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ABSTRACT

Changes in internal variability of seasonal and annual mean 2-m temperature in response to anthropogenic

forcing are quantified for a global domain using climate models driven by a twenty-first-century high-emissions

scenario.While changes in variance have been quantified previously in a univariate sense, the field significance of

such changes has remained unclear. This paper proposes a new field significance test for changes in variance that

accounts for spatial and temporal relationships within the domain. The test proposed here uses an optimization

technique based on discriminant analysis, yielding results that are invariant to linear transformations of the data

and therefore independent of normalizationprocedures.Multiple significance tests are employedbecause spatial

fields can differ in many ways in a multivariate space. All climate models investigated here predict significant

changes in internal variability of temperature in response to anthropogenic forcing. The models consistently

predict decreases to temperature variance in regions of seasonal sea ice formation and across the Southern

Ocean by the end of the twenty-first century.Whilemore than half the models also predict significant changes in

variance over ENSO regions and the North Atlantic Ocean, the direction of this change is model dependent.

Seasonal mean changes are remarkably similar to annual mean changes, but there are model-dependent ex-

ceptions. Some models predict future variability that is more than double their preindustrial control variability,

raising questions about the adequacy of doubling uncertainty estimates to test robustness in detection and

attribution studies.

1. Introduction

Temperature extremes can have serious impacts on

society (IPCC 2012). Since the middle of the twentieth

century, most land areas for which there are sufficient

observational records have experienced increases in

the frequency and intensity of warm extremes and de-

creases in the frequency and intensity of cold extremes

(IPCC 2012; Collins et al. 2013). Many of these changes

are consistent with the hypothesis that anthropogenic

global warming acts to shift the distribution of tem-

perature toward a warmer climate. In addition to a

shift, the temperature distribution might also be

changing its variance, but methods for quantifying

global-scale changes in variance have been criticized.

For instance, Hansen et al. (2012) claimed that the

distribution of globally aggregated summer tempera-

tures has both shifted toward a higher mean and

broadened. Subsequent studies have supported Hansen

et al. (2012) with respect to a shifting mean, but disagree

that changes in variance have contributed to observed

summer mean hot extremes (Coumou and Robinson

2013; Rhines and Huybers 2013; Huntingford et al.

2013). One source of disagreement is the procedure for

normalizing temperatures at different geographic loca-

tions before aggregating them to obtain a distribution.

In particular, removing the mean temperature in one

period based on the mean temperature of an earlier

period, as done in Hansen et al. (2012), imparts a posi-

tive bias to the variance (Tingley 2012; Rhines and

Huybers 2013; Sippel et al. 2015). Another complicating

factor is that the number of surface stations in a geo-

graphic region has changed over time. In particular, a

decline in station density implies fewer stations for av-

eraging, which in turn leads to larger variance (Rhines

and Huybers 2013). Finally, differences in trends
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between different geographic regions also contribute to

differences in variance. After accounting for issues re-

lated to normalization, trends, and data density, Rhines

and Huybers (2013) find that changes to the variance of

summer mean temperature cannot be detected. Consis-

tent with this conclusion, Huntingford et al. (2013) find

that if trends are removed by computing temperature

anomalies relative to an 11-yr local running mean, then

changes in variability of seasonal and/or annual mean

temperature also cannot be detected in observations.

Looking at a high-emissions scenario, Coumou and

Robinson (2013) show that the changes in land area

experiencing temperature exceedances are well fit by a

Gaussian distribution that includes a shift in the mean of

local temperature to warmer values, with no change in

local variability.

Cold-season variability also has been investigated.

Francis and Vavrus (2012) hypothesize that the decline of

sea ice extent, due to Arctic warming, causes the jet

stream to grow more wavy, resulting in more frequent

cold extremes. However, Barnes (2013) and Screen and

Simmonds (2013) showed that trends in planetary-scale

waviness are sensitive to methodology.

Screen (2014) examined a different quantity—namely,

zonal means of the local variance of daily temperature

over Northern Hemispheric land—and concluded that

temperature variance had decreased since 1979 for fall,

winter, and spring. Screen (2014) argues that this decrease

in variance is caused by Arctic amplification. Specifically,

cold extremes in the Northern Hemisphere are invariably

associated with winds that blow from the north. Arctic

amplification, however, increases temperatures more in

the Arctic than at low latitudes, thereby reducing cold

advection by northerly winds. Consequently, Arctic am-

plification causes the coldest days to warm faster than the

warmest days, thus reducing variance. Consistent with this

mechanism, climate models project less variable land

temperatures in northern latitudinal bands during fall,

winter, and spring, and models with stronger Arctic am-

plification tend to exhibit stronger decreases in variance

(Screen 2014). Other independent studies support this

conclusion. For instance, Huntingford et al. (2013) showed

that climatemodels predict, on average, a decrease in total

variability of annual mean temperature in high-emissions

scenarios relative to an 11-yr running mean, with some of

this decrease associated with reductions in sea ice cover.

Also, Boer (2009) showed that climate models predict, on

average, that the variance of temperature anomalies (rel-

ative to a low-order polynomial in time) will decrease in

midlatitudes and increase slightly in the tropics.

As is the case with the studies discussed above, tem-

perature anomalies at different geographic locations are

often combined using spatial aggregation or averaging

methods in order to draw a single conclusion about an

overall change in variance. In addition to the loss of

information about local changes in variance, these

methods must also standardize temperature anomalies

to remove local differences in the means, variances, and

trends prior to aggregating or averaging. Unfortunately,

there is no unique normalization procedure, so criti-

cisms can be raised about any chosen normalization

procedure.

An alternate approach to combining data is to com-

pute local changes in variance and then display maps of

those changes. While this approach preserves in-

formation about local changes, it leads to a field signif-

icance problem in which the likelihood of the computed

field of changes needs to be quantified relative to the

null hypothesis of no local change in variance. Standard

field significance techniques (e.g., Livezey and Chen

1983) are designed for correlation maps, and it is not

clear how to apply them to variance ratiomaps to test for

field significance.

In this paper, we propose a new field significance test

that quantifies the likelihood that a field of computed

changes in variance could have occurred by random

chance under a null hypothesis of no change in local var-

iance or covariance within the field. This test is invariant to

normalization procedures or any other affine trans-

formation of the data. While our test avoids certain

problems that arise in spatial aggregation, comprehen-

sively accounts for temporal and spatial relationships

within the domain, and has a well-defined significance

measure, it unfortunately requires severely restricting the

dimension of the state space. To validate themethodology,

we apply our test to a selection of CMIP5 simulations and

demonstrate that it gives robust results. Overall, climate

models project significant changes to the internal vari-

ability of annual and seasonal mean temperature in the

twenty-first century. The precise datasets we use are de-

scribed in the next section, and details of our methodology

are discussed in section 3.We concludewith a discussion of

our results, their implications for climate change, and a

discussion of other results relating to the new field

significance test.

2. Data

We examine climate model simulations from phase 5

of the Coupled Model Intercomparison Project

(CMIP5). Two types of simulations are analyzed: pre-

industrial control runs, in which the forcings do not

change from year to year, and projections based on the

representative concentration pathway 8.5 (RCP8.5), in

which concentrations and emissions increase such that

radiative forcing peaks at 8.5Wm22 in 2100 (Collins et al.
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2013). We analyzed seasonal and annual mean 2-m

temperature fields. We evaluated only the models with

both a 500-yr-long preindustrial control simulation and a

three-member ensemble from the model’s corresponding

RCP8.5 simulations that covered the 90-yr period from

2006 to 2095. These criteria resulted in a selection of

seven global climate models (see Table 1 for details). All

datawere interpolated onto a common 58 3 58 grid, yielding
2592 total grid points for each model. The control simula-

tions were detrended to remove the effects of model drift.

To demonstrate robustness, we divided the simulations into

two equal halves and performed some of our analyses on

each half separately. For instance, the 500-yr control simu-

lations were separated into a first and second half, each half

containing 250years of data. Similarly, each of the three

90-yr RCP8.5 members were divided into a first half (45yr)

and secondhalf (also 45yr). This yielded135 total years (33
45) for each half of an RCP8.5 simulation.

3. Methodology

To quantify the response of internal variability to an-

thropogenic forcing, we assume that a climate variable,

such as 2-m temperature t can be modeled as

t5Fa1u , (1)

where F is the forced response pattern, a is the corre-

sponding amplitude, and u is a random term represent-

ing internal (or unforced) variability. The statistical

model (1) is commonly used in climate change detection

and attribution studies, and it assumes that internal

variability is independent in time, has a known distri-

bution, and is additive relative to the variability of the

forced component (e.g., Allen and Tett 1999; Jones et al.

2013; Imbers et al. 2014).

To the extent that this statistical model is correct,

changes in internal variability due to anthropogenic forcing

can be estimated using ensemble techniques and then

compared with estimates of internal variability simulated

from preindustrial control runs. To see this, consider an

ensemble of simulations initialized from different states

but driven by the same forcings. For such an ensemble, Fa

in (1) is the same for different ensemble members; hence,

the difference that results from ensemble member minus

ensemble mean yields cancellation of the forced response

(i.e., cancellation of Fa), leaving an estimate of internal

variability. The residual has slightly less variance than the

true internal variability because the ensemblemean that is

removed also contains some internal variability as a result

of the finite ensemble size. In this paper, we evaluate the

ensemble mean from a three-member RCP8.5 simulation

and subtract it from each member. We refer to the future

emissions scenario as ‘‘21C.’’ Let t21Cs,y,e be a climate variable

from the eth ensemblemember at the sth spatial grid point

and the yth year. Then, a (slightly damped) realization of

internal variability in the twenty-first century is

U21C
s,y,e 5 t21Cs,y,e 2 [t]21Cs,y , (2)

where the ensemble mean of the twenty-first century

simulations is

[t]21Cs,y 5
1

E
�
E

e51

t21Cs,y,e, (3)

and E is the total ensemble size. For the preindustrial

control runs, let tctrs,y be a climate variable from the pre-

industrial control simulation (ctr) at the sth spatial grid

point and the yth year. Since the forcing does not change

from year to year in the preindustrial control run, Fa in

TABLE 1. List of climate models used in this study. Included in the table are the modeling center, the long-form model name, and the

short-form model name created for this investigation and referenced herein. (Acronym expansions are available online at http://www.

ametsoc.org/PubsAcronymList.)

Cimate models

Model center Model name Short name

Canadian Centre for Climate Modelling and Analysis CanESM2 CCCma

Centre National de Recherches Météorologiques–
Centre Européen de Recherche et de Formation Avancée en

Calcul Scientifique

CNRM-CM5 CNRM

L’Institut Pierre-Simon Laplace IPSL-CM5A-LR IPSL

Atmosphere and Ocean Research Institute (The University

of Tokyo), National Institute for Environmental Studies,

and Japan Agency for Marine-Earth Science and

Technology MIROC5 MIROC5

Met Office Hadley Centre HadGEM2-ES HadGEM2

Max Planck Institute for Meteorology MPI-ESM-LR MPI

National Center for Atmospheric Research CCSM4 NCAR
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(1) is constant. Therefore, internal variability in the

control run can be estimated from the residual of the

time mean. Again, the residual has slightly less variance

than the true internal variability because the time mean

contains internal variability as a result of finite sample

size. A (slightly damped) realization of internal vari-

ability in the absence of anthropogenic forcing is

Uctr
s,y 5 tctrs,y 2 tctrs , (4)

where the climatological mean is

tctrs 5
1

Y
ctr

�
Yctr

y51

tctrs,y . (5)

a. Univariate test for changes to internal variability

At each grid point s, we can assess if anthropogenic

forcing changes variability by testing the null hypoth-

esis that (2) and (4) were drawn from populations

with equal variances. Standard analysis of variance

(ANOVA) techniques show that an unbiased estimate of

the variance from a realization of internal variability in a

twenty-first century simulation can be determined from

s2
s,21C 5

1

Y
21C

(E2 1)
�
Y21C

y51
�
E

e51

(U21C
s,y,e)

2, (6)

and an unbiased estimate of variance in the control

simulations is

s2
s,ctr 5

1

Y
ctr

2 1
�
Yctr

y51

(Uctr
s,y )

2. (7)

If the samples are independent and identically distrib-

uted (iid) as a Gaussian (or normal distribution), then

standard statistical theory states that the statistic

F
s
5

s2
s,21C

s2
s,ctr

(8)

has an F distribution with Yctr 2 1 and Y21C(E2 1) de-

grees of freedom. The above statistic will be called the

‘‘21C noise to control ratio.’’ A priori we do not know

in which direction the internal variability may change,

so we use a two-tailed test to determine the significance

of the ratio in (8). If the null hypothesis is true, this ratio

should be close to one, whereas values far from one

indicate that the variances differ and suggest that an-

thropogenic forcing changes internal variability. The

statistic (8) is univariate because it compares variances

at a single grid point. The spatial distribution of the

variance ratios Fs can be visualized as a field of

individual ratios, which we refer to as a variance ratio

map [see, e.g., Fig. 4 in Boer (2009) and Fig. 1 explained

in section 4]. The validity of assuming a Gaussian dis-

tribution is addressed in section 4.

b. Null hypothesis for field significance

The F test defined above determines the significance

of changes in internal variability at individual grid

points. We want to quantify the likelihood that a

collection of variance ratios Fs could have occurred by

random chance under a null hypothesis of no change

in local variance or no changes in covariance between

the grid points. The central issue in testing field sig-

nificance is accounting for dependencies between grid

points. These dependencies can be quantified by

computing a covariance matrix from the data. We

propose that the appropriate null hypothesis for test-

ing differences between fields of variances is that the

respective distributions have the same covariance

matrix. Thus, if S21C and SCTR are the covariance

matrices of internal variability in the twenty-first

century and preindustrial control simulations, then

our null hypothesis can be written as

H
0
:S

21C
5S

CTR
. (9)

In each covariance matrix, the diagonal elements give

the variances, and the off-diagonal elements quantify

the degree of dependence (covariance) between the

grid points in the field. We include the off-diagonal

elements in our null hypothesis because these define

the dependencies across grid points that are essential

to determining field significance.

Testing hypotheses about covariance matrices re-

quires estimating the covariance matrix itself. Un-

fortunately, sample covariance matrices estimated

from gridded data will be singular because the number

of grid points far exceeds the number of samples.

Singular covariance matrices present complications

that we prefer to avoid. Accordingly, we project the

data onto a smaller dimensional subspace of T leading

empirical orthogonal functions (EOFs). We denote

the EOFs by the matrix

_E5 (e1 e
2

. . . e
T) , (10)

where ej denotes the jth EOF, and the overhead dot (.) in-

dicates that the EOFs have been truncated at T vectors

(denotedwith a superscriptT). Time series for theEOFs are

derived from the pseudoinverse _Ei, which has the property

_ET _Ei 5 I . (11)
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It is convenient to use the matrix notation

(U21C)
s,y0 5U21C

s,y,e, (12)

where the ensemble members have been ‘‘stacked’’ ac-

cording to y0 5 y1Y(e2 1). Similarly,

(Uctr)
s,y
5Uctr

s,y . (13)

Then, projecting the pseudoinverse on a twenty-first

century simulation yields a matrix with Y21C years and T

time series, referred to as principal components (PCs):

FIG. 1. Change in internal variability of annual mean 2-m temperature due to anthropogenic forcing, as quantified by the local ratio of

variance in the twenty-first-century to preindustrial control internal variability in each model [(8)]. The variance of internal variability

during the twenty-first century is computed from residuals about the ensemble mean of a three-member ensemble using a high-emissions

scenario (RCP8.5) for the 90-yr period from 2006 to 2095. The variance of internal variability for preindustrial forcing is computed from

the same model’s 500-yr control simulation. A ratio .1 indicates internal variability increases in the twenty-first century. Insignificant

values (according to the F-test distribution at a 10% significance level) are masked out (i.e., not colored). The percent area containing

significant variance ratios is indicated in the title of each panel.
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(U21C)T _Ei 5F
21C

. (14)

In addition, projecting the pseudoinverse on a control

simulation yields a matrix with Yctr years and T

components:

(Uctr)T _Ei 5F
ctr
. (15)

Using overhead tildes to denote quantities in EOF

space, and recalling that estimates of a realization of

internal variability have zero sample mean, we define

the sample covariance matrix of internal variability in a

twenty-first century simulation from the PCs in (14) as

~S
21C

5
1

Y
21C

(E2 1)
FT
21CF21C

(16)

and the sample covariance matrix of a control simula-

tion from the PCs given by (15)

~S
CTR

5
1

Y
ctr
2 1

FT
ctrFctr

. (17)

We pool the first half of the twenty-first century and

preindustrial control runs to derive the EOFs. We

then project those EOFs on the second halves of each

dataset, yielding PCs for the second halves (see sec-

tion 2 for details on how the data were divided). Di-

viding the datasets, and using both the twenty-first

century and control runs to derive EOFs, allows us to

check for robustness and account for possible biases

introduced by the EOFs.

c. Discriminant analysis

There are many ways in which two covariance ma-

trices can differ. We apply an optimization technique

known as discriminant analysis that finds a linear

combination of variables that maximizes a variance

ratio. If the matrices are equal, then all linear com-

binations have equal variances, whereas if the co-

variance matrices are not equal, then discriminant

analysis can diagnose the difference in an insightful

manner. Let the weighting coefficients for a linear

combination of variables be ~q. Then, the ratio of

variances between the twenty-first century and pre-

industrial contol simulations is

l5
~qT ~S

21C
~q

~qT ~S
CTR

~q
. (18)

If the null hypothesis of equal covariances is true, then

l5 1 for all possible ~q. Conversely, if the null is not true,

then l 6¼ 1 for at least one ~q. We seek the weighting

coefficients that makes l an extremum, which can be

found by solving ›l/›~q5 0. This gives

›l

›~q
5

2~S
21C

~q

~qT ~S
CTR

~q
2 2

~qT ~S
21C

~q

(~qT ~S
CTR

~q)2
~S
CTR

~q

5
2

~qT ~S
CTR

~q
(~S

21C
~q2 l~S

CTR
~q)5 0: (19)

Since ~SCTR is positive definite, the derivative vanishes if

~S
21C

~q5l~S
CTR

~q . (20)

Equation (20) is a generalized eigenvalue problem.

Solving this generalized eigenvalue problem for T 3 T

covariance matrices yields T eigenvalues, or discrimi-

nant ratios, that characterize the differences between

the two covariancematrices in (18). The eigenvalues can

be ordered largest to smallest as l1 $ l2 $ � � � $ lT . The

largest eigenvalue l1 represents the leading discriminant

ratio and gives themaximum variance ratio out of all the

possible weighting vectors ~q. Similarly, lT represents the

trailing discriminant ratio and gives the minimum vari-

ance ratio out of all the possible weighting vectors. An

important property of the eigenvalues is that they are

invariant to affine transformations of the data. Center-

ing and normalizing by a standard deviation are special

cases of affine transformations.

The invariance property of the discriminant ratios

yields another attractive feature: the sampling distri-

bution of the eigenvalues are independent of the mean

and covariance matrix of the population. As such,

significance thresholds can be estimated by straight-

forwardMonte Carlo methods: namely, by drawing iid

random variables from a standardized univariate

normal distribution. However, we also use permuta-

tion techniques to derive significance thresholds; this

technique relaxes normal, iid assumptions. The con-

sistency between the two significance thresholds will

indicate the appropriateness of Gaussian and iid as-

sumptions. This issue will be discussed in more detail

in section 4.

Since each eigenvalue is individually invariant to af-

fine transformations of the data, any function of the ei-

genvalues also is invariant to affine transformations. As

with all statistical optimization procedures, overfitting

is a concern when the number of parameters being es-

timated (e.g., the weights) is not a small fraction of the

sample size. In section 4, we describe the steps we took

to guard against overfitting by testing significance under

various assumptions about the population and by dem-

onstrating that our conclusions are robust when applied

to independent data.
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d. Union–intersection test

A standard test for differences in covariance matrices

is the union–intersection test (Flury 1985). This test is

based on testing the significance of the leading and

trailing discriminant ratios l1 and lT . In essence, the

hypothesis H0 in (9) is rejected if l1 is too large or lT is

too small. The significance thresholds depend on the

distribution of the discriminant ratios under the null

hypothesis, which can be computed using Monte Carlo

methods. In our application, a significant l1 implies

anthropogenic forcing increases internal variability,

while a significant lT implies anthropogenic forcing

decreases internal variability. The union–intersection

test is quite insightful if a change in variance is detected,

because the associated eigenvector can be used to

derive a spatial pattern and time series that explains the

difference, thereby facilitating visualization and physi-

cal interpretation of changes to internal variability.

Wewill show that applying the union–intersection test

to model simulations leads to conclusions that are sen-

sitive to EOF truncation and thus difficult to interpret.

More precisely, for most models, the maximum (or

minimum) discriminant wasmarginally significant for all

truncations, and this was also true for the second-, third-,

and higher-order discriminants (not shown). Since the

union–intersection test is based only on the leading and

trailing discriminant ratios, and in particular ignores

intermediate discriminant ratios, it is well suited for

identifying changes in variance caused by a single com-

ponent of internal variability. For example, if anthro-

pogenic forcing causes a global-scale El Niño–Southern
Oscillation (ENSO) teleconnection pattern to change

variance, then the union–intersection test is well poised

to detect this change. The fact that the leading or trailing

discriminant ratios tend to be only marginally signifi-

cant, or not significant at all depending on EOF trun-

cation, implies that changes to internal variability in a

single component are weak or nonexistent. This result,

however, does not imply that internal variability does

not change. For instance, numerous independent com-

ponents might change their variances, but the change in

any individual component might be too small to satisfy

statistical significance. Therefore, we seek a test that can

detect ‘‘small’’ changes in variance that might be

‘‘spread’’ across many independent components.

e. Divergence

Another measure of the difference between two co-

variance matrices is the following:

D
T
5

1

2
tr[(~S21

21C 1
~S21
CTR)(

~S
CTR

2 ~S
21C

)] . (21)

We will call this measure divergence. An attractive

property of this measure is that it is invariant to linear

transformation. Also, for Gaussian distributions, this

measure can be derived from the Kullback–Leilber di-

vergence, which itself is fundamental to a wide range of

applications, including information theory, finance,

coding theory, and quantum entanglement (Kullback

1968; Cover and Thomas 1991; Jaeger 2007). We use

(21) to measure differences in covariance matrices even

for possibly non-Gaussian distributions.

An equivalent expression for divergence can be

written in terms of discriminant ratios [see Kullback

(1968), chapter 9, (6.7) and note the means are zero]:

D
T
5

1

2
�
T

i51

�
l
i
1

1

l
i

2 2

�
, (22)

where li is the ith eigenvalue from (18). Notice that if

the covariance matrices are equal, then all the eigen-

values equal 1 and DT 5 0. More specifically, the func-

tion l1 1/l is a minimumwhen l5 1 and becomes large

when l is either very large or close to zero (because the

function involves both the eigenvalue and its inverse). In

contrast to the union–intersection test, DT depends on

the whole spectrum of eigenvalues up to the cutoff T.

Thus, changes in variance that are ‘‘spread’’ across many

independent components will inflate individual eigen-

values and thereby accumulate in the sum to produce a

large value ofDT . Recall that the invariance property of

the individual discriminant ratios means that (22) is also

invariant to affine transformations of the data.

We wish to address subtleties that are associated with

using a field significance test. In essence, a field signifi-

cance test is designed to determine if a collection of

values is significant; as such, these tests are not designed

to determine if any single grid point is significant.

However, if the field significance test is repeated in in-

dependent datasets and significant changes are robust,

then it would be appropriate to identify local changes in

variance.

4. Results

a. Changes in internal variability of annual mean
temperature due to anthropogenic forcing

Local changes in internal variability of annual mean

2-m temperature between the twenty-first-century re-

siduals (relative to the ensemble mean) and the pre-

industrial control run for seven climate models are

shown in Fig. 1. The changes are quantified by the ratio

of variances (8) between 21C noise and control time

series. Insignificant values (at the 10% significance
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level) are masked out. Grid points where the values are

greater than 1 indicate twenty-first-century variability

has increased in response to anthropogenic forcing

(relative to that model’s control variability at the same

grid point). For instance, a value of 2 indicates that

variance is projected to double relative to control

variability. Conversely, values less than 1 indicate an-

thropogenic forcing decreases variability. In the title of

each F map is the percent of total grid points deemed

significant. All models predict significant change in

internal variability for the RCP8.5 emissions scenario.

In particular, in regions of seasonal sea ice formation

(e.g., the Southern Ocean, Greenland Sea, and Bering

Sea), each model consistently projects decreases in

variability. This decrease is a plausible consequence of

sea ice melting as a result of twenty-first-century

warming: melting sea ice exposes the underlying sea

surface temperature, which has less variance, owing to

its larger effective heat capacity relative to sea ice.

Huntingford et al. (2013) and DelSole et al. (2014) also

noted variance decreases associated with areas of sea

ice formation. However, the locations and directions of

other changes are model dependent. For instance, most

models project significant changes in variability in the

tropical oceans, for example in regions of ENSO, but

the direction of this change is model dependent. Simi-

larly, the North Atlantic Ocean also exhibits significant

changes in variance, but again, the direction of that

change is model dependent. We find that, for the North

Pole, a majority of the models indicates increases in

variability. We also find several interesting, smaller-

scale changes, like those in the Amazon basin; how-

ever, the scale and model-dependent direction of these

changes makes them difficult to interpret.

On average, we expect to find 10% of the area of any

given field of F ratios to be significant just by random

chance, but clearly Fig. 1 shows many more significant

changes (see percent values given in the title of each F

map). While we can empirically say that the fractional

area showing changes exceeds 10%, it is not clear that

this is sufficient to conclude that the changes are field

significant, because dependencies between the grid

points have not been considered yet.

Applying the union–intersection test to the above

simulations leads to results that are sensitive to the

number of EOFs chosen to represent the data, thus

making decisions about our null hypothesis unclear.

As a representative example, we show in Fig. 2 the re-

sults of the union–intersection test for one global cli-

matemodel. To check robustness, we divided our data in

half and computed the test in each half separately (see

section 2 for details). Results for the first halves are

given by the blue dotted–dashed curve, and the second

half results are given by the orange dotted–dashed

curves. The top panel shows results for the leading dis-

criminant ratio from T accumulated PCs. Significance

thresholds for the first halves were derived from Monte

Carlo techniques at a 10% confidence level (solid blue

curves). Significance thresholds for the second halves

are derived from an F distribution (solid orange curves).

The bottom panel is the same as the top panel, but for

the trailing discriminant ratios. The impact of overfitting

can be seen in the monotonic increase (or decrease) of

the significance curves as a function of the number of

EOFs. The results for the leading (maximized) dis-

criminant ratios would increase as a mathematical ne-

cessity even under a no-change hypothesis, because each

additional component (EOF) provides extra freedom to

fit differences in variances (i.e., overfitting). The same is

true of the trailing (minimized) discriminant ratios: that

is, the results would decrease as a mathematical neces-

sity. The ‘‘marginal’’ results continue for EOF trunca-

tions beyond 40, but we show only up to 40 EOFs for

clarity. Figure 2 shows that significance of either the

maximized or minimized variance ratios is sensitive to

the number of EOFs chosen. Similar results occurred for

all the models considered here. These results imply that

changes to internal variability in any single component

are not large enough to be significant. One interpretation

of this result is that large-scale components of climate

variability, such as ENSO or the Pacific–North American

FIG. 2. The (top) maximized and (bottom) minimized variance

ratios (i.e., discriminant ratios) for internal variability of annual

mean 2-m temperature between twenty-first century and pre-

industrial control simulations from a representative model

(CCCma). The results for the first half of the twenty-first century

and first half of the preindustrial control run are given by the blue

dotted–dashed curves, and the remaining halves are given by the

orange dotted–dashed curves. Also shown are the upper and lower

5% significance thresholds computed from Monte Carlo tech-

niques (solid blue curves) and the significance thresholds derived

from an F distribution (solid orange lines).

5554 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:36 PM UTC



(PNA) oscillation are not changing their variance in a

significant way. Since the change in any individual com-

ponent appears too small to satisfy statistical significance,

we test if changes in variance are significant in an aggre-

gate sense.

Accordingly, we compute the divergence of annual

mean 2-m temperature between the control and RCP8.5

simulations. Again, to demonstrate robustness, we di-

vide our data in half and compute divergence for each

half separately (see section 2 for details). In Fig. 3, the

FIG. 3. The divergence DT (y axes) of internal variability of annual mean 2-m temperature between twenty-first century and pre-

industrial control simulations, in each model as a function of the number of EOFs T included in the measure (x axes). The divergence for

the first half of the twenty-first century and first half of the preindustrial control run are given by the blue dotted–dashed curves, and the

remaining halves are given by the orange dotted–dashed curves. The green dotted–dashed curves show the divergence between different

segments of a climatemodel’s preindustrial control simulation, with dimensions that match those of the other divergences. Also shown are

the upper 5% significance threshold computed from Monte Carlo techniques (purple curve) and permutation techniques: 1 yr (black

curve) and 5 yr (red curve). Significant results lie above the solid curves.

1 AUGUST 2016 LA JO I E AND DELSOLE 5555

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:36 PM UTC



divergence results for the first halves are shown as the

blue dotted–dashed curves, and the divergence results

for the second halves are shown as the orange dotted–

dashed curves. Both divergence curves lie above the

(solid) significance curves after a sufficient number of

EOFs, indicating that the F maps in Fig. 1 are field sig-

nificant at a 10% significance level. This conclusion

holds for EOF truncations beyond 40, but we show re-

sults only up to 40 EOFs for clarity. The impact of

overfitting can be seen in the monotonic increase of the

significance curves as a function of the number of EOFs.

As in the union–intersection test, the divergence would

increase as a mathematical necessity even under a no-

change hypothesis, because each additional component

(EOF) provides extra freedom to fit differences in var-

iances (i.e., overfitting). Nevertheless, in all models the

actual divergence increases much faster than that of the

significance curves, indicating that the change in vari-

ance is larger than expected by random chance. Note

also that the orange dotted–dashed curves in Fig. 3 are

higher than the blue dotted–dashed curves for all but

one model, indicating that simulated changes to internal

variability are generally larger in the second half of the

twenty-first century as compared to the first half (as one

would expect if the changes are scaled with the degree of

climate change). The green dotted–dashed curves are

motivated by additional analyses that are explained in

the next subsection.

The significance thresholds shown in Fig. 3 were

computed three different ways to test sensitivity to as-

sumptions about the underlying population. First, the

significance thresholds were estimated by Monte Carlo

methods in which independent and identically distrib-

uted random numbers were drawn from a normal dis-

tribution (purple curve). This upper 5% significance

threshold is hard to see because it fits nearly perfectly

beneath the significance threshold derived from a 1-yr

permutation test (black curve). The permutation test

randomly draws years in a control run to construct

sample covariance matrices and therefore assumes only

iid (i.e., it does not make a Gaussian assumption). The

similarity between the purple and black significance

thresholds implies that the Gaussian assumption is rea-

sonable for our dataset. On the other hand, differences

in the thresholds derived from the permutation test with

1-yr blocks (black curve) and 5-yr blocks (red curve)

indicate that internal variability in the leading EOFs are

autocorrelated. Choosing a 5-yr block for the permuta-

tion test was motivated by an autocorrelation study

(results not shown) that revealed serial correlations

ranging from 2 to 5 yr in some preindustrial control

simulations. Even after accounting for autocorrelation,

we find that changes to internal variability in response to

anthropogenic forcing are much larger than those ex-

pected under the no-change null hypothesis even when

autocorrelation is present: this is clearly indicated by the

fact that the blue and orange dotted–dashed curves lie

above the red curves.

A final remark: the results in Fig. 1 show that two

models (MIROC5 and MPI) exhibit widespread areas

in which the variance of internal variability more than

doubles by the end of the twenty-first century. Some

detection and attribution studies artificially inflate a

model’s internal variability by a factor of 2 to assess

the robustness to uncertainty in the estimates of in-

ternal variability (Hegerl et al. 2007). Such studies also

assume that the statistical properties of internal vari-

ability do not change in response to climate forcing.

Thus, for these models, not only is the assumption of

constant internal variability incorrect, but doubling the

internal variability may not be sufficient to account for

changes in variability due to anthropogenic forcing.

b. Changes to internal variability of annual mean
temperature in control simulations

Previous studies find that internal variability can

change on multicentennial time scales even in the ab-

sence of anthropogenic forcing (e.g., Wittenberg 2009).

This hypothesis can be investigated by applying our

methodology to just the preindustrial control simula-

tions. First, at each grid point, we tested differences in

variance between two, nonoverlapping 250-yr segments

of a control run using the univariate F-test method de-

scribed in section 3a. Recall that an F test assumes the

data are Gaussian and iid. The resulting F ratios, using

the annual mean 2-m temperature data, are shown in

Fig. 4, and insignificant values (according to an F-test

distribution at a 10% significance level) are masked out.

The color scale and tick marks are the same as those in

Fig. 1 and can be interpreted as the percent change in

variance between the two halves of a given control run.

The percent of total grid points deemed significant is

given in the title of each F map. We find numerous

(locally) significant changes for each model. In general,

one might expect to find 10% of any given field of F

ratios to be significant just by random chance. Clearly,

Fig. 4 shows more changes than would be expected by

random chance.

Before applying our field significance test, we wanted

to determine if these differences could be explained by

non-Gaussian behavior or serial correlations. With this

in mind, we derived new significance thresholds for

each grid point individually using a 1- and 5-yr block

permutation technique. The permutation technique

with 1-yr blocks only assumes iid, but not Gaussian.

Permuting with a 5-yr block does not make either the
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Gaussian or iid assumption and can account for auto-

correlations. We applied the 1-yr permutation tech-

nique to the data at each grid point and found that the

1-yr permuted significance thresholds were close to

those derived from an F distribution (not shown). Re-

peating permutation with a 5-yr block, we again found

little difference relative to an F distribution. We con-

cluded that the assumptions made by the F test are

appropriate for these data, even after accounting for

possible autocorrelations by resampling with 5-yr

blocks.

We then performed our field significance test on the F

maps in Fig. 4. We found that five of the Fmaps in Fig. 4

were field significant: namely, CCCma, CNRM, IPSL,

HadGEM2, and MPI (divergence results not shown).

Finding significant differences in variance within a

control run helps to explain the upward sweep of the red

curves in Fig. 3: that is, internal variability in the leading

FIG. 4. Ratio of variance of internal variability of annual mean 2-m temperature between two nonoverlapping, 250-yr segments of each

model’s preindustrial control simulation. Insignificant values (according to an F-test distribution at a 10% significance level) are masked

out (i.e., not colored). All but two models (MIROC5 and NCAR) have statistically significant divergence (divergence results not shown).
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EOFs derived from the preindustrial control runs does

appear to be autocorrelated to some extent. We found

that changes in the NCAR control runs were not field

significant after sufficient EOF patterns were included,

and the changes in MIROC5 were not field significant

once a 5-yr block permutation test was computed. The

remaining F maps in Fig. 4 are field significant and

suggest that changes to internal variability in the ab-

sence of anthropogenic forcing exhibit an ENSO-like

pattern or, more generally, large-scale changes concen-

trated along the equatorial Pacific Ocean with some

midlatitude differences as well. However, the direction

of these changes is model dependent.

Given that we have shown some models indicate in-

ternal variability changes even in the absence of anthro-

pogenic forcing, one could question whether the changes

in Fig. 1 are really caused by anthropogenic forcing or

occurring naturally. The short answer is: not likely. Com-

paring Figs. 1 and 4, it is clear that changes in the presence

of anthropogenic forcing are double or triple the changes

that occur in the absence of anthropogenic forcing. How-

ever, this comparison is not perfect, because the sample

sizes differ. To explore this fully, we sampled the con-

trol EOFs to mock the dimensions of and (17) and

evaluated the divergence of these mock covariance

matrices for each model. The resulting divergence as a

function of the number of EOFs is plotted as the green

dotted–dashed curve in Fig. 3. Comparing the green

dotted–dashed curve with the blue or orange dotted–

dashed curves clearly shows that changes in the pres-

ence of anthropogenic forcing are much greater than

changes in the unforced climate system (even when the

sample sizes are the same). Also note that the green

dotted–dashed curve lies mostly below the red curve,

indicating that the unforced changes estimated from

the smaller sample size would still not be significant

after accounting for autocorrelations.

c. Changes to internal variability of seasonal mean
temperature due to anthropogenic forcing

We also looked for changes in internal variability

of seasonal mean 2-m temperature [January–March

(JFM), April–June (AMJ), July–September (JAS), and

October–December (OND)]. The results for each sea-

son were remarkably similar with the changes in annual

mean temperatures for each model, particularly for the

tropics and extratropics, and for the Southern Ocean;

hence, they are not shown. Of the changes in variability

that were inconsistent between seasonal and annual

means, most were in theNorthernHemisphere andwere

model specific.

We found northernmost latitudes exhibiting the

greatest seasonal dependence of changes to internal

variability (i.e., either increasing or decreasing seasonal

mean variability). However, there were a few seasonally

consistent results that were not evident from the annual

mean changes. Five models agreed that decreases in

variance occur about the North Pole in JAS, followed by

increases in variance in OND. All the models agreed

that AMJ would see decreases in variance for the North

Pole region, in addition to decreases in variance in OND

for the Northern Hemisphere midlatitudes (for five of

the seven models). However, Northern Hemisphere

JFM changes to internal variability were model de-

pendent. Outside of the higher latitudes, there were

additional changes to internal variability that were not

evident in the annual mean. For example, HadGEM2

showed increased variance in Northern Hemisphere

midlatitudes for JAS and JFM, especially over land.

MIROC5 showed large-scale decreases in OND vari-

ability, especially over continental North America.

CCCma reversed the direction of change over the Am-

azon basin for only OND, indicating internal variability

decreases for that season. NCAR also exhibited a re-

versed change for the same region and season, but in the

opposite direction (i.e., increases to internal variability).

We found the seasonal changes to be field significant

with a couple specific exceptions: for example, the first

half of the JAS season was not significant for two

models.

5. Summary

Current approaches to analyzing changes in climate

variability often involve aggregating or averaging tem-

perature anomalies from different geographic regions

and normalizing the data to remove local differences in

means, variance, and trends. There is no unique ap-

proach to normalizing data, and as such, any approach

can be criticized. In addition, information about local

changes is lost when the data are combined. An alter-

nate approach is to display maps of spatially distributed

changes in variance, but this presents a field significance

problem; in particular, correlations in space and time

need to be taken into account in order to assess the

likelihood that a field of variances (and covariances)

could occur under a no-change hypothesis. Capturing

spatial and temporal relationships requires a multivari-

ate approach. So, while univariate approaches do elu-

cidate certain aspects of changes to climate variability,

they have limitations.

No single test can comprehensively assess field sig-

nificance, because spatial fields can differ in many ways.

Certain tests detect specific departures from the null

hypothesis with more power than others. In this paper,

we propose a procedure for testing the field significance
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of changes in variability that involves two distinct tests

with complimentary approaches to detecting changes

in variance. The first test, called the union–intersection

test, is based on the leading or trailing discriminant

ratio, which measure the maximum or minimum vari-

ance ratio out of all possible linear combinations of

variables (regularized by projecting data onto a trun-

cated set of EOFs). Because the union–intersection test

is based only on the leading or trailing discriminant

ratio, it is well-suited for detecting changes that occur

in a single component or mode of variability. When

applied to climate model simulations with and without

anthropogenic forcing, the test consistently led to de-

cisions about the null hypothesis that were sensitive to

EOF truncation. Despite this, models indicated nu-

merous local changes in variance. We interpret these

results to imply that individual large-scale modes of

temperature variability are not significantly changing

their variance in response to increasing greenhouse

gases. The second test, called the divergence test, is

based on the sum of all discriminant ratios and their

inverses. This test can detect small changes in variance

that might be spread across many independent com-

ponents. Applying this test to climate model simulations

revealed significant changes in internal variability in all

climate models investigated.

We applied our methodologies to investigate changes

in internal variability due to anthropogenic forcing for

seven climate models in the CMIP5 dataset. All the

models considered here predict significant changes in

internal variability of seasonal and annual mean 2-m

temperature in response to anthropogenic forcing. The

variance ratio maps, which characterize the local

changes in variance for each model, reveal that the

models consistently predict decreases in the variance of

temperature in regions of seasonal sea ice formation and

across the Southern Ocean in the twenty-first century

(see Fig. 1). This decrease is a plausible consequence

of disappearing sea ice due to global warming because

melting sea ice exposes the underlying sea surface, which

has a much larger effective heat capacity than sea ice

owing to its coupling with the oceanic mixed layer. This

interpretation also is consistent with previous research

(e.g., Huntingford et al. 2013; DelSole et al. 2014; Screen

2014; Screen et al. 2014). Seasonal mean changes to

internal variability are similar to annual mean changes,

with noted differences primarily in the Northern

Hemisphere.

More than half the models in our study also indicate

significant future changes in the variance of tempera-

ture over the tropical oceans and the North Atlantic

Ocean, but the sign of these changes is model depen-

dent. ENSO’s global influence on temperature and

precipitation extremes makes it an important player in

climate variability research. Unfortunately, our study

shows that the response of ENSO to increasing

greenhouse gases is highly model dependent: a result

that is in accord with other studies (e.g., Vecchi and

Wittenberg 2010; Collins et al. 2010).

We also find that most models exhibit significant

changes in temperature variance even in the absence

of anthropogenic forcing, but those changes are not as

large as the changes that occur in the presence of

anthropogenic forcing. In some models, the largest

unforced, centennial-scale changes in variance occur

along the equatorial Pacific Ocean, suggesting a

connection to ENSO. This finding is consistent with

previous studies that have shown significant changes

to ENSO variability on centennial time scales in the

absence of anthropogenic forcing (Wittenberg 2009).

We also evaluated the validity of common assump-

tions made about internal variability of temperature.

On the one hand, consistency between permutation

and Monte Carlo techniques suggests that Gaussian,

iid assumptions are reasonable for seasonal and an-

nual mean temperature data from these climate

models. However, our results also suggest that the

practice of doubling uncertainty estimates, as is often

done in detection and attribution studies (Hegerl et al.

2007), may not be sufficient for some models in cap-

turing the amplitude of their variability changes in

response to anthropogenic forcing.
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