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ABSTRACT

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed In-
formation Using Artificial Neural Networks—Climate Data Record (PERSIANN-CDR) in a rainfall-runoff
modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and
0.25° temporal and spatial resolutions from 1983 to present for the 60°S-60°N latitude band and 0°-360°
longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model
Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003-10) when other
high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation anal-
ysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM
Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient
for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for
both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN,
TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service
Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-
RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative
analysis using five different statistical and model efficiency measures against USGS streamflow observation
show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and
TMPA have close agreement. Given the promising results in the first phase, the simulation process is ex-
tended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that
PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation
coefficients of ~0.67-0.73, relatively low biases (~5%-12%), and high index of agreement criterion (~0.68—
0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove
the capability of PERSIANN-CDR in hydrological rainfall-runoff modeling application, especially for long-
term streamflow simulations over the past three decades.

1. Introduction data-driven (e.g., Kim and Barros 2001; Sahoo et al. 2006;
Piotrowski et al. 2006) or physically based (Estupina-
Borrell et al. 2006; Sirdas and Sen 2007; Beven 2011)
models in the forms of lumped [e.g., Sacramento Soil
Moisture Accounting (SAC-SMA; Burnash et al. 1973)
and Hydrologiska Byrans Vattenbalansavdelning (HBV;
Bergstrom 1995)], semilumped [e.g., Variable Infiltration
Capacity model (VIC); Liang et al. 1994], and distributed
[e.g., Hydrology Laboratory Research Distributed Hy-
drologic Model (HL-RDHM); Koren et al. 2003, 2004,
- hat 2007]. One of the most, if not the most, important criteria
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Streamflow is one of the most important components
of the hydrological cycle. Many efforts have been made
to develop different models to emulate the hydrological
cycle and simulate streamflow. Examples are statistical
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temporal coverages. Satellite products with their global
coverage are very well suited for this purpose. With the
advancement in remote sensing science and technol-
ogy, high-resolution data and information about the
earth’s surface characteristics (e.g., topography, soil
types, and land use) and hydrometeorological forcings
(e.g., precipitation, temperature, and evapotranspira-
tion) have been made available globally. Particularly,
remote sensing of precipitation—one of the key hy-
drometeorological variables in generating floods—has
gained significant attention in the recent past. Numer-
ous efforts have been made to produce satellite-based
precipitation estimates at high spatiotemporal resolu-
tion in global scale. Examples are the CPC morphing
technique (CMORPH; Joyce et al. 2004), Precipitation
Estimation from Remotely Sensed Information Using
Artificial Neural Networks (PERSIANN; Hsu et al.
1997, 1999; Sorooshian et al. 2000), PERSIANN-
Climate Data Record (PERSIANN-CDR; Ashouri
et al. 2015), Tropical Rainfall Measuring Mission
(TRMM) Multisatellite Precipitation Analysis (TMPA,;
Huffman et al. 2007), the Naval Research Laboratory
(NRL)-Blend satellite rainfall estimates (Turk et al.
2010), and the Integrated Multisatellite Retrievals
for Global Precipitation Measurement (IMERG;
Huffman et al. 2015). Such products are valuable
sources of information and data for flood modeling in a
distributed format.

Previous efforts have been made in evaluating
the accuracy of different satellite-based precipitation
products against gauge observations (e.g., Sorooshian
et al. 2000; Hong et al. 2006; Ebert et al. 2007; Miao et al.
2015; Ashouri et al. 2016) and utilizing such data in
different applications, especially hydrological model-
ing (see Behrangi et al. 2011; Bajracharya et al. 2015;
Maggioni et al. 2013; Nguyen et al. 2014, 2015, 2016;
Seyyedi et al. 2015). Feasibility of using satellite-based
precipitation as input for hydrologic simulation has
been demonstrated in the Mediterranean (Ciabatta
et al. 2016) and for simulating high flows in Africa
(Thiemig et al. 2013). However, certain challenges and
limitations with using satellite-based precipitation
for rainfall-runoff modeling have been identified. Of
reoccurring concern is bias in satellite-based precipi-
tation estimates that carries over to hydrological sim-
ulations when used as model input (Guetter et al. 1996;
Stisen and Sandholt 2010; Thiemig et al. 2013). Harris
et al. (2007) also point to spatial resolution of coarse
satellite-based precipitation products as a concern for
use in hydrologic models, cautioning their use in an
operational setting, and recommending adjustments to
the precipitation estimates even beyond simple bias
adjustments.
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In this study, we implement a newly developed pre-
cipitation climate data record, PERSIANN-CDR, into a
long-term hydrological modeling framework to simulate
historical streamflow and flood events. In other words, we
seek to evaluate the performance of PERSIANN-CDR
in a distributed rainfall-runoff modeling application and
compare its performance with other high-resolution
precipitation products. For this purpose, the National
Weather Service (NWS) HL-RDHM is used. This study
is conducted in two phases. In the first phase, a period of
time when PERSIANN-CDR, TMPA, and stage IV
gauge-adjusted radar data products are available is cho-
sen and the hydrological modeling is performed for this
period. The study period for this phase is selected from
2003 to 2010 when all the aforementioned precipitation
products are available. The results of this phase reveal
how PERSIANN-CDR performs compared with the
well-established TMPA data product as far as generating
streamflow in the study basin. In the second phase, the
entire record of the 0.25° daily PERSIANN-CDR data is
used to extend the modeling process back to 1983, al-
lowing for long-term streamflow simulations conducted
at a higher resolution than previously possible.

The paper is structured as follows: section 2 describes
the data used in this study, section 3 provides detailed
information about the methodology and modeling
structure, section 4 presents the results, and section 5
concludes with a summary of the main findings.

2. Data
a. TMPA

TRMM, a joint mission between NASA and the Japan
Aerospace Exploration Agency (JAXA), was launched
in November 1997 with a design lifetime of 3 years.
TRMM, however, produced more than 17 years of data to
study tropical rainfall for weather and climate research.
This mission officially came to an end on 15 April 2015.
As one of the TRMM products, TMPA (Huffman et al.
2007, 2010) contains near-global (50°S-50°N) pre-
cipitation data at 3-hourly temporal resolution and
0.25° X 0.25° grid cells. In this study, version 7 of this
product is used. TMPA has an established record in
precipitation and hydrological modeling studies (for a
complete list of TMPA citations, refer to ftp://precip.gsfc.
nasa.gov/pub/trmmdocs/rt/TMPA _citations.pdf). From
the hydrological modeling perspective, Su et al. (2008)
forced the VIC with TMPA precipitation data over La
Plata basin in South America. The study reported that the
TMPA-driven simulations were able to capture the daily
flooding events and to represent low flows, although up-
ward biases were identified in peak flows. Another study
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FIG. 1. Schematic of the SAC-SMA (Burnash et al. 1973; image source: http://Idas.gsfc.nasa.
gov/nldas/images/SAC_schematic.jpg).

over the Amazon basin (Collischonn et al. 2008) showed
that the TRMM-based simulated hydrographs depicted
comparable performance to those calculated from rain
gauge data. Given the findings of such studies, in order to
compare the performance of PERSIANN-CDR with
another high-resolution satellite-based precipitation
product, TMPA 3B42, version 7 (hereafter TMPA), for
the period of 2003-10 is chosen.

b. PERSIANN-CDR

PERSIANN-CDR (Ashouri et al. 2015) is a newly
developed and released satellite-based precipitation
product that covers more than three decades (from
1 January 1983 to present) of daily precipitation esti-
mations at 0.25° resolution for the 60°S-60°N latitude
band. PERSIANN-CDR uses the archive of infrared
brightness temperature CDR from Gridded Satellite
(GridSat)-B1 (Knapp 2008a,b; Knapp et al. 2011) in the
International Satellite Cloud Climatology Project
(ISCCP; Rossow and Schiffer 1991; Rossow and Garder
1993) as the input to the trained neural network of the
PERSIANN model. The resulting rainfall estimates are
then corrected for bias using the monthly Global Pre-
cipitation Climatology Project (GPCP), version 2.2, 2.5°
product. The dataset has been released and made
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available for public access through NOAA/National
Centers for Environmental Information (NCEI; http:/
www]l.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/PERSIANN/
Overview.pdf). PERSIANN-CDR has already shown its
usefulness for a relatively wide range of different applica-
tions (Guo et al. 2015; Solmon et al. 2015; Ceccherini et al.
2015; Yong 2015; Yang et al. 2016). Using different extreme
precipitation indices, Miao et al. (2015) evaluated the
performance of PERSIANN-CDR in capturing the
behavior of historical extreme precipitation events
over China. Their results showed the capability of
PERSIANN-CDR in reproducing similar spatial and
temporal patterns of daily precipitation extremes as those
depicted by the East Asia (EA) ground-based gridded
daily precipitation dataset. In another study by Hagos
et al. (2016) that investigated changes in the frequency
of landfalling atmospheric river and extreme precipita-
tion in the simulation of the Community Earth System
Model (CESM), PERSIANN-CDR was used as the
“observation” precipitation. Luchetti et al. (2016) used
PERSIANN-CDR in a NOAA-NASA collaborative
project for updating the ENSO-based rainfall climatology
for regions in Hawaii and U.S.-affiliated Pacific islands.
With respect to the applicability of PERSIANN-CDR,
the paper concludes that their results ‘“‘solidified the
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TABLE 1. HL-RDHM parameter descriptions and their basin-average values (Koren et al. 2004).
Parameter Description SLOA4 ELMSP SAVOY

SAC-HT
sac_UZTWM (mm) Upper-zone tension water capacity 68.46 74.74 51.41
sac_UZFWM (mm) Upper-zone free water capacity 20.52 21.17 18.11
sac_UZK (day ") Fractional daily upper-zone free 0.2978 0.2775 0.3427
sac_ZPERC (DL) Max percolation rate 117.9 125.9 100.5
sac_REXP (DL) Exponent for the percolation equation 2.026 2.065 1.943
sac_LZTWM (mm) Lower-zone tension water capacity
sac_LZFSM (mm) Lower-zone supplemental free water capacity 173 177.1 163.2
sac_LZFPM (mm) Lower-zone primary free water capacity 83.57 74.87 101.6
sac_LZSK (day ) Fractional daily supplemental withdrawal rate 0.1140 0.1074 0.1285
sac_LZPK (day™ ") Fractional daily primary withdrawal rate 0.017 04 0.017 54 0.01513
sac_PFREE Percolation fraction that always goes directly to 0.3591 0.3743 0.3304

lower-zone free water storages

Rutpix9
rutpix_QOCHN Specific channel discharge per unit channel cross-sectional area 0.3281 0.3389 0.3377
rutpix_QMCHN (DL)  Power value in relationship between discharge and cross section 1.288 1.288 1.288
sac_PCTIM (fraction) Min impervious area 0.001 0.001 0.001
sac_ADIMP (fraction)  Additional impervious area 0 0 0
sac_RIVA (fraction) Riparian vegetation area 0.035 0.035 0.035
sac_SIDE (fraction) Ratio of nonchannel base flow to channel base flow 0 0 0
sac_RSERV Lower-zone free water fraction that cannot be transferred 0.3 0.3 0.3

to lower-zone tension water

sac_EFC (fraction) Effective forest cover 0 0 0

ability of the high resolution PERSIANN-CDR to be
more than adequate for use in long-term precipitation
climatology studies.” With respect to hydrological ap-
plication, Casse and Gosset (2015) used PERSIANN-
CDR to study hydrological changes and flood increases
in the Niger River and the city of Niamey (Niger) over the
period of 1983-2013. The results showed that PERSIANN-
CDR produces annual rainfall amounts comparable
with those from gauge-adjusted satellite rainfall esti-
mates and gauge data. The paper also concludes that
“the PERSTANN-CDR based hydrological simulation
presents a realistic inter-annual variability, and detects
flooded years, but not the exact flooded period day by
day” (Casse and Gosset 2015, p. 122).

c. Stage 1V gauge-adjusted radar data

National Centers for Environmental Prediction
(NCEP) Environmental Modeling Center (EMC) pro-
vides the stage IV gauge-adjusted precipitation product
(Fulton et al. 1998) from high-resolution Doppler Next
Generation Weather Radar (NEXRAD) network and
hourly rain gauge data over the contiguous United States.
Stage IV radar data are available at 1-, 6-, and 24-hourly
scales at 4-km spatial resolution at Hydrologic Rainfall
Analysis Project (HRAP) national grid system. Stage IV
radar data are manually quality controlled at NWS River
Forecast Centers (RFCs). (More information about stage
IV data can be obtained from www.emc.ncep.noaa.gov/
mmb/ylin/pcpanl/stage4/.) Stage IV precipitation data
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have been used in different studies (e.g., Ebert et al. 2007,
Zeweldi and Gebremichael 2009; Anagnostou et al. 2010;
Ashouri et al. 2015). In this study, stage IV data are first
used as the reference data for evaluating satellite-based
precipitation products. They are then used as a forcing
data into the hydrological model to generate streamflow
simulations.

In this study, all data products are first scaled to 0.25°
and daily spatiotemporal resolution before use.

3. Methodology

As introduced earlier, the main goal of this study is to
investigate the performance of the newly developed
precipitation climate data record, PERSIANN-CDR,ina
hydrological rainfall-runoff modeling application and
compare its performance with other precipitation prod-
ucts. For this purpose, the NOAA/NWS/Office of Hy-
drologic Development’s HL-RDHM (Koren et al. 2003,
2004, 2007) is used as the hydrological model to simulate
the streamflow using the precipitation data products.
HL-RDHM has been widely used for hydrologic studies
(e.g., Smith et al. 2004; Reed et al. 2007; Tang et al. 2007,
Yilmaz et al. 2008; Wagener et al. 2009; Khakbaz et al.
2012; Smith et al. 2012a,b). The conceptually based SAC-
SMA provides the foundation of HL-RDHM. A schematic
of SAC-SMA is shown in Fig. 1. SAC-SMA features two
conceptual layers, upper- and lower-zone storage, both of
which have two basic components, tension water and free
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FIG. 2. The three study basins (SAVOY, ELMSP, and SLOA4) [modified from Smith et al. (2012)].

water. An enhanced version of SAC-SMA known as the
Sacramento Soil Moisture Accounting Heat Transfer
(SAC-HT) includes the use of Noah land surface model-
based physics to estimate a physically meaningful soil
moisture profile, allowing for the estimation of heat
transfer within the column (Koren et al. 2007). The second
HL-RDHM module that this study uses is a routing
scheme known as Rutpix9. This scheme consists of a
hillslope component in which fast (overland flow) runoff
is routed over a uniform conceptual hillslope and is
combined with a slow (subsurface flow) component.
Following hillslope runoff generation, a channel-routing
process moves water downstream using a topographically
based, cell-to-cell method. In Rutpix9, the relationship
between discharge and channel cross section is based on
the rating curve method (NWS 2011).

With respect to the calibration of the hydrological
model, many studies have made a case for input-specific
model calibration in order to compensate for possible
pitfalls associated with a specific satellite precipitation
product (e.g., Ciabatta et al. 2016; Qi et al. 2016; Stisen
and Sandholt 2010; Thiemig et al. 2013). While this
technique allows for multiple satellite products to yield
satisfactory hydrologic simulation performance despite
discrepancies in precipitation estimates, it hinders
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efforts to improve the precipitation product as well as
the model by allowing the two to compensate for one
another’s deficiencies. For this reason, the work pre-
sented here relies on calibration of the model by experts
who used precipitation estimates they deemed as the
most dependable (based on radar in this case) for the
particular model/study region. These parameters are
held constant for evaluation across all precipitation
products rather than performing product-specific cali-
bration. This allows us to focus our evaluation solely on
the performance of the precipitation products without
their performance being altered by the potential im-
provements that product-specific calibration would
bring. For HL-RDHM, the model has been expertly
calibrated by the NWS for the Distributed Hydrologic
Model Intercomparison Project, phase 2 (DMIP2), ba-
sins. A priori parameter sets have been derived from soil
and land-use data for HL-RDHM. Scalar multipliers of
these parameter sets are used for calibration, assuming
that the relationship of the individual pixels to one an-
other is adequately characterized in the a priori sets. In
this study, we rely on these expertly calibrated param-
eters by NWS experts for the calibration of the hydro-
logical model. The calibrated parameters for SAC-HT
and Rutpix9 provided by NWS are summarized as
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basin-average values in Table 1. Detailed information
about HL-RDHM can be found in its user manual
(NWS 2011; Koren and Barrett 1994).

With respect to the study area, three basins from the
Oklahoma test basins from DMIP2 are chosen (Fig. 2).
The two smaller study basins with outlets at Osage Creek
near Elm Springs, Arkansas (ELMSP), and the Illinois
River at Savoy, Arkansas (SAVOY), have drainage areas
of 337 and 433km? and feed into the third study basin,
which has an outlet located on the Illinois River south of
Siloam Springs, Arkansas (SLOA4), and a drainage area
of 1489 km? (Smith et al. 2012). The Illinois River basin
encompasses the three study basins and is characterized
by an annual rainfall of ~1200 mm (Smith et al. 2004). It
is noteworthy that the selection of these three test basins
is based on the availability of the a priori calibrated pa-
rameter sets from NWS, which were only available for
these three basins at the time of this study.

Prior to setting up the hydrological modeling scheme, a
preliminary evaluation on the accuracy of the utilized
precipitation products against stage IV gauge-adjusted
radar data is conducted. After having the model structure
in place, HL-RDHM is run in two phases. In the first
phase, the time period of 2003-10 when all products
(PERSIANN, PERSIANN-CDR, TMPA, and stage 1V)
are available is selected. The resulting hydrographs from
HL-RDHM forced with the three precipitation products
at the three study basins are compared with the USGS
streamflow observations. The results of this phase depict
how PERSTANN-CDR-simulated streamflow compares
with other currently available precipitation products, that
is, TMPA and stage IV data. Having proven the concept,
in the second phase we extend the simulation process back
to 1983, where only PERSIANN-CDR data are available.

To assess the closeness of the simulated streamflow to
the USGS observations, the following statistical measures
are calculated. In addition to correlation coefficient
(CORR), centered root-mean-square error (RMSE), and
percent volume bias (BIAS), the Nash-Sutcliffe co-
efficient E and index of agreement d is investigated. The
Nash-Sutcliffe coefficient (Nash and Sutcliffe 1970) is an
efficiency criterion that is calculated as 1 minus the sum of
the squared differences between observed and simulated
values normalized by the variance of the observations:

IM=

(Obs, — Sim, )
E=1-°-1 "
. (Obs, — Obs)’
i=1

z

where Obs; and Sim; are the observed and simulated
values at time step i, respectively; Obs is the mean of the
observation; and E ranges from — to 1, with 1 being the
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FIG. 4. Simulated and observed streamflow hydrographs and respective scatterplots at the outlet of SAVOY
basin using (from top to bottom) stage IV, TMPA, PERSIANN, and PERSIANN-CDR precipitation products.

The solid black line shows the USGS observations.

perfect fit and negative values indicating that the mean of
the observation would be a better predictor than the
model. The main drawback of the Nash—Sutcliffe crite-
rion is that, since the differences are squared, this effi-
ciency criterion is biased toward peak values and less
sensitive during low-flow periods (Legates and McCabe
1999). To overcome this problem, E is often calculated
based on the logarithmic values of the observed and
simulated data. In this study, we take the In E approach.

The index of agreement (Willmot 1984) is calculated
as 1 minus the squared differences between the ob-
served and simulated values normalized by the largest
potential error. The variable d is calculated using the
following equation and ranges from 0 to 1, with 1 being
the perfect fit:

N
Y. (Obs, — Sim,)*
i=1

d=1- .
N
Y. (|Sim, — Obs| + |Obs, — Obs|)’
i=1

The results of the two phases of the study are provided in
the section below.
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4. Results

Before conducting the hydrological modeling pro-
cess, it is necessary to evaluate the accuracy of the
precipitation products over the study region. A com-
parison of PERSIANN, PERSIANN-CDR, and TMPA
precipitation products against stage IV gauge-adjusted
radar data as our reference dataset is conducted. Basic
precipitation evaluation statistics, including correla-
tion coefficient, standard deviation, and root-mean-
square deviation, are presented on Taylor diagrams
(Fig. 3). The results show that, in the three study basins,
TMPA and PERSIANN-CDR have close perfor-
mances, with slightly higher correlation coefficient for
TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and sim-
ilar RMSD (~6mmday ') for both products. TMPA
shows a higher standard deviation (~10mmday ')
than PERSIANN-CDR (~8mmday '). TMPA and
PERSIANN-CDR both outperform PERSIANN, mainly
because, unlike PERSIANN, TMPA and PERSIANN-
CDR are gauge-adjusted precipitation products.

Given the results of the previous section showing a
reasonably accurate performance of PERSIANN-CDR
and TMPA when compared to stage IV radar data, we
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FIG. 5. As in Fig. 4, but for ELMSP basin.

can reliably use these precipitation datasets as the
forcing to the hydrological model. In the first phase, the
simulation process is performed for 2003-10 when all
four precipitation products are available. As mentioned
in the methodology section, the HL-RDHM is used as
our hydrological model. With respect to calibration, we
relied on the calibrated a priori parameter set (see Table
1), by NWS experts, for the basins we used. After setting
up the model, HL-RDHM is forced with the PERSIANN,
PERSIANN-CDR, TMPA, and stage IV precipitation
products to simulate streamflow Q at the outlet of the
three study basins. The USGS streamflow observations
are used as the reference streamflow data. For a better
visualization of the resulted hydrographs, especially for
peak and low flows, we used the following trans-
formation function proposed by Hogue et al. (2000) and
used in different studies (Yilmaz et al. 2005; Khakbaz
et al. 2012; Behrangi et al. 2011):

:(Q+1)0.3_1

Qtrans O 3

The resulting streamflow simulations Qs for SAVOY,
ELMSP, and SLOA4 basins are shown in Figs. 4-6, re-
spectively. The scatterplots of nontransformed flows
against the USGS observations (black line) are shown in
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Figs. 4-6 (right). In general, for all three DMIP2 basins
stage IV radar data seem to outperform the other
products. The simulated hydrograph results from
PERSTIANN-CDR and TMPA forcing generally show
close agreement. For quantitative comparisons, different
statistical measures including CORR, RMSE, BIAS,
In E, and d are calculated from the PERSIANN-,
PERSTIANN-CDR-, TMPA-, and stage IV-derived hy-
drographs when compared with USGS observations. As
shown in the Taylor diagrams in Fig. 7, stage IV generally
outperforms other products, with higher CORR (~0.75-
0.8) and lower RMSE and standard deviation in all three
basins. TMPA and PERSIANN-CDR both perform well,
with a higher CORR for TMPA at SAVOY and SLOA4
and a higher CORR for PERSIANN-CDR at ELMSP
basin. PERSIANN-CDR shows lower standard deviation
than TMPA in all three basins. PERSIANN shows a
CORR of about 0.5-0.6. The high values of RMSE for
PERSIANN are due to the nature of this being a real-
time product with no gauge correction. Table 2 summa-
rizes all the statistics for the three study basins. The lower
BIAS in PERSIANN-CDR compared to PERSIANN
shows the effectiveness of the bias-removal algorithm in
reducing the bias in satellite estimates when compared to
ground measurements. Possible reasons for large bias in
the stage IV radar data are given in the discussion section.
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FIG. 6. As in Fig. 4, but for SLOA4 basin.

In addition to the quantitative analysis over the entire
record, an analysis on the long-term (2003-10) annual
cycle from daily USGS streamflow observation, as
well as the stage IV-, TMPA-, PERSIANN-, and
PERSIANN-CDR-derived hydrographs for the three
study basins, is conducted. As shown in Fig. 8,
PERSIANN-CDR and TMPA depict a relatively simi-
lar performance for all seasons. PERSIANN’s perfor-
mance degrades in the spring season. The improvements
from PERSIANN to PERSIANN-CDR are also evident
in Fig. 8. Respective daily based statistical measures
from day-of-year long-term (2003-10) annual cycle ana-
lyses are calculated against gauge observations and
shown in Table 3. The reduction in the percentage vol-
ume bias from PERSIANN to PERSIANN-CDR is
evident. At the SAVOY basin, TMPA shows the highest
index of agreement, where this measure is the highest
for PERSIANN-CDR. Stage IV shows the lowest
RMSE in all the three catchments. PERSIANN-CDR
shows a higher RMSE than TMPA at SAVOY but a
lower RMSE at ELMSP basin. RMSEs from
PERSIANN-CDR and TMPA are very close at the
SLOAA4 basin. With respect to the CORR, stage IV ra-
dar data show the best performance at SAVOY and
ELMSP basins. PERSIANN-CDR shows a slightly
higher CORR than TMPA at the ELMSP basin, but
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TMPA outperforms PERSIANN-CDR in the SAVOY
and SLOAA4 basins in this regard. The large negative bias
in stage IV radar data in ELMSP and SLOAA4 is again
observed in this analysis. The seasonal analysis (figures
not presented) shows that the largest negative bias in
stage IV—derived streamflow happens in the summer
and fall seasons.

Results of phase 1 analyses for the period when other
high-resolution, satellite-derived precipitation prod-
ucts are available show that the performance of
PERSIANN-CDR has been close to other precipitation
products. The findings of this phase reveal the high po-
tential for PERSIANN-CDR data use in rainfall-runoff
modeling applications, particularly long-term simula-
tions of more than three decades, given the fact that
PERSIANN-CDR rainfall data spans from 1 January
1983 to present (delayed) time. Therefore, in phase 2,
HL-RDHM is forced with daily PERSIANN-CDR
rainfall estimation for 1983-2012 to reconstruct histori-
cal streamflow at the three study basins. It is important
to note that, similar to phase 1, we rely on the NWS a
priori parameter sets for the calibration of the model.
The resulting hydrographs for SAVOY, ELMSP, and
SLOA4 are shown in Fig. 9, with the black line being the
USGS observation and the blue line being the
PERSIANN-CDR-derived hydrograph. As shown, an
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hydrographs for (top) SAVOY, (middle) ELMSP, and (bottom)
SLOAA4 basins for 2003-10.
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immediate result is that PERSIANN-CDR could re-
construct the full record of historical streamflow, espe-
cially for years prior to 1996 (except 1986 for SAVOY
basin) when generally the USGS streamflow obser-
vations are not available for the three study basins.
The scatterplots comparing the PERSIANN-CDR-
simulated streamflow against USGS observations for
1983-2012 for the three study basins are shown in Fig. 9.
The summary of quantitative comparisons is presented
in Table 4. The results depict high CORR (~0.67-0.73),
relatively low BIAS (~5%-12%), and high index of
agreement criterion (~0.68-0.83) between PERSIANN-
CDR-simulated daily streamflow and USGS daily ob-
servations, demonstrating reasonable performance of
PERSIANN-CDR despite the calibration of the hydro-
logical model by a precipitation product other than
PERSIANN-CDR. It is also noteworthy that the effi-
ciency index of the logarithmic Nash-Sutcliffe coefficient
derived in the second phase of the study is comparable,
and even slightly better, than the same coefficient in the
first phase of the study for other precipitation products.

5. Discussion

There are few points what we would like to clarify via
the explanations below. First, we would like to point
out that the main reason for including the real-time
PERSIANN product in our analysis was to investigate
the progress that the Center for Hydrometeorology
and Remote Sensing at the University of California,
Irvine, has made over time in improving its pre-
cipitation products. Regarding this, the improvements
are evident from both the precipitation and simulated
streamflow points of view. That said, there are certain
facts that should be considered here since a blind
comparison of real-time precipitation products
[e.g., PERSIANN or TMPA-real time (3B42RT)]
with gauge-adjusted products (e.g., TMPA and
PERSIANN-CDR) may not be a fair comparison in
general. In the case of PERSIANN and PERSIANN-
CDR, the latter is indirectly gauge corrected based on
the gauge information from the Global Precipitation
Climatology Centre (GPCC; Schneider et al. 2008)
used in the GPCP monthly precipitation product (see
Huffman and Bolvin 2013), whereas PERSIANN is a
real-time product without any gauge-adjusting com-
ponent. Real-time PERSTANN data are useful for real-
time applications such as global flood monitoring, while
the long-term (+30 years), daily PERSIANN-CDR
rainfall data make it useful for long-term hydrological
and climatological studies and applications. As is the
case with other satellite-based products, the choice of
PERSIANN or PERSIANN-CDR depends on the type
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TABLE 2. Mean, standard deviation (std dev), centered RMSE, CORR, In E, BIAS, and d for simulated streamflow (2003-10) from
PERSIANN, PERSIANN-CDR, stage IV, and TMPA compared to USGS streamflow observations.

Product Mean (m’>s™1) Std dev (m®s ™) RMSE (m®s™1) CORR In E BIAS d

SAVOY

PERSIANN 7.79 21.69 17.44 0.604 —0.203 61.2% 0.725

PERSIANN-CDR 5.54 8.17 11.46 0.686 0.274 14.6% 0.728

Stage IV 4.2 7.58 10.3 0.808 0.536 -13.0% 0.781

TMPA 5.86 11.2 10.2 0.750 0.254 21.2% 0.833
ELMSP

PERSIANN 5.83 17.15 14.73 0.52 —2.47 26.6% 0.567

PERSIANN-CDR 4.14 7.1 6.36 0.648 —1.88 -10.1% 0.781

Stage IV 2.72 4.56 5.54 0.721 —4.72 —41.05% 0.756

TMPA 3.83 8.37 7.07 0.622 -2.19 -16.84% 0.767
SLOA4

PERSIANN 25.45 64.68 53.24 0.572 —0.662 55.1% 0.631

PERSIANN-CDR 18.04 26.05 24.35 0.677 0.166 9.91% 0.798

Stage IV 12.1 17.16 232 0.733 —0.113 —26.34% 0.75

TMPA 17.74 31.33 23.8 0.724 0.156 8.08% 0.841

of application, period of the study, and the constraints
of the problem.

The second point refers to the relatively high percent
bias observed in the stage I'V streamflow simulations for
ELMSP and SLOA4 basins compared to PERSIANN-
CDR and TMPA. There could be a couple of reasons for
that. First, the validation period in this study is not the
same as the calibration period for which the a priori
parameters are estimated, so there is no guarantee that
stage IV is always better than the other products in the
discharge simulations. More importantly, calibration
performed by the NWS (see Kuzmin et al. 2008) is based
on a multi-time-scale form of RMSE and does not in-
clude bias in the objective function. In Table 2, stage IV
simulation has the lowest RMSE that is consistent with
the calibration methods. It is noteworthy that the cor-
relations of stage IV simulations in all cases are better
than the others.

The third point is about the low Nash-Sutcliff effi-
ciency values obtained from the simulated streamflow
time series. The key point here is the calibration of the
hydrological model. As explained in the introduction
and methodology sections, instead of conducting
product-specific calibration, we relied on the NWS ex-
pertly calibrated a priori parameter sets for the cali-
bration of the HL-RDHM for the study basins. These
parameters are kept fixed for all the precipitation
products, allowing us to focus our evaluation solely on
the performance of the precipitation products, rather
than mixing it with the improvements that product-
specific calibrations of the hydrological model can, and
do, introduce in the final simulations. It is obvious that
by conducting product-specific calibration, one would
achieve higher-efficiency results.
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The fourth point is about the performance of
PERSIANN-CDR in reproducing the observed peak
flows during the 1983-2012 period (Fig. 9), when ob-
servations are available. Part of the mismatch is due to
the fact that our hydrological model was not specifically
calibrated with PERSIANN-CDR data. In addition to
that, it could be partly due to the fault of the forcing
precipitation, the fault of the model, or even the fault
of the precipitation product used for calibration (or a
combination of all).

6. Conclusions

The main goal of this study was to evaluate the per-
formance of the newly developed precipitation climate
data record, PERSIANN-CDR, in a rainfall-runoff
modeling scheme and compare its performance with
other high-resolution precipitation products. In exam-
ining the accuracy of the precipitation products,
PERSIANN-CDR and TMPA showed close perfor-
mances compared to the stage IV gauge-adjusted radar
data product. Focusing only on the PERSIANN prod-
ucts, it is found that PERSIANN-CDR outperforms the
PERSIANN real-time product, depicting better statis-
tical measures. This is mainly because PERSIANN-
CDR is gauge corrected, whereas PERSIANN is a
real-time product with no gauge-correction component.

For the purpose of evaluating PERSIANN-CDR’s
application in hydrological modeling, two phases of
study were designed. In the first phase, the main goal was
to test how PERSIANN-CDR’s performance compares
with the performance of other precipitation products.
To have all the products available, the time period
of 2003-10 was selected. The HL-RDHM was run
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separately for each of these precipitation data products
to simulate streamflow hydrographs at the outlets of
three DMIP2 study basins where NWS a priori parameters
are available. The simulations at SAVOY, ELMSP, and
SLOA4 basins were compared with USGS observa-
tions. The results show that PERSIANN-CDR- and
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TMPA-derived simulations have close performances
with higher correlation coefficients and better RMSEs
for TMPA and lower biases for PERSIANN-CDR.
Annual cycle analysis of simulated hydrographs also
depicts close performance between TMPA and
PERSIANN-CDR. Phase 1 of this study serves as
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TABLE 3. As in Table 2, but for day-of-year long-term (2003-10) annual cycle analysis.
Product Mean (m’*s™1) Std dev (m*s ™) RMSE (m*s™ ') CORR In E BIAS d
SAVOY
PERSIANN 7.86 8.7 7.24 0.56 —0.388 62.7% 0.664
PERSIANN-CDR 5.56 3.39 4.16 0.673 0.313 152% 0.754
Stage IV 421 2.99 3.66 0.804 0.601 -12.7% 0.802
TMPA 5.88 4.24 3.6 0.767 0.330 21.78% 0.843
ELMSP
PERSIANN 5.83 7.01 5.83 0.588 —1.325 26.61% 0.580
PERSIANN-CDR 4.14 3.03 2.38 0.666 —0.451 —10.09% 0.802
Stage IV 2.72 1.95 2.02 0.685 —2.541 —41.05% 0.694
TMPA 3.83 3.39 2.63 0.653 -1.074 —16.85% 0.776
SLOA4
PERSIANN 26.13 28.23 23.76 0.557 —0.827 59.52% 0.560
PERSIANN-CDR 18.46 11.9 9.99 0.649 0.306 12.71% 0.792
Stage IV 12.47 8.16 8.96 0.660 0.118 —23.89% 0.749
TMPA 18.13 13.44 9.83 0.706 0.355 10.67% 0.826

the proof of concept regarding the applicability of
PERSIANN-CDR in rainfall-runoff modeling. Given
this result and the fact that PERSIANN-CDR pre-
cipitation data span from 1983 to the present, we could
extend the simulation process back to 1983 to re-
construct the historical record of streamflow. This is
particularly important when even USGS streamflow
observations are not available prior to the year 1996 for
the three study basins. In this phase of the study, only
PERSIANN-CDR precipitation data were available as
the forcing to the model. The resulting PERSIANN-
CDR-derived hydrographs were compared with USGS

Streamflow Simulations for SAVOY (1983-2012)

observations depicting high CORR, relatively low
BIAS, and high index of agreement criterion.

It is noteworthy that for the three DMIP2 study
basins there were periods of time, mostly before 1996,
when USGS daily data were not available. Using
PERSIANN-CDR and HL-RDHM, we could simulate
the streamflow for those periods and fill the gaps. This is
particularly important for long-term trend studies where
full data coverage over a long period of time, at least
30 years according to a World Meteorological Organi-
zation (WMO) report (Burroughs 2003), is needed. To
conclude, PERSIANN-CDR could prove its usefulness
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respective scatterplots (right).
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TABLE 4. BIAS, CORR, and RMSE statistics for simulated streamflow from PERSIANN-CDR against USGS observed streamflow for

1983-2012.
Mean (m’s ™) Std dev (m®s ™ 1) RMSE (m®s™ 1) CORR InE BIAS d
SAVOY 5.65 8.1 13.4 0.6719 0.265 12.24% 0.681
ELMSP 4.04 7.23 6.49 0.7342 -1.81 -10.9% 0.83
SLOA4 18.2 28.3 29.4 0.7344 0.236 5.26% 0.81

for long-term hydrological rainfall-runoff modeling and
streamflow simulation. It can be particularly helpful for
simulating streamflow in ungauged basins.
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