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ABSTRACT

This study investigates the spatial and temporal variability of cloudiness across mountain zones in the

western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly

Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident ra-

diation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed

50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by 610% of

long-term averages inmany locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo

anomalies over high-elevation regions of the western conterminous United States identify distinct regional

patterns, wherein the first five REOFs account for ;67% of the total variance. REOF1 is centered over

Northern California and Oregon and is pronounced between November andMarch. REOF2 is centered over

the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal

components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or

more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which

helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial

variability over seasonal time scales.

1. Introduction

Understanding spatial and temporal variability of

cloudiness is a long-standing problem (e.g., Welch et al.

1988; Seze and Rossow 1991; Rossow et al. 2002;

Simpson et al. 2004). A better determination of recent

historical variability is yet more important in the light of

climate change, which may affect storm tracks and cloud

patterns (Yin 2005; Held and Soden 2006; O’Gorman

and Schneider 2008; Dettinger 2011). Cloud variability

in mountain settings is enigmatic because clouds and

radiation are not well monitored by surface observers,

because cloudiness depends on several factors at mul-

tiple scales including storm tracks and cloud life cycles,

and because topographic features can change the cloud

systems on relatively short spatial and temporal scales

(Rauber 1992). The present work addresses this com-

plexity by identifying the extent to which the cloudiness

inmountain zones is organized over large regional scales

and how it varies temporally.

In the mountains of the western United States, pre-

cipitation is largely delivered as snow from cool season

storms (Serreze et al. 1999). Snowpack provides water

storage (Mote 2006) and is an integral part of the hy-

drologic cycle in the region (Pierce et al. 2008; Pierce

and Cayan 2013). In snow-fed watersheds, net solar ra-

diation is the primary energy input for spring snowmelt

(U.S. Army Corps of Engineers 1956), providing 66%–

90% of energy needed for snowmelt (Marks and Dozier

1992; Cline 1997). Varying cloudiness comes into play in

modulating this solar heating and the associated

snowmelt, a process that continues into the sum-

mer. In their study of hydrologic responses in the upper

Colorado River basin, Mizukami et al. (2014) reported a

difference of 85Wm22 in shortwave radiation in May,

which translated to a difference of 273mm snowmelt at

elevations above 3 km, contributing to the differences of

;20% in annual runoff and ;20 days in the timing of

snowmelt and runoff.

Diurnal and annual cycles of solar energy reaching the

surface are controlled by solar geometry, but the

anomalous solar variations depend on the structure and

evolution of clouds (Kleissl 2013). Consequently, cloud

cover variations are the principal regulator of solar in-

solation from synoptic to interannual time scales (Smith

et al. 1992; Ringer and Shine 1997). Cloudiness also

affects longwave radiation exchange with the surface
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(Aguado 1985). Therefore, understanding cloud vari-

ability is needed to comprehensively explain the spatial

and temporal variations of surface processes, particu-

larly the fluctuating patterns of hydrologic measures

over the mountainous western United States.

Although clouds are a major regulator of the energy

budget, their optical properties vary over a range of

spatial scales, so describing the incoming radiation using

radiative transfer modeling is not feasible (Gimeno

García et al. 2012). Additionally, in situ radiation mea-

surements are difficult in mountainous settings because

complex topography and snow-laden seasons hinder

necessary ground-based observations. Moreover, surface

point radiation measurements generally lack the scope

required to portray spatial and temporal structure over

the broader region. As a result, clouds and surface radi-

ation in mountainous terrains have been inadequately

described (Gautier et al. 1980; Bales et al. 2006).

A direct impact of this inadequacy is reflected in hy-

drologicmodeling and related applications, for example, in

the Precipitation–Runoff Modeling System (PRMS;

Leavesley et al. 1983;Markstromet al. 2015), wherein daily

surface air temperature range is used as a proxy for cloud

cover to estimate surface radiation. This can introduce

errors in water supply forecasts (Rittger et al. 2011) by

producing biases in estimating snowmelt rate (Lapo et al.

2015) and runoff timing (Hinkelman et al. 2015).

Studies using spaceborne measurements have dem-

onstrated the merit of remotely sensed snow albedo

as input to a snowmelt model (Molotch et al. 2004), to

investigate snow cover area under forest canopies

(Raleigh et al. 2011), and to map snow cover (Rittger

et al. 2013). Geostationary satellite estimates of surface

irradiance are increasingly common (e.g., Cano et al.

1986; Ineichen and Perez 1999; Perez et al. 2002, 2010),

since they provide the most accurate option for

locations .25km away from a ground station (Zelenka

et al. 1999; Paulescu et al. 2012).

The availability of two decades of remotely sensed

cloud measurements, along with an increasing reliance

on remotely sensed radiation measures (e.g., Bales et al.

2006; Khan et al. 2011), motivates us to investigate the

variability of cloudiness over western U.S. mountain

settings. Cloud variability during the hydrologically

important winter-to-summer period is emphasized here.

While the occurrence of long period, globally patterned

changes in cloudiness is becoming clearer (Dai et al.

2006; Warren et al. 2007; Eastman and Warren 2013;

Norris et al. 2016), the 19-yr Geostationary Operational

Environmental Satellite (GOES) dataset used in this

study is too short to resolve such changes. Accordingly,

our focus here is to understand cloudiness variability

from daily to seasonal time scales.

2. Datasets

a. GOES-West visible cloud albedo

The cloud measures explored here are derived from

NOAA GOES images collected at half-hourly intervals

from 1996 to 2014. GOES captures a large swath si-

multaneously throughout the day (http://noaasis.noaa.

gov/NOAASIS/ml/genlsatl.html). The GOES radiome-

ter provides an albedo measure defined as the ratio

of reflected to incident radiation from the surface, that

is, the reflectivity. As cloud cover increases, the al-

bedo increases and the downwelling surface radia-

tion decreases (Ramanathan et al. 1989; Iacobellis and

Cayan 2013).

This study utilizes GOES-West (GOES-9, GOES-10,

GOES-11, andGOES-15) visible albedo measurements

with 1-km horizontal and 30-min temporal resolutions

retrieved from NOAA Comprehensive Large Array-

Data Stewardship System (http://www.nsof.class.noaa.

gov). The 1-km pixels are spatially aggregated to 4-km

pixels to alleviate the computational burden. TheGOES

data in this study encompass the westernmost United

States and adjacent eastern North Pacific domain

(258–508N, 1308–1138W) and span the period 1996–2014.

The albedo observations are adjusted by removing the

estimated clear-sky albedo to derive cloud albedo values

(section 3a).

Mountain clouds can vary considerably within the

period of a day in response to synoptic events and to-

pographically forced diurnal circulations. To minimize

the impact of these shorter period variations, cloud al-

bedo is averaged over daytime scenes [0800–1600 local

standard time (LST)]. The vast majority of days (.80%)

have at least 15 half-hour observations. A sampling

exercise that constructed the daily average from suc-

cessively smaller numbers of observations per day de-

termined that 10 out of 17 possible half-hourly data

yielded a reasonable estimate of the daytime average

albedo (appendix A). The daytime average albedo is the

fundamental measure of cloudiness used throughout

the paper.

b. Gridded elevation data

Gridded elevation data with 2-min cell size are down-

loaded from the NOAA National Geophysical Data

Center (NGDC) Geophysical Data System (GEODAS)

Grid Translator Design-a-Grid website (https://maps.

ngdc.noaa.gov/viewers/wcs-client/). The output latitude–

longitude boxes are then interpolated to the 4-km

GOES pixels using shortest distance interpola-

tion method to discriminate the high-elevation

GOES pixels from the low-elevation GOES pixels

(section 3c).
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c. Reanalyzed meteorological data and
low-frequency weather anomalies indices

This study utilizes the (0.38 3 0.38) North American Re-

gional Reanalysis (NARR; Mesinger et al. 2006) provided

by NOAA/Physical Sciences Division (PSD) to investigate

the associations with larger-scale meteorological patterns.

Connections between cloud variability and climate patterns

are also examined using a set of low-frequency weather

anomalies metrics commonly known as teleconnection in-

dices (Wallace andGutzler 1981; Franzke et al. 2001). These

metrics include the monthly versions of Pacific–North

American (PNA), the Arctic Oscillation (AO), and the

Niño-3.4 indices from the NOAA Climate Prediction Cen-

ter database (http://www.cpc.ncep.noaa.gov/).

3. Methods

a. Determining the clear-sky albedo and the cloud
albedo

GOES albedo a is controlled by both clouds and other

noncloud factors. The noncloud component of albedo,

that is, clear-sky albedo aclear, is dominated by changing

surface characteristics (e.g., snow covered vs not snow

covered) as well as changes in clear atmospheric com-

ponents (e.g., aerosol). The cloud component of albedo,

hereby called cloud albedo acloud, is determined as the

difference between a and aclear:

a
cloud

5a2a
clear

. (1)

Clear-sky albedo evolves over time in response to local

albedo variations at and near the surface, chiefly consisting

of snow, moisture, and vegetation (Perez et al. 2002). It is

calculated and subtracted from a separately for each in-

dividual half-hour of the day since surface reflectance can

be dependent on the angle of incoming solar radiation

(Iacobellis and Cayan 2013). The units of the albedos are

percent, ranging from 0%(transparent) to 100% (opaque).

Clear-sky albedo is derived using a sliding time window

algorithm (Cano et al. 1986; Perez et al. 2002), such that

aclear is the minimum a observed at a particular pixel

within a prescribed timewindow.A timewindow centered

on a given target day [after Paech et al. (2009)] is used to

determine the minimum albedo value (aclear), under the

likely assumption that there is at least one clear-weather

day within this time window for each particular half-hour.

This algorithm is based on the premise that clouds are

nonstationary and thus the minimum value of daily mean

a observed at each pixel can provide a reference albedo

map (Cano et al. 1986), which in this case is aclear. A set of

time windows was investigated to determine their ability

to capture fluctuations from changing surface properties.

This experimentation indicated that a sliding 15-day win-

dow of67 days was able to balance the need to sample a

long enough period to include a clear-sky day within the

window and the need to make the window narrow enough

to capture relatively short time-scale changes in surface

characteristics (appendix B). Figure 1 illustrates the re-

sulting aclear and acloud estimates over a period that in-

cludes an abrupt deposit of snow cover during a winter

storm from 30 November to 4 December 2005.

b. Quantifying solar insolation sensitivity to
cloudiness variation

The influence of cloudiness on incoming solar radia-

tion at the surface [hereby called shortwave flux (SWF)]

is quantified from a simple sensitivity measure where

SWF is a linear function of acloud:

SWF5 (100%2 a
cloud

)SWF
clear

, (2)

such that the response or sensitivity of SWF is de-

termined as

DSWF5Da
cloud

(SWF
clear

) , (3)

where SWFclear is theoretical clear-sky SWF calculated

as a function of geolocation and time of the year (see

http://maeresearch.ucsd.edu/kleissl/files/R.m for doc-

umentation). To investigate the effect of cloud varia-

tions, we evaluate the response of SWF to a 10%

increase in acloud (Dacloud 5 10%). The resultant linear

response is presented for every season and at four

representative locations spread across the western

United States to examine DSWF at different areas and

different times of the year. Additionally, the linear

response derived from observed solar irradiance re-

cords from radiometers at selected Sierra Nevada sites

are employed.

c. Low-elevation mask

Our GOES albedo dataset includes all pixels, regard-

less of altitude, within the western U.S.–eastern North

Pacific domain. In several of our analyses, we wish to

focus upon cloud variability that occurs over the higher

terrain, without including stratus cloud influences and

other possible valley and low-elevation effects. For these

high-terrain analyses,GOESpixels with elevations of less

than 800m are masked using the gridded elevation data

to focus on cloudiness over higher-elevation terrain.

d. Removing the seasonal cycle of acloud and
meteorological variables

The estimated seasonal cycle of acloud is removed us-

ing the daily climatology (average) of acloud at each in-

dividual pixel. After considering different estimators of
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the seasonal cycle, we adopt a long-term (19 years) av-

erage of the daily acloud wherein the daily average values

are smoothed using a 29-day (614 days) centered

moving average to reduce high-frequency sampling

noise (appendix C). The ‘‘deseasonalized’’ acloud is de-

fined as the difference between acloud and the smoothed

daily climatology. The resulting deseasonalized re-

siduals provide a description of higher-frequency (in-

traseasonal) weather and climatic phenomena.

e. REOF of daily cloud anomalies

Empirical orthogonal function (EOF) analysis

(Lorenz 1956; Davis 1976; Hannachi 2004) is employed

to decompose space–time variations in daily acloud into

orthogonal spatial eigenvector patterns (or simply

EOFs) and their corresponding temporal amplitude

time series, called principal components (PCs; Hannachi

2004). To ensure physically meaningful spatial struc-

tures, rotated EOFs (REOFs; Richman 1986; Hannachi

2004; Monahan et al. 2009) are constructed using Kaiser

row normalization and a varimax criterion (Kaiser

1958), which are constrained to be orthogonal in

time only.

The varimax rotation is applied to the five leading

EOF modes of the deseasonalized acloud, all days of the

year (January–December) over the 19-yr period (1996–

2014), from pixels with elevations of at least 800m above

mean sea level. A set of time-varying coefficients, or

rotated principal components (RPCs), was also derived.

When the REOF analysis is repeated for 4-month

FIG. 1. (top) Estimated daily mean (0800–1600 LST) aclear over California and Nevada (left) before and (right)

after the 1–3 Dec 2005 snowstorm. (bottom) November and December 2005 time series of local noontime a (blue)

and the estimated aclear (red) and acloud (black) at GOES pixel above Dana Meadows in Yosemite National Park

(37.98N, 119.268W; 2987m). The vertical magenta lines denote 30 Nov and 4 Dec 2005.
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blocks, for example, February–May, June–September,

and April–July, instead of the entire year, the results

yield nearly identical patterns for the five leading REOF

modes, only ordered differently according to the vari-

ance explained. In each of the 4-month and all-year

analyses, the five leading modes account for 60% or

more of the total variance. Moreover, the sixth mode in

the all-year analysis accounts for 3.1% of the total

variance, a significant drop from the fifth mode (9.5%).

Therefore, only the five leading modes are presented in

this paper.

f. Composites based on extreme RPC values

December–August days within the 1996–2014 period

with the most positive and negative RPC values are

identified to represent the cloudiest and clearest days

during the winter-to-summer period when snow accu-

mulation and melt are most active. The cloudiest days

in the REOF core regions are determined as days with

RPC values .90th percentile, while the clearest days

are determined as days with RPC values ,10th per-

centile. Given these subsets of cloudiest and clearest

days, composites of anomaly fields of pertinent vari-

ables were formed to investigate the association of the

cloudiness patterns with surface weather variables and

atmospheric circulation patterns. For the latter, the

NOAA/PSDwebsite (http://www.esrl.noaa.gov/psd/cgi-bin/

data/narr/plotday.pl) was used to generate NARR com-

posite datasets corresponding to the REOF/RPC modes.

g. Contingencies based on extreme RPC values

Two-by-two contingency tables (Pearson 1904;Wilks

1995; Done et al. 2004) are constructed to examine how

positive and negative anomalies of each RPC mode

associate with positive and negative anomalies of the

selected teleconnection indices. The days correspond-

ing to the most positive (.75th percentile) and nega-

tive (,25th percentile) indices are identified. The

cloudiest (.75th percentile) and clearest (,25th per-

centile) days corresponding to each RPCmode are also

identified. This criterion is applied to the high positive

and negative states of the AO, Niño-3.4, and PNA in-

dices, so the cells of the two-by-two tables represent the

number of days associated with high positive and neg-

ative phases of each teleconnection index and the

number of days of high positive or negative phases of

each RPC.

The u coefficients and x2 statistics (Pearson 1904;

Howell 2011) are subsequently computed to deter-

mine the correlation and statistical significance of the

associations between the RPC modes and the tele-

connection indices. The u coefficient is analogous to

Pearson’s correlation coefficient (Pearson 1895),

although it must be noted that the maximum value

of u is not necessarily 61 (Davenport and El-

Sanhurry 1991).

4. Results and discussion

a. Variability of acloud on daily to interannual time
scales

The magnitude of acloud variations at daily and in-

terannual time scales is investigated by computing the

mean m, standard deviation s, and the coefficient of

variation (CV5 s/m) of acloud for winter (DJF), spring

(MAM), summer (JJA), and autumn (SON), sepa-

rately, at each GOES pixel (all elevations) across the

western United States from the 1996–2014 data. The

maps showing the 3-month aggregates of s and CV are

displayed in Fig. 2 for intraseasonal daily anomalies

and in Fig. 3 for interannual seasonal anomalies. The

mean values are identical in both intraseasonal and

interannual cases, so they are displayed in Fig. 2 only.

Figures 2 and 3 illustrate DJF, MAM, and JJA to focus

on periods when cloudiness variability has the most

important influence on snowpack dynamics. The fig-

ures include offshore regions to compare coastal and

lowland cloud variability to that of the higher-

elevation terrestrial regions of the western United

States. The albedo mean and variability statistics of

representative regions for all four seasons are pre-

sented in Table 1.

Seasonal means of acloud range from as low as 6% to

as high as 30%. Cloudiness is greatest in the offshore

and nearshore coastal lowlands, and over mountainous

terrains of the Pacific Coast Range, the Cascades, the

northern Rockies, and the Sierra Nevada (Fig. 2, top).

Over land, cloudiness tends to be greater north of San

Francisco than to its south. A well-defined seasonality

is observed over much of the western U.S. landmass,

with greatest cloudiness in winter and least in summer.

This contrasts with offshore and coastal lowland ma-

rine cloudiness in California, which peaks in summer

(Clemesha et al. 2016) and illustrates the distinct

physical mechanisms driving cloud formations. While

subsiding air masses and low-level inversions are in-

volved in marine layer clouds, synoptic-scale weather

systems, for example, Pacific cold fronts, are the pri-

mary generator of cool season mountain clouds. These

synoptic systems produce spatially coherent cloudiness

from offshore Pacific Northwest to the Cascades and

Sierra Nevada.

The variability of daily acloud, represented by s

(Fig. 2, middle), ranges from;2% to .20%. On daily

time scales, s is highest over the coastal ocean and

coastal lowlands and over the western slopes of
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FIG. 2. Maps of (top) mean, (middle) std dev, and (bottom) CV of daily acloud for (left) winter

(DJF), (center) spring (MAM), and (right) summer (JJA).
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mountain ranges. Regions with greater m usually ex-

hibit greater daily s, including inland areas in Cal-

ifornia where both daily m and s are high in winter and

spring. In California, this pattern demonstrates the

strong influence of synoptic weather patterns in de-

termining the enhanced average and time-varying

cloudiness in winter and spring months. However,

over the interior Pacific Northwest in winter and spring,

m is high but s is reduced, suggesting more persistent

cloudiness. In the interior Pacific Northwest, the vari-

ability is heightened in summer and rather isolated

from that over the coasts, indicative of regional pro-

cesses including local convective activities.

Daily acloud CVs (Fig. 2, bottom) provide a different

perspective of the variability since they are scaled by their

mean values, so a higher CV denotes increased variability

relative to average conditions. The CV is generally higher

in the south than in the north, an indication of the im-

portant role played by time-varying cloudiness in a region

with lower overall mean cloudiness such as the south-

western United States, or particularly California. In DJF

and MAM, the daily CV is pronounced along the eastern

side of the Sierra Nevada rather than along the Sierra

Nevada range itself, probably related to the irregular

occurrence of mountain cloud formations, including

the wave cloud that Grubi�sić and Billings (2008) found

in spring and, even more variably, in winter. The high

CV in California continues through JJA, which reflects

the intermittent orographic thunderstorms that are

common over the plateaus andmountains of the western

FIG. 3. (top) Std dev and (bottom) CV for (left) winter (DJF), (center) spring (MAM), and

(right) summer (JJA) calculated from seasonal (3 month) acloud averages. Means for the

seasonal averages are same as those in Fig. 2, so are not shown. Note change in color scales

from those in Fig. 2.
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United States during summertime (Kelly et al. 1985;

Whiteman 2000).

Turning to seasonal time scales (Fig. 3), it is impor-

tant to know how much variability remains when acloud

is time averaged, since persistent fluctuations of in-

coming radiation could affect seasonal anomalies of

precipitation, snowmelt, and other surface processes.

Although their magnitudes are reduced, s and CV

patterns derived from ;90-day average acloud are

qualitatively similar to those from daily acloud, but they

are accentuated in different regions. Importantly, the

seasonal s tends to be greatest in California, in contrast

to daily s, which is generally greatest in the Pacific

Northwest. This daily–seasonal contrast indicates the

regional significance of seasonal acloud variability in

California, especially during snowmelt season when

the variability is emphasized over the west of

Sierra Nevada.

From year to year, seasonal acloud deviations range

from about 4% to 40% of mean acloud, as shown by the

seasonal CV (Fig. 3, bottom). Traversing central Cal-

ifornia, seasonal CVs exceed 0.18 from the California

coast across the Central Valley and up the Sierra Ne-

vada slope, and also over neighboring high elevations of

western Nevada, southern Oregon, and southern Idaho.

In contrast, over the PacificNorthwest, seasonal CVs are

low in DJF and MAM, reflecting high mean cloudiness

and relatively low interannual variation.

b. Sensitivity of solar insolation to cloudiness
variability

Using Eq. (3), the change in SWF associated with a

given change in acloud can be determined. Considering a

set of selected locations (Table 2), the magnitude of

daytime (0800–1600 LST) average DSWF, expressed as

the response of SWF to a 10% increase in acloud, ranges

from ;66 to ;84Wm22 over spring and summer when

snowmelt activity is prominent; this range of DSWF is

representative of DSWF determined for a larger set of

239 high-altitude ($800m) locations (64–84Wm22).

Furthermore, these calculated responses are compara-

ble to those directly observed at the surface, via a least

squares regression analysis, between acloud and surface

pyranometer SWF at high-elevation stations in Cal-

ifornia. For example, a 10% increase in acloud at Dana

Meadows and at nearby TuolumneMeadows (37.8738N,

119.358W; 2621m) results in a 77–91Wm22 SWF re-

duction over spring and summer.

c. Coherent patterns of daily acloud variability

To extract the dominant patterns of cloud variability

over the mountains of the western United States, REOF

TABLE 2. Change in daily solar irradiance (i.e., SWF) at the surface corresponding to a 10% increase in daily acloud estimated for two

locations in Region 1 [Dana Meadows, CA (37.98N, 119.268W; 2987m), and Fish Lake, OR (42.388N, 122.358W; 1420m)] and two lo-

cations in Region 2 [Crater Meadows, ID (46.568N, 115.298W; 1817m), and Quartz Peak, WA (47.888N, 117.098W; 1433m)]. A negative

DSWF denotes reduced SWF associated with increased acloud. The sensitivity values are based on daily time series of acloud and SWFclear.

The daily SWFclear is an average of hourly SWFclear during daytime only (0800–1600 LST).

Season Dacloud (%)

DSWF (Wm22)

Dana Meadows Fish Lake Crater Meadows Quartz Peak

DJF 10 243.3 235.3 229.8 227.6

MAM 10 276.4 270.2 267.5 265.8

JJA 10 284.1 278.9 277.5 276.1

SON 10 256.2 249.0 243.9 242.1

TABLE 1. Daily and seasonal mean and std dev of acloud (%) and the CV for winter (DJF), spring (MAM), summer (JJA), and autumn

(SON). The two tabulations are aggregates over the mountains in California and Oregon and over the mountains in Idaho, Montana, and

eastern Washington.

Time scale Season

Region 1 (California–Oregon) Region 2 (Idaho–Montana–Washington)

m s CV m s CV

Daily DJF 22.4 11.3 0.50 24.7 8.1 0.33

MAM 19.8 13.0 0.66 24.8 12.1 0.49

JJA 9.1 8.6 0.94 16.5 12.2 0.74

SON 14.9 11.5 0.77 22.3 13.8 0.62

Seasonal DJF 22.4 2.6 0.12 24.7 1.2 0.05

MAM 19.8 2.8 0.14 24.8 1.4 0.06

JJA 9.2 1.2 0.13 16.6 2.1 0.12

SON 14.8 2.3 0.15 22.1 1.9 0.09
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analysis is performed on the deseasonalized daily acloud

over high-elevation ($800m) terrain, encompassing all

months (January–December) of 1996–2014. By design,

the leading REOF patterns are the ones whose acloud

anomaly patterns occupy a relatively large spatial scale

and thus avoid the complexity introduced by smaller-

scale, higher-order patterns. Collectively, these five

REOFs account for a considerable amount of the vari-

ability of mountain cloudiness, amounting to 66.7% of

the total daily variance (Table 3).

Correlations between the five leading RPCs and

deseasonalized acloud are strongest over high-elevation

areas where the REOFs are accentuated and rapidly

degrade over adjacent lower-elevation areas (Fig. 4).

REOF1 represents daily acloud anomalies that are

pronounced in the mountainous region of Northern

California and Oregon, including the Sierra Nevada

and the Oregon Cascades. REOF2 represents daily

acloud anomalies centered over the interior northwest

covering Idaho, westernMontana, eastern Oregon, and

eastern Washington. REOF3 is concentrated over the

Cascade mountain range in western Oregon and

Washington. REOF4 has greatest weightings in

Southern California, Nevada, and parts of Utah and

Arizona. REOF5 represents daily acloud anomalies fo-

cused on the eastern two thirds of Nevada and Idaho.

Each of the five leading REOFs has core areas that

partially overlap with those of other REOFs because,

unlike in EOF analysis, the spatial orthogonality has

been relaxed in REOF analysis. For instance, both

REOF1 and REOF2 contain a footprint over

northeastern Oregon.

When a separate REOF analysis was applied to daily

acloud anomalies over all elevations (not shown), the

same five higher-elevation-oriented modes appeared,

but not in the same order and in the midst of other

REOFs that represent lower-elevation cloudiness, pri-

marily over the eastern Pacific Ocean and coastal low-

lands. This confirms the authenticity of the original

acloud REOFs and the distinction between these higher-

elevation modes from those that are organized over

lower elevations.

While there is some degree of spatial overlap between

the five REOFs, by construction their temporal vari-

ability is statistically independent—the RPCs are tem-

porally orthogonal. Although each RPC has a time

mean of zero for each day of the year, the magnitude

of month-to-month RPC fluctuations still contains sub-

stantial seasonal variability, as shown by their monthly

standard deviations (Fig. 5).

The variability of RPC1, RPC3, and RPC4 exhibits a

well-defined annual cycle, while that of RPC2 andRPC5

displays a biannual cycle peaking in spring and early

autumn. The Oregon–California and Nevada modes

(RPC1 and RPC4) have greatest variability between

autumn and late spring and the least variability in

summer. This seasonality reflects the winter-dominated

storminess climate pattern in California and Nevada,

FIG. 4. Correlation fields (all months of 1996–2014) between deseasonalized daily acloud and (a)RPC1, (b)RPC2, (c) RPC3, (d) RPC4, and

(e) RPC5 over the entire domain. Only pixels with p value ,0.05 are colored.

TABLE 3. The eigenvalues of acloud REOF/RPCs 1–5 and the

specific geographical areas where each mode is pronounced. The

eigenvalue represents the amount of variance explained by

each mode.

REOF/RPC Eigenvalue (%) Geographical emphasis

1 20.4 Northern California and Oregon

2 15.1 Interior Pacific Northwest

3 11.2 Coastal Pacific Northwest

4 10.5 Southwestern United States

5 9.5 Great Basin
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having more abundant clouds (and higher variations

thereof) during the cool season (October–May) than

during the warm season (June–September). In contrast,

the two Pacific Northwest modes (RPC2 and RPC3)

contain highest variability from summer to early autumn

and lowest variability in winter and spring. The cloud

cover over the Pacific Northwest during the cool season

is high (Fig. 2, top), but prone to persisting for long

periods—both RPC2 and RPC3 have minimum vari-

ability in December and January. The seasonality of the

variance of the Great Basin mode (RPC5) has peaks in

spring and autumn, resembling that of the northern

Idaho–eastern Washington–eastern Oregon mode

(RPC2) in which a twice-yearly cycle is presented.

d. Relations to larger-scale circulation patterns

The contours in Figs. 6a and 6b present the 500-hPa

geopotential height Z500 composite anomaly fields from

historical NARR associated with the two REOF/RPC

modes during the most positive acloud RPC amplitudes

(cloudiest days) during December–August. The cloudy-

day composites are characterized by negative Z500

anomalies with centers positioned west and/or north of

the strongest REOF loadings, conducive to anomalous

cyclonic flow and rising motion, as described below.

Similarly, the contours in Figs. 6c and 6d show the Z500

anomaly fields during the most negative RPC amplitude

(clearest days). The clear-day composites are nearly the

mirror image patterns of their positive RPC cloudy-day

counterparts, with positive Z500 anomalies in the up-

stream or overlying regions, conducive to anomalous

anticyclonic motion and descending motion.

The color shades in Fig. 6 represent the 500-hPa pres-

sure vertical velocity v500 composite anomalies in associ-

ation with the positive and negative acloud RPC subsets. A

negative v500 anomaly denotes greater than average up-

ward motion, often associated with lowered surface pres-

sure and often with precipitation; a positive v500 anomaly

denotes more downward motion, often associated with

surface high pressure and often with fewer clouds. A

consistent feature of the composites is the association of

core positive REOF (greatest cloudiness) areas with

strong negative v500 anomaly over areas with strong neg-

ative Z500 anomaly and vice versa, in agreement with ca-

nonical quasigeostrophic theory (e.g., Holton 2012).

e. Relations to lower-frequency climate variability
patterns

The associations of the REOF/RPCs with seasonal

atmospheric circulation patterns are explored using

conventional teleconnection indices and correlation

patterns averaged over winter (DJF), spring (MAM),

and summer (JJA).

FIG. 5. Std dev of (a) RPC1, (b) RPC2, (c) RPC3, (d) RPC4, and

(e) RPC5 for each month in acloud percent units, exemplifying the

seasonal structures of each RPC mode.
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Contingency tables are developed to understand how

the high and low seasonal anomalies of the acloud RPCs

associate with positive and negative expressions of the

teleconnection patterns. Positive (negative) cloudiness

RPC anomalies represent greater (lesser) cloudiness

in the respective REOF core regions and are denoted

1RPCs (2RPCs). Likewise, the positive/negative phase

of the teleconnection indices are marked with a plus or

minus sign. From the contingency tables (not shown),

the x2 statistics and the associated u coefficients are

summarized in Tables 4 and 5 to denote the statistical

significance and the correlation of the associations be-

tween the teleconnection indices and the RPC modes.

RPC1, the interior California and Oregon pattern,

has statistically significant relationships (x2 . 3.84)

with AO and PNA. RPC1 is negatively correlated

with AO in DJF and JJA as indicated by the

u coefficient. Thus, 1RPC1 cases tend to coincide

with 2AO, the equatorward and more distorted ver-

sion of the high-latitude westerlies that presumably

increases storminess across the midlatitudes of western

North America (Thompson and Wallace 2000, 2001).

The opposite pattern, 2RPC1 cases, is associated

with 1AO, the mode having confined high-latitude

westerly winds. The significant RPC1 relationship with

PNA in JJA is rather unexpected because the PNA

pattern is usually weak in summer, and because a high

pressure ridge (indicative of fair weather) along the

western North America often characterizes 1PNA

condition (Wallace and Gutzler 1981). The RPC1–PNA

FIG. 6. The 500-hPa geopotential height anomaly (isolines) and pressure vertical velocity anomaly (shades)

composited for days with the (a),(b) most positive and (c),(d) most negative anomalies for (left) RPC1 and (right)

RPC2, representing cloudiest and clearest days during December–August 1996–2014. The positive (negative) Z500

anomaly is contoured as solid (dashed) line.
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contingency table shows a particularly high number of

days when both RPC1 and PNA index are negative

(Table 6). This unexpected RPC1–PNA relationship in

JJAmay also be a ‘‘false positive’’ attributed to the 95%

confidence level test applied here.

RPC2, the interior northwestern U.S. pattern, asso-

ciates with AO in DJF and JJA, where1RPC2 tends to

concur with 1AO in DJF and with 2AO in JJA as in-

dicated by theu coefficient. Althoughmidlatitude storm

activities in the North Pacific are often associated

with 2AO when the westerlies are usually weaker

(Thompson and Wallace 2001), the relatively northern

REOF2 region is in a location where the storm track

may trail into the region even with 1AO. Interestingly,

RPC2 is positively correlated with Niño-3.4 in JJA, al-

though El Niño–Southern Oscillation (ENSO) signal in

the western United States tends to be weak in boreal

summer. The RPC2–Niño-3.4 contingency table shows a
particularly high number of days when both RPC2 and

Niño-3.4 index are positive (Table 7), demonstrating

that contingency table analysis can report a statistically

significant relationship even with only one distinctly

high number of days.

Similar to RPC2, RPC3, the Cascade Range pattern,

is positively correlated with AO in DJF, in keeping with

the positive AO correlations with RPC2. However, the

RPC3 relationship with AO is not statistically significant

in JJA. The1RPC3 is negatively correlatedwithNiño-3.4
in JJA. In view of the fact that its neighboring inte-

rior northwest pattern (REOF2/RPC2) is positively

correlated with Niño-3.4 in JJA, this indicates a rather

strong gradient of cloudiness may set in during summer

ENSO events.

RPC4, the southwestern U.S. pattern, is signifi-

cantly correlated with AO in DJF, where, similar

to 1RPC1, 1RPC4 tends to coincide with 2AO. Fur-

thermore, 1RPC4 events are associated with 1Niño-3.4
in DJF and MAM, a signature of El Niño conditions and

increased storminess in the southwestern United States

(Cayan et al. 1999).

RPC5, the northern Nevada and Idaho pattern, as-

sociates with Niño-3.4 and PNA. RPC5 is negatively

correlated with Niño-3.4 in DJF, evidently because

El Niño forces storm tracks farther south, resulting

in variable influences on Great Basin precipitation

(Smith et al. 2015). RPC5 is negatively correlated with

PNA in DJF, indicating that strengthened high pressure

ridging in winter reduces cloud cover over the northern

Great Basin. However, RPC5 is positively correlated

with PNA in JJA, reflecting the finding of Leathers et al.

(1991) that PNA is negatively correlated with pre-

cipitation overmuch of the westernUnited States during

the cool season and positively correlated during the

warm season.

The correlation maps between the seasonal averages

of the five leading acloud RPCs and those of Z500

anomaly are shown in Fig. 7. Although they vary

somewhat with season, the spatial structure of the cor-

relation maps of RPC1 and RPC2 (Fig. 7) is in good

TABLE 6. Contingency table showing the relationship between

RPC1 and PNA in JJA.

1RPC1 2RPC1 Total

1PNA 123 78 201

2PNA 103 146 249

Total 226 224 450

TABLE 7. Contingency table showing the relationship between

RPC2 and Niño-3.4 in JJA.

1RPC2 2RPC2 Total

1Niño-3.4 138 98 236

2Niño-3.4 102 108 210

Total 240 206 446

TABLE 5. The u coefficients associated with the x2 statistics,

indicating the magnitude and the sign of the correlations between

the RPCs and teleconnection indices during winter (DJF), spring

(MAM), and summer (JJA) of 1996–2014.

Indices Season RPC1 RPC2 RPC3 RPC4 RPC5

AO DJF 20.24 0.12 0.12 20.22 0.04

MAM 20.03 0.07 20.01 20.04 0.02

JJA 20.10 20.10 20.03 0.05 20.07

Niño-3.4 DJF 0.04 20.05 20.03 0.21 20.11

MAM 0.00 0.04 20.02 0.10 20.01

JJA 0.04 0.10 20.11 0.06 0.03

PNA DJF 20.02 20.03 0.08 0.06 20.10

MAM 0.06 20.03 20.01 0.08 0.02

JJA 0.20 0.09 20.03 0.07 0.19

TABLE 4. The x2 values of the contingency tables relating the five

RPC modes to selected teleconnection indices during winter

(DJF), spring (MAM), and summer (JJA) of 1996–2014. The sta-

tistic is significant at 95% confidence level when x2 . 3.84 (bold-

face numbers).

Indices Season RPC1 RPC2 RPC3 RPC4 RPC5

AO DJF 23.65 6.72 6.40 19.46 0.61

MAM 0.49 1.98 0.03 0.67 0.22

JJA 5.13 4.52 0.50 1.21 2.31

Niño-3.4 DJF 0.69 1.15 0.48 19.51 5.72

MAM 0.00 0.79 0.15 5.07 0.03

JJA 0.79 4.38 5.76 1.63 0.35

PNA DJF 0.19 0.31 3.08 1.70 4.13

MAM 1.51 0.41 0.05 2.87 0.29

JJA 17.49 3.24 0.44 2.14 17.01
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FIG. 7. Correlation maps between the seasonal averages of the five leading acloud RPCs and those of Z500

anomaly for 1996–2014. The gray contours denote the areas where p value ,0.05.
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agreement with the daily composite maps in Fig. 6. The

rather detailed regional structure of the correlation

maps explains why the association of western U.S.

cloudiness with the AO, Niño-3.4, and PNA telecon-

nection patterns is perhaps more modest than might be

expected. These correlations clearly represent regional

circulations that may, at times, conflict with the larger-

scale circulations of the major teleconnection patterns,

making for relatively weak associations.

5. Summary and conclusions

Aside from having substantial spatial and seasonal

variation, cloudiness over the mountains of the west-

ern U.S. has significant anomalous variation over a

broad range of scales. A 19-yr (1996–2014) GOES

cloud albedo (i.e., acloud) dataset, sampled to cover

elevations $800m, exhibits anomalous fluctuations

whose dominant patterns are organized over regions of

hundreds of kilometers. The high degree of spatial co-

herence is evident by the acloud REOF decomposition of

the daily cloudiness variability in which the first five

modes account for ;67% of the total variance. These

acloud modes operate throughout the whole year, but

they are modulated seasonally. For example, the leading

mode represents the variability over Northern Cal-

ifornia and Oregon and is accentuated between No-

vember and March, while the second mode represents

the variability over the interior Pacific Northwest and is

pronounced between March and July.

Anomalous cloudiness over high-elevation regions

has differing levels and primary seasons of activity. For

example, in the southwest, mountain cloudiness vari-

ability is highest in spring, probably because of year-to-

year climate variability and intermittent synoptic

weather systems from the Pacific. This springtime

variability amounts to ;13% (cloud albedo unit) on a

daily scale, equivalent to;95Wm22 difference in solar

radiation (based on Tables 1 and 2). Even when sea-

sonally averaged, the acloud standard deviation

amounts to ;3%, equivalent to ;20Wm22 departure

in incoming solar radiation. In contrast, in the north-

west, the variability is lowest in winter and highest in

summer, probably because it is persistently cloudy in

winter while summertime cloudiness is more often

interrupted by interludes of clear skies. In a relative

sense, the amount of cloudiness variation compared to

themean cloudiness is uniformly higher in the southwest

than in the northwest. Importantly, this relative varia-

tion is quite large, with a magnitude of up to ;1.8 on a

daily scale and ;0.4 on a seasonal scale, and is typically

greatest during spring and summer when snowmelt is

most active.

The seasonal variability of cloudiness over mountain

regions in the western United States contrasts with that

of the eastern North Pacific and low-lying coastal

cloudiness, reflecting the different dynamics operating

in these environments. This contrast is most evident in

California, where the mean cloudiness and variability

over higher-elevation terrain is greatest in winter, while

offshore and along the coastline they are greatest

in summer.

As expected, daily variations in cloudiness are dic-

tated by anomalous patterns of atmospheric circula-

tion. Positive regional cloudiness anomalies are

usually accompanied by anomalously low surface

pressure systems, for example, negative geopotential

height anomalies and upward vertical velocity

anomalies.

These circulation patterns are affected by regional

and, to some extent, Pacific basin-scale climate vari-

ability as represented by regional atmospheric circu-

lation composites and by associations with AO, PNA,

and Niño-3.4 teleconnection patterns. These associa-

tions vary with regions and seasons. For instance,

during the winter and spring the southwestern United

States is greatly influenced by AO and Niño-3.4, while
the interior Pacific Northwest is almost singularly

influenced by AO. Somewhat surprisingly, Northern

California and Oregon are not strongly influenced by

ENSO, probably because this region resides near the

hinge point of the West Coast precipitation dipole

(Dettinger et al. 1998).

Previous studies (e.g., Eastman and Warren 2013;

Norris et al. 2016) suggest there may be a slight decline

in cloud cover globally and a poleward movement of

midlatitude storm tracks, but the 19-yr GOES dataset is

too short to form realistic estimates of trends. De-

termination of long-term changes over high elevations

of the western United States must contend with con-

siderable shorter-period variability of cloudiness that is

described here. Because of strong influences by large-

scale weather and short-period climate patterns,

cloudiness varies over regional spatial scales, with

characteristic patterns that cover large portions of the

high-elevation zones of the region.
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APPENDIX A

GOES Data Availability

The structure of the missing data is illustrated in

Figure A1. Most of the missing data occur in early

morning and late afternoon during times of low sun

angle. There are more missing data in winter months

because of shorter day lengths. Figure A1 (right) shows

that .80% of the days have .15 half-hour daytime

observations.

Whether 10 out of 17 half-hours made a reasonable

daily mean estimate was determined from an analysis

summarized in Table A1. We identified the days when

there were no missing data between 0800 and 1600 LST

and derived the daily averages. We then randomly re-

moved (1, 2, 3. . .16) half-hours of the same days and

rederived the daily averages. In each instance, the cor-

relation R, root-mean-square error (RMSE), and frac-

tional mean absolute bias ( f jBiasj 5 ja172n 2 a17j/a17,

for 1# n # 16) between the two sets (with missing data

vs without missing data) were computed to determine

the validity of the daily averages.

There is no set standard of how many half-hours or of

howmuch error/bias can be tolerated. Together with the

facts that .90% of the days had .15 half-hours avail-

able and that the days with 7 missing data accounted

for ,0.1%, having an error (fractional bias) of ;1.91%

(0.1) was a reasonable limit.

APPENDIX B

Clear-Sky Albedo Time Window

Figure B1 shows how different time windows used to

determine the clear-sky albedo evolve throughout the

water year 2006, in comparison to snow water equiva-

lent (SWE) at nearby snow sensors in California and

Idaho mountain settings. Each of the clear-sky albedos

generally captures the snow and nonsnow season, but

the one with the shortest time window (7 days) is hy-

persensitive to short-term fluctuations. In contrast, the

one with the longest time window (28 days) is hypo-

sensitive to such fluctuations. The 15-day (67 days)

time window has intermediate properties that capture

FIG. A1. (left) Number distribution of missing data for each month and half-hour of the day of 1996–2014,

averaged over.300 high-elevation pixels across the westernmost United States, illustrating which hours of the day

have the least/most missing data in each month. (right) The percentages of hours between 0800 and 1600 LST exist

per day during the same period and averaged over the same pixels, illustrating how many daytime hours exist on

average.

TABLE A1. The correlation, RMSE, and fractional mean absolute bias ( f jBiasj) between daily average cloud albedo when no half-hour

between 0800 and 1600 LST is missing and that when one or more (n) half-hours are missing, for 1 # n # 10 only. The RMSEs are in

percent cloud albedo unit. The statistics are averages over all days and sites as in Fig. A1.

n

1 2 3 4 5 6 7 8 9 10

R 0.999 0.998 0.997 0.996 0.994 0.993 0.991 0.990 0.988 0.986

RMSE 0.66 0.94 1.17 1.38 1.56 1.74 1.91 2.08 2.24 2.41

f jBiasj 0.03 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

MAY 2017 SUMARGO AND CAYAN 1241

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:12 PM UTC



major changes while being immune to short-period

changes.

There were a few isolated cases when the 15-day time

window did not capture the evolving snow surface

cover during the early snow season. For example, the

period when snowfall and accumulation occurred

rapidly between 29 November and 1 December 2005

was misclassified as no snow accumulation (Fig. 1).

FIG. C1. Daily climatology (1996–2014) of acloud (gray) and its low-pass-filtered versions using Chebyshev Type I

filter (blue) and original 29-day (614 days) centered moving average (red) at four different locations.

FIG. B1. Daily time series of water year 2006 SWE (gray shading) and of clear-sky albedo derived using four

different time windows (color plots) at (left) Dana Meadows in Yosemite National Park, California, and (right)

Crater Meadows in Idaho. The thick red line denotes the time window used in the study.
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Shortening the time window (e.g., to 7-day period) re-

solved this problem, but resulted in other days mis-

classified as cloud-free, for example, 2, 7, and

15 December 2005. On the other hand, expanding the

time window would result in more days misclassified as

no snow accumulation, for example, on 1–4 and

31 December 2005. Thus, we determined that 15-day

window was optimal.

APPENDIX C

Determining the Seasonal Cycle

Harmonic fitting, Butterworth filter, and Chebyshev

Type I filter were evaluated alongside the original

29-day (614 days) centered moving average used in

this study. Figure C1 shows the deseasonalized daily

cloud albedo time series at four different pixels and

two selected filters (first-order Chebyshev Type I filter,

29-day centered moving average), averaged over all

years. The more sophisticated and computationally more

intensive method yielded a somewhat different repre-

sentation of the annual cycle, but without appreciable

improvement. The power spectra of the deseasonalized

time series displayed similar power dissipations at dif-

ferent spectral periods, most notably at ;365-day period

(not shown).

The same conclusion was derived when different filters

(i.e., harmonic fitting and Butterworth filter) and differ-

ent orders (i.e., second, third, . . . , -order Chebyshev and

1, 2, 3, . . . , -point Butterworth) were used. Furthermore,

the two other filters and the higher-order Chebyshev fil-

ters tended to underestimate the annual cycle as they

produce dampened amplitudes, which resulted in large

positive biases in winter and large negative biases

in summer.
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