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ABSTRACT

Changes in internal variability of seasonal and annual mean 2-m temperature in response to anthropogenic
forcing are quantified for a global domain using climate models driven by a twenty-first-century high-emissions
scenario. While changes in variance have been quantified previously in a univariate sense, the field significance of
such changes has remained unclear. This paper proposes a new field significance test for changes in variance that
accounts for spatial and temporal relationships within the domain. The test proposed here uses an optimization
technique based on discriminant analysis, yielding results that are invariant to linear transformations of the data
and therefore independent of normalization procedures. Multiple significance tests are employed because spatial
fields can differ in many ways in a multivariate space. All climate models investigated here predict significant
changes in internal variability of temperature in response to anthropogenic forcing. The models consistently
predict decreases to temperature variance in regions of seasonal sea ice formation and across the Southern
Ocean by the end of the twenty-first century. While more than half the models also predict significant changes in
variance over ENSO regions and the North Atlantic Ocean, the direction of this change is model dependent.
Seasonal mean changes are remarkably similar to annual mean changes, but there are model-dependent ex-
ceptions. Some models predict future variability that is more than double their preindustrial control variability,
raising questions about the adequacy of doubling uncertainty estimates to test robustness in detection and
attribution studies.

1. Introduction For instance, Hansen et al. (2012) claimed that the
distribution of globally aggregated summer tempera-
tures has both shifted toward a higher mean and
broadened. Subsequent studies have supported Hansen
et al. (2012) with respect to a shifting mean, but disagree
that changes in variance have contributed to observed
summer mean hot extremes (Coumou and Robinson
2013; Rhines and Huybers 2013; Huntingford et al.
2013). One source of disagreement is the procedure for
normalizing temperatures at different geographic loca-
tions before aggregating them to obtain a distribution.
In particular, removing the mean temperature in one
period based on the mean temperature of an earlier
period, as done in Hansen et al. (2012), imparts a posi-
tive bias to the variance (Tingley 2012; Rhines and
Huybers 2013; Sippel et al. 2015). Another complicating
factor is that the number of surface stations in a geo-
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Temperature extremes can have serious impacts on
society (IPCC 2012). Since the middle of the twentieth
century, most land areas for which there are sufficient
observational records have experienced increases in
the frequency and intensity of warm extremes and de-
creases in the frequency and intensity of cold extremes
(IPCC2012; Collins et al. 2013). Many of these changes
are consistent with the hypothesis that anthropogenic
global warming acts to shift the distribution of tem-
perature toward a warmer climate. In addition to a
shift, the temperature distribution might also be
changing its variance, but methods for quantifying
global-scale changes in variance have been criticized.
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between different geographic regions also contribute to
differences in variance. After accounting for issues re-
lated to normalization, trends, and data density, Rhines
and Huybers (2013) find that changes to the variance of
summer mean temperature cannot be detected. Consis-
tent with this conclusion, Huntingford et al. (2013) find
that if trends are removed by computing temperature
anomalies relative to an 11-yr local running mean, then
changes in variability of seasonal and/or annual mean
temperature also cannot be detected in observations.
Looking at a high-emissions scenario, Coumou and
Robinson (2013) show that the changes in land area
experiencing temperature exceedances are well fit by a
Gaussian distribution that includes a shift in the mean of
local temperature to warmer values, with no change in
local variability.

Cold-season variability also has been investigated.
Francis and Vavrus (2012) hypothesize that the decline of
sea ice extent, due to Arctic warming, causes the jet
stream to grow more wavy, resulting in more frequent
cold extremes. However, Barnes (2013) and Screen and
Simmonds (2013) showed that trends in planetary-scale
waviness are sensitive to methodology.

Screen (2014) examined a different quantity—namely,
zonal means of the local variance of daily temperature
over Northern Hemispheric land—and concluded that
temperature variance had decreased since 1979 for fall,
winter, and spring. Screen (2014) argues that this decrease
in variance is caused by Arctic amplification. Specifically,
cold extremes in the Northern Hemisphere are invariably
associated with winds that blow from the north. Arctic
amplification, however, increases temperatures more in
the Arctic than at low latitudes, thereby reducing cold
advection by northerly winds. Consequently, Arctic am-
plification causes the coldest days to warm faster than the
warmest days, thus reducing variance. Consistent with this
mechanism, climate models project less variable land
temperatures in northern latitudinal bands during fall,
winter, and spring, and models with stronger Arctic am-
plification tend to exhibit stronger decreases in variance
(Screen 2014). Other independent studies support this
conclusion. For instance, Huntingford et al. (2013) showed
that climate models predict, on average, a decrease in total
variability of annual mean temperature in high-emissions
scenarios relative to an 11-yr running mean, with some of
this decrease associated with reductions in sea ice cover.
Also, Boer (2009) showed that climate models predict, on
average, that the variance of temperature anomalies (rel-
ative to a low-order polynomial in time) will decrease in
midlatitudes and increase slightly in the tropics.

As is the case with the studies discussed above, tem-
perature anomalies at different geographic locations are
often combined using spatial aggregation or averaging
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methods in order to draw a single conclusion about an
overall change in variance. In addition to the loss of
information about local changes in variance, these
methods must also standardize temperature anomalies
to remove local differences in the means, variances, and
trends prior to aggregating or averaging. Unfortunately,
there is no unique normalization procedure, so criti-
cisms can be raised about any chosen normalization
procedure.

An alternate approach to combining data is to com-
pute local changes in variance and then display maps of
those changes. While this approach preserves in-
formation about local changes, it leads to a field signif-
icance problem in which the likelihood of the computed
field of changes needs to be quantified relative to the
null hypothesis of no local change in variance. Standard
field significance techniques (e.g., Livezey and Chen
1983) are designed for correlation maps, and it is not
clear how to apply them to variance ratio maps to test for
field significance.

In this paper, we propose a new field significance test
that quantifies the likelihood that a field of computed
changes in variance could have occurred by random
chance under a null hypothesis of no change in local var-
iance or covariance within the field. This test is invariant to
normalization procedures or any other affine trans-
formation of the data. While our test avoids certain
problems that arise in spatial aggregation, comprehen-
sively accounts for temporal and spatial relationships
within the domain, and has a well-defined significance
measure, it unfortunately requires severely restricting the
dimension of the state space. To validate the methodology,
we apply our test to a selection of CMIPS5 simulations and
demonstrate that it gives robust results. Overall, climate
models project significant changes to the internal vari-
ability of annual and seasonal mean temperature in the
twenty-first century. The precise datasets we use are de-
scribed in the next section, and details of our methodology
are discussed in section 3. We conclude with a discussion of
our results, their implications for climate change, and a
discussion of other results relating to the new field
significance test.

2. Data

We examine climate model simulations from phase 5
of the Coupled Model Intercomparison Project
(CMIP5). Two types of simulations are analyzed: pre-
industrial control runs, in which the forcings do not
change from year to year, and projections based on the
representative concentration pathway 8.5 (RCP8.5), in
which concentrations and emissions increase such that
radiative forcing peaks at 8.5 W m 2 in 2100 (Collins et al.
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TABLE 1. List of climate models used in this study. Included in the table are the modeling center, the long-form model name, and the
short-form model name created for this investigation and referenced herein. (Acronym expansions are available online at http://www.

ametsoc.org/PubsAcronymList.)

Cimate models

Model center Model name Short name
Canadian Centre for Climate Modelling and Analysis CanESM2 CCCma
Centre National de Recherches Météorologiques—
Centre Européen de Recherche et de Formation Avancée en CNRM-CM5 CNRM

Calcul Scientifique

L’Institut Pierre-Simon Laplace IPSL-CM5A-LR IPSL
Atmosphere and Ocean Research Institute (The University
of Tokyo), National Institute for Environmental Studies,
and Japan Agency for Marine-Earth Science and
Technology MIROCS MIROCS
Met Office Hadley Centre HadGEM2-ES HadGEM2
Max Planck Institute for Meteorology MPI-ESM-LR MPI
National Center for Atmospheric Research CCSM4 NCAR

2013). We analyzed seasonal and annual mean 2-m
temperature fields. We evaluated only the models with
both a 500-yr-long preindustrial control simulation and a
three-member ensemble from the model’s corresponding
RCPS8.5 simulations that covered the 90-yr period from
2006 to 2095. These criteria resulted in a selection of
seven global climate models (see Table 1 for details). All
data were interpolated onto a common 5° X 5° grid, yielding
2592 total grid points for each model. The control simula-
tions were detrended to remove the effects of model drift.
To demonstrate robustness, we divided the simulations into
two equal halves and performed some of our analyses on
each half separately. For instance, the 500-yr control simu-
lations were separated into a first and second half, each half
containing 250years of data. Similarly, each of the three
90-yr RCP8.5 members were divided into a first half (45yr)
and second half (also 45 yr). This yielded 135 total years (3 X
45) for each half of an RCP8.5 simulation.

3. Methodology

To quantify the response of internal variability to an-
thropogenic forcing, we assume that a climate variable,
such as 2-m temperature t can be modeled as

t="Fa +u, (1)

where F is the forced response pattern, a is the corre-
sponding amplitude, and u is a random term represent-
ing internal (or unforced) variability. The statistical
model (1) is commonly used in climate change detection
and attribution studies, and it assumes that internal
variability is independent in time, has a known distri-
bution, and is additive relative to the variability of the
forced component (e.g., Allen and Tett 1999; Jones et al.
2013; Imbers et al. 2014).
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To the extent that this statistical model is correct,
changes in internal variability due to anthropogenic forcing
can be estimated using ensemble techniques and then
compared with estimates of internal variability simulated
from preindustrial control runs. To see this, consider an
ensemble of simulations initialized from different states
but driven by the same forcings. For such an ensemble, Fa
in (1) is the same for different ensemble members; hence,
the difference that results from ensemble member minus
ensemble mean yields cancellation of the forced response
(i.e., cancellation of Fa), leaving an estimate of internal
variability. The residual has slightly less variance than the
true internal variability because the ensemble mean that is
removed also contains some internal variability as a result
of the finite ensemble size. In this paper, we evaluate the
ensemble mean from a three-member RCP8.5 simulation
and subtract it from each member. We refer to the future
emissions scenario as “21C.” Let £ be a climate variable
from the eth ensemble member at the sth spatial grid point
and the yth year. Then, a (slightly damped) realization of
internal variability in the twenty-first century is

21C _ 2IC 21C

Uv,y,e - ts,y,e - [t];,y 5 (2)
where the ensemble mean of the twenty-first century
simulations is

1 E
=L S e o

and E is the total ensemble size. For the preindustrial
control runs, let t;‘yr be a climate variable from the pre-
industrial control simulation (ctr) at the sth spatial grid
point and the yth year. Since the forcing does not change
from year to year in the preindustrial control run, Fa in
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(1) is constant. Therefore, internal variability in the
control run can be estimated from the residual of the
time mean. Again, the residual has slightly less variance
than the true internal variability because the time mean
contains internal variability as a result of finite sample
size. A (slightly damped) realization of internal vari-
ability in the absence of anthropogenic forcing is

U = -, )
where the climatological mean is

clr

ctr — Yi 2 tctr. (5)

ctr ¥=1

a. Univariate test for changes to internal variability

At each grid point s, we can assess if anthropogenic
forcing changes variability by testing the null hypoth-
esis that (2) and (4) were drawn from populations
with equal variances. Standard analysis of variance
(ANOVA) techniques show that an unbiased estimate of
the variance from a realization of internal variability in a
twenty-first century simulation can be determined from

Ts21c = v e (6)
o 21C(E Dy S ™

and an unbiased estimate of variance in the control
simulations is

Ycl

1 r
2 ctry2
Us,ctr - Y —1 z (Usfv . (7)

ctr

If the samples are independent and identically distrib-
uted (iid) as a Gaussian (or normal distribution), then
standard statistical theory states that the statistic

o?
Ty 21C

®)
0-3 ctr

F =

s

has an F distribution with Y, —1 and Y,;c(E — 1) de-
grees of freedom. The above statistic will be called the
“21C noise to control ratio.”” A priori we do not know
in which direction the internal variability may change,
so we use a two-tailed test to determine the significance
of the ratio in (8). If the null hypothesis is true, this ratio
should be close to one, whereas values far from one
indicate that the variances differ and suggest that an-
thropogenic forcing changes internal variability. The
statistic (8) is univariate because it compares variances
at a single grid point. The spatial distribution of the
variance ratios F; can be visualized as a field of
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individual ratios, which we refer to as a variance ratio
map [see, e.g., Fig. 4in Boer (2009) and Fig. 1 explained
in section 4]. The validity of assuming a Gaussian dis-
tribution is addressed in section 4.

b. Null hypothesis for field significance

The Ftest defined above determines the significance
of changes in internal variability at individual grid
points. We want to quantify the likelihood that a
collection of variance ratios F; could have occurred by
random chance under a null hypothesis of no change
in local variance or no changes in covariance between
the grid points. The central issue in testing field sig-
nificance is accounting for dependencies between grid
points. These dependencies can be quantified by
computing a covariance matrix from the data. We
propose that the appropriate null hypothesis for test-
ing differences between fields of variances is that the
respective distributions have the same covariance
matrix. Thus, if X,;c and Jcrr are the covariance
matrices of internal variability in the twenty-first
century and preindustrial control simulations, then
our null hypothesis can be written as

Hy2 0= 2oy )

In each covariance matrix, the diagonal elements give
the variances, and the off-diagonal elements quantify
the degree of dependence (covariance) between the
grid points in the field. We include the off-diagonal
elements in our null hypothesis because these define
the dependencies across grid points that are essential
to determining field significance.

Testing hypotheses about covariance matrices re-
quires estimating the covariance matrix itself. Un-
fortunately, sample covariance matrices estimated
from gridded data will be singular because the number
of grid points far exceeds the number of samples.
Singular covariance matrices present complications
that we prefer to avoid. Accordingly, we project the
data onto a smaller dimensional subspace of T leading
empirical orthogonal functions (EOFs). We denote
the EOFs by the matrix

€r); (10)
where e; denotes the jth EOF, and the overhead dot (') in-
dicates that the EOFs have been truncated at 7 vectors
(denoted with a superscript 7). Time series for the EOFs are
derived from the pseudoinverse E’, which has the property

E'E' =1. (11)
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FIG. 1. Change in internal variability of annual mean 2-m temperature due to anthropogenic forcing, as quantified by the local ratio of
variance in the twenty-first-century to preindustrial control internal variability in each model [(8)]. The variance of internal variability
during the twenty-first century is computed from residuals about the ensemble mean of a three-member ensemble using a high-emissions
scenario (RCP8.5) for the 90-yr period from 2006 to 2095. The variance of internal variability for preindustrial forcing is computed from
the same model’s 500-yr control simulation. A ratio >1 indicates internal variability increases in the twenty-first century. Insignificant
values (according to the F-test distribution at a 10% significance level) are masked out (i.e., not colored). The percent area containing
significant variance ratios is indicated in the title of each panel.

It is convenient to use the matrix notation (UC“)S’Y =Ugy. (13)
21Cy  _ rp2IC
U™),, = Usyer (12)

Then, projecting the pseudoinverse on a twenty-first
where the ensemble members have been “‘stacked’ ac- century simulation yields a matrix with Y,,c years and T
cording to y' =y + Y(e — 1). Similarly, time series, referred to as principal components (PCs):
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(UV')E'=F,,. (14)
In addition, projecting the pseudoinverse on a control
simulation yields a matrix with Yy, years and T
components:

(Uctr)TEi =F .

ctr

(15)

Using overhead tildes to denote quantities in EOF
space, and recalling that estimates of a realization of
internal variability have zero sample mean, we define
the sample covariance matrix of internal variability in a
twenty-first century simulation from the PCs in (14) as

- _ 1 -
2"21c - Y21C(E _ 1)F21CF (16)

21C

and the sample covariance matrix of a control simula-
tion from the PCs given by (15)

~ 1 T
2"CTR = Y - 1FctchLr .

ctr

17)

We pool the first half of the twenty-first century and
preindustrial control runs to derive the EOFs. We
then project those EOFs on the second halves of each
dataset, yielding PCs for the second halves (see sec-
tion 2 for details on how the data were divided). Di-
viding the datasets, and using both the twenty-first
century and control runs to derive EOFs, allows us to
check for robustness and account for possible biases
introduced by the EOFs.

¢. Discriminant analysis

There are many ways in which two covariance ma-
trices can differ. We apply an optimization technique
known as discriminant analysis that finds a linear
combination of variables that maximizes a variance
ratio. If the matrices are equal, then all linear com-
binations have equal variances, whereas if the co-
variance matrices are not equal, then discriminant
analysis can diagnose the difference in an insightful
manner. Let the weighting coefficients for a linear
combination of variables be q. Then, the ratio of
variances between the twenty-first century and pre-
industrial contol simulations is

Lo 43,4

. — (18)

4" ZcrRq
If the null hypothesis of equal covariances is true, then
A =1 for all possible q. Conversely, if the null is not true,
then A # 1 for at least one q. We seek the weighting

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:36 PM UTC

JOURNAL OF CLIMATE

VOLUME 29

coefficients that makes A an extremum, which can be
found by solving dA/dq = 0. This gives

%_ zizlc(] -2 ‘]Tizlc(] S ~
W a’s. a QS Q) ctrY
4 9" 20x0 (@729
2 o~ <
= f(Eﬂcq - /\ECTR(]) =0. (19)
9" 2p4

Since iCTR is positive definite, the derivative vanishes if

251 = A2 R4 (20)
Equation (20) is a generalized eigenvalue problem.
Solving this generalized eigenvalue problem for T X T
covariance matrices yields T eigenvalues, or discrimi-
nant ratios, that characterize the differences between
the two covariance matrices in (18). The eigenvalues can
be ordered largest to smallestasA; =A, = --- =Ap. The
largest eigenvalue A represents the leading discriminant
ratio and gives the maximum variance ratio out of all the
possible weighting vectors q. Similarly, A7 represents the
trailing discriminant ratio and gives the minimum vari-
ance ratio out of all the possible weighting vectors. An
important property of the eigenvalues is that they are
invariant to affine transformations of the data. Center-
ing and normalizing by a standard deviation are special
cases of affine transformations.

The invariance property of the discriminant ratios
yields another attractive feature: the sampling distri-
bution of the eigenvalues are independent of the mean
and covariance matrix of the population. As such,
significance thresholds can be estimated by straight-
forward Monte Carlo methods: namely, by drawing iid
random variables from a standardized univariate
normal distribution. However, we also use permuta-
tion techniques to derive significance thresholds; this
technique relaxes normal, iid assumptions. The con-
sistency between the two significance thresholds will
indicate the appropriateness of Gaussian and iid as-
sumptions. This issue will be discussed in more detail
in section 4.

Since each eigenvalue is individually invariant to af-
fine transformations of the data, any function of the ei-
genvalues also is invariant to affine transformations. As
with all statistical optimization procedures, overfitting
is a concern when the number of parameters being es-
timated (e.g., the weights) is not a small fraction of the
sample size. In section 4, we describe the steps we took
to guard against overfitting by testing significance under
various assumptions about the population and by dem-
onstrating that our conclusions are robust when applied
to independent data.
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d. Union—intersection test

A standard test for differences in covariance matrices
is the union-intersection test (Flury 1985). This test is
based on testing the significance of the leading and
trailing discriminant ratios A; and A7. In essence, the
hypothesis Hy in (9) is rejected if A, is too large or A7 is
too small. The significance thresholds depend on the
distribution of the discriminant ratios under the null
hypothesis, which can be computed using Monte Carlo
methods. In our application, a significant A; implies
anthropogenic forcing increases internal variability,
while a significant Ay implies anthropogenic forcing
decreases internal variability. The union-intersection
test is quite insightful if a change in variance is detected,
because the associated eigenvector can be used to
derive a spatial pattern and time series that explains the
difference, thereby facilitating visualization and physi-
cal interpretation of changes to internal variability.

We will show that applying the union—intersection test
to model simulations leads to conclusions that are sen-
sitive to EOF truncation and thus difficult to interpret.
More precisely, for most models, the maximum (or
minimum) discriminant was marginally significant for all
truncations, and this was also true for the second-, third-,
and higher-order discriminants (not shown). Since the
union—intersection test is based only on the leading and
trailing discriminant ratios, and in particular ignores
intermediate discriminant ratios, it is well suited for
identifying changes in variance caused by a single com-
ponent of internal variability. For example, if anthro-
pogenic forcing causes a global-scale El Nifio-Southern
Oscillation (ENSO) teleconnection pattern to change
variance, then the union—intersection test is well poised
to detect this change. The fact that the leading or trailing
discriminant ratios tend to be only marginally signifi-
cant, or not significant at all depending on EOF trun-
cation, implies that changes to internal variability in a
single component are weak or nonexistent. This result,
however, does not imply that internal variability does
not change. For instance, numerous independent com-
ponents might change their variances, but the change in
any individual component might be too small to satisfy
statistical significance. Therefore, we seek a test that can
detect ‘““small” changes in variance that might be
“spread” across many independent components.

e. Divergence

Another measure of the difference between two co-
variance matrices is the following:

,_n

Etr[(z«mc + i\'E"%R)(i"CTR - i\'21c)] . (21)
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We will call this measure divergence. An attractive
property of this measure is that it is invariant to linear
transformation. Also, for Gaussian distributions, this
measure can be derived from the Kullback-Leilber di-
vergence, which itself is fundamental to a wide range of
applications, including information theory, finance,
coding theory, and quantum entanglement (Kullback
1968; Cover and Thomas 1991; Jaeger 2007). We use
(21) to measure differences in covariance matrices even
for possibly non-Gaussian distributions.

An equivalent expression for divergence can be
written in terms of discriminant ratios [see Kullback
(1968), chapter 9, (6.7) and note the means are zero]:

b, 13 (e to).

1

(22)

where A; is the ith eigenvalue from (18). Notice that if
the covariance matrices are equal, then all the eigen-
values equal 1 and Dy = 0. More specifically, the func-
tion A + 1/A is a minimum when A = 1 and becomes large
when A is either very large or close to zero (because the
function involves both the eigenvalue and its inverse). In
contrast to the union—intersection test, Dy depends on
the whole spectrum of eigenvalues up to the cutoff 7.
Thus, changes in variance that are “‘spread” across many
independent components will inflate individual eigen-
values and thereby accumulate in the sum to produce a
large value of Dr. Recall that the invariance property of
the individual discriminant ratios means that (22) is also
invariant to affine transformations of the data.

We wish to address subtleties that are associated with
using a field significance test. In essence, a field signifi-
cance test is designed to determine if a collection of
values is significant; as such, these tests are not designed
to determine if any single grid point is significant.
However, if the field significance test is repeated in in-
dependent datasets and significant changes are robust,
then it would be appropriate to identify local changes in
variance.

4. Results

a. Changes in internal variability of annual mean
temperature due to anthropogenic forcing

Local changes in internal variability of annual mean
2-m temperature between the twenty-first-century re-
siduals (relative to the ensemble mean) and the pre-
industrial control run for seven climate models are
shown in Fig. 1. The changes are quantified by the ratio
of variances (8) between 21C noise and control time
series. Insignificant values (at the 10% significance
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CCCma Leading Discriminants

Ratio

Ratio

Accumulated number of PCs

FI1G. 2. The (top) maximized and (bottom) minimized variance
ratios (i.e., discriminant ratios) for internal variability of annual
mean 2-m temperature between twenty-first century and pre-
industrial control simulations from a representative model
(CCCma). The results for the first half of the twenty-first century
and first half of the preindustrial control run are given by the blue
dotted—dashed curves, and the remaining halves are given by the
orange dotted—dashed curves. Also shown are the upper and lower
5% significance thresholds computed from Monte Carlo tech-
niques (solid blue curves) and the significance thresholds derived
from an F distribution (solid orange lines).

level) are masked out. Grid points where the values are
greater than 1 indicate twenty-first-century variability
has increased in response to anthropogenic forcing
(relative to that model’s control variability at the same
grid point). For instance, a value of 2 indicates that
variance is projected to double relative to control
variability. Conversely, values less than 1 indicate an-
thropogenic forcing decreases variability. In the title of
each F map is the percent of total grid points deemed
significant. All models predict significant change in
internal variability for the RCP8.5 emissions scenario.
In particular, in regions of seasonal sea ice formation
(e.g., the Southern Ocean, Greenland Sea, and Bering
Sea), each model consistently projects decreases in
variability. This decrease is a plausible consequence of
sea ice melting as a result of twenty-first-century
warming: melting sea ice exposes the underlying sea
surface temperature, which has less variance, owing to
its larger effective heat capacity relative to sea ice.
Huntingford et al. (2013) and DelSole et al. (2014) also
noted variance decreases associated with areas of sea
ice formation. However, the locations and directions of
other changes are model dependent. For instance, most
models project significant changes in variability in the
tropical oceans, for example in regions of ENSO, but
the direction of this change is model dependent. Simi-
larly, the North Atlantic Ocean also exhibits significant
changes in variance, but again, the direction of that
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change is model dependent. We find that, for the North
Pole, a majority of the models indicates increases in
variability. We also find several interesting, smaller-
scale changes, like those in the Amazon basin; how-
ever, the scale and model-dependent direction of these
changes makes them difficult to interpret.

On average, we expect to find 10% of the area of any
given field of F ratios to be significant just by random
chance, but clearly Fig. 1 shows many more significant
changes (see percent values given in the title of each F
map). While we can empirically say that the fractional
area showing changes exceeds 10%, it is not clear that
this is sufficient to conclude that the changes are field
significant, because dependencies between the grid
points have not been considered yet.

Applying the union-intersection test to the above
simulations leads to results that are sensitive to the
number of EOFs chosen to represent the data, thus
making decisions about our null hypothesis unclear.
As a representative example, we show in Fig. 2 the re-
sults of the union-intersection test for one global cli-
mate model. To check robustness, we divided our data in
half and computed the test in each half separately (see
section 2 for details). Results for the first halves are
given by the blue dotted—dashed curve, and the second
half results are given by the orange dotted—dashed
curves. The top panel shows results for the leading dis-
criminant ratio from 7 accumulated PCs. Significance
thresholds for the first halves were derived from Monte
Carlo techniques at a 10% confidence level (solid blue
curves). Significance thresholds for the second halves
are derived from an F distribution (solid orange curves).
The bottom panel is the same as the top panel, but for
the trailing discriminant ratios. The impact of overfitting
can be seen in the monotonic increase (or decrease) of
the significance curves as a function of the number of
EOFs. The results for the leading (maximized) dis-
criminant ratios would increase as a mathematical ne-
cessity even under a no-change hypothesis, because each
additional component (EOF) provides extra freedom to
fit differences in variances (i.e., overfitting). The same is
true of the trailing (minimized) discriminant ratios: that
is, the results would decrease as a mathematical neces-
sity. The “marginal” results continue for EOF trunca-
tions beyond 40, but we show only up to 40 EOFs for
clarity. Figure 2 shows that significance of either the
maximized or minimized variance ratios is sensitive to
the number of EOFs chosen. Similar results occurred for
all the models considered here. These results imply that
changes to internal variability in any single component
are not large enough to be significant. One interpretation
of this result is that large-scale components of climate
variability, such as ENSO or the Pacific-North American
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CCCma
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—eo— First Half 21C Noise to Control .
Second Half 21C Noise to Control
Control Sampled as 21C Noise to Control
Significance Threshold via Monte Carlo
Significance Threshold 1-yr Permutting
Significance Threshold 5-yr Permutting

CNRM IPSL

Accumulated Number of PCs

FIG. 3. The divergence D (y axes) of internal variability of annual mean 2-m temperature between twenty-first century and pre-
industrial control simulations, in each model as a function of the number of EOFs T included in the measure (x axes). The divergence for
the first half of the twenty-first century and first half of the preindustrial control run are given by the blue dotted—dashed curves, and the
remaining halves are given by the orange dotted-dashed curves. The green dotted—dashed curves show the divergence between different
segments of a climate model’s preindustrial control simulation, with dimensions that match those of the other divergences. Also shown are
the upper 5% significance threshold computed from Monte Carlo techniques (purple curve) and permutation techniques: 1yr (black
curve) and 5 yr (red curve). Significant results lie above the solid curves.

(PNA) oscillation are not changing their variance in a Accordingly, we compute the divergence of annual
significant way. Since the change in any individual com- mean 2-m temperature between the control and RCP8.5
ponent appears too small to satisfy statistical significance, simulations. Again, to demonstrate robustness, we di-
we test if changes in variance are significant in an aggre- vide our data in half and compute divergence for each
gate sense. half separately (see section 2 for details). In Fig. 3, the
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divergence results for the first halves are shown as the
blue dotted-dashed curves, and the divergence results
for the second halves are shown as the orange dotted—
dashed curves. Both divergence curves lie above the
(solid) significance curves after a sufficient number of
EOFs, indicating that the F maps in Fig. 1 are field sig-
nificant at a 10% significance level. This conclusion
holds for EOF truncations beyond 40, but we show re-
sults only up to 40 EOFs for clarity. The impact of
overfitting can be seen in the monotonic increase of the
significance curves as a function of the number of EOFs.
As in the union-intersection test, the divergence would
increase as a mathematical necessity even under a no-
change hypothesis, because each additional component
(EOF) provides extra freedom to fit differences in var-
iances (i.e., overfitting). Nevertheless, in all models the
actual divergence increases much faster than that of the
significance curves, indicating that the change in vari-
ance is larger than expected by random chance. Note
also that the orange dotted—dashed curves in Fig. 3 are
higher than the blue dotted-dashed curves for all but
one model, indicating that simulated changes to internal
variability are generally larger in the second half of the
twenty-first century as compared to the first half (as one
would expect if the changes are scaled with the degree of
climate change). The green dotted—dashed curves are
motivated by additional analyses that are explained in
the next subsection.

The significance thresholds shown in Fig. 3 were
computed three different ways to test sensitivity to as-
sumptions about the underlying population. First, the
significance thresholds were estimated by Monte Carlo
methods in which independent and identically distrib-
uted random numbers were drawn from a normal dis-
tribution (purple curve). This upper 5% significance
threshold is hard to see because it fits nearly perfectly
beneath the significance threshold derived from a 1-yr
permutation test (black curve). The permutation test
randomly draws years in a control run to construct
sample covariance matrices and therefore assumes only
iid (i.e., it does not make a Gaussian assumption). The
similarity between the purple and black significance
thresholds implies that the Gaussian assumption is rea-
sonable for our dataset. On the other hand, differences
in the thresholds derived from the permutation test with
1-yr blocks (black curve) and 5-yr blocks (red curve)
indicate that internal variability in the leading EOFs are
autocorrelated. Choosing a 5-yr block for the permuta-
tion test was motivated by an autocorrelation study
(results not shown) that revealed serial correlations
ranging from 2 to Syr in some preindustrial control
simulations. Even after accounting for autocorrelation,
we find that changes to internal variability in response to
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anthropogenic forcing are much larger than those ex-
pected under the no-change null hypothesis even when
autocorrelation is present: this is clearly indicated by the
fact that the blue and orange dotted—dashed curves lie
above the red curves.

A final remark: the results in Fig. 1 show that two
models (MIROCS and MPI) exhibit widespread areas
in which the variance of internal variability more than
doubles by the end of the twenty-first century. Some
detection and attribution studies artificially inflate a
model’s internal variability by a factor of 2 to assess
the robustness to uncertainty in the estimates of in-
ternal variability (Hegerl et al. 2007). Such studies also
assume that the statistical properties of internal vari-
ability do not change in response to climate forcing.
Thus, for these models, not only is the assumption of
constant internal variability incorrect, but doubling the
internal variability may not be sufficient to account for
changes in variability due to anthropogenic forcing.

b. Changes to internal variability of annual mean
temperature in control simulations

Previous studies find that internal variability can
change on multicentennial time scales even in the ab-
sence of anthropogenic forcing (e.g., Wittenberg 2009).
This hypothesis can be investigated by applying our
methodology to just the preindustrial control simula-
tions. First, at each grid point, we tested differences in
variance between two, nonoverlapping 250-yr segments
of a control run using the univariate F-test method de-
scribed in section 3a. Recall that an F test assumes the
data are Gaussian and iid. The resulting F ratios, using
the annual mean 2-m temperature data, are shown in
Fig. 4, and insignificant values (according to an F-test
distribution at a 10% significance level) are masked out.
The color scale and tick marks are the same as those in
Fig. 1 and can be interpreted as the percent change in
variance between the two halves of a given control run.
The percent of total grid points deemed significant is
given in the title of each F map. We find numerous
(locally) significant changes for each model. In general,
one might expect to find 10% of any given field of F
ratios to be significant just by random chance. Clearly,
Fig. 4 shows more changes than would be expected by
random chance.

Before applying our field significance test, we wanted
to determine if these differences could be explained by
non-Gaussian behavior or serial correlations. With this
in mind, we derived new significance thresholds for
each grid point individually using a 1- and 5-yr block
permutation technique. The permutation technique
with 1-yr blocks only assumes iid, but not Gaussian.
Permuting with a 5-yr block does not make either the
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FIG. 4. Ratio of variance of internal variability of annual mean 2-m temperature between two nonoverlapping, 250-yr segments of each
model’s preindustrial control simulation. Insignificant values (according to an F-test distribution at a 10% significance level) are masked
out (i.e., not colored). All but two models (MIROCS5 and NCAR) have statistically significant divergence (divergence results not shown).

Gaussian or iid assumption and can account for auto-
correlations. We applied the 1-yr permutation tech-
nique to the data at each grid point and found that the
1-yr permuted significance thresholds were close to
those derived from an F distribution (not shown). Re-
peating permutation with a 5-yr block, we again found
little difference relative to an F distribution. We con-
cluded that the assumptions made by the F test are
appropriate for these data, even after accounting for
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possible autocorrelations by resampling with S-yr
blocks.

We then performed our field significance test on the F/
maps in Fig. 4. We found that five of the F maps in Fig. 4
were field significant: namely, CCCma, CNRM, IPSL,
HadGEM?2, and MPI (divergence results not shown).
Finding significant differences in variance within a
control run helps to explain the upward sweep of the red
curves in Fig. 3: that is, internal variability in the leading
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EOFs derived from the preindustrial control runs does
appear to be autocorrelated to some extent. We found
that changes in the NCAR control runs were not field
significant after sufficient EOF patterns were included,
and the changes in MIROCS were not field significant
once a 5-yr block permutation test was computed. The
remaining F maps in Fig. 4 are field significant and
suggest that changes to internal variability in the ab-
sence of anthropogenic forcing exhibit an ENSO-like
pattern or, more generally, large-scale changes concen-
trated along the equatorial Pacific Ocean with some
midlatitude differences as well. However, the direction
of these changes is model dependent.

Given that we have shown some models indicate in-
ternal variability changes even in the absence of anthro-
pogenic forcing, one could question whether the changes
in Fig. 1 are really caused by anthropogenic forcing or
occurring naturally. The short answer is: not likely. Com-
paring Figs. 1 and 4, it is clear that changes in the presence
of anthropogenic forcing are double or triple the changes
that occur in the absence of anthropogenic forcing. How-
ever, this comparison is not perfect, because the sample
sizes differ. To explore this fully, we sampled the con-
trol EOFs to mock the dimensions of and (17) and
evaluated the divergence of these mock covariance
matrices for each model. The resulting divergence as a
function of the number of EOFs is plotted as the green
dotted—dashed curve in Fig. 3. Comparing the green
dotted—dashed curve with the blue or orange dotted—
dashed curves clearly shows that changes in the pres-
ence of anthropogenic forcing are much greater than
changes in the unforced climate system (even when the
sample sizes are the same). Also note that the green
dotted—dashed curve lies mostly below the red curve,
indicating that the unforced changes estimated from
the smaller sample size would still not be significant
after accounting for autocorrelations.

c. Changes to internal variability of seasonal mean
temperature due to anthropogenic forcing

We also looked for changes in internal variability
of seasonal mean 2-m temperature [January—March
(JEM), April-June (AMJ), July-September (JAS), and
October—December (OND)]. The results for each sea-
son were remarkably similar with the changes in annual
mean temperatures for each model, particularly for the
tropics and extratropics, and for the Southern Ocean;
hence, they are not shown. Of the changes in variability
that were inconsistent between seasonal and annual
means, most were in the Northern Hemisphere and were
model specific.

We found northernmost latitudes exhibiting the
greatest seasonal dependence of changes to internal
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variability (i.e., either increasing or decreasing seasonal
mean variability). However, there were a few seasonally
consistent results that were not evident from the annual
mean changes. Five models agreed that decreases in
variance occur about the North Pole in JAS, followed by
increases in variance in OND. All the models agreed
that AMJ would see decreases in variance for the North
Pole region, in addition to decreases in variance in OND
for the Northern Hemisphere midlatitudes (for five of
the seven models). However, Northern Hemisphere
JFM changes to internal variability were model de-
pendent. Outside of the higher latitudes, there were
additional changes to internal variability that were not
evident in the annual mean. For example, HaddGEM2
showed increased variance in Northern Hemisphere
midlatitudes for JAS and JFM, especially over land.
MIROCS showed large-scale decreases in OND vari-
ability, especially over continental North America.
CCCma reversed the direction of change over the Am-
azon basin for only OND, indicating internal variability
decreases for that season. NCAR also exhibited a re-
versed change for the same region and season, but in the
opposite direction (i.e., increases to internal variability).
We found the seasonal changes to be field significant
with a couple specific exceptions: for example, the first
half of the JAS season was not significant for two
models.

5. Summary

Current approaches to analyzing changes in climate
variability often involve aggregating or averaging tem-
perature anomalies from different geographic regions
and normalizing the data to remove local differences in
means, variance, and trends. There is no unique ap-
proach to normalizing data, and as such, any approach
can be criticized. In addition, information about local
changes is lost when the data are combined. An alter-
nate approach is to display maps of spatially distributed
changes in variance, but this presents a field significance
problem; in particular, correlations in space and time
need to be taken into account in order to assess the
likelihood that a field of variances (and covariances)
could occur under a no-change hypothesis. Capturing
spatial and temporal relationships requires a multivari-
ate approach. So, while univariate approaches do elu-
cidate certain aspects of changes to climate variability,
they have limitations.

No single test can comprehensively assess field sig-
nificance, because spatial fields can differ in many ways.
Certain tests detect specific departures from the null
hypothesis with more power than others. In this paper,
we propose a procedure for testing the field significance
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of changes in variability that involves two distinct tests
with complimentary approaches to detecting changes
in variance. The first test, called the union—intersection
test, is based on the leading or trailing discriminant
ratio, which measure the maximum or minimum vari-
ance ratio out of all possible linear combinations of
variables (regularized by projecting data onto a trun-
cated set of EOFs). Because the union—intersection test
is based only on the leading or trailing discriminant
ratio, it is well-suited for detecting changes that occur
in a single component or mode of variability. When
applied to climate model simulations with and without
anthropogenic forcing, the test consistently led to de-
cisions about the null hypothesis that were sensitive to
EOF truncation. Despite this, models indicated nu-
merous local changes in variance. We interpret these
results to imply that individual large-scale modes of
temperature variability are not significantly changing
their variance in response to increasing greenhouse
gases. The second test, called the divergence test, is
based on the sum of all discriminant ratios and their
inverses. This test can detect small changes in variance
that might be spread across many independent com-
ponents. Applying this test to climate model simulations
revealed significant changes in internal variability in all
climate models investigated.

We applied our methodologies to investigate changes
in internal variability due to anthropogenic forcing for
seven climate models in the CMIP5 dataset. All the
models considered here predict significant changes in
internal variability of seasonal and annual mean 2-m
temperature in response to anthropogenic forcing. The
variance ratio maps, which characterize the local
changes in variance for each model, reveal that the
models consistently predict decreases in the variance of
temperature in regions of seasonal sea ice formation and
across the Southern Ocean in the twenty-first century
(see Fig. 1). This decrease is a plausible consequence
of disappearing sea ice due to global warming because
melting sea ice exposes the underlying sea surface, which
has a much larger effective heat capacity than sea ice
owing to its coupling with the oceanic mixed layer. This
interpretation also is consistent with previous research
(e.g., Huntingford et al. 2013; DelSole et al. 2014; Screen
2014; Screen et al. 2014). Seasonal mean changes to
internal variability are similar to annual mean changes,
with noted differences primarily in the Northern
Hemisphere.

More than half the models in our study also indicate
significant future changes in the variance of tempera-
ture over the tropical oceans and the North Atlantic
Ocean, but the sign of these changes is model depen-
dent. ENSO’s global influence on temperature and
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precipitation extremes makes it an important player in
climate variability research. Unfortunately, our study
shows that the response of ENSO to increasing
greenhouse gases is highly model dependent: a result
that is in accord with other studies (e.g., Vecchi and
Wittenberg 2010; Collins et al. 2010).

We also find that most models exhibit significant
changes in temperature variance even in the absence
of anthropogenic forcing, but those changes are not as
large as the changes that occur in the presence of
anthropogenic forcing. In some models, the largest
unforced, centennial-scale changes in variance occur
along the equatorial Pacific Ocean, suggesting a
connection to ENSO. This finding is consistent with
previous studies that have shown significant changes
to ENSO variability on centennial time scales in the
absence of anthropogenic forcing (Wittenberg 2009).

We also evaluated the validity of common assump-
tions made about internal variability of temperature.
On the one hand, consistency between permutation
and Monte Carlo techniques suggests that Gaussian,
iid assumptions are reasonable for seasonal and an-
nual mean temperature data from these climate
models. However, our results also suggest that the
practice of doubling uncertainty estimates, as is often
done in detection and attribution studies (Hegerl et al.
2007), may not be sufficient for some models in cap-
turing the amplitude of their variability changes in
response to anthropogenic forcing.
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