 2010). RK combines a

regression between the target variable and one or more

auxiliary variables with simple kriging of the regression

residuals (Hengl et al. 2007; Odeha et al. 1994). In this study,

RK is used to interpolate the point-based in situ soil mois-

ture (target variable) using the API as an auxiliary variable.

The RK models can be expressed as two parts (Hengl

et al. 2004):

ẑ(s
0
)5 m̂(s

0
)1 ê(s

0
) , (2)

where m̂(s0) is the fitted trend. In this study, m̂(s0) is fitted by a

linear model between the auxiliary variable and soil moisture

[Eq. (3)]:

m̂(s
0
)5 b̂q(s

0
) , (3)

where b̂ is the estimated model coefficient using generalized

least squares, and q(s0) is the auxiliary variable at the target

location s0. In this study, the auxiliary variable is the API,

represented as absolute values, or anomalies, or percentiles.

The second part of the RK equation is ê(s0), which is the

interpolated residual. The residual is first calculated from the

linear model and then interpolated by simple kriging with an

assumed 0 mean:

ê(s
0
)5�

n

i51
l
i
e(s

i
) , (4)

where li are kriging weights determined by the spatial de-

pendence structure of the residual, and e(si) is the residual

at location si. By adding the kriging residuals back to the

predicted trend, the final RK predictions (KAPI) are

obtained.

4) SITE SELECTION BASED ON THE INDEX OF

TEMPORAL STABILITY

In this study, 40% of the stations with soil moisture mea-

surements (84 sites) are used for modeling (crossed circles in

Fig. 1), while the remaining 60% of stations (125 sites) are used

for the out-of-sample validation. The 84 modeling sites are

selected based on the Index of Temporal Stability (ITS)

(Jacobs et al. 2010; Zhao et al. 2010). ITS is an indicator of the

temporal representative locations. The location with the lowest

ITS value is the location with the highest temporal stability.

The ITS at location i (ITSi) is calculated as

ITS
i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MRD2

i 1 SDRD2
i

q
, (5)

MRD
i
5

1

T
�
T

j51

RD
i,j
, (6)

SDRD
i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T2 1
�
T

j51
(RD

ij
2MRD

i
)
2

s
, (7)

RD
ij
5

u
ij
2 u

j

u
j

, (8)

where uij is an individual daily measurement of soil moisture at

location i � [1, . . . , N] and time j � [1, . . . , T], and uj is the

spatial average of soil moisture at all locations at time j. The

termRDi,j is the relative difference of location i at time j, which

is introduced by Vachaud et al. (1985). The term MRDi is the

mean relative difference of location i. It averages the RD at

location i across an entire period (T days) and represents the

location’s temporal bias or whether the location is wetter or

drier than the average of the area during T days. The term

SDRDi is the standard deviation of the RD at location i. It

describes the degree of the temporal stability of a location,

or whether a location is temporally stable. Therefore, a
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temporally representative site is one with a small mean bias

and can be characterized by low values of both MSD and

SDRD, and a low value of ITS (Brocca et al. 2012; Cho and

Choi 2014; Penna et al. 2013).

A stratified random sampling method is adopted to select 84

modeling sites based on ITS following three steps: 1) calculate

and rank the ITS of 209 stations in ascending order, 2) evenly

divide the ranked ITS into four groups, and 3) within each

group, randomly select 21 sites. The 84 sites are selected in this

way to ensure evenly sampled sites across the ITS range, which

best mimics the reality that in situ stations have different

temporal representativeness.

3. Blending methods

The soil moisture blending schemes used in this study are

illustrated in Fig. 2. Triple collocation is used to estimate the

error variances of two sets of parent products, including

NLDAS, SMOS, and API (N, S, A), and NLDAS, SMOS, and

KAPI (N, S, K). The least squares weighting (LSW) is used to

merge these products.We also evaluate equal weighting and an

enumerated weighting scheme for soil moisture blending to

investigate the sensitivity of the blended products to weighting

schemes.

a. Triple collocation

Triple collocation is a technique for estimating the error

variance of three independent datasets with respect to the

unknown truth (Stoffelen 1998). It assumes a linear error

model between each product and the unknown truth. The er-

rors from the independent sources are assumed to have a mean

of zero, and they are uncorrelated with each other and with the

truth. Gruber et al. (2016a) reviewed previous TC analyses of

soil moisture and found there are two different notations of TC

formula, the difference notation (Scipal et al. 2008; Stoffelen

1998; Yilmaz et al. 2012) and the covariance notation (McColl

et al. 2014; Stoffelen 1998). They demonstrated that the two

different notations are mathematically identical. In this study,

the covariance notation is used because it provides an extra

estimate of correlation coefficients (Ri) of the measurement

systems with respect to the unknown truth. The covariance

notation for TC is based on the variances (si
2) and covariances

(sij) of the parent products, which can be written as

s2
i 5 b2

i s
2
t 1s2

«i
, (9)

s
ij
5 b

i
b
j
s2
t , (10)

where i, j 2 (N, S, A) or (N, S, K) in this study; and i 6¼ j. Letter

N refers to NLDAS, S refers to SMOS, A refers to API,

and K refers to KAPI. Here s2
i is the variance of parent

product i; s2
t is the variance of the unknown truth t; sij refers to

the covariance between two parent products. Taking the trip-

lets of (N, S, K) as an example, the unscaled error variances of

each parent product (s2
«N
, s2

«S
, s2

«K
) can be derived by

s2
«N

5 s2
N 2

s
NS
s
NK

s
SK

, (11)

s2
«S
5 s2

S 2
s
SN
s
SK

s
NK

, (12)

s2
«K

5 s2
K 2

s
KN

s
KS

s
NS

. (13)

Note that the covariance notation does not require an a priori

rescaling of the datasets, and the error variances obtained from

Eqs. (11)–(13) are absolute error variances, which are esti-

mated in their own data space. To facilitate soil moisture

blending, they must be converted to a common data space, or

to relative error variances. Here, the NLDAS is used as the

reference dataset and the rescaling parameters for the other

two parent products are computed as (Gruber et al. 2016a;

Stoffelen 1998) follows:

b
S
*5

b
N

b
S

5
s
NK

s
SK

, (14)

b
K
* 5

b
N

b
K

5
s
NS

s
KS

. (15)

The covariance-based TC approach also provides important

new information about the performance of the measure-

ment systems, which is the correlation (Ri) between each

parent product and the true soil moisture signal. Using the

triplets of NLDAS (N), SMOS (S), and in situ measure-

ments (I) as an example, the TC-based correlation for the

three parent products can be calculated according toMcColl

et al. (2014) as

R
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
NS
s
NI

s2
NsSI

s
, (16)

R
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
NS
s
NI

s2
NsSI

s
, (17)

R
I
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
NI
s
SI

s2
IsNS

s
. (18)

Here, Ri estimates that exceed 1, which may be due to statis-

tical sampling errors (Gruber et al. 2018), are set to 1 (Gruber

et al. 2019); only the positive values of the Ri is used, since the

parent products are expected to be positively correlated to the

unobserved truth.

Two sets of triplets, (N, S, A) and (N, S, K), are evaluated in

this study to examine whether incorporating in situ soil mois-

ture (e.g., using KAPI) can improve the accuracy of the

blended product over using API, which does not incorpo-

rate in situ soil moisture. All parent products are evaluated at

the same 125 out-of-sample stations. The stations with less

than 100 observations are removed from the TC error esti-

mation (Scipal et al. 2008). A more detailed discussion of the

covariance-based TC approach and TC-based correlation

coefficient and can be found inMcColl et al. (2014) andGruber

et al. (2016a).

b. Least squares weighting

Least squares weighting (LSW) is a commonly used method

for blending different soil moisture data sources (Gruber et al.
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2019; Yilmaz et al. 2012; Zeng et al. 2016). The least squares

framework can be expressed as

S
m
5w

x
S
x
1w

y
S
y
1w

z
S
z
, (19)

where Sm is the merged product; wx,wy, and wz are the relative

weights of three parent datasets Sx, Sy, and Sz, respectively.

With wx 1 wy 1 wz 5 1, and by minimizing a cost function and

the partial derivative of the cost function with respect towx and

wy, the optimal estimation of the weights is obtained from

w
x
5

s2
ys

2
z

s2
xs

2
y 1s2

xs
2
z 1s2

ys
2
z

, (20)
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2
y 1s2
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, (21)
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2
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2
y 1s2
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2
z 1s2
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2
z

, (22)

where s2
x, s

2
y, and s2

z are the TC-estimated error variance for

the two sets of parent datasets [(N, S, A) and (N, S, K)].

c. Enumerated weighting

An enumerated weighing scheme is evaluated in this study

to examine whether the TC or equal weighting methods have

achieved optimal weights, and to test the sensitivity of hybrid

products to weighting schemes. The weight of each parent

product is varied over the full range from 0 to 1 with pre-

defined intervals. Taking (N, S, K) as an example, as the sum

of weights of three parent products should be 1 (WN 1 WS 1
WK 5 1), and the enumerated weighting scheme can be ex-

pressed as follows:

W
N
5 0 – 1 (DW

N
5 0:05), (23)

W
S
5a

S
(12W

N
) (a

S
5 0 to 1, Da

S
5 0:05), (24)

W
K
5 12 W

N
2W

S
, (25)

where DWN and Da denote the fixed intervals (both set to 0.05)

of varying weights of NLDAS (WN) and the proportion of the

weight of SMOS (aS), respectively. With this setting, a total of

441 weighing combinations are generated. (A visual display of

the enumerated weight scheme is presented as the background

color in Figs. 10 and 11).

d. Goodness of fit

The mean absolute error (MAE) [Eq. (26)] and Pearson

correlation coefficient (Rei) [Eq. (27)] between blended prod-

ucts and the out-of-sample in situ measurements are used for

the validation and comparison of the blended products:

MAE5
1

n
�
n

j51
ju

o
( j)2 u

e
( j)j , (26)

R
ei
5

s
oe

s
o
s
e

, (27)

where n is the number of observations; uo and ue are observed

and estimated soil moisture, respectively; soe is the covariance

between observed and estimated soil moisture; and se and se

are the standard deviations of observed and estimated soil

moisture, respectively. Considering the in situ data have rep-

resentativeness errors (Crow et al. 2012b; Miralles et al. 2010;

Yilmaz et al. 2012), we followed the approach of Gruber et al.

(2019) and used Bayesian inference [Eq. (28)] to correct the

Pearson correlation (Rei) for the impact of the in situ repre-

sentativeness error (Ri):

R
e
5
R

ei

R
i

, (28)

where Re is the corrected correlation between each blended

product and the true soil moisture at 4-km scale; Ri is the

representativeness error in the in situ measurements in terms

of their correlation with true soil moisture at 4-km scale. The

value of Ri is calculated by applying TC to the in situ mea-

surements together with NLDAS and SMOS products us-

ing Eq. (18).

The Nash–Sutcliffe efficiency (NSE) score [Eq. (29)] is

also used to evaluate the impact of sampling schemes

and station density on the accuracy of the blended soil

moisture products. NSE is a dimensionless indicator of

model skill and can be used to assess the products with dif-

ferent units and scales (e.g., absolute soil moisture, anoma-

lies, and percentiles). Its value ranges from2‘ to 1. An NSE

of 1 corresponds to perfect skill; an NSE of 0 indicates that

the blended product performs the same as using the mean of

out-of-sample observations, while a negative NSE (NSE, 0)

indicates the model prediction is less accurate than the out-

of-sample mean.

NSE5 12
�
n

i51
[u

o
(i)2 u

e
(i)]2

s2
o

. (29)

4. Results and discussion

a. Comparing parent datasets

Figure 3 presents the spatial pattern of average daily soil

moisture from 2011 to 2018 for in situ measurements over 209

stations (Fig. 3a), NLDAS soil moisture (Fig. 3b), the SMOS

product (Fig. 3c), KAPI (Fig. 3d), andAPI (Fig. 3e). In general,

all five datasets show a strong moisture gradient from west to

east. The SMOS and NLDAS provide stronger soil moisture

contrasts and greater spatial variability in soil moisture, while

the API and KAPI present a smoother moisture pattern.

NLDAS matches well with the spatial pattern of in situ soil

moisture variations. SMOS tends to overestimate the dry

conditions in the Texas and Oklahoma Panhandles, as well as

along the east border of Oklahoma, while KAPI tends to

overestimate soil moisture in west Texas.

Figure 4 provides a quantitative comparison of the five

datasets in terms of mean (Fig. 4a), standard deviation (STD)

(Fig. 4b), and coefficient of variation (CV) (Fig. 4c) over the

125 out-of-sample stations. Here we use absolute soil mois-

ture for the evaluation. Both NLDAS and KAPI have a

similar median value to that of the in situ measurements
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(0.22 m3 m23 for median), while SMOS presents a signifi-

cant (p , 0.05) underestimation of mean soil moisture

(0.18 m3m23) compared with the in situ ones. The negative

bias in the SMOS L3 data indicates that this product may

overestimate the dryness if used alone without normalization

or standardization. NLDAS has the lowest STD (0.04 m3m23

for median), followed by KAPI and in situ data (both are

0.07 m3m23), and SMOS has the largest STD (0.09m3m23).

However, it should be noted that the in situ data may be

biased toward the KAPI because they are generated using

in situ soil moisture.

Due to the different units of API, it is not directly compa-

rable with other datasets in terms of mean and STD, but it can

be compared using CV (Fig. 4c). NLDAS has the lowest CV

(0.21 for median), followed byKAPI (0.29). In comparison, the

in situ data have a CV of 0.31. The higher CV of in situ com-

pared with NLDAS and KAPI may be attributed to it being a

point measurement. Both SMOS (0.54) and API (1.02) show

significantly (p , 0.05) larger CV than the other datasets. The

large CV of SMOS indicates there is a large degree of vari-

ability in SMOS soil moisture, which is jointly attributed to its

small mean value (Fig. 4a) and large STD (Fig. 4b). The largest

CV of API may be explained by its physical discrepancy with

soil moisture measures, since API is calculated using precipi-

tation, which does not have an upper limit, whereas soil

moisture does. This may result in a wider range of API values

corresponding to saturated soil, and thus larger CVofAPI than

other soil moisture data. In summary, Fig. 4 reveals that both

NLDAS and KAPI have a similar mean and CV as the in situ

measurements, while SMOS tends to underestimate the mean

values and has greater dispersion than the in situ data. API has

the least agreement with the in situ data.

b. Errors variances from TC

Figure 5 shows the impact of different parent datasets on the

error variance (s2
«) estimated using the TC approach. Four

different sets of soil moisture anomaly products are compared:

(N, I, S), (N, I, A), (N, S, A), and (N, S, K). We found that

FIG. 3. Mean soil moisture calculated by averaging the daily data from 2011 to 2018 over the study area based on (a) in situ measurements

at 209 stations, (b) NLDAS, (c) SMOS, (d) KAPI, and (e) API.

FIG. 4. Comparison of absolute soil moisture at the 125 out-of-sample sites based on in situ measurements, NLDAS, SMOS, KAPI and

API: (a) mean, (b) standard deviation (STD), and (c) coefficient of variation (CV).
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changing the parent triplets does not change the relative error

ranking of the parent datasets, but it does change the absolute

values of the s2
« estimated for each product. For example, the

s2
« of SMOS is consistently larger than that of NLDAS

(s2
«S
. s2

«N
), irrespective of the third dataset. The in situ data

always have a larger s2
« than NLDAS (Figs. 5a,b). This may be

due to the high spatial representativeness errors of in situ

measurements (Crow et al. 2012b; Miralles et al. 2010; Yilmaz

et al. 2012). To reduce the impact of the representativeness

errors in the in situ data, Bayesian inference [Eq. (28)] is

adopted to derive the corrected correlation (Re) between each

dataset and the true soil moisture signal. We apply this ap-

proach to validate the blended products (section 4d). In

general, the relative s2
« ranking of the five datasets is

s2
«N

, s2
«K

,s2
«A

,s2
«I
,s2

«S
based on Fig. 5.

c. Weights from LSW

The LSW scheme is adopted with TC-estimated error vari-

ance to calculate the weights of the two triplets (N, S, A) and

(N, S, K) (Fig. 6). According to LSW theory, the weight of the

parent products is inversely proportional to the error vari-

ance. Therefore, for the (N, S, A) triplets, NLDAS has the

highest weight (0.55 for median), followed byAPI (0.25), and

SMOS has the smallest weights (0.18) (Fig. 6a). Spatially,

using the (N, S, A) triplets, the largest weights (.0.8) for

NLDAS are clustered in south-central Texas (Fig. 6b), and

the highest weights (.0.8) for API are concentrated in the

northwest corner and eastern part of the study area (Fig. 6d),

while the weights of SMOS are about 0.2 throughout the

study area (Fig. 6c). For the (N, S, K) triplets, the largest

weights are again given to NLDAS (0.63 for median), fol-

lowed by KAPI (0.22), and SMOS has the smallest weights

(0.12) (Fig. 6e). Spatially, using the (N, S, K) triplets, the

largest weights (.0.8) for NLDAS are located in the western

half of the study area (Fig. 6f), while the weights of SMOS

are smaller than 0.2 throughout the study area (Fig. 6g). For

KAPI, the largest weights are scattered throughout the

eastern part of the study area (Fig. 6h). In general, the two

triplets (N, S, A) and (N, S, K) present similar weight

patterns.

d. Evaluation of blended products

1) COMPARISON OF TC TRIPLETS

In this study, blended soil moisture products are generated

from two triplets, (N, S, A) and (N, S, K), using the TC-LSW

approach. For comparison, we also employ the simple average

(AVE) approach, which gives equal weight to each product.

Figure 7 compares the spatial pattern of the four parent

products (first row) and the blended products (second row)

using TC and AVE. The NLDAS soil moisture has been used

as a reference to rescale the other parent products. In Fig. 7, the

soil moisture anomalies on 4 July 2014 are used as an example.

Distinct differences are observed between the four parent

datasets (Figs. 7a–d). For example, scaled SMOS shows much

dryer conditions (indicated by blue color) in western and

southern Texas than NLDAS (Fig. 7b). The scaled API

shows wetter condition (indicated by red color) in northern

Texas and Oklahoma and in eastern Arkansas than NLDAS

(Fig. 7c), while the scaled KAPI has a similar pattern as API

(Fig. 7d). In contrast, no apparent visual differences can be

observed between all the blended products (second row of

Fig. 7), regardless of the triplets or weighting scheme used.

Therefore, further quantitative evaluation of the blended

results is necessary.

Figure 8 provides a quantitative evaluation of the parent

(first column) and blended soil moisture anomalies (last two

columns) using the MAE, Pearson correlation (Rei) against

in situ measurements, and corrected correlation against the

truth (Re) over the 125 out-of-sample stations. The scaled

KAPI presents the lowest MAE, while the scaled SMOS

has the largest MAE. Based on an ANOVA test, the scaled

SMOS has significantly (p , 0.05) higher MAE than other

three parent products, and the scaled KAPI presents signifi-

cantly (p , 0.05) lower MAE than API. But the difference

between scaled NLDAS and scaled API and KAPI in terms of

MAE is not significant (p . 0.05) (Fig. 8a). For the blended

products, there is no significant (p . 0.05) difference in terms

of MAE either between the results using TC or AVE, or be-

tween using different triplets (N, S, A) or (N, S, K). However,

there is a slight improvement in MAE of the (N, S, K) blended

results as compared to the parent products (Fig. 8c vs Fig. 8a).

The negligible difference between TC and AVE methods

agrees with Yilmaz et al. (2012). They found that merged soil

moisture generated using a TC-LSW method did not outper-

form the soil moisture generated using an equally weighted

approach.

The evaluation based on Rei (second row in Fig. 8) tells a

somewhat different story. Based on an ANOVA test, all the

parent products have significantly (p , 0.05) different Rei

values from each other (Fig. 8d), except the pair between

FIG. 5. Triple collocation (TC)-estimated error variances (s2
«) for

soil moisture anomalies using different combinations of the five

datasets [NLDAS (N), in situ (I), SMOS (S), API (A), and KAPI

(K)]. The results are shown for the 125 out-of-sample stations.
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NLDAS and API. The scaled KAPI has the highest Rei (0.78

for median), followed by scaled NLDAS (0.67), scaled API

(0.66), and scaled SMOS (0.54). There is no significant (p .
0.05) difference in Rei between the blended products using TC

or AVE methods. However, a significant (p , 0.05) improve-

ment in Rei is observed when using (N, S, K) (median Rei 5
0.75), instead of (N, S, A) (median Rei 5 0.70). This indicates

that KAPI is superior to API in soil moisture blending, and

in situ data can significantly improve the accuracy of the

blended soil moisture datasets.

It is worth noting that the parent product KAPI performs

best among all parent and blended products, and the insignif-

icant improvement of the blended results over the KAPI par-

ent product is worth exploring. Here, we propose three

possible explanations. 1) The validation data are not spatially

exhaustive. Although 60% (125) of total stations have been

used in the validation, they are still relatively sparse and not

evenly distributed in the study area. Figure 1 shows most val-

idation stations are clustered in Oklahoma and west Texas,

while relatively few stations are located in south Texas,

FIG. 7. Example of soil moisture anomalies (m3m23) on 4 July 2014 for the (a)–(d) parent products and (e)–(h) blended products. ‘‘TC’’

indicates that the blended maps were created using TC errors with LSWweighting; ‘‘AVE’’ indicates that the blendedmaps were created

using equal weighting of the three parent products. The empty circles indicate the locations of the 125 out-of-sample stations. ‘‘N’’ refers to

NLDAS, ‘‘S’’ refers to SMOS, ‘‘A’’ refers to API, and ‘‘K’’ refers to KAPI.

FIG. 6. Comparison of the least squares weighting (LSW)-derived weights based on the TC-estimated error variance using soil moisture

anomalies. (a),(e) The weights at 125 out-of-sample stations (black circles in remaining subplots). (b)–(d), (f)–(h) Spatial distribution of

weight for each product. Two sets of TC triplets are compared: (N, S, A) in (a)–(d) and (N, S, K) in (e)–(h).
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Arkansas, and Louisiana. It is possible that the places where

hybrid results showed an improvement over the KAPI are not

well captured using only 125 stations. 2) The in situ measure-

ments cannot be considered the ‘‘truth’’ because they are point

measurements that may not reflect the soil moisture value at

4-km grid cell. Even for the densest in situ network used in this

study, such as the OklahomaMesonet, there is only one station

within each 4-km grid cell. Therefore, the in situ data have

representativeness errors (Crow et al. 2012b; Miralles et al.

2010; Yilmaz et al. 2012), which should be removed before the

validation. 3) TC is constructed based on several assumptions,

such as a linear error model between the parent product and

the unknown truth; the errors from the independent sources

are assumed to have zero mean and are uncorrelated with each

other and with the truth. Any violations of the above as-

sumptions may cause the suboptimal estimation of the error

variance.

To reduce the impact of the representativeness error of

in situ data, the corrected correlation Re [Eq. (28)] is used for

evaluation. When using Re, the absolute values of correlation

increase substantially for all datasets (Figs. 8g–i), but the

overall patterns are the same as those based on Rei. It is in-

teresting to note that after correlation correction, the Re

of scaled KAPI and blended products using (N, S, K) all reach

1, which indicates a perfect correlation with the true soil

moisture signal.

2) ERROR SPATIAL PATTERN

The spatial error pattern for the (N, S, K) blended products

(red circles) and KAPI (blue circles) are shown in Fig. 9. In

places where in situ measurements are dense, especially in

Oklahoma and northwest Texas, the MAE of the KAPI (blue

circles) is generally similar to or smaller than that of AVE

(K, S, N) (red circles). However, in places where in situ mea-

surements are relatively sparse, such as central to southern

Texas, northernArkansas, and Louisiana, theMAEof KAPI is

generally larger than that of AVE (N, S, K). This indicates that

the blended data are less sensitive to station density and per-

form better in places where in situ measurements are sparse

than the KAPI.

Figure 9 also shows how the ITS values (indicated by the size

of the gray dots) compare with the MAE. A site with a smaller

ITS value indicates greater temporal stability (i.e., it is a more

temporally representative site). There is a positive relationship

between MAE and ITS for both the KAPI and the (N, S, K)

blends. Sites with higher ITS values (i.e., that are less tempo-

rally stable) have higher MAE values. This result agrees with

the previous studies that demonstrated that kriging perfor-

mance declines as the data variation increases (Gotway et al.

1996; Keskin andGrunwald 2018; Li andHeap 2011; Martínez-
Cob 1996; Schläpfer and Schmid 1999). This result could

also inform site selection for new soil moisture stations. For

FIG. 8. Evaluation of the (left) parent and (center),(right) blended soil moisture anomalies (m3m23) using the 125 out-of-sample in situ

stations based on (a)–(c) mean absolute error (MAE), (d)–(f) Pearson correlation coefficient (Rei), and (g)–(i) corrected correlation

against the truth (Re). The calculations of MAE, Rei, and Re are provided in section 3d.
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example, the ITS can be calculated using a soil moisture

product such as NLDAS, and it can be used to identify loca-

tions with a small ITS value if building a new soil moisture

network is desired, or to identify locations with a higher ITS if

the goal is to address gaps in an existing soil moisture network.

e. Blending scheme sensitivity analysis

This section evaluates how the weighting scheme, sampling

scheme, station density, and data formats influence the accu-

racy of the blended soil moisture products. The goal is to

quantify the sensitivity and to identify the optimal blending

approach.

1) IMPACT OF WEIGHTING SCHEMES

An enumerated weighing scheme [Eqs. (23)–(25)] is used to

evaluate the weights of TC and AVE proposed in section 4d.

There are a total of 441 weighting combinations that are con-

sidered. Figure 10 shows how theMAE of the blended product

varies as a function of the weighting scheme. The soil mois-

ture anomalies are used here as an example. The MAE is

sensitive to the weighting scheme, and it ranges from 0.032 to

0.058m3m23. The MAE is negatively correlated with the

weight of KAPI. The local minimum MAE, denoted by the

blue dots in Fig. 10a, tends to be associated with the weighting

schemes where SMOS is given little weight. The optimal

weights are identified when the minimum MAE is reached.

Both local (Fig. 10b) and global (Fig. 10c) minimumMAEs are

found with optimal weights of 0.25, 0.71, and 0.04 for NLDAS,

KAPI, and SMOS, respectively. Neither the TC (black trian-

gle) nor AVE (black dot) method reaches optimal weighting;

however, they do approach the local minimumMAE and have

the potential to reach the optimal weighting. In addition, AVE

(N, K), denoted by the red square in Fig. 10a, reaches the local

minimum MAE, which is also lower than either the MAE of

AVE (N, K, S) or TC (N, K, S). This indicates that SMOS is not

an important contributor to the optimal blended products

within our study area. However, the conclusion may be dif-

ferent if the study region has relatively few in situ stations

and/or is heavily irrigated. In that case, the importance of

SMOS may increase since SMOS can capture soil moisture

variations due to human activity (e.g., irrigation).

Figure 11 evaluates the impact of weighting schemes on the

blended products using Pearson correlation (Rei). The findings

are generally consistent with those based on MAE. The Rei

ranges from 0.54 to 0.80, depending on the sampling scheme. A

positive correlation is observed between Rei and the weight of

KAPI. The local (global) optimal weights are 0.25 (0.3) for

NLDAS, 0.75 (0.8) for KAPI, and zero for SMOS. The

weighting schemes using TC and AVE are similar to the local

optimal weights.

2) IMPACT OF SAMPLING SCHEME AND

STATION DENSITY

Figure 12 shows the impact of using different sampling

schemes and different number of stations on the accuracy of

the blended products using Nash–Sutcliffe efficiency (NSE)

FIG. 9. Spatial distribution of the MAE of soil moisture anomalies (m3m23) based on the

equal weighting of KAPI and NLDAS [AVE(K, N); red circles], KAPI (blue circles), and the

index of temporal stability (ITS) (gray circles).
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and mean absolute error (MAE). MAE and NSE were calcu-

lated using soil moisture anomalies at the out-of-sample sta-

tions. Three different sampling schemes are evaluated. Head

samplingmeans choosing stations from the head of ascendingly

ranked ITS or choosing stations with the lowest ITS. Tail

sampling means choosing stations from the tail of ascending

ITS or choosing stations with the highest ITS. Even sampling

indicates choosing stations evenly from the entire range of

ranked ITS values. Head sampling first selects the most stable

stations and then gradually adds stations more temporally

variable stations, while tail sampling first selects the least stable

stations for modeling and then adding more stable stations.

In contrast, even sampling selects the stations that are most

representative of the population distribution. For each sam-

pling scheme, the number of stations is varied from 15 to 125,

and the number of out-of-sample validation stations varies

from 194 to 84.

As the number of stations (station density) increases, the

NSE (Fig. 12a) also increases for both KAPI and AVE (K, N)

using all sampling schemes. When used alone, the KAPI with

the tail sampling scheme has the lowest NSE values. However,

when combined with NLDAS, the AVE (K, N) product using

tail sampling shows a large improvement. Generally, the var-

iation in the NSE of AVE (K, N) (red shaded area) under

different sampling schemes is much smaller than that of KAPI

(gray shaded area). This indicates that the blended products,

such as AVE (K, N), can reduce the uncertainty in soil mois-

ture estimates, which is especially helpful when there are very

few stations or the stations are not representative.

The MAE tends to decrease as the number of stations in-

creases for both KAPI and AVE (K, N) using both the tail and

even sampling schemes (Fig. 12b). The greatest reduction in

MAE is observed when using AVE (K, N) over KAPI with tail

sampling, especially at lower station densities. For example,

KAPI has an MAE of 0.06m3m23 using 15 stations with tail

sampling, but the MAE drops to 0.0043m3m23 when AVE

(K, N) is used. This indicates that when stations are sparsely

distributed or less representative, adding an extra source of soil

moisture information can greatly improve the accuracy. This

also confirms that the blended product (K, S, N) performs

FIG. 10. (a) Mean absolute error (MAE) of the blended soil moisture anomalies (m3m23) based on an enu-

merated weighting scheme, (b) the weight of each parent product at the local minimumMAE [blue dots in (a)], and

(c) the weight of each parent product at the global minimumMAE [green star in (a)]. Note that in (a) the black dot

indicates the MAE of the blended product that is generated from equal weighting of NLDAS, KAPI, and SMOS

[AVE(N, K, S)]. The black triangle indicates the MAE of the blended product that is generated from TC-based

LSW of NLDAS, KAPI, and SMOS [TC(N, K, S)], and the red square indicates the MAE of the blended product

that is generated from equal weighting of NLDAS and KAPI [AVE(N, K)]. The local minimumMAEs are defined

as the MAE values at the valley of each MAE cycle and are smaller than the MAE of AVE(N, K, S); the global

minimum MAE is the smallest MAE value among all weighting schemes.
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better than KAPI in areas where in situ stations are sparse.

This finding has practical significance for real-world applica-

tions because maintaining a dense and representative net-

work of in situ measurements is challenging. The Oklahoma

Mesonet is a unique and uncommonly dense network, but in

most cases soil moisture stations are sparsely distributed.

Therefore, a hybrid soil moisture product is likely to provide

the most accurate results.

MAE tends to be higher for both KAPI and AVE (K, N)

when head sampling is used (Fig. 12b). This is likely because

there is greater heterogeneity in the validation data when the

most representative stations are used for training the model.

The remaining stations are less representative and have larger

temporal variability, which may yield larger errors. In practice,

the sampling sites are always a mix of more and less repre-

sentative sites, which is similar to the even sampling case.

It is also worth noting that increasing station density has a

limited impact on the accuracy of the KAPI. For example, the

changes in NSE and MAE become more gradual when the

number of stations reaches;55 (Figs. 12a,b). This finding is in

agreement with Yuan and Quiring (2017).

3) IMPACT OF SOIL MOISTURE FORMAT

Caution should be taken when conducting error analysis

based on absolute soil moisture. This is because the absolute

soil moisture can be decomposed into its anomaly and clima-

tological components. It may be necessary to distinguish the

error attributed to the anomaly and climatological parts before

it is comparedwith the soil moisture percentiles and anomalies.

Although the soil moisture climatology is relatively smooth

and thus has limited degrees of freedom, it is still possible that

independent products have different climatological errors. For

example, Dong et al. (2020) investigated the soil moisture cli-

matological error in multiple data sources and found that the

newer L-band remote sensing soil moisture products (e.g., de-

rived from SMOS) have smaller climatological errors than those

from older C-/X-band remote sensing products (e.g., AMSR-E)

and smaller errors than the four land surface models as well.

FIG. 11. (a) Pearson correlation coefficient (Rei) of the blended soil moisture anomalies based on an enumerated

weighting scheme, (b) the weight of each parent product at the local maximum Rei [blue dots in (a)], and (c) the

weight of each parent product at the global maximum correlation [green star in (a)]. In (a), the black dot indicates

the Pearson correlation (Rei) of the blended product that is generated from equal weighting of NLDAS, KAPI, and

SMOS [AVE(N, K, S)]. The black triangle indicates the Pearson correlation of the blended product that is gen-

erated from TC-based LSW of NLDAS, KAPI, and SMOS [TC(N, K, S)] and the red square indicates the Pearson

correlation of the blended product that is generated from equal weighting of NLDAS and KAPI [AVE(N,K)].

The local maximum Rei are defined as the Rei values at the peak of each Rei cycle and are larger than the Rei of

AVE(N, K, S); the global maximum Rei is the largest Rei value among all weighting schemes.
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The impact of the soil moisture format (e.g., absolute,

anomalies, and percentiles) on the blended results is shown in

the supplementary figures. In general, the relative results are

consistent regardless of the data format. For example, sup-

plementary Fig. 1 (in the online supplemental material) dem-

onstrates that the ranking of TC-estimated error variance and

LSW-derived weights for the parent products are consistent

regardless of whether soil moisture is expressed in absolute,

anomaly, or percentile format. Supplementary Fig. 2 reveals

that the MAE (Rei and Re) of the blended datasets using

absolute soil moisture is higher (lower) than those using

anomalies and percentiles. This may be due to the reduced

systematic bias using anomalies and percentiles (Ford et al.

2015; Zhang et al. 2017a). However, the performance ranking

of the different blended products is consistent regardless of

which data format is used. Supplementary Figs. 3 and 4 indicate

that although the values of the local/global optimal weights

vary with the data format, the relative relationship still holds

(e.g., the optimal weights are always larger for KAPI, smaller

for NLDAS, and minimal for SMOS).

4) IMPACT OF ERROR CROSS-CORRELATION

The TC analysis requires triplets to have mutually uncor-

related random errors. The modeled, remote sensing, and

in situ measurements are widely considered to have mutually

independent error structures. However, in our previous anal-

ysis (e.g., Figs. 5–8), two modeled datasets (NLDAS soil

moisture and API) are used in one TC triplet. To confirm that

they have mutually independent errors, we calculated the

error cross-correlation between NLDAS soil moisture and

API using the extended collocation (EC) method proposed

by Gruber et al. (2016b). The EC analysis provides the error

cross-correlation estimation in a least squares framework by

generalizing the TC method to an arbitrary number of datasets

and relaxing the assumption of zero error cross-correlation for

the targeted datasets. Refer to Gruber et al. (2016b) for a de-

tailed description of the method. In this study, four datasets are

used in EC analysis, including NLDAS, SMOS, API, and in situ

soil moisture, in which the modeled (either NLDAS or API),

remote sensing (SMOS), and in situ soil moisture are considered

to have zero error cross-correlation, while NLDAS and API is

assumed to have nonzero cross-correlation. Using Eqs. (9) and

(10) in Gruber et al. (2016b), the cross-correlation errors be-

tween NLDAS and API over 125 stations were derived with a

median value about 0. Compared with the two examples from

Gruber et al. (2016b), one case of high error cross-correlation

between two AMSR-E products (median ’ 0.8), and the other

case of negligible cross-correlations between ASCAT and

AMSR-E (median ’ 0.25), the error cross-correlation between

NLDAS and API (median ’ 0.00) is minimal, and they can be

considered independent. Therefore, NLDAS soil moisture and

API have mutually uncorrelated random errors and can be used

as triplets. Therefore, our analysis is valid (Figs. 5–8).

The reason that NLDAS soil moisture is relatively inde-

pendent of API may be due to the following two reasons. 1)

API and NLDAS models are at different levels of complexity.

API is used as an approximation of soil moisture and is a

simplified statistical model that is based solely on precipitation.

In contrast, NLDAS soil moisture is simulated by complex land

surface models that use multiple inputs, including precipita-

tion, temperature, radiation, and other surface meteorological

data. 2) Although PRISM climatology has been used for the

orographic adjustment of the NLDAS precipitation forcing

data (Xia et al. 2012), the adjustment is only applied in

FIG. 12. Evaluation of KAPI and AVE(K, N) using different sampling schemes and different sampling sizes

based on (a) Nash–Sutcliffe efficiency (NSE) and (b) mean absolute error (MAE).MAE andNSWwere calculated

using soil moisture anomalies at the out-of-sample stations. Head sampling (denoted by line with square) means

choosing stations from the head of ascendingly ranked ITS or choosing stations with the lowest ITS. Tail sampling

(denoted by line with star) means choosing stations from the tail of ascending ITS or choosing stations with the

highest ITS. Even sampling (denoted by line with a dot) indicates choosing stations evenly from the entire range of

ranked ITS values.
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mountainous regions (Daly et al. 1994), which is not an issue in

our study region (south-central United States).

Finally, the independency between KAPI and validation

in situ soil moisture is investigated. Here, each of the 125 val-

idation sits is paired with each of the 84 modeling sites,

resulting in a total of 10 500 (5 125 3 84) station pairs. Then

the correlation between in situ soil moisture anomalies at each

station pair is calculated using all eight years (2011–18) of data

(supplementary Fig. 5). Supplementary Fig. 5a shows that the

correlations between stations tend to decrease as the distance

between stations increases. The quadratic regression line ex-

plains approximately 60% of the variance in the correlation

between stations. Based on the regression line, the station-

paired correlation drops below 0.5 when the distance is larger

than 125 km, and the station pairs with distance smaller than

125 km only take about 10% of the total station pairs. This

indicates that most (90%) of the station pairs between mod-

eling and validation sites have a distance larger than 125 km

and a correlation smaller than 0.5. The correlation of 0.5 is

selected according to Fig. 8d, where SMOS presented the

lowest correlation with in situ soil moisture with a median

value of 0.54. The in situ soil moisture is considered indepen-

dent of SMOS with a correlation of 0.54, and thus the corre-

lation of 0.5 can be used as a preliminary threshold to

determine the dependency between two datasets. If the cor-

relation is smaller than 0.5, the two datasets may be indepen-

dent. Besides fitting the quadratic line (supplementary Fig. 5a),

another approach (histogram) is adopted in supplementary

Fig. 5b to determine the distance between station pairs with

correlation less than 0.5. The result shows that the correlation

of 0.5 falls within the 100–150-km distance bin (supplementary

Fig. 5b). The accumulated percentage of station pairs is about

14% (5 1.6% 1 5.1% 1 7.3%) when the correlation larger

than 0.5, which indicates that about 86% of the station pairs

have a correlation smaller than 0.5.

In summary, supplementary Fig. 5 demonstrates that most

(86%–90%) of the station pairs between validation and

modeling sites in this study are beyond a distance of 150 km

and have a correlation less than 0.5. This indirectly demon-

strates that the KAPI, although generated based on the in situ

soil moisture at 84 modeling sites, is independent of the in situ

soil moisture at the validation sites. Therefore, the in situ soil

moisture can be used to validate the KAPI over the 125

validation sites.

5. Conclusions

This study identified the importance of incorporating in situ

soil moisture into soil moisture blending, quantified the impact

of different weighting schemes, and investigated the impact of

sampling schemes, station density, and data format on soil

moisture blending. Soil moisture information from multiple

sources, including satellite (SMOS L3 SM), model (NLDAS-

V2 Noah), and in situ measurements, as well as PRISM pre-

cipitation data, are used to generate blended soil moisture

products at a 4-km spatial resolution and daily temporal res-

olution. TC was used to estimate the error variance of the

parent products, and LSW was used to generate blended soil

moisture products. An equal weighting approach (AVE) was

also compared with the TC-LSW approach. The results indi-

cate that KAPI has the lowest error among all the parent

products. The accuracy of the blended products improved

when KAPI was incorporated, especially in terms of correla-

tion. This indicates that in situ measurements are valuable for

improving the accuracy of blended soil moisture datasets.

Likewise, it is reasonable to posit that the inclusion of in situ

soil moisture via data assimilation would also improve dataset

accuracy. Although the in situ data are not regularly incorpo-

rated in SMAP L4, a recent study (Gruber et al. 2018) has in-

corporated ground-based soil moisture observation via data

assimilation for operational agricultural drought monitoring.

The spatial patterns of error in the blended products are

related to the station representativeness [i.e., the index of

temporal stability (ITS)]. This indicates that ITS can be used to

determine the optimal location of new soil moisture stations.

Our results agree with previous study fromYee et al. (2016) that

temporal stability is helpful to identify representative stations in

the setup of common calibration/validation (cal/val) sites.

An enumerated weighting scheme was used to assess the

sensitivity of the blended results to different weighting

schemes. Our analysis demonstrated that the optimal weights

are associated with the largest weights assigned to KAPI, fol-

lowed by NLDAS, while SMOS receives marginal weight. The

weighting schemes used by TC and AVE are both close to the

local optimal weighting, and so they are appropriate for op-

erational soil moisture mapping.

The sensitivity of soil moisture blending to sampling

schemes, station density and data format were also investi-

gated. Our results demonstrated that using multiple sources of

soil moisture helps to reduce the overall uncertainty in the soil

moisture estimates, especially when sampling density is low or

the sampling stations are less representative. When sampling

density is high, sampling schemes tend to have a greater impact

on the accuracy of the soil moisture estimates. This finding has

implications for real-world applications because achieving

a high density of stations that are spatially representative is

always challenging.

In contrast, the format of the soil moisture data does not

have a major impact on the blending. Generally, our findings

are robust and consistent regardless of whether soil moisture is

in absolute, anomaly, or percentile format. The performance

ranking of the blended products is the same regardless of the

data format, and the optimal weights are always larger for

KAPI, smaller for NLDAS, and minimal for SMOS.

These findings should be placed in context by acknowledg-

ing the study limitations, including the five listed here. 1) The

soil moisture products used in this study were all extracted

from 0700 LT observations. However, a temporal mismatch

may still exist due to the different temporal resolutions of

each soil moisture product. Future work can adopt methods to

ensure the temporal coherence of different datasets. 2) This

study only considered precipitation (API) in the soil moisture

kriging. Other variables, such as evapotranspiration, soil tex-

ture, vegetation, and topography, may be helpful for soil

moisture estimation (Ochsner et al. 2019) and should be con-

sidered to improve the kriging accuracy. 3) Geographically
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weighted regression kriging (GWRK) (Brunsdon et al. 1996;

Fotheringham et al. 2003) considers the spatially nonstationary

relationships between the dependent variable and independent

variables and weights the regression by their distance to the

target point. Therefore, it may be more accurate than RK

(Kumar et al. 2012; Yang et al. 2019) and should be explored in

future studies. 4) Further study is required to test whether

these conclusions are valid in other regions. The proposed

approaches may be accurate and directly applied in regions

with similar topography and climatology as the south-central

United States. In fact, the methodology has been applied op-

erationally to generate national gridded soil moisture percen-

tiles (Zhao et al. 2020). However, caution should be taken

when applying these methods in heavily irrigated regions,

where human activities strongly control soil moisture variation.

5) Indeed, a primary advantage of blending in situ soil moisture

is its representation of root zone conditions. The focus of our

next step is to apply the methods developed here for blending

root zone soil moisture from in situ and model sources. For

example, our previous work (Zhang et al. 2017a) compared

different methods to estimate root zone soil moisture using

surface measurements and found that exponential filters out-

performed the linear regression and artificial neural network.

Therefore, exponential filters can be applied to surface remote

sensing data to generate RZSM estimates. Together with the

model simulated and in situ based root zone soil moisture, the

method proposed in this study can be used to generate new

root zone soil moisture dataset and analyze the blending

sensitivity.
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