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ABSTRACT: Soil moisture can be obtained from in situ measurements, satellite observations, and model simulations.
This study evaluates the importance of in situ observations in soil moisture blending, and compares different weighting
and sampling methods for combining model, satellite, and in situ soil moisture data to generate an accurate and spatially
continuous soil moisture product at 4-km resolution. Four different datasets are used: the antecedent precipitation index
(API); KAPI, which incorporates in situ soil moisture observations with the API using regression kriging; SMOS L3 soil
moisture; and model-simulated soil moisture from the Noah model as part of the North American Land Data
Assimilation System (NLDAS). Triple collocation, least squares weighting, and equal weighting are used to generate
blended soil moisture products. An enumerated weighting scheme is designed to investigate the impact of different
weighting schemes. The sensitivity of the blended soil moisture products to sampling schemes, station density, and data
formats (absolute, anomalies, and percentiles) are also investigated. The results reveal that KAPI outperforms API. This
indicates that incorporating in situ soil moisture improves the accuracy of the blended soil moisture products. There are
no statistically significant (p > 0.05) differences between blended soil moisture using triple collocation and equal
weighting approaches, and both methods provide suboptimal weighting. Optimal weighting is achieved by assigning
larger weights to KAPI and smaller weights to SMOS. Using multiple sources of soil moisture is helpful for reducing
uncertainty and improving accuracy, especially when the sampling density is low, or the sampling stations are less
representative. These results are consistent regardless of how soil moisture is represented (absolute, anomalies, or
percentiles).
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1. Introduction Scanning Radiometer 2 (AMSR-2) (25-km resolution; Imaoka
et al. 2010) onboard the GCOM-WI satellite, and the Soil
Moisture Active Passive (SMAP) satellite (launched 2015;
3-, 9-, and 36-km resolution; Entekhabi et al. 2010). The
Advanced Scatterometer onboard the Meteorological
Operational (MetOp-A/B/C) satellite series (launched 2006,
2012, and 2018 respectively, 25-km resolution) is an active
microwave satellite in orbit (Cartwright and Fraser 2021;
Wagner et al. 2013). While these sensors have a coarser spatial
resolution, they provide greater spatial coverage and more
frequent revisit times. In contrast, the active synthetic ap-
erture radar (SAR) systems—such as the one onboard the
RADARSAT-2 satellite (launched 2007; 3-m resolution)
(Lievens and Verhoest 2012) and the ones onboard the
Sentinel-1 (A/B) satellite constellation (launched in 2014
and 2016, respectively; 5-m resolution) (Paloscia et al.
2013)—provide soil moisture information at finer spatial
resolution, but with limited spatial coverage and less fre-
quent revisit times.

A limitation of all microwave RS soil moisture datasets is
that they can only measure soil moisture in the top 5cm (or
less) of the soil due to the limited penetration depth of mi-
crowave signals. In addition, they cannot detect soil moisture
under snow or ice, or in frozen soils. There are also challenges

Soil moisture is a critical component of the climate system.
It modulates the exchange of water and energy between
land and atmosphere through evapotranspiration (Seneviratne
et al. 2010). Soil moisture has great value for understanding
and predicting soil erosion and water quality (Abbaspour
et al. 2015; Keesstra et al. 2016), agricultural and water re-
source management (Dobriyal et al. 2012; Pittelkow et al.
2015), runoff and flooding prediction (Brocca et al. 2010;
Wanders et al. 2014), and drought monitoring (Dai 2013;
Wang et al. 2011).

There are three primary sources of soil moisture informa-
tion: remote sensing (RS) observations, land surface models
(LSMs), and in situ measurements. Microwave remote sensing
is responsive to surface (~5 cm) soil moisture in regions with
sparse to moderate vegetation density. The passive microwave
satellites that are currently in orbit include the Soil Moisture
and Ocean Salinity (SMOS) satellite (launched 2009; 35-km
resolution; Kerr et al. 2001), the Advanced Microwave
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Models can provide a valuable source of spatially con-
tinuous soil moisture, and, unlike satellites, they can rep-
resent root zone moisture conditions. The NOAA Climate
Prediction Center (CPC) (Huang et al. 1996), Global Land
Data Assimilation System (GLDAS) (Rodell et al. 2004)
and North American Land Data Assimilation System (NLDAS)
(Mitchell et al. 2004) all provide model-simulated soil mois-
ture at various depths and time scales. Compared with in situ
measurements, Chen et al. (2013) found all four GLDAS
LSMs systematically underestimate the surface soil moisture
in the Tibetan Plateau. Ford and Quiring (2019) compared
the modeled soil moisture from NLDAS phase 2 (NLDAS-2)
and CPC with in situ measurements and found that the
NLDAS-2 models consistently performed better than the
CPC model.

Similar to RS soil moisture, model-simulated soil moisture
is difficult to validate because of the scale mismatch with
in situ observations. The in situ networks are typically not
dense enough to adequately resolve soil moisture variability
within each LSM pixel. In addition, there are systematic
differences between different soil moisture models, and their
reliability varies significantly from model to model, and over
time and space (Ford and Quiring 2019; Spennemann et al.
2015). Models generally perform well in representing the
variations in soil moisture and soil moisture anomalies
(Albergel et al. 2012; Downer and Ogden 2003; Meng and
Quiring 2008), but they tend to have large biases in simulating
the absolute volumetric water content of the soil (Bi et al.
2016; Xia et al. 2015).

In situ soil moisture measurements from field campaigns
and regional and national soil moisture monitoring net-
works are invaluable for calibrating and validating LSMs
and RS-based soil moisture datasets and other hydrological
and climatological studies. Great efforts have been made to
assemble, homogenize, and standardize in situ soil moisture
measurements from different networks, time frames, sen-
sors, depths, and formats (Cosh et al. 2016; Dorigo et al.
2013; Ford and Quiring 2014; Zhang et al. 2017a). Currently,
the coordinated in situ soil moisture networks include
the International Soil Moisture Network (ISMN) (Dorigo
et al. 2011), the North American Soil Moisture Database
(NASMD) (Quiring et al. 2016), and the National Soil
Moisture Network (Ford et al. 2020, manuscript submitted
to J. Hydrometeor.). Despite these efforts, the number of
stations that measure soil moisture continuously are still
very limited globally. In addition, since in situ stations
provide a point measurement, this limits their application at
larger spatial scales.

In summary, each source of soil moisture data has its
strengths and weaknesses. The advantage of in situ observa-
tions is that they are the only direct measurement of soil
moisture, and thus are often used as a benchmark for models
and satellites. The primary disadvantages of in situ observa-
tions are that they typically have a sparse spatial density and,
as a point measurement, they have limited spatial representa-
tiveness. Similarly, model and satellite remote sensing soil
moisture have the advantage of representing a larger spatial
area and, for the most part, a finer spatial resolution. Of course,
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the primary disadvantage of models and satellites is that there
can be a large discrepancy between different models and sen-
sors, and the satellites with the highest temporal resolution are
confined to near-surface soil moisture and have degraded
performance under dense vegetation or in frozen soils. Given
the advantages and disadvantages of each source of soil
moisture information, they can improve soil moisture moni-
toring if they are combined.

Multiple methods have been developed to blend in situ,
modeled, and remotely sensed soil moisture. Data assimilation
is one popular approach to generate soil moisture using ob-
servations and models. For example, the SMAP L4 product is
based on a data assimilation system that combines SMAP
L-band brightness temperature observations with the NASA
Catchment land surface model (Reichle et al. 2020). While
there are many advantages to data assimilation, it is compli-
cated and computationally expensive to implement. As an
alternative, a number of statistical methods, including triple
collocation (TC) (Stoffelen 1998) with least squares weighting
(LSW) and equal weighting (arithmetic average of parent da-
tasets), have been adopted for blending soil moisture for op-
erational and experimental datasets (Yilmaz et al. 2012; Zeng
et al. 2016). One example is the European Space Agency’s
Climate Initiative for Soil Moisture (ESA CCI SM), which
uses a least squares merging scheme with uncertainty charac-
terization to merge multiple sources of soil moisture (Gruber
et al. 2019).

The motivation of this study is the gradually enhanced re-
gional and national in situ soil moisture network, which pro-
vides the opportunity with other data sources to improve the
accuracy and usability of soil moisture monitoring. Blending
with in situ soil moisture observations can provide a number of
advantages to blending solely based on remote sensing and
modeled datasets. For example, remote sensing soil moisture—and
soil moisture products generated via data assimilation—typically
have a 3-7-day data latency. This latency is acceptable for
many applications, such as drought monitoring and monthly or
seasonal climate outlooks. However, the longer latency is
problematic for applications requiring more rapid updates,
including flash flood forecasting and field condition monitoring
for agriculture. In addition, soil moisture products based en-
tirely on remote sensing observations do not represent soil
moisture conditions in the primary root zone. Although we do
not examine root zone soil moisture in this study, the methods
are easily applicable for blending root zone soil moisture from
in situ and model sources. Last, many blended remote sensing—
model datasets are available with superdaily temporal resolu-
tion (e.g., every 2-3 days). This is a limitation for two primary
reasons. First, most meteorological data, such as temperature,
precipitation, and humidity, are updated at daily or subdaily
time scales. Daily scale soil moisture better matches these data
for hydrological analysis and crop modeling. Second, when
standardizing soil moisture using anomalies, percentiles, or
similar, the robustness of the standardization is sensitive to the
historical soil moisture record length (Ford et al. 2016). This is
particularly the case for representing soil moisture extremes,
important for drought and flood modeling. Therefore, having
a 3-day temporal resolution reduces the historical data record
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by 3 times versus a daily resolution product, which can result in
less representative standardization.

Despite these advantages, in situ data have not been used
as widely as remote sensing and modeled soil moisture in
operational or experimental blended datasets. Therefore,
there is a need to understand better the advantages and
limitations of including in situ soil moisture when blending
remote sensing and modeled data. It is important to note
that a primary motivation of this study is to test the feasibility
of blending in situ, remote sensing, and model soil moisture.
This will ultimately complement but not replace the wealth of
blended and/or assimilated remote sensing—model soil mois-
ture datasets.

In addition, our understanding of the sensitivity of blended
soil moisture data to weighting schemes is lacking. In par-
ticular, it is helpful to determine whether the commonly used
approaches (e.g., TC, equal weighting) generate optimal
weights and how different weighing schemes impact hybrid
results. The objective of this study is threefold: 1) to evaluate
the effect of incorporating in situ observations into soil
moisture blending; 2) to assess the sensitivity to different
blending and weighting schemes; and 3) to investigate the
impact of sampling schemes, station density, and different
data format (e.g., absolute, anomalies, and percentiles) on
soil moisture blending.

2. Study area and data

This study is conducted in the south-central region of the
United States, covering four states, Texas, Oklahoma,
Arkansas, and Louisiana, with a total area of ~1 150400 km?.
The south-central United States is an important agricultural
region in the United States, but it is also drought-prone (Tian
and Quiring 2019). For example, the four states account for
about 10% of national winter wheat production in 2017
(National Agricultural Statistics Service). According to the
Koppen climate classification, the climate of this region varies
from warm temperate (about three-fourths of the region) in the
east to the arid (about one-fourth of the region) in the west
(Kottek et al. 2006). The annual average temperature gradu-
ally decreases from south (27°C) to north (13°C), and the mean
annual precipitation gradually increases from west (<25 cm) to
east (>190 cm).

This study uses in situ measurements of soil moisture,
satellite-observed soil moisture, model-simulated soil mois-
ture, precipitation, and air temperature. To facilitate compar-
ison, a common period of record from January 2011 to
December 2018 was used for all datasets. All the gridded
datasets are resampled to a 4-km spatial resolution to match
PRISM data, which have the highest spatial resolution among
the gridded data used in this study. The final blended soil
moisture is also generated at 4-km resolution.

a. In situ soil moisture measurements

The in situ soil moisture data were collected from four
sparse networks: the Oklahoma Mesonet (OKM), West Texas
Mesonet (WTM), Soil Climate Analysis Network (SCAN),
and Climate Reference Network (CRN). Daily soil moisture
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FIG. 1. Study area and location of stations where in situ soil
moisture measurements are made. Stations are color coded ac-
cording to the network they are part of: West Texas Mesonet
(WTM; green), Oklahoma Mesonet (OKM; yellow), Soil Climate
Analysis Network (SCAN; red), and Climate Reference Network
(CRN; blue). A total of 209 stations are presented here, among
which 84 stations (indicated by crossed circles) are selected using
stratified random sampling for modeling, while the remaining 125
stations were used for out-of-sample validation.

measurements were obtained from the North American Soil
Moisture Database (NASMD) in the units of volumetric water
content (m>m™>) (Quiring et al. 2016). Since different net-
works collect data at different time intervals ranging from
every 5Smin to once per day, for consistency, a single morning
measurement (7 a.m. LST) was extracted to represent the daily
value. This is not ideal, but it is reasonable for applications in
which diurnal variations in soil water content are inconse-
quential, such as drought monitoring. The raw measurements
have passed through a quality assurance and quality control
(QAQC) process (Ford and Quiring 2014), and flagged values
been removed and filled. The near-surface measurements
(5cm) from a total of 209 stations (Fig. 1) were obtained for
this study. The daily in situ soil moisture data are available
from 2011 to 2018.

b. SMOS L3 soil moisture

The SMOS satellite was launched in 2009 as part of the ESA
Explorer Opportunity science mission. It is dedicated to pro-
viding surface (top ~5 cm) soil moisture mapping with a target
accuracy of 0.04 m®>m > (Kerr et al. 2001). The SMOS Level 3
(L3) soil moisture product used in this study was obtained from
the SMOS Data Center (http://www.catds.fr/sipad). It is gen-
erated at 1-day intervals at a global extent with a spatial res-
olution of 0.25°. The SMOS L3 products are available from
2010 to the present. Compared with the SMOS level 2 (L2)
product, which was produced using a single-orbit algorithm,
the SMOS L3 products are produced using the multiorbit al-
gorithm, which enhances the retrievals at the border of the
swath (Al Bitar et al. 2017). The SMOS L3 products include
both ascending [morning; about 0600 local time (LT)] and
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FIG. 2. Schematic diagram showing the methodological framework of this study.

descending (evening; about 1800 LT) overpasses. To be
consistent with the daily in situ measurements, which are
generated by extracting morning (0700 LT) measurements
each day, the ascending SMOS L3 product is used. The
nearest neighbor assignment is used to resample SMOS L3
soil moisture from 25 to 4 km to match the spatial resolution
of the other datasets.

c. NLDAS-2 Noah soil moisture

This study uses simulated soil moisture from the NLDAS-2
Noah model. The Noah model provides hourly soil moisture
fields at 1/8° grid from 1979 to the present. The Noah model has
four soil layers, 0-10, 10-40, 40-100, and 100-200 cm, but only
the top layer is used in this study. Details about the NLDAS-2
configuration of the Noah LSM can be found in Xia et al.
(2012). To be consistent with the in situ measurements, the
Noah output at 0700 LT is extracted each day to represent the
daily soil moisture, and the data from 2011 to 2018 are adopted
to match the record length of the in situ data. Finally, the
nearest neighbor method is used to resample the simulated soil
moisture from 12.5 to 4 km to match the other datasets.

d. PRISM climate data

The PRISM (Parameter-elevation Regressions on Independent
Slopes Model) datasets are developed by Oregon State
University’s PRISM Climate Group (Daly et al. 2008). PRISM
uses surface stations and a weighted regression scheme to
generate a daily updated spatial mapping of precipitation
and temperature over the contiguous United States. There
are more than 13000 quality-controlled surface stations used
for precipitation interpolation and more than 10000 stations
used for temperature interpolation (Daly et al. 2008). The
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climatological normal (average monthly and annual conditions
over 1981-2010) and monthly and daily data are available at
4-km and 800-m resolution from 1981 to the present.

The 4-km daily precipitation from PRISM is used in this
study. Since there is a strong coupling between soil moisture
and precipitation (Koster et al. 2004), the latter has been
widely used as an important input to estimate the former in
various LSMs (Liang et al. 1996; Liu et al. 2018; Xia et al. 2012).
Here, the antecedent precipitation index (API) is used as a
soil moisture approximation. The API is calculated solely
based on precipitation. The kriged API (KAPI) uses the API
and in situ measurements of soil moisture that are incorpo-
rated using regression kriging. The API index is introduced
in section 2e(2), and regression kriging is introduced in
section 2e(3).

e. Data preparation
The data preparation methods are summarized in Fig. 2.
1) ANOMALIES AND PERCENTILES

The volumetric water content of the soil varies as a function
of weather conditions, soil characteristics, vegetation, and to-
pography, among other factors, and so it cannot be directly
compared between different locations. Therefore, we calculate
anomalies and percentiles for all datasets (in situ, SMOS,
NLDAS, API, and KAPI) to standardize soil moisture and
make them comparable in space and time (Ford et al. 2015;
Zhang et al. 2017a).

Anomalies are calculated by removing the climatological
mean from the absolute soil moisture each day (Crow and
van den Berg 2010). The climatological mean is calculated
using a moving-window approach (Chen et al. 2017), which
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averages all available soil moisture estimates across all years
within a 31-day window (Dong et al. 2018) centered on the
target day.

Percentiles are also calculated using an empirical probability
distribution function and moving window approach. On each
day of the year, all soil moisture measurements that fall
within a 31-day window centered on that day are used to
construct the empirical probability distribution function. Ford
et al. (2016) found that sample sizes between 93 and 186 daily
soil moisture observations were required to generate robust
percentiles. In our case, all datasets are extracted from 2011
to 2018 (8 years), which provides a large enough sample (n =
248) to generate robust percentiles. Percentiles range from 0
(or 0%) to 1 (or 100% ), which corresponds to the driest (0%)
and wettest (100%) soil conditions at a specific site over the
entire study period during the 31-day window centered on the
target date.

2) ANTECEDENT PRECIPITATION INDEX

The antecedent precipitation index is a precipitation-based
moisture index. It is used to indicate the wetness of a location
and serves as an approximation of soil moisture. It has been
widely applied in drought monitoring (Crow et al. 2012a),
runoff forecasting (Anctil et al. 2004), crop yield prediction
(Zhang et al. 2017b), and soil moisture estimation using data
assimilation approach (Afshar et al. 2019; Yilmaz and Crow
2013). The API uses the preceding precipitation to estimate the
current moisture status, and it is formulated as (Kohler and
Linsley 1951)

API(i) = API(i — 1) X k + PPT(i), (1)

where API(i) is the API on day i, PPT(i) is the precipitation
occurring on day i, and k is an empirical decay factor between
0.80 and 0.98 (Heggen 2001). In this study, a set of k values
(from 0.80 to 0.99) is tested to determine the optimal k value
that results in the highest correlation between API and soil
moisture based on all 209 stations. The highest correlation (r =
0.45) is achieved using k = 0.92. Therefore, k = 0.92 is used in
this study for API calculation.

3) REGRESSION KRIGING

Regression kriging (RK) is one of the most popular and
robust spatial interpolation techniques for the digital
mapping of soil properties (Keskin and Grunwald 2018).
Previous studies demonstrate that RK usually outperforms
nongeostatistical methods (Li and Heap 2011; Mishra et al.
2010; Yang et al. 2019), ordinary kriging (Hengl et al. 2004),
and cokriging (Eldeiry and Garcia 2010). RK combines a
regression between the target variable and one or more
auxiliary variables with simple kriging of the regression
residuals (Hengl et al. 2007; Odeha et al. 1994). In this study,
RK is used to interpolate the point-based in situ soil mois-
ture (target variable) using the API as an auxiliary variable.
The RK models can be expressed as two parts (Hengl
et al. 2004):

)

Z(SO) = rh(so) + é(so),
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where m1(so) is the fitted trend. In this study, #i(so) is fitted by a
linear model between the auxiliary variable and soil moisture

[Eq. 3)]:
©)

where 3 is the estimated model coefficient using generalized
least squares, and g(so) is the auxiliary variable at the target
location s¢. In this study, the auxiliary variable is the API,
represented as absolute values, or anomalies, or percentiles.

The second part of the RK equation is é(sq), which is the
interpolated residual. The residual is first calculated from the
linear model and then interpolated by simple kriging with an
assumed 0 mean:

rh(s()) = Bq(s()) >

é(s,) = ;)\ie(si), @)
where A; are kriging weights determined by the spatial de-
pendence structure of the residual, and e(s;) is the residual
at location s;. By adding the kriging residuals back to the
predicted trend, the final RK predictions (KAPI) are
obtained.

4) SITE SELECTION BASED ON THE INDEX OF
TEMPORAL STABILITY

In this study, 40% of the stations with soil moisture mea-
surements (84 sites) are used for modeling (crossed circles in
Fig. 1), while the remaining 60% of stations (125 sites) are used
for the out-of-sample validation. The 84 modeling sites are
selected based on the Index of Temporal Stability (ITS)
(Jacobs et al. 2010; Zhao et al. 2010). ITS is an indicator of the
temporal representative locations. The location with the lowest
ITS value is the location with the highest temporal stability.
The ITS at location i (ITS;) is calculated as

ITS, = /MRD? + SDRD;, 6))
1 T
MRD.=—> RD. , (6)
i T]_:1 L
1 & )
SDRD. = { [=—— Y (RD.. — MRD ), 7
I T — 1]_:1 1ij I
rp, =1~ " ®)
i 0.

-

where 6;;is an individual daily measurement of soil moisture at
location i C [1, ..., N] and time j C [1, ..., 7], and 6; is the
spatial average of soil moisture at all locations at time j. The
term RD; ;s the relative difference of location i at time j, which
is introduced by Vachaud et al. (1985). The term MRD; is the
mean relative difference of location i. It averages the RD at
location i across an entire period (7 days) and represents the
location’s temporal bias or whether the location is wetter or
drier than the average of the area during 7" days. The term
SDRD; is the standard deviation of the RD at location i. It
describes the degree of the temporal stability of a location,
or whether a location is temporally stable. Therefore, a
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temporally representative site is one with a small mean bias
and can be characterized by low values of both MSD and
SDRD, and a low value of ITS (Brocca et al. 2012; Cho and
Choi 2014; Penna et al. 2013).

A stratified random sampling method is adopted to select 84
modeling sites based on ITS following three steps: 1) calculate
and rank the ITS of 209 stations in ascending order, 2) evenly
divide the ranked ITS into four groups, and 3) within each
group, randomly select 21 sites. The 84 sites are selected in this
way to ensure evenly sampled sites across the ITS range, which
best mimics the reality that in situ stations have different
temporal representativeness.

3. Blending methods

The soil moisture blending schemes used in this study are
illustrated in Fig. 2. Triple collocation is used to estimate the
error variances of two sets of parent products, including
NLDAS, SMOS, and API (N, S, A), and NLDAS, SMOS, and
KAPI (N, S, K). The least squares weighting (LSW) is used to
merge these products. We also evaluate equal weighting and an
enumerated weighting scheme for soil moisture blending to
investigate the sensitivity of the blended products to weighting
schemes.

a. Triple collocation

Triple collocation is a technique for estimating the error
variance of three independent datasets with respect to the
unknown truth (Stoffelen 1998). It assumes a linear error
model between each product and the unknown truth. The er-
rors from the independent sources are assumed to have a mean
of zero, and they are uncorrelated with each other and with the
truth. Gruber et al. (2016a) reviewed previous TC analyses of
soil moisture and found there are two different notations of TC
formula, the difference notation (Scipal et al. 2008; Stoffelen
1998; Yilmaz et al. 2012) and the covariance notation (McColl
et al. 2014; Stoffelen 1998). They demonstrated that the two
different notations are mathematically identical. In this study,
the covariance notation is used because it provides an extra
estimate of correlation coefficients (R;) of the measurement
systems with respect to the unknown truth. The covariance
notation for TC is based on the variances (o) and covariances
(o) of the parent products, which can be written as

ol = Bjoj + oy, ©)

where i,j € (N, S, A) or (N, S, K) in this study; and i # j. Letter
N refers to NLDAS, S refers to SMOS, A refers to API,
and K refers to KAPL Here o2 is the variance of parent
product i; 0,2 is the variance of the unknown truth #; o refers to
the covariance between two parent products. Taking the trip-
lets of (N, S, K) as an example, the unscaled error variances of
each parent product (o2 , 0 , 02 ) can be derived by

eN’ T es?

2 _ Ons9Nk
o-zr - (TN s
- p
SK

(1n
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Note that the covariance notation does not require an a priori
rescaling of the datasets, and the error variances obtained from
Egs. (11)—(13) are absolute error variances, which are esti-
mated in their own data space. To facilitate soil moisture
blending, they must be converted to a common data space, or
to relative error variances. Here, the NLDAS is used as the
reference dataset and the rescaling parameters for the other
two parent products are computed as (Gruber et al. 2016a;
Stoffelen 1998) follows:

*:B_N:U& 14
Bi= g = (4)
py == (1s)

& Bx o
The covariance-based TC approach also provides important
new information about the performance of the measure-
ment systems, which is the correlation (R;) between each
parent product and the true soil moisture signal. Using the
triplets of NLDAS (N), SMOS (S), and in situ measure-
ments (I) as an example, the TC-based correlation for the

three parent products can be calculated according to McColl
et al. (2014) as

O\ T,
R. = NS NI, (16)
N O-IZ\IO-SI
(oo
R. = NS NI, (17)
N (T%\I(TSI
Oy
1 2
R = NI~ SI (18)
(TIO'NS

Here, R; estimates that exceed 1, which may be due to statis-
tical sampling errors (Gruber et al. 2018), are set to 1 (Gruber
et al. 2019); only the positive values of the R; is used, since the
parent products are expected to be positively correlated to the
unobserved truth.

Two sets of triplets, (N, S, A) and (N, S, K), are evaluated in
this study to examine whether incorporating in situ soil mois-
ture (e.g., using KAPI) can improve the accuracy of the
blended product over using API, which does not incorpo-
rate in situ soil moisture. All parent products are evaluated at
the same 125 out-of-sample stations. The stations with less
than 100 observations are removed from the TC error esti-
mation (Scipal et al. 2008). A more detailed discussion of the
covariance-based TC approach and TC-based correlation
coefficient and can be found in McColl et al. (2014) and Gruber
et al. (2016a).

b. Least squares weighting

Least squares weighting (LSW) is a commonly used method
for blending different soil moisture data sources (Gruber et al.
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2019; Yilmaz et al. 2012; Zeng et al. 2016). The least squares
framework can be expressed as

S,=wS +wS +w.S, (19)
where S,,, is the merged product; w,, w,, and w, are the relative
weights of three parent datasets S,, S,, and S, respectively.
With w, + w, + w, = 1, and by minimizing a cost function and
the partial derivative of the cost function with respect to w, and
wy, the optimal estimation of the weights is obtained from

2 2
s
_ vz
w_= (20)
x 252 242 242’
0.0y too;+ 0,07
2.2
oanlos
W)’: 252 + ;§+ 242> (21)
030y, ooz +oj0;
2.2
o

w. = ,

¢ olo}+oioltojol
where o2, 0'3, and o2 are the TC-estimated error variance for
the two sets of parent datasets [(N, S, A) and (N, S, K)].

¢. Enumerated weighting

An enumerated weighing scheme is evaluated in this study
to examine whether the TC or equal weighting methods have
achieved optimal weights, and to test the sensitivity of hybrid
products to weighting schemes. The weight of each parent
product is varied over the full range from O to 1 with pre-
defined intervals. Taking (N, S, K) as an example, as the sum
of weights of three parent products should be 1 (Wy + Ws +
Wk = 1), and the enumerated weighting scheme can be ex-
pressed as follows:

W,=0-1 (AW, =0.05), (23)
Wo=ay(l1-Wy) (ag=0tol, Aag=0.05), (24)
W, =1- W, —W,, (25)

where AWy and Aa denote the fixed intervals (both set to 0.05)
of varying weights of NLDAS (Wy) and the proportion of the
weight of SMOS (as), respectively. With this setting, a total of
441 weighing combinations are generated. (A visual display of
the enumerated weight scheme is presented as the background
color in Figs. 10 and 11).

d. Goodness of fit

The mean absolute error (MAE) [Eq. (26)] and Pearson
correlation coefficient (R,;) [Eq. (27)] between blended prod-
ucts and the out-of-sample in situ measurements are used for
the validation and comparison of the blended products:

13 . .
MAE = 36,(7) 6, 26)
g
Rei —R, (27)

where 7 is the number of observations; 6, and 6, are observed
and estimated soil moisture, respectively; o, is the covariance
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between observed and estimated soil moisture; and o, and o,
are the standard deviations of observed and estimated soil
moisture, respectively. Considering the in situ data have rep-
resentativeness errors (Crow et al. 2012b; Miralles et al. 2010;
Yilmaz et al. 2012), we followed the approach of Gruber et al.
(2019) and used Bayesian inference [Eq. (28)] to correct the
Pearson correlation (R,;) for the impact of the in situ repre-
sentativeness error (R;):

(28)

R 7Rei
e R.’
where R, is the corrected correlation between each blended
product and the true soil moisture at 4-km scale; R; is the
representativeness error in the in situ measurements in terms
of their correlation with true soil moisture at 4-km scale. The
value of R; is calculated by applying TC to the in situ mea-
surements together with NLDAS and SMOS products us-
ing Eq. (18).

The Nash-Sutcliffe efficiency (NSE) score [Eq. (29)] is
also used to evaluate the impact of sampling schemes
and station density on the accuracy of the blended soil
moisture products. NSE is a dimensionless indicator of
model skill and can be used to assess the products with dif-
ferent units and scales (e.g., absolute soil moisture, anoma-
lies, and percentiles). Its value ranges from —«to 1. An NSE
of 1 corresponds to perfect skill; an NSE of 0 indicates that
the blended product performs the same as using the mean of
out-of-sample observations, while a negative NSE (NSE < 0)
indicates the model prediction is less accurate than the out-
of-sample mean.

=

NSE=1-"

[0, — 6,0)]
= (29)

2

I,

4. Results and discussion
a. Comparing parent datasets

Figure 3 presents the spatial pattern of average daily soil
moisture from 2011 to 2018 for in situ measurements over 209
stations (Fig. 3a), NLDAS soil moisture (Fig. 3b), the SMOS
product (Fig. 3c), KAPI (Fig. 3d), and API (Fig. 3¢). In general,
all five datasets show a strong moisture gradient from west to
east. The SMOS and NLDAS provide stronger soil moisture
contrasts and greater spatial variability in soil moisture, while
the API and KAPI present a smoother moisture pattern.
NLDAS matches well with the spatial pattern of in situ soil
moisture variations. SMOS tends to overestimate the dry
conditions in the Texas and Oklahoma Panhandles, as well as
along the east border of Oklahoma, while KAPI tends to
overestimate soil moisture in west Texas.

Figure 4 provides a quantitative comparison of the five
datasets in terms of mean (Fig. 4a), standard deviation (STD)
(Fig. 4b), and coefficient of variation (CV) (Fig. 4c) over the
125 out-of-sample stations. Here we use absolute soil mois-
ture for the evaluation. Both NLDAS and KAPI have a
similar median value to that of the in situ measurements
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FIG. 3. Mean soil moisture calculated by averaging the daily data from 2011 to 2018 over the study area based on (a) in situ measurements
at 209 stations, (b) NLDAS, (c) SMOS, (d) KAPI, and (e) APL

(0.22m>m ™ for median), while SMOS presents a signifi- large CV of SMOS indicates there is a large degree of vari-
cant (p < 0.05) underestimation of mean soil moisture ability in SMOS soil moisture, which is jointly attributed to its
(0.18 m®* m~?) compared with the in situ ones. The negative small mean value (Fig. 4a) and large STD (Fig. 4b). The largest
bias in the SMOS L3 data indicates that this product may CV of API may be explained by its physical discrepancy with
overestimate the dryness if used alone without normalization  soil moisture measures, since API is calculated using precipi-
or standardization. NLDAS has the lowest STD (0.04m®>m >  tation, which does not have an upper limit, whereas soil
for median), followed by KAPI and in situ data (both are  moisture does. This may result in a wider range of API values
0.07m*>m %), and SMOS has the largest STD (0.09m>m™>).  corresponding to saturated soil, and thus larger CV of API than
However, it should be noted that the in situ data may be other soil moisture data. In summary, Fig. 4 reveals that both
biased toward the KAPI because they are generated using NLDAS and KAPI have a similar mean and CV as the in situ
in situ soil moisture. measurements, while SMOS tends to underestimate the mean
Due to the different units of API, it is not directly compa-  values and has greater dispersion than the in situ data. API has
rable with other datasets in terms of mean and STD, butit can the least agreement with the in situ data.
be compared using CV (Fig. 4c). NLDAS has the lowest CV
(0.21 for median), followed by KAPT (0.29). In comparison, the
in situ data have a CV of 0.31. The higher CV of in situ com- Figure 5 shows the impact of different parent datasets on the
pared with NLDAS and KAPI may be attributed to it being a  error variance (02) estimated using the TC approach. Four
point measurement. Both SMOS (0.54) and API (1.02) show different sets of soil moisture anomaly products are compared:
significantly (p < 0.05) larger CV than the other datasets. The (N, I, S), (N, I, A), (N, S, A), and (N, S, K). We found that

b. Errors variances from TC

(a) Mean (b)STD (c) cV
60 . .
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e % a8 : 5 : ;
0.35 ' == 2 50 50.14 £ E : e 150 12 : i
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FIG. 4. Comparison of absolute soil moisture at the 125 out-of-sample sites based on in situ measurements, NLDAS, SMOS, KAPI and
API: (a) mean, (b) standard deviation (STD), and (c) coefficient of variation (CV).
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FIG. 5. Triple collocation (TC)-estimated error variances (o) for
soil moisture anomalies using different combinations of the five
datasets [NLDAS (N), in situ (I), SMOS (S), API (A), and KAPI
(K)]. The results are shown for the 125 out-of-sample stations.

changing the parent triplets does not change the relative error
ranking of the parent datasets, but it does change the absolute
values of the o estimated for each product. For example, the
a2 of SMOS is consistently larger than that of NLDAS
(0%, > a2), irrespective of the third dataset. The in situ data
always have a larger o2 than NLDAS (Figs. 5a,b). This may be
due to the high spatial representativeness errors of in situ
measurements (Crow et al. 2012b; Miralles et al. 2010; Yilmaz
et al. 2012). To reduce the impact of the representativeness
errors in the in situ data, Bayesian inference [Eq. (28)] is
adopted to derive the corrected correlation (R,) between each
dataset and the true soil moisture signal. We apply this ap-
proach to validate the blended products (section 4d). In
general, the relative o2 ranking of the five datasets is

€
ol < o <ol <o? <o’ based on Fig. 5.

N €K A &s

c. Weights from LSW

The LSW scheme is adopted with TC-estimated error vari-
ance to calculate the weights of the two triplets (N, S, A) and
(N, S, K) (Fig. 6). According to LSW theory, the weight of the
parent products is inversely proportional to the error vari-
ance. Therefore, for the (N, S, A) triplets, NLDAS has the
highest weight (0.55 for median), followed by API (0.25), and
SMOS has the smallest weights (0.18) (Fig. 6a). Spatially,
using the (N, S, A) triplets, the largest weights (>0.8) for
NLDAS are clustered in south-central Texas (Fig. 6b), and
the highest weights (>0.8) for API are concentrated in the
northwest corner and eastern part of the study area (Fig. 6d),
while the weights of SMOS are about 0.2 throughout the
study area (Fig. 6¢). For the (N, S, K) triplets, the largest
weights are again given to NLDAS (0.63 for median), fol-
lowed by KAPI (0.22), and SMOS has the smallest weights
(0.12) (Fig. 6e). Spatially, using the (N, S, K) triplets, the
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largest weights (>0.8) for NLDAS are located in the western
half of the study area (Fig. 6f), while the weights of SMOS
are smaller than 0.2 throughout the study area (Fig. 6g). For
KAPI, the largest weights are scattered throughout the
eastern part of the study area (Fig. 6h). In general, the two
triplets (N, S, A) and (N, S, K) present similar weight
patterns.

d. Evaluation of blended products
1) COMPARISON OF TC TRIPLETS

In this study, blended soil moisture products are generated
from two triplets, (N, S, A) and (N, S, K), using the TC-LSW
approach. For comparison, we also employ the simple average
(AVE) approach, which gives equal weight to each product.
Figure 7 compares the spatial pattern of the four parent
products (first row) and the blended products (second row)
using TC and AVE. The NLDAS soil moisture has been used
as areference to rescale the other parent products. In Fig. 7, the
soil moisture anomalies on 4 July 2014 are used as an example.
Distinct differences are observed between the four parent
datasets (Figs. 7a—d). For example, scaled SMOS shows much
dryer conditions (indicated by blue color) in western and
southern Texas than NLDAS (Fig. 7b). The scaled API
shows wetter condition (indicated by red color) in northern
Texas and Oklahoma and in eastern Arkansas than NLDAS
(Fig. 7c), while the scaled KAPI has a similar pattern as API
(Fig. 7d). In contrast, no apparent visual differences can be
observed between all the blended products (second row of
Fig. 7), regardless of the triplets or weighting scheme used.
Therefore, further quantitative evaluation of the blended
results is necessary.

Figure 8 provides a quantitative evaluation of the parent
(first column) and blended soil moisture anomalies (last two
columns) using the MAE, Pearson correlation (R,;) against
in situ measurements, and corrected correlation against the
truth (R,) over the 125 out-of-sample stations. The scaled
KAPI presents the lowest MAE, while the scaled SMOS
has the largest MAE. Based on an ANOVA test, the scaled
SMOS has significantly (p < 0.05) higher MAE than other
three parent products, and the scaled KAPI presents signifi-
cantly (p < 0.05) lower MAE than API. But the difference
between scaled NLDAS and scaled API and KAPI in terms of
MAE is not significant (p > 0.05) (Fig. 8a). For the blended
products, there is no significant (p > 0.05) difference in terms
of MAE either between the results using TC or AVE, or be-
tween using different triplets (N, S, A) or (N, S, K). However,
there is a slight improvement in MAE of the (N, S, K) blended
results as compared to the parent products (Fig. 8c vs Fig. 8a).
The negligible difference between TC and AVE methods
agrees with Yilmaz et al. (2012). They found that merged soil
moisture generated using a TC-LSW method did not outper-
form the soil moisture generated using an equally weighted
approach.

The evaluation based on R,; (second row in Fig. 8) tells a
somewhat different story. Based on an ANOVA test, all the
parent products have significantly (p < 0.05) different R,;
values from each other (Fig. 8d), except the pair between
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FIG. 6. Comparison of the least squares weighting (LSW)-derived weights based on the TC-estimated error variance using soil moisture
anomalies. (a),(e) The weights at 125 out-of-sample stations (black circles in remaining subplots). (b)-(d), (f)—(h) Spatial distribution of
weight for each product. Two sets of TC triplets are compared: (N, S, A) in (a)-(d) and (N, S, K) in (e)-(h).

NLDAS and API The scaled KAPI has the highest R,; (0.78 It is worth noting that the parent product KAPI performs
for median), followed by scaled NLDAS (0.67), scaled API  best among all parent and blended products, and the insignif-
(0.66), and scaled SMOS (0.54). There is no significant (p > icant improvement of the blended results over the KAPI par-
0.05) difference in R,; between the blended products using TC  ent product is worth exploring. Here, we propose three
or AVE methods. However, a significant (p < 0.05) improve-  possible explanations. 1) The validation data are not spatially
ment in R,; is observed when using (N, S, K) (median R,; = exhaustive. Although 60% (125) of total stations have been
0.75), instead of (N, S, A) (median R,; = 0.70). This indicates  used in the validation, they are still relatively sparse and not
that KAPI is superior to API in soil moisture blending, and evenly distributed in the study area. Figure 1 shows most val-
in situ data can significantly improve the accuracy of the idation stations are clustered in Oklahoma and west Texas,

blended soil moisture datasets. while relatively few stations are located in south Texas,
(a) NLDAS ) (blsflosgcaled B (©) Plsgaled
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FIG. 7. Example of soil moisture anomalies (m> m ) on 4 July 2014 for the (a)—(d) parent products and (e)(h) blended products. “TC”
indicates that the blended maps were created using TC errors with LSW weighting; “AVE” indicates that the blended maps were created
using equal weighting of the three parent products. The empty circles indicate the locations of the 125 out-of-sample stations. ‘N’ refers to
NLDAS, ““S” refers to SMOS, “A” refers to API, and “K” refers to KAPI.
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FIG. 8. Evaluation of the (left) parent and (center),(right) blended soil moisture anomalies (m> m %) using the 125 out-of-sample in situ
stations based on (a)—(c) mean absolute error (MAE), (d)—(f) Pearson correlation coefficient (R,;), and (g)—(i) corrected correlation

against the truth (R,). The calculations of MAE, R,;, and R, are provided in section 3d.

Arkansas, and Louisiana. It is possible that the places where
hybrid results showed an improvement over the KAPI are not
well captured using only 125 stations. 2) The in situ measure-
ments cannot be considered the “truth” because they are point
measurements that may not reflect the soil moisture value at
4-km grid cell. Even for the densest in situ network used in this
study, such as the Oklahoma Mesonet, there is only one station
within each 4-km grid cell. Therefore, the in situ data have
representativeness errors (Crow et al. 2012b; Miralles et al.
2010; Yilmaz et al. 2012), which should be removed before the
validation. 3) TC is constructed based on several assumptions,
such as a linear error model between the parent product and
the unknown truth; the errors from the independent sources
are assumed to have zero mean and are uncorrelated with each
other and with the truth. Any violations of the above as-
sumptions may cause the suboptimal estimation of the error
variance.

To reduce the impact of the representativeness error of
in situ data, the corrected correlation R, [Eq. (28)] is used for
evaluation. When using R,, the absolute values of correlation
increase substantially for all datasets (Figs. 8g—i), but the
overall patterns are the same as those based on R,;. It is in-
teresting to note that after correlation correction, the R,
of scaled KAPI and blended products using (N, S, K) all reach
1, which indicates a perfect correlation with the true soil
moisture signal.
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2) ERROR SPATIAL PATTERN

The spatial error pattern for the (N, S, K) blended products
(red circles) and KAPI (blue circles) are shown in Fig. 9. In
places where in situ measurements are dense, especially in
Oklahoma and northwest Texas, the MAE of the KAPI (blue
circles) is generally similar to or smaller than that of AVE
(K, S, N) (red circles). However, in places where in situ mea-
surements are relatively sparse, such as central to southern
Texas, northern Arkansas, and Louisiana, the MAE of KAPI is
generally larger than that of AVE (N, S, K). This indicates that
the blended data are less sensitive to station density and per-
form better in places where in situ measurements are sparse
than the KAPI.

Figure 9 also shows how the ITS values (indicated by the size
of the gray dots) compare with the MAE. A site with a smaller
ITS value indicates greater temporal stability (i.e., it is a more
temporally representative site). There is a positive relationship
between MAE and ITS for both the KAPI and the (N, S, K)
blends. Sites with higher ITS values (i.e., that are less tempo-
rally stable) have higher MAE values. This result agrees with
the previous studies that demonstrated that kriging perfor-
mance declines as the data variation increases (Gotway et al.
1996; Keskin and Grunwald 2018; Li and Heap 2011; Martinez-
Cob 1996; Schlédpfer and Schmid 1999). This result could
also inform site selection for new soil moisture stations. For
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FIG. 9. Spatial distribution of the MAE of soil moisture anomalies (m®>m ) based on the
equal weighting of KAPI and NLDAS [AVE(K, N); red circles], KAPI (blue circles), and the

index of temporal stability (ITS) (gray circles).

example, the ITS can be calculated using a soil moisture
product such as NLDAS, and it can be used to identify loca-
tions with a small ITS value if building a new soil moisture
network is desired, or to identify locations with a higher ITS if
the goal is to address gaps in an existing soil moisture network.

e. Blending scheme sensitivity analysis

This section evaluates how the weighting scheme, sampling
scheme, station density, and data formats influence the accu-
racy of the blended soil moisture products. The goal is to
quantify the sensitivity and to identify the optimal blending
approach.

1) IMPACT OF WEIGHTING SCHEMES

An enumerated weighing scheme [Egs. (23)-(25)] is used to
evaluate the weights of TC and AVE proposed in section 4d.
There are a total of 441 weighting combinations that are con-
sidered. Figure 10 shows how the MAE of the blended product
varies as a function of the weighting scheme. The soil mois-
ture anomalies are used here as an example. The MAE is
sensitive to the weighting scheme, and it ranges from 0.032 to
0.058m>m 2. The MAE is negatively correlated with the
weight of KAPI. The local minimum MAE, denoted by the
blue dots in Fig. 10a, tends to be associated with the weighting
schemes where SMOS is given little weight. The optimal
weights are identified when the minimum MAE is reached.
Both local (Fig. 10b) and global (Fig. 10c) minimum MAEs are
found with optimal weights of 0.25, 0.71, and 0.04 for NLDAS,
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KAPI, and SMOS, respectively. Neither the TC (black trian-
gle) nor AVE (black dot) method reaches optimal weighting;
however, they do approach the local minimum MAE and have
the potential to reach the optimal weighting. In addition, AVE
(N, K), denoted by the red square in Fig. 10a, reaches the local
minimum MAE, which is also lower than either the MAE of
AVE (N, K, S) or TC (N, K, S). This indicates that SMOS is not
an important contributor to the optimal blended products
within our study area. However, the conclusion may be dif-
ferent if the study region has relatively few in situ stations
and/or is heavily irrigated. In that case, the importance of
SMOS may increase since SMOS can capture soil moisture
variations due to human activity (e.g., irrigation).

Figure 11 evaluates the impact of weighting schemes on the
blended products using Pearson correlation (R,;). The findings
are generally consistent with those based on MAE. The R,;
ranges from 0.54 to 0.80, depending on the sampling scheme. A
positive correlation is observed between R,; and the weight of
KAPI The local (global) optimal weights are 0.25 (0.3) for
NLDAS, 0.75 (0.8) for KAPI, and zero for SMOS. The
weighting schemes using TC and AVE are similar to the local
optimal weights.

2) IMPACT OF SAMPLING SCHEME AND
STATION DENSITY

Figure 12 shows the impact of using different sampling
schemes and different number of stations on the accuracy of
the blended products using Nash—Sutcliffe efficiency (NSE)
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FIG. 10. (a) Mean absolute error (MAE) of the blended soil moisture anomalies (m®> m~>) based on an enu-
merated weighting scheme, (b) the weight of each parent product at the local minimum MAE [blue dots in (a)], and
(c) the weight of each parent product at the global minimum MAE [green star in (a)]. Note that in (a) the black dot
indicates the MAE of the blended product that is generated from equal weighting of NLDAS, KAPI, and SMOS
[AVE(N, K, S)]. The black triangle indicates the MAE of the blended product that is generated from TC-based
LSW of NLDAS, KAPI, and SMOS [TC(N, K, S)], and the red square indicates the MAE of the blended product
that is generated from equal weighting of NLDAS and KAPI [AVE(N, K)]. The local minimum MAEs are defined
as the MAE values at the valley of each MAE cycle and are smaller than the MAE of AVE(N, K, S); the global
minimum MAE is the smallest MAE value among all weighting schemes.

and mean absolute error (MAE). MAE and NSE were calcu-
lated using soil moisture anomalies at the out-of-sample sta-
tions. Three different sampling schemes are evaluated. Head
sampling means choosing stations from the head of ascendingly
ranked ITS or choosing stations with the lowest ITS. Tail
sampling means choosing stations from the tail of ascending
ITS or choosing stations with the highest ITS. Even sampling
indicates choosing stations evenly from the entire range of
ranked ITS values. Head sampling first selects the most stable
stations and then gradually adds stations more temporally
variable stations, while tail sampling first selects the least stable
stations for modeling and then adding more stable stations.
In contrast, even sampling selects the stations that are most
representative of the population distribution. For each sam-
pling scheme, the number of stations is varied from 15 to 125,
and the number of out-of-sample validation stations varies
from 194 to 84.

As the number of stations (station density) increases, the
NSE (Fig. 12a) also increases for both KAPI and AVE (K, N)
using all sampling schemes. When used alone, the KAPI with
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the tail sampling scheme has the lowest NSE values. However,
when combined with NLDAS, the AVE (K, N) product using
tail sampling shows a large improvement. Generally, the var-
iation in the NSE of AVE (K, N) (red shaded area) under
different sampling schemes is much smaller than that of KAPI
(gray shaded area). This indicates that the blended products,
such as AVE (K, N), can reduce the uncertainty in soil mois-
ture estimates, which is especially helpful when there are very
few stations or the stations are not representative.

The MAE tends to decrease as the number of stations in-
creases for both KAPI and AVE (K, N) using both the tail and
even sampling schemes (Fig. 12b). The greatest reduction in
MAE is observed when using AVE (K, N) over KAPI with tail
sampling, especially at lower station densities. For example,
KAPI has an MAE of 0.06m>m™> using 15 stations with tail
sampling, but the MAE drops to 0.0043m®>m > when AVE
(K, N) is used. This indicates that when stations are sparsely
distributed or less representative, adding an extra source of soil
moisture information can greatly improve the accuracy. This
also confirms that the blended product (K, S, N) performs
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FIG. 11. (a) Pearson correlation coefficient (R,;) of the blended soil moisture anomalies based on an enumerated
weighting scheme, (b) the weight of each parent product at the local maximum R,; [blue dots in (a)], and (c) the
weight of each parent product at the global maximum correlation [green star in (a)]. In (a), the black dot indicates
the Pearson correlation (R,;) of the blended product that is generated from equal weighting of NLDAS, KAPI, and
SMOS [AVE(N, K, S)]. The black triangle indicates the Pearson correlation of the blended product that is gen-
erated from TC-based LSW of NLDAS, KAPI, and SMOS [TC(N, K, S)] and the red square indicates the Pearson
correlation of the blended product that is generated from equal weighting of NLDAS and KAPI [AVE(N,K)].
The local maximum R,; are defined as the R,; values at the peak of each R,; cycle and are larger than the R,; of
AVE(N, K, S); the global maximum R,; is the largest R,; value among all weighting schemes.

better than KAPI in areas where in situ stations are sparse.
This finding has practical significance for real-world applica-
tions because maintaining a dense and representative net-
work of in situ measurements is challenging. The Oklahoma
Mesonet is a unique and uncommonly dense network, but in
most cases soil moisture stations are sparsely distributed.
Therefore, a hybrid soil moisture product is likely to provide
the most accurate results.

MAE tends to be higher for both KAPI and AVE (K, N)
when head sampling is used (Fig. 12b). This is likely because
there is greater heterogeneity in the validation data when the
most representative stations are used for training the model.
The remaining stations are less representative and have larger
temporal variability, which may yield larger errors. In practice,
the sampling sites are always a mix of more and less repre-
sentative sites, which is similar to the even sampling case.

It is also worth noting that increasing station density has a
limited impact on the accuracy of the KAPI. For example, the
changes in NSE and MAE become more gradual when the
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number of stations reaches ~55 (Figs. 12a,b). This finding is in
agreement with Yuan and Quiring (2017).

3) IMPACT OF SOIL MOISTURE FORMAT

Caution should be taken when conducting error analysis
based on absolute soil moisture. This is because the absolute
soil moisture can be decomposed into its anomaly and clima-
tological components. It may be necessary to distinguish the
error attributed to the anomaly and climatological parts before
itis compared with the soil moisture percentiles and anomalies.
Although the soil moisture climatology is relatively smooth
and thus has limited degrees of freedom, it is still possible that
independent products have different climatological errors. For
example, Dong et al. (2020) investigated the soil moisture cli-
matological error in multiple data sources and found that the
newer L-band remote sensing soil moisture products (e.g., de-
rived from SMOS) have smaller climatological errors than those
from older C-/X-band remote sensing products (e.g., AMSR-E)
and smaller errors than the four land surface models as well.
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FIG. 12. Evaluation of KAPI and AVE(K, N) using different sampling schemes and different sampling sizes
based on (a) Nash—Sutcliffe efficiency (NSE) and (b) mean absolute error (MAE). MAE and NSW were calculated
using soil moisture anomalies at the out-of-sample stations. Head sampling (denoted by line with square) means
choosing stations from the head of ascendingly ranked ITS or choosing stations with the lowest ITS. Tail sampling
(denoted by line with star) means choosing stations from the tail of ascending ITS or choosing stations with the
highest ITS. Even sampling (denoted by line with a dot) indicates choosing stations evenly from the entire range of

ranked ITS values.

The impact of the soil moisture format (e.g., absolute,
anomalies, and percentiles) on the blended results is shown in
the supplementary figures. In general, the relative results are
consistent regardless of the data format. For example, sup-
plementary Fig. 1 (in the online supplemental material) dem-
onstrates that the ranking of TC-estimated error variance and
LSW-derived weights for the parent products are consistent
regardless of whether soil moisture is expressed in absolute,
anomaly, or percentile format. Supplementary Fig. 2 reveals
that the MAE (R,; and R,) of the blended datasets using
absolute soil moisture is higher (lower) than those using
anomalies and percentiles. This may be due to the reduced
systematic bias using anomalies and percentiles (Ford et al.
2015; Zhang et al. 2017a). However, the performance ranking
of the different blended products is consistent regardless of
which data format is used. Supplementary Figs. 3 and 4 indicate
that although the values of the local/global optimal weights
vary with the data format, the relative relationship still holds
(e.g., the optimal weights are always larger for KAPI, smaller
for NLDAS, and minimal for SMOS).

4) IMPACT OF ERROR CROSS-CORRELATION

The TC analysis requires triplets to have mutually uncor-
related random errors. The modeled, remote sensing, and
in situ measurements are widely considered to have mutually
independent error structures. However, in our previous anal-
ysis (e.g., Figs. 5-8), two modeled datasets (NLDAS soil
moisture and API) are used in one TC triplet. To confirm that
they have mutually independent errors, we calculated the
error cross-correlation between NLDAS soil moisture and
API using the extended collocation (EC) method proposed
by Gruber et al. (2016b). The EC analysis provides the error
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cross-correlation estimation in a least squares framework by
generalizing the TC method to an arbitrary number of datasets
and relaxing the assumption of zero error cross-correlation for
the targeted datasets. Refer to Gruber et al. (2016b) for a de-
tailed description of the method. In this study, four datasets are
used in EC analysis, including NLDAS, SMOS, API, and in situ
soil moisture, in which the modeled (either NLDAS or API),
remote sensing (SMOS), and in situ soil moisture are considered
to have zero error cross-correlation, while NLDAS and API is
assumed to have nonzero cross-correlation. Using Egs. (9) and
(10) in Gruber et al. (2016b), the cross-correlation errors be-
tween NLDAS and API over 125 stations were derived with a
median value about 0. Compared with the two examples from
Gruber et al. (2016b), one case of high error cross-correlation
between two AMSR-E products (median =~ 0.8), and the other
case of negligible cross-correlations between ASCAT and
AMSR-E (median ~ 0.25), the error cross-correlation between
NLDAS and API (median ~ 0.00) is minimal, and they can be
considered independent. Therefore, NLDAS soil moisture and
API have mutually uncorrelated random errors and can be used
as triplets. Therefore, our analysis is valid (Figs. 5-8).

The reason that NLDAS soil moisture is relatively inde-
pendent of API may be due to the following two reasons. 1)
API and NLDAS models are at different levels of complexity.
API is used as an approximation of soil moisture and is a
simplified statistical model that is based solely on precipitation.
In contrast, NLDAS soil moisture is simulated by complex land
surface models that use multiple inputs, including precipita-
tion, temperature, radiation, and other surface meteorological
data. 2) Although PRISM climatology has been used for the
orographic adjustment of the NLDAS precipitation forcing
data (Xia et al. 2012), the adjustment is only applied in
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mountainous regions (Daly et al. 1994), which is not an issue in
our study region (south-central United States).

Finally, the independency between KAPI and validation
in situ soil moisture is investigated. Here, each of the 125 val-
idation sits is paired with each of the 84 modeling sites,
resulting in a total of 10500 (= 125 X 84) station pairs. Then
the correlation between in situ soil moisture anomalies at each
station pair is calculated using all eight years (2011-18) of data
(supplementary Fig. 5). Supplementary Fig. 5a shows that the
correlations between stations tend to decrease as the distance
between stations increases. The quadratic regression line ex-
plains approximately 60% of the variance in the correlation
between stations. Based on the regression line, the station-
paired correlation drops below 0.5 when the distance is larger
than 125 km, and the station pairs with distance smaller than
125km only take about 10% of the total station pairs. This
indicates that most (90%) of the station pairs between mod-
eling and validation sites have a distance larger than 125 km
and a correlation smaller than 0.5. The correlation of 0.5 is
selected according to Fig. 8d, where SMOS presented the
lowest correlation with in situ soil moisture with a median
value of 0.54. The in situ soil moisture is considered indepen-
dent of SMOS with a correlation of 0.54, and thus the corre-
lation of 0.5 can be used as a preliminary threshold to
determine the dependency between two datasets. If the cor-
relation is smaller than 0.5, the two datasets may be indepen-
dent. Besides fitting the quadratic line (supplementary Fig. 5a),
another approach (histogram) is adopted in supplementary
Fig. 5b to determine the distance between station pairs with
correlation less than 0.5. The result shows that the correlation
of 0.5 falls within the 100-150-km distance bin (supplementary
Fig. 5b). The accumulated percentage of station pairs is about
14% (= 1.6% + 5.1% + 7.3%) when the correlation larger
than 0.5, which indicates that about 86% of the station pairs
have a correlation smaller than 0.5.

In summary, supplementary Fig. 5 demonstrates that most
(86%-90%) of the station pairs between validation and
modeling sites in this study are beyond a distance of 150 km
and have a correlation less than 0.5. This indirectly demon-
strates that the KAPI, although generated based on the in situ
soil moisture at 84 modeling sites, is independent of the in situ
soil moisture at the validation sites. Therefore, the in situ soil
moisture can be used to validate the KAPI over the 125
validation sites.

5. Conclusions

This study identified the importance of incorporating in situ
soil moisture into soil moisture blending, quantified the impact
of different weighting schemes, and investigated the impact of
sampling schemes, station density, and data format on soil
moisture blending. Soil moisture information from multiple
sources, including satellite (SMOS L3 SM), model (NLDAS-
V2 Noah), and in situ measurements, as well as PRISM pre-
cipitation data, are used to generate blended soil moisture
products at a 4-km spatial resolution and daily temporal res-
olution. TC was used to estimate the error variance of the
parent products, and LSW was used to generate blended soil
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moisture products. An equal weighting approach (AVE) was
also compared with the TC-LSW approach. The results indi-
cate that KAPI has the lowest error among all the parent
products. The accuracy of the blended products improved
when KAPI was incorporated, especially in terms of correla-
tion. This indicates that in situ measurements are valuable for
improving the accuracy of blended soil moisture datasets.
Likewise, it is reasonable to posit that the inclusion of in situ
soil moisture via data assimilation would also improve dataset
accuracy. Although the in situ data are not regularly incorpo-
rated in SMAP L4, a recent study (Gruber et al. 2018) has in-
corporated ground-based soil moisture observation via data
assimilation for operational agricultural drought monitoring.

The spatial patterns of error in the blended products are
related to the station representativeness [i.e., the index of
temporal stability (ITS)]. This indicates that ITS can be used to
determine the optimal location of new soil moisture stations.
Our results agree with previous study from Yee et al. (2016) that
temporal stability is helpful to identify representative stations in
the setup of common calibration/validation (cal/val) sites.

An enumerated weighting scheme was used to assess the
sensitivity of the blended results to different weighting
schemes. Our analysis demonstrated that the optimal weights
are associated with the largest weights assigned to KAPI, fol-
lowed by NLDAS, while SMOS receives marginal weight. The
weighting schemes used by TC and AVE are both close to the
local optimal weighting, and so they are appropriate for op-
erational soil moisture mapping.

The sensitivity of soil moisture blending to sampling
schemes, station density and data format were also investi-
gated. Our results demonstrated that using multiple sources of
soil moisture helps to reduce the overall uncertainty in the soil
moisture estimates, especially when sampling density is low or
the sampling stations are less representative. When sampling
density is high, sampling schemes tend to have a greater impact
on the accuracy of the soil moisture estimates. This finding has
implications for real-world applications because achieving
a high density of stations that are spatially representative is
always challenging.

In contrast, the format of the soil moisture data does not
have a major impact on the blending. Generally, our findings
are robust and consistent regardless of whether soil moisture is
in absolute, anomaly, or percentile format. The performance
ranking of the blended products is the same regardless of the
data format, and the optimal weights are always larger for
KAPI, smaller for NLDAS, and minimal for SMOS.

These findings should be placed in context by acknowledg-
ing the study limitations, including the five listed here. 1) The
soil moisture products used in this study were all extracted
from 0700 LT observations. However, a temporal mismatch
may still exist due to the different temporal resolutions of
each soil moisture product. Future work can adopt methods to
ensure the temporal coherence of different datasets. 2) This
study only considered precipitation (API) in the soil moisture
kriging. Other variables, such as evapotranspiration, soil tex-
ture, vegetation, and topography, may be helpful for soil
moisture estimation (Ochsner et al. 2019) and should be con-
sidered to improve the kriging accuracy. 3) Geographically
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weighted regression kriging (GWRK) (Brunsdon et al. 1996;
Fotheringham et al. 2003) considers the spatially nonstationary
relationships between the dependent variable and independent
variables and weights the regression by their distance to the
target point. Therefore, it may be more accurate than RK
(Kumar et al. 2012; Yang et al. 2019) and should be explored in
future studies. 4) Further study is required to test whether
these conclusions are valid in other regions. The proposed
approaches may be accurate and directly applied in regions
with similar topography and climatology as the south-central
United States. In fact, the methodology has been applied op-
erationally to generate national gridded soil moisture percen-
tiles (Zhao et al. 2020). However, caution should be taken
when applying these methods in heavily irrigated regions,
where human activities strongly control soil moisture variation.
5) Indeed, a primary advantage of blending in situ soil moisture
is its representation of root zone conditions. The focus of our
next step is to apply the methods developed here for blending
root zone soil moisture from in situ and model sources. For
example, our previous work (Zhang et al. 2017a) compared
different methods to estimate root zone soil moisture using
surface measurements and found that exponential filters out-
performed the linear regression and artificial neural network.
Therefore, exponential filters can be applied to surface remote
sensing data to generate RZSM estimates. Together with the
model simulated and in situ based root zone soil moisture, the
method proposed in this study can be used to generate new
root zone soil moisture dataset and analyze the blending
sensitivity.
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