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ABSTRACT

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed In-

formation Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff

modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and

0.258 temporal and spatial resolutions from 1983 to present for the 608S–608N latitude band and 08–3608
longitude. The study is conducted in two phases over three test basins from theDistributedHydrologicModel

Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other

high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation anal-

ysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM

Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient

for TMPA (;0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (;6) for

both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN,

TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service

Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-

RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative

analysis using five different statistical and model efficiency measures against USGS streamflow observation

show that in general in all threeDMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and

TMPA have close agreement. Given the promising results in the first phase, the simulation process is ex-

tended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that

PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation

coefficients of;0.67–0.73, relatively low biases (;5%–12%), and high index of agreement criterion (;0.68–

0.83) betweenPERSIANN-CDR-simulated daily streamflow andUSGS daily observations. The results prove

the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-

term streamflow simulations over the past three decades.

1. Introduction

Streamflow is one of the most important components

of the hydrological cycle. Many efforts have been made

to develop different models to emulate the hydrological

cycle and simulate streamflow. Examples are statistical

data-driven (e.g., Kim andBarros 2001; Sahoo et al. 2006;

Piotrowski et al. 2006) or physically based (Estupina-

Borrell et al. 2006; Sirdas and Sen 2007; Beven 2011)

models in the forms of lumped [e.g., Sacramento Soil

Moisture Accounting (SAC-SMA; Burnash et al. 1973)

and Hydrologiska Byråns Vattenbalansavdelning (HBV;

Bergstrom 1995)], semilumped [e.g., Variable Infiltration

Capacity model (VIC); Liang et al. 1994], and distributed

[e.g., Hydrology Laboratory Research Distributed Hy-

drologic Model (HL-RDHM); Koren et al. 2003, 2004,

2007]. One of the most, if not the most, important criteria

in all of these types of hydrological modeling schemes,

but particularly in the distributed format, is the avail-

ability of high-quality data with desirable spatial and
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temporal coverages. Satellite products with their global

coverage are very well suited for this purpose. With the

advancement in remote sensing science and technol-

ogy, high-resolution data and information about the

earth’s surface characteristics (e.g., topography, soil

types, and land use) and hydrometeorological forcings

(e.g., precipitation, temperature, and evapotranspira-

tion) have been made available globally. Particularly,

remote sensing of precipitation—one of the key hy-

drometeorological variables in generating floods—has

gained significant attention in the recent past. Numer-

ous efforts have been made to produce satellite-based

precipitation estimates at high spatiotemporal resolu-

tion in global scale. Examples are the CPC morphing

technique (CMORPH; Joyce et al. 2004), Precipitation

Estimation from Remotely Sensed Information Using

Artificial Neural Networks (PERSIANN; Hsu et al.

1997, 1999; Sorooshian et al. 2000), PERSIANN–

Climate Data Record (PERSIANN-CDR; Ashouri

et al. 2015), Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA;

Huffman et al. 2007), the Naval Research Laboratory

(NRL)-Blend satellite rainfall estimates (Turk et al.

2010), and the Integrated Multisatellite Retrievals

for Global Precipitation Measurement (IMERG;

Huffman et al. 2015). Such products are valuable

sources of information and data for flood modeling in a

distributed format.

Previous efforts have been made in evaluating

the accuracy of different satellite-based precipitation

products against gauge observations (e.g., Sorooshian

et al. 2000; Hong et al. 2006; Ebert et al. 2007; Miao et al.

2015; Ashouri et al. 2016) and utilizing such data in

different applications, especially hydrological model-

ing (see Behrangi et al. 2011; Bajracharya et al. 2015;

Maggioni et al. 2013; Nguyen et al. 2014, 2015, 2016;

Seyyedi et al. 2015). Feasibility of using satellite-based

precipitation as input for hydrologic simulation has

been demonstrated in the Mediterranean (Ciabatta

et al. 2016) and for simulating high flows in Africa

(Thiemig et al. 2013). However, certain challenges and

limitations with using satellite-based precipitation

for rainfall–runoff modeling have been identified. Of

reoccurring concern is bias in satellite-based precipi-

tation estimates that carries over to hydrological sim-

ulations when used as model input (Guetter et al. 1996;

Stisen and Sandholt 2010; Thiemig et al. 2013). Harris

et al. (2007) also point to spatial resolution of coarse

satellite-based precipitation products as a concern for

use in hydrologic models, cautioning their use in an

operational setting, and recommending adjustments to

the precipitation estimates even beyond simple bias

adjustments.

In this study, we implement a newly developed pre-

cipitation climate data record, PERSIANN-CDR, into a

long-term hydrological modeling framework to simulate

historical streamflow and flood events. In other words, we

seek to evaluate the performance of PERSIANN-CDR

in a distributed rainfall–runoff modeling application and

compare its performance with other high-resolution

precipitation products. For this purpose, the National

Weather Service (NWS) HL-RDHM is used. This study

is conducted in two phases. In the first phase, a period of

time when PERSIANN-CDR, TMPA, and stage IV

gauge-adjusted radar data products are available is cho-

sen and the hydrological modeling is performed for this

period. The study period for this phase is selected from

2003 to 2010 when all the aforementioned precipitation

products are available. The results of this phase reveal

how PERSIANN-CDR performs compared with the

well-established TMPA data product as far as generating

streamflow in the study basin. In the second phase, the

entire record of the 0.258 daily PERSIANN-CDR data is

used to extend the modeling process back to 1983, al-

lowing for long-term streamflow simulations conducted

at a higher resolution than previously possible.

The paper is structured as follows: section 2 describes

the data used in this study, section 3 provides detailed

information about the methodology and modeling

structure, section 4 presents the results, and section 5

concludes with a summary of the main findings.

2. Data

a. TMPA

TRMM, a joint mission between NASA and the Japan

Aerospace Exploration Agency (JAXA), was launched

in November 1997 with a design lifetime of 3 years.

TRMM, however, producedmore than 17 years of data to

study tropical rainfall for weather and climate research.

This mission officially came to an end on 15 April 2015.

As one of the TRMM products, TMPA (Huffman et al.

2007, 2010) contains near-global (508S–508N) pre-

cipitation data at 3-hourly temporal resolution and

0.258 3 0.258 grid cells. In this study, version 7 of this

product is used. TMPA has an established record in

precipitation and hydrological modeling studies (for a

complete list of TMPA citations, refer to ftp://precip.gsfc.

nasa.gov/pub/trmmdocs/rt/TMPA_citations.pdf). From

the hydrological modeling perspective, Su et al. (2008)

forced the VIC with TMPA precipitation data over La

Plata basin in SouthAmerica. The study reported that the

TMPA-driven simulations were able to capture the daily

flooding events and to represent low flows, although up-

ward biases were identified in peak flows. Another study
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over the Amazon basin (Collischonn et al. 2008) showed

that the TRMM-based simulated hydrographs depicted

comparable performance to those calculated from rain

gauge data. Given the findings of such studies, in order to

compare the performance of PERSIANN-CDR with

another high-resolution satellite-based precipitation

product, TMPA 3B42, version 7 (hereafter TMPA), for

the period of 2003–10 is chosen.

b. PERSIANN-CDR

PERSIANN-CDR (Ashouri et al. 2015) is a newly

developed and released satellite-based precipitation

product that covers more than three decades (from

1 January 1983 to present) of daily precipitation esti-

mations at 0.258 resolution for the 608S–608N latitude

band. PERSIANN-CDR uses the archive of infrared

brightness temperature CDR from Gridded Satellite

(GridSat)-B1 (Knapp 2008a,b; Knapp et al. 2011) in the

International Satellite Cloud Climatology Project

(ISCCP; Rossow and Schiffer 1991; Rossow and Garder

1993) as the input to the trained neural network of the

PERSIANN model. The resulting rainfall estimates are

then corrected for bias using the monthly Global Pre-

cipitation Climatology Project (GPCP), version 2.2, 2.58
product. The dataset has been released and made

available for public access through NOAA/National

Centers for Environmental Information (NCEI; http://

www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/

Overview.pdf). PERSIANN-CDR has already shown its

usefulness for a relatively wide range of different applica-

tions (Guo et al. 2015; Solmon et al. 2015; Ceccherini et al.

2015; Yong 2015; Yang et al. 2016).Using different extreme

precipitation indices, Miao et al. (2015) evaluated the

performance of PERSIANN-CDR in capturing the

behavior of historical extreme precipitation events

over China. Their results showed the capability of

PERSIANN-CDR in reproducing similar spatial and

temporal patterns of daily precipitation extremes as those

depicted by the East Asia (EA) ground-based gridded

daily precipitation dataset. In another study by Hagos

et al. (2016) that investigated changes in the frequency

of landfalling atmospheric river and extreme precipita-

tion in the simulation of the Community Earth System

Model (CESM), PERSIANN-CDR was used as the

‘‘observation’’ precipitation. Luchetti et al. (2016) used

PERSIANN-CDR in a NOAA–NASA collaborative

project for updating theENSO-based rainfall climatology

for regions in Hawaii and U.S.-affiliated Pacific islands.

With respect to the applicability of PERSIANN-CDR,

the paper concludes that their results ‘‘solidified the

FIG. 1. Schematic of the SAC-SMA (Burnash et al. 1973; image source: http://ldas.gsfc.nasa.

gov/nldas/images/SAC_schematic.jpg).
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ability of the high resolution PERSIANN-CDR to be

more than adequate for use in long-term precipitation

climatology studies.’’ With respect to hydrological ap-

plication, Casse and Gosset (2015) used PERSIANN-

CDR to study hydrological changes and flood increases

in theNigerRiver and the city ofNiamey (Niger) over the

period of 1983–2013. The results showed that PERSIANN-

CDR produces annual rainfall amounts comparable

with those from gauge-adjusted satellite rainfall esti-

mates and gauge data. The paper also concludes that

‘‘the PERSIANN-CDR based hydrological simulation

presents a realistic inter-annual variability, and detects

flooded years, but not the exact flooded period day by

day’’ (Casse and Gosset 2015, p. 122).

c. Stage IV gauge-adjusted radar data

National Centers for Environmental Prediction

(NCEP) Environmental Modeling Center (EMC) pro-

vides the stage IV gauge-adjusted precipitation product

(Fulton et al. 1998) from high-resolution Doppler Next

Generation Weather Radar (NEXRAD) network and

hourly rain gauge data over the contiguousUnited States.

Stage IV radar data are available at 1-, 6-, and 24-hourly

scales at 4-km spatial resolution at Hydrologic Rainfall

Analysis Project (HRAP) national grid system. Stage IV

radar data are manually quality controlled at NWSRiver

Forecast Centers (RFCs). (More information about stage

IV data can be obtained from www.emc.ncep.noaa.gov/

mmb/ylin/pcpanl/stage4/.) Stage IV precipitation data

have been used in different studies (e.g., Ebert et al. 2007;

Zeweldi andGebremichael 2009; Anagnostou et al. 2010;

Ashouri et al. 2015). In this study, stage IV data are first

used as the reference data for evaluating satellite-based

precipitation products. They are then used as a forcing

data into the hydrological model to generate streamflow

simulations.

In this study, all data products are first scaled to 0.258
and daily spatiotemporal resolution before use.

3. Methodology

As introduced earlier, the main goal of this study is to

investigate the performance of the newly developed

precipitation climate data record, PERSIANN-CDR, in a

hydrological rainfall–runoff modeling application and

compare its performance with other precipitation prod-

ucts. For this purpose, the NOAA/NWS/Office of Hy-

drologic Development’s HL-RDHM (Koren et al. 2003,

2004, 2007) is used as the hydrological model to simulate

the streamflow using the precipitation data products.

HL-RDHM has been widely used for hydrologic studies

(e.g., Smith et al. 2004; Reed et al. 2007; Tang et al. 2007;

Yilmaz et al. 2008; Wagener et al. 2009; Khakbaz et al.

2012; Smith et al. 2012a,b). The conceptually based SAC-

SMAprovides the foundation ofHL-RDHM.A schematic

of SAC-SMA is shown in Fig. 1. SAC-SMA features two

conceptual layers, upper- and lower-zone storage, both of

which have two basic components, tension water and free

TABLE 1. HL-RDHM parameter descriptions and their basin-average values (Koren et al. 2004).

Parameter Description SLOA4 ELMSP SAVOY

SAC-HT

sac_UZTWM (mm) Upper-zone tension water capacity 68.46 74.74 51.41

sac_UZFWM (mm) Upper-zone free water capacity 20.52 21.17 18.11

sac_UZK (day21) Fractional daily upper-zone free 0.2978 0.2775 0.3427

sac_ZPERC (DL) Max percolation rate 117.9 125.9 100.5

sac_REXP (DL) Exponent for the percolation equation 2.026 2.065 1.943

sac_LZTWM (mm) Lower-zone tension water capacity

sac_LZFSM (mm) Lower-zone supplemental free water capacity 173 177.1 163.2

sac_LZFPM (mm) Lower-zone primary free water capacity 83.57 74.87 101.6

sac_LZSK (day21) Fractional daily supplemental withdrawal rate 0.1140 0.1074 0.1285

sac_LZPK (day21) Fractional daily primary withdrawal rate 0.017 04 0.017 54 0.015 13

sac_PFREE Percolation fraction that always goes directly to

lower-zone free water storages

0.3591 0.3743 0.3304

Rutpix9

rutpix_Q0CHN Specific channel discharge per unit channel cross-sectional area 0.3281 0.3389 0.3377

rutpix_QMCHN (DL) Power value in relationship between discharge and cross section 1.288 1.288 1.288

sac_PCTIM (fraction) Min impervious area 0.001 0.001 0.001

sac_ADIMP (fraction) Additional impervious area 0 0 0

sac_RIVA (fraction) Riparian vegetation area 0.035 0.035 0.035

sac_SIDE (fraction) Ratio of nonchannel base flow to channel base flow 0 0 0

sac_RSERV Lower-zone free water fraction that cannot be transferred

to lower-zone tension water

0.3 0.3 0.3

sac_EFC (fraction) Effective forest cover 0 0 0
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water. An enhanced version of SAC-SMA known as the

Sacramento Soil Moisture Accounting Heat Transfer

(SAC-HT) includes the use of Noah land surface model–

based physics to estimate a physically meaningful soil

moisture profile, allowing for the estimation of heat

transfer within the column (Koren et al. 2007). The second

HL-RDHM module that this study uses is a routing

scheme known as Rutpix9. This scheme consists of a

hillslope component in which fast (overland flow) runoff

is routed over a uniform conceptual hillslope and is

combined with a slow (subsurface flow) component.

Following hillslope runoff generation, a channel-routing

process moves water downstream using a topographically

based, cell-to-cell method. In Rutpix9, the relationship

between discharge and channel cross section is based on

the rating curve method (NWS 2011).

With respect to the calibration of the hydrological

model, many studies have made a case for input-specific

model calibration in order to compensate for possible

pitfalls associated with a specific satellite precipitation

product (e.g., Ciabatta et al. 2016; Qi et al. 2016; Stisen

and Sandholt 2010; Thiemig et al. 2013). While this

technique allows for multiple satellite products to yield

satisfactory hydrologic simulation performance despite

discrepancies in precipitation estimates, it hinders

efforts to improve the precipitation product as well as

the model by allowing the two to compensate for one

another’s deficiencies. For this reason, the work pre-

sented here relies on calibration of the model by experts

who used precipitation estimates they deemed as the

most dependable (based on radar in this case) for the

particular model/study region. These parameters are

held constant for evaluation across all precipitation

products rather than performing product-specific cali-

bration. This allows us to focus our evaluation solely on

the performance of the precipitation products without

their performance being altered by the potential im-

provements that product-specific calibration would

bring. For HL-RDHM, the model has been expertly

calibrated by the NWS for the Distributed Hydrologic

Model Intercomparison Project, phase 2 (DMIP2), ba-

sins. A priori parameter sets have been derived from soil

and land-use data for HL-RDHM. Scalar multipliers of

these parameter sets are used for calibration, assuming

that the relationship of the individual pixels to one an-

other is adequately characterized in the a priori sets. In

this study, we rely on these expertly calibrated param-

eters by NWS experts for the calibration of the hydro-

logical model. The calibrated parameters for SAC-HT

and Rutpix9 provided by NWS are summarized as

FIG. 2. The three study basins (SAVOY, ELMSP, and SLOA4) [modified from Smith et al. (2012)].
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basin-average values in Table 1. Detailed information

about HL-RDHM can be found in its user manual

(NWS 2011; Koren and Barrett 1994).

With respect to the study area, three basins from the

Oklahoma test basins from DMIP2 are chosen (Fig. 2).

The two smaller study basins with outlets at Osage Creek

near Elm Springs, Arkansas (ELMSP), and the Illinois

River at Savoy,Arkansas (SAVOY), have drainage areas

of 337 and 433km2 and feed into the third study basin,

which has an outlet located on the Illinois River south of

Siloam Springs, Arkansas (SLOA4), and a drainage area

of 1489km2 (Smith et al. 2012). The Illinois River basin

encompasses the three study basins and is characterized

by an annual rainfall of;1200mm (Smith et al. 2004). It

is noteworthy that the selection of these three test basins

is based on the availability of the a priori calibrated pa-

rameter sets from NWS, which were only available for

these three basins at the time of this study.

Prior to setting up the hydrological modeling scheme, a

preliminary evaluation on the accuracy of the utilized

precipitation products against stage IV gauge-adjusted

radar data is conducted. After having the model structure

in place, HL-RDHM is run in two phases. In the first

phase, the time period of 2003–10 when all products

(PERSIANN, PERSIANN-CDR, TMPA, and stage IV)

are available is selected. The resulting hydrographs from

HL-RDHM forced with the three precipitation products

at the three study basins are compared with the USGS

streamflow observations. The results of this phase depict

how PERSIANN-CDR-simulated streamflow compares

with other currently available precipitation products, that

is, TMPA and stage IV data. Having proven the concept,

in the second phasewe extend the simulation process back

to 1983, where only PERSIANN-CDRdata are available.

To assess the closeness of the simulated streamflow to

theUSGSobservations, the following statisticalmeasures

are calculated. In addition to correlation coefficient

(CORR), centered root-mean-square error (RMSE), and

percent volume bias (BIAS), the Nash–Sutcliffe co-

efficient E and index of agreement d is investigated. The

Nash–Sutcliffe coefficient (Nash and Sutcliffe 1970) is an

efficiency criterion that is calculated as 1minus the sumof

the squared differences between observed and simulated

values normalized by the variance of the observations:

E5 12
�
N

i51

(Obs
i
2 Sim

i
)2

�
N

i51

(Obs
i
2Obs)2

,

where Obsi and Simi are the observed and simulated

values at time step i, respectively; Obs is the mean of the

observation; and E ranges from2‘ to 1, with 1 being the
FIG. 3. Precipitation comparison plots for (top) SAVOY, (middle)

ELMSP, and (bottom) SLOA4 basins for 2003–10.
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perfect fit and negative values indicating that the mean of

the observation would be a better predictor than the

model. The main drawback of the Nash–Sutcliffe crite-

rion is that, since the differences are squared, this effi-

ciency criterion is biased toward peak values and less

sensitive during low-flow periods (Legates and McCabe

1999). To overcome this problem, E is often calculated

based on the logarithmic values of the observed and

simulated data. In this study, we take the ln E approach.

The index of agreement (Willmot 1984) is calculated

as 1 minus the squared differences between the ob-

served and simulated values normalized by the largest

potential error. The variable d is calculated using the

following equation and ranges from 0 to 1, with 1 being

the perfect fit:

d5 12
�
N

i51

(Obs
i
2 Sim

i
)2

�
N

i51

(jSim
i
2Obsj1 jObs

i
2Obsj)2

.

The results of the two phases of the study are provided in

the section below.

4. Results

Before conducting the hydrological modeling pro-

cess, it is necessary to evaluate the accuracy of the

precipitation products over the study region. A com-

parison of PERSIANN, PERSIANN-CDR, and TMPA

precipitation products against stage IV gauge-adjusted

radar data as our reference dataset is conducted. Basic

precipitation evaluation statistics, including correla-

tion coefficient, standard deviation, and root-mean-

square deviation, are presented on Taylor diagrams

(Fig. 3). The results show that, in the three study basins,

TMPA and PERSIANN-CDR have close perfor-

mances, with slightly higher correlation coefficient for

TMPA (;0.8 vs 0.75 for PERSIANN-CDR) and sim-

ilar RMSD (;6mmday21) for both products. TMPA

shows a higher standard deviation (;10mmday21)

than PERSIANN-CDR (;8mmday21). TMPA and

PERSIANN-CDR both outperform PERSIANN, mainly

because, unlike PERSIANN, TMPA and PERSIANN-

CDR are gauge-adjusted precipitation products.

Given the results of the previous section showing a

reasonably accurate performance of PERSIANN-CDR

and TMPA when compared to stage IV radar data, we

FIG. 4. Simulated and observed streamflow hydrographs and respective scatterplots at the outlet of SAVOY

basin using (from top to bottom) stage IV, TMPA, PERSIANN, and PERSIANN-CDR precipitation products.

The solid black line shows the USGS observations.
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can reliably use these precipitation datasets as the

forcing to the hydrological model. In the first phase, the

simulation process is performed for 2003–10 when all

four precipitation products are available. As mentioned

in the methodology section, the HL-RDHM is used as

our hydrological model. With respect to calibration, we

relied on the calibrated a priori parameter set (see Table

1), by NWS experts, for the basins we used. After setting

up themodel, HL-RDHM is forcedwith the PERSIANN,

PERSIANN-CDR, TMPA, and stage IV precipitation

products to simulate streamflow Q at the outlet of the

three study basins. The USGS streamflow observations

are used as the reference streamflow data. For a better

visualization of the resulted hydrographs, especially for

peak and low flows, we used the following trans-

formation function proposed by Hogue et al. (2000) and

used in different studies (Yilmaz et al. 2005; Khakbaz

et al. 2012; Behrangi et al. 2011):

Q
trans

5
(Q1 1)0.3 2 1

0. 3
.

The resulting streamflow simulations Qtrans for SAVOY,

ELMSP, and SLOA4 basins are shown in Figs. 4–6, re-

spectively. The scatterplots of nontransformed flows

against the USGS observations (black line) are shown in

Figs. 4–6 (right). In general, for all three DMIP2 basins

stage IV radar data seem to outperform the other

products. The simulated hydrograph results from

PERSIANN-CDR and TMPA forcing generally show

close agreement. For quantitative comparisons, different

statistical measures including CORR, RMSE, BIAS,

ln E, and d are calculated from the PERSIANN-,

PERSIANN-CDR-, TMPA-, and stage IV–derived hy-

drographs when compared with USGS observations. As

shown in the Taylor diagrams in Fig. 7, stage IV generally

outperforms other products, with higher CORR (;0.75–

0.8) and lower RMSE and standard deviation in all three

basins. TMPAand PERSIANN-CDRboth performwell,

with a higher CORR for TMPA at SAVOY and SLOA4

and a higher CORR for PERSIANN-CDR at ELMSP

basin. PERSIANN-CDR shows lower standard deviation

than TMPA in all three basins. PERSIANN shows a

CORR of about 0.5–0.6. The high values of RMSE for

PERSIANN are due to the nature of this being a real-

time product with no gauge correction. Table 2 summa-

rizes all the statistics for the three study basins. The lower

BIAS in PERSIANN-CDR compared to PERSIANN

shows the effectiveness of the bias-removal algorithm in

reducing the bias in satellite estimates when compared to

ground measurements. Possible reasons for large bias in

the stage IV radar data are given in the discussion section.

FIG. 5. As in Fig. 4, but for ELMSP basin.
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In addition to the quantitative analysis over the entire

record, an analysis on the long-term (2003–10) annual

cycle from daily USGS streamflow observation, as

well as the stage IV–, TMPA-, PERSIANN-, and

PERSIANN-CDR-derived hydrographs for the three

study basins, is conducted. As shown in Fig. 8,

PERSIANN-CDR and TMPA depict a relatively simi-

lar performance for all seasons. PERSIANN’s perfor-

mance degrades in the spring season. The improvements

from PERSIANN to PERSIANN-CDRare also evident

in Fig. 8. Respective daily based statistical measures

from day-of-year long-term (2003–10) annual cycle ana-

lyses are calculated against gauge observations and

shown in Table 3. The reduction in the percentage vol-

ume bias from PERSIANN to PERSIANN-CDR is

evident. At the SAVOYbasin, TMPA shows the highest

index of agreement, where this measure is the highest

for PERSIANN-CDR. Stage IV shows the lowest

RMSE in all the three catchments. PERSIANN-CDR

shows a higher RMSE than TMPA at SAVOY but a

lower RMSE at ELMSP basin. RMSEs from

PERSIANN-CDR and TMPA are very close at the

SLOA4 basin. With respect to the CORR, stage IV ra-

dar data show the best performance at SAVOY and

ELMSP basins. PERSIANN-CDR shows a slightly

higher CORR than TMPA at the ELMSP basin, but

TMPA outperforms PERSIANN-CDR in the SAVOY

and SLOA4 basins in this regard. The large negative bias

in stage IV radar data in ELMSP and SLOA4 is again

observed in this analysis. The seasonal analysis (figures

not presented) shows that the largest negative bias in

stage IV–derived streamflow happens in the summer

and fall seasons.

Results of phase 1 analyses for the period when other

high-resolution, satellite-derived precipitation prod-

ucts are available show that the performance of

PERSIANN-CDR has been close to other precipitation

products. The findings of this phase reveal the high po-

tential for PERSIANN-CDR data use in rainfall–runoff

modeling applications, particularly long-term simula-

tions of more than three decades, given the fact that

PERSIANN-CDR rainfall data spans from 1 January

1983 to present (delayed) time. Therefore, in phase 2,

HL-RDHM is forced with daily PERSIANN-CDR

rainfall estimation for 1983–2012 to reconstruct histori-

cal streamflow at the three study basins. It is important

to note that, similar to phase 1, we rely on the NWS a

priori parameter sets for the calibration of the model.

The resulting hydrographs for SAVOY, ELMSP, and

SLOA4 are shown in Fig. 9, with the black line being the

USGS observation and the blue line being the

PERSIANN-CDR-derived hydrograph. As shown, an

FIG. 6. As in Fig. 4, but for SLOA4 basin.
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immediate result is that PERSIANN-CDR could re-

construct the full record of historical streamflow, espe-

cially for years prior to 1996 (except 1986 for SAVOY

basin) when generally the USGS streamflow obser-

vations are not available for the three study basins.

The scatterplots comparing the PERSIANN-CDR-

simulated streamflow against USGS observations for

1983–2012 for the three study basins are shown in Fig. 9.

The summary of quantitative comparisons is presented

in Table 4. The results depict high CORR (;0.67–0.73),

relatively low BIAS (;5%–12%), and high index of

agreement criterion (;0.68–0.83) between PERSIANN-

CDR-simulated daily streamflow and USGS daily ob-

servations, demonstrating reasonable performance of

PERSIANN-CDR despite the calibration of the hydro-

logical model by a precipitation product other than

PERSIANN-CDR. It is also noteworthy that the effi-

ciency index of the logarithmic Nash–Sutcliffe coefficient

derived in the second phase of the study is comparable,

and even slightly better, than the same coefficient in the

first phase of the study for other precipitation products.

5. Discussion

There are few points what we would like to clarify via

the explanations below. First, we would like to point

out that the main reason for including the real-time

PERSIANN product in our analysis was to investigate

the progress that the Center for Hydrometeorology

and Remote Sensing at the University of California,

Irvine, has made over time in improving its pre-

cipitation products. Regarding this, the improvements

are evident from both the precipitation and simulated

streamflow points of view. That said, there are certain

facts that should be considered here since a blind

comparison of real-time precipitation products

[e.g., PERSIANN or TMPA–real time (3B42RT)]

with gauge-adjusted products (e.g., TMPA and

PERSIANN-CDR) may not be a fair comparison in

general. In the case of PERSIANN and PERSIANN-

CDR, the latter is indirectly gauge corrected based on

the gauge information from the Global Precipitation

Climatology Centre (GPCC; Schneider et al. 2008)

used in the GPCP monthly precipitation product (see

Huffman and Bolvin 2013), whereas PERSIANN is a

real-time product without any gauge-adjusting com-

ponent. Real-time PERSIANN data are useful for real-

time applications such as global floodmonitoring, while

the long-term (130 years), daily PERSIANN-CDR

rainfall data make it useful for long-term hydrological

and climatological studies and applications. As is the

case with other satellite-based products, the choice of

PERSIANN or PERSIANN-CDR depends on the type

FIG. 7. Taylor diagram showing the correlation coefficient,

standard deviation, and root-mean-square deviation from the

PERSIANN-, PERSIANN-CDR-, TMPA-, and stage IV–derived

hydrographs for (top) SAVOY, (middle) ELMSP, and (bottom)

SLOA4 basins for 2003–10.
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of application, period of the study, and the constraints

of the problem.

The second point refers to the relatively high percent

bias observed in the stage IV streamflow simulations for

ELMSP and SLOA4 basins compared to PERSIANN-

CDR and TMPA. There could be a couple of reasons for

that. First, the validation period in this study is not the

same as the calibration period for which the a priori

parameters are estimated, so there is no guarantee that

stage IV is always better than the other products in the

discharge simulations. More importantly, calibration

performed by the NWS (see Kuzmin et al. 2008) is based

on a multi-time-scale form of RMSE and does not in-

clude bias in the objective function. In Table 2, stage IV

simulation has the lowest RMSE that is consistent with

the calibration methods. It is noteworthy that the cor-

relations of stage IV simulations in all cases are better

than the others.

The third point is about the low Nash–Sutcliff effi-

ciency values obtained from the simulated streamflow

time series. The key point here is the calibration of the

hydrological model. As explained in the introduction

and methodology sections, instead of conducting

product-specific calibration, we relied on the NWS ex-

pertly calibrated a priori parameter sets for the cali-

bration of the HL-RDHM for the study basins. These

parameters are kept fixed for all the precipitation

products, allowing us to focus our evaluation solely on

the performance of the precipitation products, rather

than mixing it with the improvements that product-

specific calibrations of the hydrological model can, and

do, introduce in the final simulations. It is obvious that

by conducting product-specific calibration, one would

achieve higher-efficiency results.

The fourth point is about the performance of

PERSIANN-CDR in reproducing the observed peak

flows during the 1983–2012 period (Fig. 9), when ob-

servations are available. Part of the mismatch is due to

the fact that our hydrological model was not specifically

calibrated with PERSIANN-CDR data. In addition to

that, it could be partly due to the fault of the forcing

precipitation, the fault of the model, or even the fault

of the precipitation product used for calibration (or a

combination of all).

6. Conclusions

The main goal of this study was to evaluate the per-

formance of the newly developed precipitation climate

data record, PERSIANN-CDR, in a rainfall–runoff

modeling scheme and compare its performance with

other high-resolution precipitation products. In exam-

ining the accuracy of the precipitation products,

PERSIANN-CDR and TMPA showed close perfor-

mances compared to the stage IV gauge-adjusted radar

data product. Focusing only on the PERSIANN prod-

ucts, it is found that PERSIANN-CDR outperforms the

PERSIANN real-time product, depicting better statis-

tical measures. This is mainly because PERSIANN-

CDR is gauge corrected, whereas PERSIANN is a

real-time product with no gauge-correction component.

For the purpose of evaluating PERSIANN-CDR’s

application in hydrological modeling, two phases of

studywere designed. In the first phase, themain goal was

to test how PERSIANN-CDR’s performance compares

with the performance of other precipitation products.

To have all the products available, the time period

of 2003–10 was selected. The HL-RDHM was run

TABLE 2. Mean, standard deviation (std dev), centered RMSE, CORR, ln E, BIAS, and d for simulated streamflow (2003–10) from

PERSIANN, PERSIANN-CDR, stage IV, and TMPA compared to USGS streamflow observations.

Product Mean (m3 s21) Std dev (m3 s21) RMSE (m3 s21) CORR ln E BIAS d

SAVOY

PERSIANN 7.79 21.69 17.44 0.604 20.203 61.2% 0.725

PERSIANN-CDR 5.54 8.17 11.46 0.686 0.274 14.6% 0.728

Stage IV 4.2 7.58 10.3 0.808 0.536 213.0% 0.781

TMPA 5.86 11.2 10.2 0.750 0.254 21.2% 0.833

ELMSP

PERSIANN 5.83 17.15 14.73 0.52 22.47 26.6% 0.567

PERSIANN-CDR 4.14 7.1 6.36 0.648 21.88 210.1% 0.781

Stage IV 2.72 4.56 5.54 0.721 24.72 241.05% 0.756

TMPA 3.83 8.37 7.07 0.622 22.19 216.84% 0.767

SLOA4

PERSIANN 25.45 64.68 53.24 0.572 20.662 55.1% 0.631

PERSIANN-CDR 18.04 26.05 24.35 0.677 0.166 9.91% 0.798

Stage IV 12.1 17.16 23.2 0.733 20.113 226.34% 0.75

TMPA 17.74 31.33 23.8 0.724 0.156 8.08% 0.841
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separately for each of these precipitation data products

to simulate streamflow hydrographs at the outlets of

three DMIP2 study basins where NWS a priori parameters

are available. The simulations at SAVOY, ELMSP, and

SLOA4 basins were compared with USGS observa-

tions. The results show that PERSIANN-CDR- and

TMPA-derived simulations have close performances

with higher correlation coefficients and better RMSEs

for TMPA and lower biases for PERSIANN-CDR.

Annual cycle analysis of simulated hydrographs also

depicts close performance between TMPA and

PERSIANN-CDR. Phase 1 of this study serves as

FIG. 8. Long-term (2003–10) annual cycle from USGS observation and stage IV–, TMPA-,

PERSIANN-, and PERSIANN-CDR-derived hydrographs for (top) SAVOY, (middle)

ELMSP, and (bottom) SLOA4 basins.
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the proof of concept regarding the applicability of

PERSIANN-CDR in rainfall–runoff modeling. Given

this result and the fact that PERSIANN-CDR pre-

cipitation data span from 1983 to the present, we could

extend the simulation process back to 1983 to re-

construct the historical record of streamflow. This is

particularly important when even USGS streamflow

observations are not available prior to the year 1996 for

the three study basins. In this phase of the study, only

PERSIANN-CDR precipitation data were available as

the forcing to the model. The resulting PERSIANN-

CDR-derived hydrographs were compared with USGS

observations depicting high CORR, relatively low

BIAS, and high index of agreement criterion.

It is noteworthy that for the three DMIP2 study

basins there were periods of time, mostly before 1996,

when USGS daily data were not available. Using

PERSIANN-CDR and HL-RDHM, we could simulate

the streamflow for those periods and fill the gaps. This is

particularly important for long-term trend studies where

full data coverage over a long period of time, at least

30 years according to a World Meteorological Organi-

zation (WMO) report (Burroughs 2003), is needed. To

conclude, PERSIANN-CDR could prove its usefulness

TABLE 3. As in Table 2, but for day-of-year long-term (2003–10) annual cycle analysis.

Product Mean (m3 s21) Std dev (m3 s21) RMSE (m3 s21) CORR ln E BIAS d

SAVOY

PERSIANN 7.86 8.7 7.24 0.56 20.388 62.7% 0.664

PERSIANN-CDR 5.56 3.39 4.16 0.673 0.313 15.2% 0.754

Stage IV 4.21 2.99 3.66 0.804 0.601 212.7% 0.802

TMPA 5.88 4.24 3.6 0.767 0.330 21.78% 0.843

ELMSP

PERSIANN 5.83 7.01 5.83 0.588 21.325 26.61% 0.580

PERSIANN-CDR 4.14 3.03 2.38 0.666 20.451 210.09% 0.802

Stage IV 2.72 1.95 2.02 0.685 22.541 241.05% 0.694

TMPA 3.83 3.39 2.63 0.653 21.074 216.85% 0.776

SLOA4

PERSIANN 26.13 28.23 23.76 0.557 20.827 59.52% 0.560

PERSIANN-CDR 18.46 11.9 9.99 0.649 0.306 12.71% 0.792

Stage IV 12.47 8.16 8.96 0.660 0.118 223.89% 0.749

TMPA 18.13 13.44 9.83 0.706 0.355 10.67% 0.826

FIG. 9. Long-term (1983–2012) simulated streamflow from PERSIANN-CDR daily precipitation data (blue) vs

USGS streamflow observations (black) for (top) SAVOY, (middle) ELMSP, and (bottom) SLOA4 basins, plus the

respective scatterplots (right).
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for long-term hydrological rainfall–runoff modeling and

streamflow simulation. It can be particularly helpful for

simulating streamflow in ungauged basins.
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