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ABSTRACT

Correlation networks identified from financial, genomic, ecological, epidemiological, social, and climatic data

are being used to provide useful topological insights into the structure of high-dimensional data. Strong convection

over the oceans and the atmospheric moisture transport and flow convergence indicated by atmospheric pressure

fields may determine where andwhen extreme precipitation occurs. Here, the spatiotemporal relationship among

sea surface temperature (SST), sea level pressure (SLP), and extreme global precipitation is explored using a

graph-based approach that uses the concept of reciprocity to generate cluster pairs of locations with similar

spatiotemporal patterns at any time lag. A global time-lagged relationship between pentad SST anomalies and

pentad SLP anomalies is investigated to understand the linkages and influence of the slowly changing oceanic

boundary conditions on the development of the global atmospheric circulation. This study explores the use of this

correlation network to predict extreme precipitation globally over the next 30 days, using a logistic principal

component regression on the strong global dipoles found between SST and SLP. Predictive skill under cross

validation and blind prediction for the occurrence of 30-day precipitation that is higher than the 90th percentile of

days in the wet season is indicated for the selected global regions considered.

1. Introduction

The application of complex networks in climate science

(Tsonis and Roebber 2004; Tsonis et al. 2006, 2011) is an

emerging field that has provided some novel insights into

the nature of Earth systems. This paper explores whether

extreme precipitation occurrence in some parts of the

world may be predictable over the next 30 days, given

information about stable, teleconnected patterns of sea

surface temperature (SST) and sea level pressure (SLP).

Recently developed methods that identify a connected

graph from climate data are used to identify a correla-

tion network from pentad SST and SLP data. The

strong dipoles from this correlation network are then

used as predictors in a regression model to assess where

the occurrence of extreme precipitation may be pre-

dictable over the next 30 days.

Lorenz (1996) reviewed the progress of estimates of

the deterministic predictability of the atmosphere and

noted that the estimated error doubling times have ac-

tually decreased from 5 days in 1966, based on Charney

et al.’s (1966) work, to about 1.5 days in 1995, based on
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the ECMWF model. While this seems to suggest that

the limits of deterministic predictability based on the

growth of small random errors may only be 5 days or so,

Lorenz noted that the SST evolves rather slowly and

that even atmospheric phenomena such as the quasi-

biennial oscillation (QBO) and ocean–atmosphere phe-

nomena such as El Niño–Southern Oscillation (ENSO)

may have significant predictability for days to seasons, as

long as they stay in the same mode. Given this context, a

question that motivates this work is whether a global

correlation network of SST and SLP can inform the

prediction of precipitation extremes over the next

30 days, at least at some places in the world.

The links between themost important oceanic climate

indices [e.g., Atlantic multidecadal Oscillation (AMO),

Pacific–North American pattern (PNA), ENSO, North

Atlantic Oscillation (NAO), and Madden–Julian oscil-

lation (MJO)] and precipitation at various space and

time scales have been examined by several authors

(Ropelewski and Halpert 1986, 1987; Leathers et al.

1991; Huntington et al. 2004; Trigo et al. 2004; Sutton

and Hodson 2005; Kim et al. 2006; Cañón et al. 2007;

Jeong et al. 2008). Indeed, the pioneering studies by

Walker (1923, 1924, 1928) and Walker and Bliss (1930,

1932, 1937), which first documented ENSO on a global

scale, were motivated by attempts to understand and

predict variations in Indian monsoon rainfall.

Given these potential sources of predictability, vari-

ous studies have been done on rainfall and temperature

prediction (Wang and Warner 1988; Buizza et al. 1999;

Chen and Hwang 2000; Silverman and Dracup 2000;

Barnston et al. 2005; Lin et al. 2005; Abukhshim et al.

2006; Smith et al. 2007; Schepen et al. 2012; Badr et al.

2014; Song et al. 2014; Nicholson 2014). The most widely

studied temporal scales are seasonal to interannual

(Diallo et al. 2013; Landman et al. 2012; Schepen et al.

2012; Charles et al. 2013; Jiang et al. 2013; Lee et al.

2013; Singh et al. 2013; Kang et al. 2014; Nicholson 2014)

and weather forecasts, through either quantitative pre-

cipitation forecasts (QPFs) or numerical weather pre-

diction (NWP) (e.g., Lin et al. 2005), typically up to 7 days,

and radar-based nowcasting (Ligda 1953; Golding 1998;

Wilson et al. 1998; Foresti et al. 2015; Olsson et al. 2014;

Sokol et al. 2013; Dai et al. 2014), that is, a short-term

forecast, usually a few hours. The statistics of precipitation

at seasonal to interannual time scales have been shown to

have some usable predictability for regions that have

strong teleconnections to the ENSO phenomena. Rea-

sonable skill from QPF is demonstrated for lead times of

0–72h in most places. However, there is a dearth of lit-

erature exploring predictability between the two time

scales, and there is interest in subseasonal to seasonal

predictability (Brunet et al. 2010; Vitart et al. 2012).

Recently, atmospheric rivers (Zhu and Newell 1998;

Bao et al. 2006) have been widely studied as the major

contributor to extreme precipitation and floods (Ralph

et al. 2006; Leung and Qian 2009; Lavers et al. 2011,

2013; Ralph and Dettinger 2011). Extreme precipitation

in the midlatitudes is often associated with anomalous

atmospheric moisture transported from tropical and sub-

tropical warmer oceanic areas. Lu et al. (2013) identified

the major moisture sources for the 1995 January flood in

western France as the Gulf of Mexico and tropical North

Atlantic Ocean east to the Bahamas, and demonstrated

the predictability of the extreme precipitation given

midlatitude SLP fields. The atmospheric circulation pat-

terns led to a coherent and persistent transport of mois-

ture from these sources, with convergence of flow and

precipitation over a large region covering western France

for a period of nearly a month. Nakamura et al. (2013)

provided a similar analysis for the Ohio River basin,

where a persistent dipole in the SLP led to the wavelike

transport of moisture from the Gulf of Mexico into the

Ohio River basin every 4–7 days over the March–May

season (Nakamura et al. 2013).

Several research groups are considering climate as a

network of dynamical systems and are applying ideas

from graph theory to a global dataset to study its col-

lective behavior (Hsieh 2001; Tsonis and Roebber 2004;

Tsonis et al. 2006, 2011; Yamasaki et al. 2008; Donges

et al. 2009; Steinhaeuser et al. 2011, 2012; Berezin et al.

2012). The connections of these climate networks to

ENSO, NAO, and so forth have been studied by these

authors at interannual time scales. Berezin et al. (2012)

considered daily surface temperature and the 850-hPa

geopotential height fields in this context and identified a

robust global network pattern that reflects physical

coupling across the two fields that is stable over time. A

significance of the findings from this literature is that

there are certain locations whose climatic evolutions at

different time scales tend to be more connected to each

other, and potentially more predictable. Climate scien-

tists have traditionally analyzed the global climate data

fields using principal component analysis (PCA). At one

level, the correlation network literature can be viewed

as a similar dimension reduction method. However, it

differs in the criteria used to derive the reduced repre-

sentation and in the objective of finding a graphically

connected system that represents the spatiotemporal

associative memory and multiple variables’ coexpres-

sion rather than explaining the maximal correlation in

the full dataset. The particular method used here con-

siders correlation associated with locations in space but

also with time delays, and hence it differs in that regard

from PCA, which typically examines only the spatial

correlation structure.
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We use the spatiotemporal correlation network algo-

rithm developed and documented by (Kawale et al. 2013)

to explore the spatiotemporal relationships among the

climate variables of interest, and study the following

questions:

1) Do correlation networks that can be identified from

global SST and SLP fields at a pentad resolution

inform global precipitation extremes over the sub-

sequent month?

2) Are there regions in the world where the dipoles

identified from the SST–SLP analysis provide robust

predictability of precipitation extremes?

3) How does this predictability compare with what is

achieved using traditional principal component anal-

ysis applied to global SLP or SST data?

This paper is organized as follows. Section 2 describes

the data. The approach and methodology are presented

in section 3. The results of the 1) exploration of the global

dipole networks between SST and SLP, 2) examples of

using dipole signals for regional monthly precipitation

extremes predictability for different seasons, and 3) the

model assessments are shown and discussed in section 4.

The final section has a summary of the work.

2. Data

For our analysis we considered the NCEP–NCAR

reanalysis dataset (Kalnay et al. 1996, available online

at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.

reanalysis.html) and the CPC Merged Analysis of Pre-

cipitation (CMAP) dataset (Xie and Arkin 1997, avail-

able online at http://www.esrl.noaa.gov/psd/data/gridded/

data.cmap.html) provided by the NOAA/OAR/ESRL

Physical Sciences Division (PSD; http://www.esrl.noaa.

gov/psd). The primary variables we used are SST anom-

alies and SLP anomalies from each pentadmean from the

NCEP–NCAR reanalysis dataset and pentad mean pre-

cipitation from the CMAP dataset. The anomalies were

calculated by subtracting the corresponding pentad cli-

matology values for each grid. All variables have a grid

resolution of 2.58 latitude 3 2.58 longitude. The analysis

and modeling were done using data from 1985 to 2011.

Additionally, we assessed the skill of the model fit to the

abovementioned data in a blind prediction mode using

data from 2012 to 2014.

3. Approach

We start with a summary of the important steps of our

approach and map them to the subsections that describe

the crucial methods.

(i) Dipole identification (section 3a):

1) Construct lagged negative correlation network,

dipoles, between global SST and SLP.

2) Filter network to retain strong dipole regions.

(ii) Principal component analysis (section 3b) of fil-

tered dipole SST and dipole SLP:

1) A PCA of the strong dipole SST and SLP fields

separately.

2) Comparison of the correlations (section 3c)

with seasonal precipitation extremes of these

dipole PCs with those from PCA with the full

global fields.

(iii) Generalized linear regression for predicting occur-

rence of precipitation extremes:

1) Logistic regression using standardized dipole

SST principal components (PCs) 1–30 and di-

pole SLP PCs 1–30 as candidate predictors to

predict the occurrence of precipitation extremes

at different regions in their respective wet

seasons (section 3d).

2) For performance evaluation, the dependence

between successive forecasts of the binary precip-

itation extreme variable is considered using a boot-

strapping and leave-one-year-out cross-validation

setup such that no serially correlated samples are

selected in any cross-validation set (section 3e).

3) Model performance is assessed in terms of the

deviance statistic, error rate in the bootstrapping

and leave-one-year-out cross-validation mode,

and blind prediction using data from 2012 to

2014 (section 3f).

a. Dipole identification using spatiotemporal
correlation network

We first use the spatiotemporal correlation network al-

gorithm developed and documented by Kawale et al.

(2013) to identify the time-lagged bivariate dipole net-

works between global SST anomalies and global SLP

anomalies. We use data from 1985 to 2011 to train the

dipole networks without dividing them into different sea-

sons, because preliminary analyses showed no significant

differences in the seasonality of the dipole networks be-

tween the two variables. Thus, the analysis is a priori

limited to the annual dipoles. The algorithm is based upon

the concept of reciprocity to generate cluster pairs of lo-

cations such that two locations within the same cluster

have similar lagged correlationswith themembers of other

clusters. The identification of these cluster pairs is done

considering different time lags. The lagged correlation

networks are built upon both positive and negative lagged

correlations. The algorithm first constructs the complete

directed lag graph based on the lagged correlations and

then computes the clusters by performing a sequence of
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thresholding, k-nearest neighbor (KNN) filtering, reci-

procity, and identification of shared nearest neighbors.

Finally, cluster pairs are identified as the ones that

maximize a lagged correlation. Liess et al. (2014) demon-

strated an application of the algorithm for identifying

teleconnection patterns based on negative correlations

aroundAustralia. The constructed networks exhibit a high

degree of local clustering but a small number of long-range

connections. The details of each step of the algorithm are

presented below.

1) STEP 1: CONSTRUCT COMPLETE DIRECTED LAG

GRAPH

For each time lag l, a directed weighted graph

Gl 5 (V, El) is constructed with nodes V5 fy1, . . . , yng
representing the spatial grids of interest; El is the matrix

of directed edges in the graph; each entityEl
ij, 1# i, j# n

is the edge strength linking location yi to yj and El
ij is di-

rected; and El
ij 6¼ El

ji, since it specifies that the ith loca-

tion’s variable is leading that at the jth location by time l.

The mathematical expression of El
ij is as follows:

El
ij 5

�
m2l

u51

(xui 2 x
i
) � (xu1l

j 2 x
j
)

[(x
i
2 x

i
)T(x

i
2 x

i
) � (x

j
2 x

j
)T(x

j
2 x

j
)]1/2

, (1)

where xi is the time series at location i, m is the length of

the time series, l is the lag, and xui is the value of xi at timeu.

The graph Gl 5 (V, El) is further separated into two

groups—one positive, Gl 5 (V, El1), and the other one

negative, Gl2 5 (V, El2)—by separating El into two

groups as follows:

El1
ij 5

�
El

ij, if El
ij . 0 and El

ij .El
ji

0, otherwise
and (2)

El2
ij 5

�
El

ij, if El
ij , 0 and El

ij ,El
ji

0, otherwise
. (3)

This separation process also eliminates the edges whose

strength is not significant by setting their edge weight to

be zero. The separation deals with the polarity of the lag

correlation, which conveys different meanings: positive

lag correlation indicates the traveling of a phenomenon

from one location to another, whereas negative lag

correlation indicates a receiver of information. Together

the pair specifies a lagged dipole.

2) STEP 2: CONSTRUCT RECIPROCAL LAG GRAPH

Based on the directed positive and negative edge

matrices (El1 and El2, respectively), a KNN list for any

location node yi is constructed by sorting all edges of yi
based on edge weights and then picking the topK nodes

with edge weights from yi. The KNN list for location

node yi is denoted as Slo1, Sli1, Slo2, Sli2. Terms fSlo1,

Sli1g are from El1; fSlo2, Sli2g are from El2. For ex-

ample, Slo1 is constructed by picking all outward edges

from yi and then sorting the edges from highest to lowest

based on the edge weights in El1 and then picking the

top K edges. The superscripts ‘‘o’’ and ‘‘i’’ represent

‘‘outgoing’’ from and ‘‘incoming’’ to any location l, re-

spectively. Kawale et al. (2011) demonstrated the effect

of choosing different K values (K 5 25 vs K 5100) on

the final network. In this paper, we choose K 5 50 as

suggested by Kawale et al. (2011, 2013). The following

steps of the algorithm ensure that the final dipole net-

work is less sensitive to the choice of K.

The KNN list fSlo1, Sli1, Slo2, Sli2g is the foundation
for reciprocal lag graphs or matrices. The concept of

directed reciprocity (Kawale et al. 2011, 2013) helps

remove spurious correlations while considering the ef-

fect of spatial autocorrelation on the interconnections:

graph nodes a and b are said to be connected by the

directed (time lagged) reciprocal edge a / b if and only

if a lies in b’s in-KNN list and b appears in a’s out-KNN

list. Based on this directed reciprocity concept, the re-

ciprocal graph Gl 5 (V, El) is constructed as follows:

Er
ij 5

8><
>:

1, if y
i
2 Sli1

j and y
j
2 Slo1

i

21, if y
i
2 Sli2

j and y
j
2 Slo2

i

0, otherwise

, (4)

whereEr
ij is the entity ofE

r. Note that only one of the three

conditions can be satisfied for any location node.

3) STEP 3: CLUSTERING THE GRAPH NODES

The shared reciprocal nearest neighbor (SRNN)

(Kawale et al. 2011) is used to cluster the nodes. It con-

structs SRNNgraphs ormatrices fGso1, Gsi1, Gso2, Gsi2g
by computing the edge weights between two nodes

based on how many edges they have in common. For

example, Gso1 5 (V, Eso1) is constructed by consider-

ing the positive (with edge weight 1) outgoing edges in

Er. Mathematically,

Eso1
ij 5 jfy

k
:"k,Er

ik 5 1 and Er
jk 5 1gj ,

Esi1
ij 5 jfy

k
:"k,Er

ki 5 1 and Er
kj 5 1gj ,

Eso2
ij 5 jfy

k
:"k,Er

ik 521 and Er
jk 521gj, and

Esi2
ij 5 jfy

k
:"k,Er

ki 521 and Er
kj 521gj . (5)

The clustering is based upon these four SRNN graphs

fGso1, Gsi1, Gso2, Gsi2g. The idea is to find cluster pairs

A andB such that the locations inA have a lot of outgoing

edges to locations in B in the graph Gso and locations in B

should have a lot of incoming edges from A in the graph
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Gsi (Kawale et al. 2013). The SRNN ensures that two lo-

cations within one end of a dipole not only share high

positive correlations due to their spatial autocorrelation

but also share high negative correlationswith themembers

of the other end of the dipole. This process is based upon

the edge densities fDso1, Dsi1, Dso2, Dsi2g for the graphs

Gso and Gsi, and each of the positive and negative corre-

lations uses a local density attractor algorithm (Kawale

et al. 2011). For example, the edge density for negative

correlations is computed by taking the sum of the edge

weights at each node in the graph as follows:

"
i2VD

so2
i 5"

j2V �
N

j51

Eso2
ij and

"
i2VD

si2
i 5"

j2V �
N

j51

Esi2
ij . (6)

The first step is to find clusters based on densities

fDso1, Dsi1, Dso2, Dsi2g in each of the two graphsGso and

Gsi using the local attractor algorithm, which iteratively

attaches nodes in the graph to the local attractors, which

are determined as points with the highest density in the

neighborhood of locations; then the second step is to find

the links across the clusters that have reciprocal edges.

Note that the algorithm does allow a fixed edge threshold

to be forced into the construction of edges. However, a

very low edge threshold will not generate too many edges

either, as the algorithm is built upon reciprocity and clus-

tering that consider both inter- and intraconnections of a

dipole. The spurious edges are eliminated through the it-

erations, and the final clusters that are considered to forma

dipole are entitled with strong connections with the other

end of a dipole. We use 20.01 to eliminate very small

floating-point numbers.Ahigher thresholdwill yield fewer

dipoles. A more detailed illustration of the steps from

merging the shared nearest neighbors graphs to form the

shared reciprocal nearest neighbors can be found in

Kawale et al. (2011, 2013).

The algorithm can identify both positive and negative

lagged correlations. We only focus on the negative lag-

ged correlation, which specifies a lagged dipole (Kawale

et al. 2013).

We constructed the time-lagged dipole networks be-

tween global SST and SLP, with SST leading SLP for up to

30 days using the pentad average data. The dipole net-

works identify strong linked regions such that the leading

SST signals (areas in red in Fig. 1) are sent out to the re-

ceiving SLP areas (in blue), and the regions are linked by

colored lines indicating their dipole strength, that is, the

correlation between the two identified clusters.

The spatiotemporal networks constructed at dif-

ferent lags are further cleaned by retaining only the

dipole regions whose dipole strength exceeds the 80th

percentile of dipole strength at each time lag. This

helps to identify the primary signals across the globe

by eliminating weak to moderate dipoles and elimi-

nating random connections. Since the cleaning is done

at each time lag, the process also allows for the iden-

tification of the dipoles’ persistency with time.

b. Principal component analysis

With the aim of understanding the leading modes of

the strong dipole patterns and their relationship to

global precipitation extremes, a PCA of the strong di-

pole [i.e., identified dipole regions between SSTt2l and

SLPt fields, with l 5 5, 10 . . . , 30 days (5 days corre-

sponding to 1 pentad data point)], whose dipole strength

exceeds the 80th percentile, was used. This criterion was

chosen to select an adequate sample size while retaining

potentially important features; 427 and 452 grid boxes

(2.58 3 2.58) were selected for the SLP and SST regions,

respectively. The PCA was done separately on the

strong dipole SST regions and strong dipole SLP re-

gions, to obtain two sets of principal components that

extract the leading patterns of the interconnected

1) slowly changing boundary conditions (SST) and

2) responses of atmospheric circulation (SLP).

The pentad SST and SLP anomaly fields for the selected

strong dipole areas contain a total of P spatial grids. Here,

P is the number of grids retained after the selection pro-

cess. Let Z be a N3P data matrix, where N is the total

number of pentad data points from 1985 to 2011, so

N5 733 275 1971. For each single spatial field, each

column is standardized (columnmean subtracted and then

dividing by the column standard deviation). Since Z has

more columns than rows, a singular value decomposition is

used to extract the principal components. The PCA of Z is

then a factorization of the form

Z5USWT , (7)

where UTU5 I and WTW5 I. The columns of U are or-

thonormal eigenvectors of ZZT, the columns of W are

orthonormal eigenvectors of dimensions of ZTZ, and S

is a diagonal matrix containing the square roots of

eigenvalues from U orW in descending order, and the

dimensions of U, S, and WT are N3N, N3P, and

P3P, respectively. The analysis partitions a field into

orthogonal (independent) modes. The eigenvalues pro-

vide a measure of the variance explained by each mode.

The temporal and spatial variabilities of the field are iso-

lated and are represented by the columns of U and W,

respectively. From this point, we will use dipole SST/SLP

PCs to refer to the PCs extracted from pentad SST and

SLP anomaly fields of the selected strong dipole regions

that exceed the 80th percentile of the dipole strength. The
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PCA is also done on global SST and SLP anomaly fields

(808S–808N, all longitudes; excluding the North and South

Poles), to extract the leading modes (referred to as global

SST/SLP PCs) in order to provide a comparison to the

strong dipole SST/SLP PCs in terms of their correlations

with global precipitation extremes as follows.

c. Correlation maps with precipitation extremes

We constructed the time-lagged correlation maps be-

tween the climate variables’ PCs (i.e., SST and SLP) with

the binary global precipitation extremes defined as fol-

lows [Eq. (8)]. The first three PCs from the dipole SST

and dipole SLP fields were compared with their coun-

terparts from the global SST and SLP fields. The first

three PCs were selected because they explained much of

the total variance of their fields: 32% and 29% of dipole

SLP and SST fields, and 21% and 20% of global SLP and

SST fields. A binary precipitation extremes indicator

(PE) was calculated for each 30-day period over the en-

tire globe for each season, as follows:

PES
i,t 5

(
0, if pS

i,t , pS
i *

1, if pS
i,t $ pS

i *
, (8)

where PES
i,t is the binary indicator for precipitation ex-

treme over the subsequent 30 days, at location (grid) i,

time step t, in season S 5 1, 2, 3, and 4, corresponding to

the seasons 1) December–February (DJF), 2) March–

May (MAM), 3) June–August (JJA), and 4) September–

Nov (SON); pS
i,t is the sum of the pentad mean pre-

cipitation over the subsequent 30 days from CMAP, at

location (grid) i, time step t, in season S; and pS
i * is the

90% percentile of all subsequent 30-day precipitation

totals at location i, in season S, over the entire 27 years of

data (1985–2011). Note that there is an overlapping pe-

riod of the pentad data between any two consecutive PE,

FIG. 1. Spatiotemporal dipoles between SST and SLP with different time lags, from 5 to 30 days. (a)–(f) The red regions represent

outgoing SST signals, while the blue are receiving SLP regions. The edges link the centers of clusters identified as connected. The average

correlation between the two clusters is shown in blue as the edge strength, and data are pentad normalized anomalies. (g)–(l)

Selected strong dipole regions for different lags. The threshold is chosen as the 80% percentile of dipole strength. Persistence of

strong dipole regions is observed and concentrated in the tropical region.
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and the resulting serial correlation of PE is considered in

the model fitting setup in section 3e by using boot-

strapping in the cross-validation sampling process.

The point biserial correlation (Kornbrot 2014) maps

are constructed 1) between the dipole SST/SLP PCs and

the binary global PE and 2) between the global SST/SLP

PCs and the binary global PE, separately, with the SST’s

and SLP’s PCs 5 days (1 pentad data point) ahead of the

30-day PE. The point biserial correlation is the value of

Pearson’s product moment correlation when one of the

variables is dichotomous, taking on only two possible

values coded 0 and 1, and the other variable is metric

(Kornbrot 2014). It is defined as follows:

g(PC
j
, PE

i
)5

PC
PEi51

j 2PC
PEi50

j

s
PCj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

PEi51
N

PEi50

N
PEi

(N
PEi

2 1)

vuut ,

(9)

where PEi is the time series of the binary variable de-

fined in Eq. (8) for 30-day precipitation extremes at

location i; PCj is the jth PCof either dipole SST/SLP fields

or global SST/SLP fields, 5 days (1 pentad data point)

ahead of PEi; PC
PEi51
j and PCPEi50

j are the means of the

jth PCs coded 0 and 1 by PEi, respectively; NPEi51 and

NPEi50 are the number of observations coded by PEi 5 1

and PEi 5 0; NPEi
is the total number of observations,

NPEi51 1NPEi50; and sPCj
is the standard deviation of the

jth PC. The significance test for the point biserial cor-

relation is the same as that for the Pearson correlation.

More detailed information can be found in Kornbrot

(2014). Note that the effective sample size—that is, the

degree of freedom—for the significance test is adjusted

with consideration for the sequential dependency of the

PCs, with a reduction to M[(12a1)/(11a1)] (Mitchell

et al. 1966), whereM is the total number of samples and

a1 is the lag-1 autocorrelation coefficient.

All correlationmaps are constructed excluding theNorth

and South Poles—that is, 808S – 808N, all longitudes. The

purpose of constructing the two sets of correlation maps is

to compare their spatial correlations (primary dipole SST/

SLP PCs and global SST/SLP PCs, respectively) with the

binary global precipitation extremes and see whether the

dipole SST/SLP PCs correlate better or worse with global

precipitation extremes compared to the global SST/SLP

PCs, especially for certain regions of interest.

d. LPCR—Predictability of precipitation extremes

The first 30 PCs extracted from strong dipole SST and

SLP fields—that is, dipole SST PCs 1–30 or dipole SLP

PCs 1–30—are used as candidate predictors for global

PE over the subsequent month [Eq. (8)], with a lead

time of 5 days (1 pentad point), that is, PCSLP
t21 and PCSST

t21

for PEt for the next 30 days. Many methods have been

proposed to address the question of component selec-

tion (Preisendorfer and Mobley 1988; Jolliffe 2002;

Jackson 2005). These methods may be categorized as

either heuristic or statistical approaches (Jackson 1993).

Our approach is heuristic, based on a combination of the

graphical scree test and the assessment of the proportion

of the total variance explained by the principal compo-

nents retained in the model (e.g., Jackson 1993). The

first 30 PCs of the strong dipole SST and SLP fields ex-

plain 73% and 81% of the total variance of the two

fields, respectively. Taking seasonality of precipitation

into consideration, the logistic principal component re-

gression (LPCR) is applied at different geographical

locations for different seasons (i.e., DJF, MAM, JJA,

and SON) to demonstrate the predictability of global

precipitation extreme occurrence over the subsequent

month using the extracted dipole SST/SLP PCs.

For each season S, and each location i, we fit a logistic

regression model (Bishop 2006), with standardized PC

candidates (subtracted by their means and divided by their

standard deviation). It ismathematically defined as follows:

logit(ySi,t)5 ln
ySi,t

12 ySi,t
5XS

t21b
S
i and

ySi,t 5Pr(PES
i,t 5 1), (10)

where ySi,t is the probability of the next 30 days’ pre-

cipitation total exceeding the 90% percentile of the

season’s 30-day precipitation total at location i at time

step t; XS
t21 is a predictor matrix whose first column is the

unit vector and subsequent vectors represent all the

candidate predictors—that is, the standardized dipole

SST PCs 1–30 and SLP PCs 1–30—for the corresponding

S leading ySi,t by 5 days. Term XS
t21 is the same for all the

locations at which forecasts are made. The vector bS
i

contains the intercept and regression coefficients for all

predictors estimated using maximum likelihood. Note

that we first fit the two sets of LPCR models with ySt
covering the entire globe (808S–808N, all longitudes) for

different seasons (i.e., DJF, MAM, JJA, and SON)

separately with 1) XS
t21 being the first 30 PCs of selected

dipole SST fields and 2) XS
t21 being the first 30 PCs of the

selected dipole SLP fields. This step assists to select the

regions of interest that have strong association with di-

pole SST/SLP PCs (significant LPCR coefficients) and

prescreen the predictors for the selected regions for each

season. Only statistically significant (p value , 0.05, at

the 95% significance level) predictors for the target

seasons and regions of interest are retained in the final

model: ySt only covering the region of interest for each

season and XS
t21 only containing the preselected subset

of the first 30 PCs of the selected dipole SST and SLP
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fields. Both steps estimate the associated bS
i using the

maximum likelihood criterion.

e. Bootstrapping and cross validation

Since forecasts aremade for every 30-day period using

predictor data lagged by 5 days, forecast performance

evaluation periods are overlapping and may overly

emphasize the same information, since successive values

of PEt will be potentially correlated. The effect of serial

correlation of PE is considered in the setup of fitting

LPCR to include bootstrapping (Efron 1982) to gener-

ate nonserially correlated samples, together with leave-

one-year-out cross validation. The bootstrapping and

cross-validation process is described as follows:

Let year k move from 1985 to 2011, and for each S of

interest,

1) Leave 1 year out: Choose 26 years from 1985 to 2011

excluding year k, which will be used to test the

performance of the model built from these 26 years.

2) Draw nonoverlapping bootstrap samples for each

year selected:

(i) Randomly draw a starting position SP in index 1:

6 within each year and within each season. This

is a pentad index.

(ii) For that year and season select a paired sample

of fX, PEg values for selected grids using the

pentad indices f SP, SP 1 6, SP 1 12g to assure

that there is no overlapping 30-day period in the

model fitting or validation set.

3) Repeat the previous two steps 100 times to generate

100 bootstrap samples that are designed so that there

is no serial correlation due to overlapping of the data

used in model building or validation.

LPCR models are fit for each S with this boot-

strapping and cross-validation setup, and the statistics

associated with the model fitting are analyzed cross all

27 3 100 samples.

f. Performance assessment through deviance, error
rate, and blind prediction

We use deviance and error rate to evaluate the

goodness of fit of the fitted logistic models with the

cross-validation and bootstrapping sampling tech-

nique described above. In addition, the entire ap-

proach is assessed with blind prediction using data

from 2012 to 2014 (Michaelsen 1987; Elsner and

Schmertmann 1994). Deviance is used widely as a

measurement of the lack of fit to the data in a logistic

regression model. Here, deviance is calculated

within the bootstrapping and leave-one-year-out

cross-validation process. We have 27 years of data

from 1985 to 2011. Moving sequentially from 1985 to

2011, 100 models are fit using nonserially correlated

samples without the data of that year and then used

to estimate the observations for that year given that

year’s predictors. The average deviance of S’s

models against the null model, DS, is then computed

using these estimated values. The deviance is aver-

aged across all the selected spatial grids and models

fitted using bootstrapped samples with leave-one-

year-out cross validation. The key equations are

provided as follows:

DS 5

2�
NS

i51
�
Nu

u51

23 ln

"
L(b̂S,u

i )

LS,u,i
null

#

N
S
3N

u

5

23 �
NS

i51
�
Nu

u51

[‘S,u,inull 2 ‘(b̂S,u
i )]

N
S
3N

u

,

L(b̂S,u
i )5P

N
S,u
T

t51

(ŷS,ui,t )
obs

S,u
i,t (12 ŷS,ui,t )

(12obs
S,u
i,t ) ,

LS,u,i
null 5P

N
S,u
T

t51

(0:1)obs
S,u
i,t (0:9)(12obs

S,u
i,t ) ,

‘(b̂S,u
i )5 �

N
S,u
T

t51

[obsS,ui,t 3 ln(ŷS,ui,t )1 (12 obsS,ui,t )3 ln(12 ŷS,ui,t )], and

‘S,u,inull 5 �
N

S,u
T

t51

[obsS,ui,t 3 ln(0:1)1 (12 obsS,ui,t )3 ln(0:9)] , (11)
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where L(b̂S,u
i ) is the likelihood of the fitted model

u5 1, . . . , Nu for location i5 1, . . . , NS, in S; LS,u
null is the

likelihood of the null model; ‘(b̂S,u
i ) and ‘S,unull are their

corresponding log likelihood. Term Nu 5 2700 is the

total number of models for each season, NS is the total

spatial grids selected for S, ŷS,ui,t is the estimated prob-

ability of extreme precipitation over the subsequent

30 days at location i in S for sample t5 1, . . . , NS,u
T ,NS,u

T

is the sample size of the testing set (the observations of

the year that were left out of the model fitting) for S

and model u, obsS,ui,t is the corresponding observation

of precipitation extreme in the testing set—that is,

obsS,ui,t 5 1 if the subsequent 30 days’ precipitation total

exceeds the seasonal 90% percentile threshold for a

30-day rainfall amount. The average difference of

deviance against the null model (no predictor) is as-

sessed on a chi-square distribution x2
kS

with kS degree

of freedom (Hosmer and Lemeshow 2004; Seager

et al. 2007). Here kS is the number of predictors (Table

1) for S plus 1.

We also assessed the error rates in the leave-one-year-

out cross-validation process to assist in the evaluation of

the predictability of precipitation extremes with the

LPCR for each season. The error rate is calculated as

the proportion of predictions in which the model assigns

Pr(PES
i,t 5 1). 0. 5 to 0 observations (PES

i,t 5 0) or

Pr(PES
i,t 5 1), 0. 5 to 1 observations (PES

i,t 5 1). Error

rates assist the measurement of goodness of fit

with a comparison to the baseline in which the null

model predicts 1 with Pr(PES
i,t 5 1)null 5 0. 1 and 0 with

Pr(PES
i,t 5 0)null 5 0. 9, as the extreme precipitation is

defined as events exceeding the seasonal 90% percen-

tile; the corresponding baseline error rate here is

12 0:13 0:12 0:93 0:95 18%.

The model fit is also tested with the most recent

data (2012–14) with a blind prediction process. The

error rates of the blind prediction are tabulated in

Tables 2e–f) and compared to those for the training

period (Tables 2a–d).

4. Results

a. Time-lagged dipole network between SST and SLP

The global dipole networks between the SST and SLP

fields with different time lags (SST leading SLP) are

shown in Figs. 1a–f). The red regions in Figs. 1a–f rep-

resent outgoing SST signals, while the blue areas are

receiving SLP regions. The edges link the centers of

clusters identified as connected. The average correlation

between the connected clusters is shown in blue as the

edge strength, that is, dipole strength. The key findings

are as follows:

1) The dipole networks are identified are persistent

through 30 days, indicating persistent informative

signals—that is, a strong spatiotemporal relationship

between linked dipole SST clusters and dipole SLP

clusters. As expected from the construction, this is a

sparse network.

2) The persistent outgoing/leading SST signals are

concentrated in the tropical regions, consistent with

the knowledge that most of the climate signals are

from the tropical ocean, and are possibly the domi-

nant drivers of climate variability at this time scale,

throughout the year. This suggests that coupled

ocean–atmosphere variability and the time-lagged

responses of atmosphere to the variance of the ocean

play a dominant role in the tropics on the 30-day time

scale we presented here.

3) Persistent outgoing SST dipole areas are in (i) the

tropical Atlantic ocean, consistent with the region Lu

et al. (2013) identified as the major tropical moisture

sources for western France precipitation extremes

and Nakamura et al. (2013) identified as important

for Ohio River floods; (ii) the equatorial Pacific

Ocean at the Niño-3.4 region, which is well identified

as classifying ENSO episodes; and (iii) the west

equatorial Pacific at the Mariana Trench, east to

the Philippines and Indonesia.

TABLE 1. Summary of the selected location for LPCR models for different seasons and the chosen informative predictors with their

estimated coefficients averaged over the selected grids (irregular areas from the location below due to selection process) and over the

bootstrapped cross validation process.

Season Location Predictors and average coefficients x2
kS

test p values

DJF North Africa SLP PC1 (21.14); ,1025

208N – 458N, 58W–208E SLP PC2 (10.92)

MAM Central America SLP PC1 (21.33); SLP PC2 (11.48); ,1025

08–208N, 908–408W SLP PC3 (21.42); SST PC4 (11.13)

JJA Central Africa SLP PC1 (11.33); SLP PC2 (21.45); ,1025

158S–108N, 108–508E SLP PC3 (11.16); SST PC4 (22.28)

SON East Brazil SLP PC1(21.37); SLP PC2 (11.34); SLP PC17 (21.31); ,1025

158–58S, 608–458W SST PC1 (11.94); SST PC3 (11.59)
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4) The receiving SLP regions are also quite persis-

tent for different lags. They include northern

South America, the tropical Indian Ocean, East

Africa, and northern Australia and its nearby

Indian Ocean region.

We eliminated weak to moderate signals that are less

than the 80th percentile of the dipole strength at each

time lag. The resulting strong dipole network is shown in

Figs. 1g–l. The strong dipole regions (blue and red areas

in Figs. 1g–l) remain almost the same from the 5- to the

30-day lag, consistent with what we observed from

Figs. 1a–f.

b. Correlation maps with precipitation extremes

PCA as described in section 3b is used to extract the

leading patterns of the interconnected 1) slowly chang-

ing boundary conditions (SST) and 2) responses of at-

mospheric circulation (SLP) from the selected strong

dipole network to generate dipole SST PCs and dipole

SLP PCs. The same analysis is done on the global SST

and SLP fields to generate global SST PCs and global

SLP PCs.

We then constructed time-lagged correlation maps

between the primary climate variables’ PCs (i.e., SST

and SLP) with the binary global PE, defined above in

Eq. (8): 1) dipole SLP PCs 1–3 versus PE (Figs. 2a–c);

2) global SLP PCs 1–3 versus PE (Figs. 2d–f); 3) di-

pole SST PCs 1–3 versus PE (Figs. 2g–i); and 4) global

SST PCs 1–3 versus PE (Figs. 2j–l). All the correla-

tion maps are constructed with the SST and SLP PCs

5 days (1 pentad data point) ahead of PE. From the

correlation maps with the first three PCs of each of

the field in Fig. 2, we can see that the strong dipole

PCs appear to be more informative in terms of this

metric and we subsequently use them for prediction

with the logistic regression. Though we only provide

the comparison of the first three PCs for illustration,

the first 30 PCs are used as candidate predictors in the

LPCR model described in section 3d, and a corre-

sponding comparison of forecast skill using PCs of

both global SST/SLP fields and dipole SST/SLP are

also pursued to examine the merits of using dipole

predictors for prediction.

Comparing Figs. 2a–c to Figs. 2d–f, the patterns are

similar between the two sets for strong correlations in

themaps with dipole fields. Both the dipole SLPPCs and

global SLP PCs show high correlations with central

Africa, Central America, Brazil, India, and southeastern

China. The correlation strengths associated with these

TABLE 2. Summary of prediction accuracy probabilities for different seasons: (a) DJF, (b)MAM, (c) JJA, and (d) SON. (e)–(h) Summary

of the blind prediction’s performance (error rates and its 95% uncertainty intervals) using data from 2012 to 2014.

(a) DJF

Observations

(b) MAM

Observations

0 1 0 1

Predictions 1 0.007a[0, 0.003] 0.022b Predictions 1 0.02a[.003, 0.1] 0.036b

0 0.893b 0.078a[.067, 0.08] 0 0.88b 0.064a[.048, 0.07]

(c) JJA

Observations

(d) SON

Observations

0 1 0 1

Predictions 1 0.017a[.002, 0.07] 0.03b Predictions 1 0.002a[.003, 0.1] 0.029b

0 0.88b 0.07a[.053, 0.077] 0 0.90b 0.071a[.054, 0.076]

Observations

Baseline 0 1

Predictions 1 0.09a 0.01b

0 0.81b 0.09a

(e) DJF

Observations

(f) MAM

Observations

0 1 0 1

Error rates 0.006 [0, 0.041] 0.1 [.096, 0.1] Error rates 0.04 [.003, 0.17] 0.1 [.09, 0.16]

(g) JJA

Observations

(h) SON

Observations

0 1 0 1

Error rates 0.167 [.042, 0.4] 0.069 [.050, 0.08] Error rates 0.027 [.002, 0.14] 0.080 [.070, 0.082]

a Mean error rate for each scenario: the sum of the entities in each season is the error rate, and the 95% uncertainty interval is in the

bracket. Entities larger than the baseline table’s entities indicate worse than the null model.
b Accuracy rate: the sum of the entities in each season is the accurate prediction rate. Entities larger than the baseline table’s entities

indicate better than the null model.

1022 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:28 PM UTC



identified regions are higher in the dipole correlation

maps, indicating a potentially better prediction skill than

for global SLP PCs. The North Africa, Indonesia, and

Thailand regions are significantly correlated to the di-

pole SLP PCs but not to the global SLP PCs. The

strengths of the correlations are strong for the first three

dipole SLP PCs, while they degrade rapidly with the

global SLP PCs. Similar results are observed in Figs. 2g–l

for the SST PCs. The dipole SST PC correlation maps

(Figs. 2g–i) share some regions with the global SST

PCs maps (Figs. 2j–l), and they have overall higher

correlations with precipitation extremes. While both

Fig. 2g and Fig. 2j indicate correlations with extreme

precipitation in central Africa, Central America, North

America, Indonesia and Thailand, and China, the

dipole SST PC1 shows much stronger correlation

with these regions, especially central Africa, Central

America, and Brazil. These are subsequently chosen

as examples for prediction with logistic regression for

different seasons—specifically, we consider the following

examples: central Africa (JJA), Central America (MAM),

and Brazil (SON).

c. Seasonal predictability of precipitation extremes

We fit the LPCRmodels for different seasons with the

first 30 PCs of the selected dipole SST and dipole SLP

fields as candidate predictors. The predictors included in

the final models are summarized in Table 1. The areas of

extreme precipitation to predict as examples are chosen

based on an initial exploratory analysis (described in

section 3d) of the predictability of precipitation ex-

tremes over the subsequent month using the candidate

PC predictors. For each grid point (2.58 3 2.58 grid,

10 512 grid boxes in total), in the exploratory analysis, an

FIG. 2. (a)–(c) Correlationmaps between 5-day-ahead dipole SLP regions’ PCs 1–3 and global PE over the subsequent month; the three

PCs explain 16%, 9%, and 7% of the total variance, respectively. (d)–(f) Correlation maps between 5-day-ahead global SLP regions’

PCs 1–3 and global PEover the subsequentmonth; the three PCs explain 9%, 7%, and 5%of the total variance, respectively. (g)–(i) Correlation

maps between 5-day-ahead dipole SST regions’ PCs 1–3 and global PE over the subsequent month; the three PCs explain 12%, 10%, and

7% of the total variance, respectively. (j)–(l) Correlation maps between 5-day-ahead global SST regions’ PCs 1–3 and global PE over the

subsequent month; the three PCs explain 8%, 7%, and 5% of the total variance, respectively. For the 95% significance level (p value ,
0.05), the effect of the highest serial correlations of SST (0.83) and SLP (0.5) on the effective degree of freedom of the significance test is

considered; the effective degree of freedom for SST and SLP are 189 and 660, respectively. The significance level of SST and SLP are 0.119

and 0.064, respectively.
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LPCR model is fit to each candidate predictor set. For

each of these locations, we identify the wet season. For

each wet season, we chose the areas that have significant

coefficients (at the 95% level) for the leading predictors,

and then fit an LPCR model using the predictors iden-

tified (Table 1) from the global exploratory analysis.

The chosen areas might be irregular due to the selection

process; that is, the chosen grids might be subset areas

from the candidate rectangular regions in Table 1. The

results for different seasons for the example locations

are shown next.

1) DJF

The selected region for this season is the North

Africa–Mediterranean area (208–458N, 58W– 208E). The
total number of selected grid boxes is 53, a subset area

from the abovementioned box. DJF is the wet season for

the area according to the average monthly rainfall

(Fig. 3a) based on data from 1900 to 2009. The statisti-

cally significant predictors for the area are the stan-

dardized dipole SLP PC1 and PC2. Some dipole SST

PCs also show their strong association with the area’s

precipitation extremes. However, the likelihood-ratio

test showed that the model fit using dipole SLP PC1 and

PC2 is the best. The dipole SLP PC1 and PC2 explain

16%and 9%of the total variance of the SLP dipole field,

respectively. The estimated coefficients associated with

the two PCs have opposite signs, PC1 (21.14) and PC2

(10.92), indicating their changes have the opposite ef-

fect on the odds ratio of the probability of having pre-

cipitation extremes over the subsequent month. The

fitted model passed the x2
kS

test with p value , 1025

(Table 1) against the null model in the bootstrapped

cross-validation process. The average error rate of the

prediction in this season is 8.4%, less than half of the

baseline error rate (18%) of the null model. Table 2a

tabulated the prediction accuracy/errors of the LPCR

model with bootstrapped cross validation, with the

sum of the error entities as the error rate of the sea-

son—that is, prediction 5 1 with observation 5 0 and

prediction 5 0 with observation 5 1, the sum of ac-

curacy entities as the prediction rate of precipitation

extremes [defined in Eq. (8)] over the subsequent

month in the season. The accurate predictions are both

larger than the baseline probability of the null model,

that is, the fitted LPCR achieves 0.89 (0.022) against a

baseline of 0.81 (0.01). The wrong predictions are

both smaller than the baseline probability of the null

model; that is, the fitted LPCR achieves 0.007 (0.078)

against 0.09 (0.09).

FIG. 3. Average monthly rainfall (1900–2009) of the selected regions for different seasons: (a) DJF, North Africa

(208–458N, 58W–208E); (b) MAM, Central America (08–208N, 908–408W); (c) JJA, central Africa (158S–108N, 108–
508E); and (d) SON, east Brazil (158–58S, 608–458W); the information is from the World Bank Group website

(http://sdwebx.worldbank.org/climateportal/). The selected seasons’ rainfall amounts for the four regions are

plotted in black.

1024 JOURNAL OF CL IMATE VOLUME 29

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:28 PM UTC

http://sdwebx.worldbank.org/climateportal/


2) MAM

ACentral American region (30 grid boxes out of the

box 08–208N, 908–408W) is selected to assess the pre-

dictability of using dipole signals for precipitation

extremes over the subsequent 30 days in MAM, which

corresponds to the beginning and peak of the wet

season for the region (Fig. 3b). Four predictors are

included in the final LPCRmodel: dipole SLP PCs 1–3

and dipole SST PC4. The coefficients of dipole SLP

PCs 1–3 have different signs—PC1 (21.33), PC2

(11.48), and PC3 (21.42)—as summarized in Table 1.

The first three PCs of the dipole SLP have strong year-

round correlations (Figs. 2a–c) with the precipitation

extremes in Central America. The signs of the co-

efficients for PC1, PC2, and PC3 are all consistent with

their year-around correlations (Figs. 2a–c). The fitted

model passed the test with p value , 1025 (Table 1)

against the null model in the cross-validation process.

The average error rate of the prediction in this season

is 8.3%, again much better than the null model’s error

rate. Table 2b tabulated the prediction accuracy/errors of

the LPCR model for precipitation extremes over the

subsequentmonth inMAM. The accurate predictions are

both larger than the baseline probability of the null

model; that is, the fitted LPCR achieves 0.88 (0.036)

against a baseline of 0.81 (0.01). The wrong predictions

are both smaller than the baseline probability of the null

model; that is, the fitted LPCR achieves 0.02 (0.064)

against 0.09 (0.09).

3) JJA

This is the wet season for central Africa (158S–108N,

108–508E). The total number of selected grid boxes is

52 from the abovementioned box. Four predictors are

included in the final LPCRmodel: dipole SLP PCs 1–3

and dipole SST PC4 (Table 1). Table 1 summarizes the

estimated coefficients for the four predictors of the

fitted LPCR models, averaged over the selected grids

and over the leave-one-year-out cross validation. The

estimated coefficients are all statistically significant

(p value, 0.05). The coefficients of dipole SLP PCs 1–3

have alternating signs—PC1 (11.33), PC2 (21.45), and

PC3 (11.16)—which is consistent with their year-round

spatial correlation, shown in Figs. 2a–c. The fitted model

passed the test with p value, 1025 (Table 1) against the

null model in the cross-validation process. The average

error rate of the prediction in this season is 8.7%

(baseline error rate is 18%). Table 2c tabulated the

prediction accuracy/errors of the LPCR model for

precipitation extremes over the subsequent month for

this season. The probability of the fitted model telling

extreme when the observation is nonextreme is 0.017,

which is better than the null model’s 0.09, while the

probability of the fittedmodel telling nonextremewhen

the observation is actually extreme is 0.07, better than

the baseline of the nullmodel, 0.09. The probability of the

fitted model telling extreme—consistent with the obser-

vation, that is, 0.03—is twice better than the null model’s

baseline, 0.01. Finally, the model is better than the null

model in terms of predicting nonextremes as having a

probability of 0.88 and a baseline of 0.81.

4) SON

SON is the beginning of the wet season in east Brazil

(158–58S, 608–458W). The total number of selected grid

boxes is 106; their precipitation extremes are selected as

predictands for the model. Five predictors are included

in the final LPCR model: dipole SLP PCs 1, 2, and 17

and dipole SST PCs 1 and 3 (Table 1). Table 1 summa-

rizes the estimated coefficients for the predictors in the

fitted LPCR models, averaged over the selected grids

and over the bootstrapped leave-one-year-out cross

validation. The fitted model passed the test with a

p value , 1025 (Table 1) against the null model in the

cross-validation process. The coefficients of dipole SLP

PC1 and PC2 have opposite signs, PC1 (21.37) and PC2

(11.34), which is the same as their year-round spatial

correlation, shown in Figs. 2a,b. The opposite signs in-

dicate their changes have the opposite effect on the odds

ratio of the probability of having precipitation extremes

over the subsequent month. The coefficients of dipole

SST PC1 and PC3 also have the same signs, PC1 (11.94)

and PC3 (11.59), which is different from their year-

round spatial correlation, shown in Figs. 2g,i. The av-

erage error rate of the prediction in this season is 7.3%,

less than half of the baseline error rate, 18%. Table 2d

tabulates the prediction accuracy/errors of the LPCR

model for precipitation extremes over the subsequent

month for this season. The predictions are superior to

the baseline probability of the null model; that is, the

fitted LPCR achieves 0.9 (0.029) against a baseline of

0.81 (0.01). The probability of the fitted model telling

extreme when the observation is nonextreme is 0.002,

better than the null model’s 0.09, while the probability

of the fitted model telling nonextreme when the obser-

vation is actually extreme is 0.071, less than the baseline

of the null model, 0.09.

d. Blind prediction

In addition to the cross-validated and bootstrap

verifications, we felt that it was important to see

whether the relationships were robust in a completely

out of sample fitting and prediction setting. Given the

short dataset, a limited experiment was performed.

We used each of themodels fitted above to the 1985–2011
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SST, SLP, and precipitation data and checked the fore-

cast skill for the same seasons and locations as above for

data from 2012 to 2014, which was not used in model

fitting. The pentad dipole SST/SLP fields for 2012–14 are

projected to the orthogonal PC bases derived from 1985

to 2011. The selected predictors for each region and

season presented are used in the models presented in

section 4c and Table 1 to predict the 30-day extreme

precipitation. By comparing with the observations from

2012 to 2014, the error rates are summarized in Tables

2e–h.We note that the patterns in forecast skill identified

originally are similar to those noted under this blind

prediction setting.

5. Summary and discussion

This paper presents a novel application of the corre-

lation network extraction algorithm to the identification

of stable, correlated SST and SLP patterns using pentad

data and considering persistent correlation up to at least

30 days. The motivation was to see whether the identi-

fication of such a pattern could provide useful forecasts

of the probability of extreme rainfall at any region in the

world over the ensuing 30-day period. Such a forecast

would be potentially very useful for flood preparation

at a lead time that is well beyond the lead time of me-

teorological forecasts, and it corresponds to a gap in

predictability between QPF and seasonal to interannual

climate prediction.

We focused on the identification of dipoles between

SST and SLP with the idea that the warm SSTs that in-

dicate strong, persistent convection would then link to

SLPs where there is a strong, persistent low pressure,

which increases the chance of extreme precipitation.

Tropical SST and SLP pairs were identified where there

were strong regional dipoles, as defined by a contiguous

spatial cluster of SST being negatively correlated with a

contiguous spatial cluster of SLP.An arbitrary threshold

corresponding to the 80th percentile of global dipole

strength across clusters was used to prune the network,

and then the principal components of the SST and of the

SLP fields associated with the subset of retained dipole

grids were used as potential predictors of 30-day pre-

cipitation that exceeds the 90th percentile of the clima-

tological seasonal 30-day precipitation totals. A number

of regions across the world were identified where there

may be potential skill in forecasting 30-day extreme

precipitation, defined as precipitation in excess of the

90th percentile of that 30-day period. Of these, one ex-

ample was selected for each season, and its forecasting

skill was assessed under leave-one-year-out cross valida-

tion. The misclassification rate in these cross-validated

forecasts ranged from 7.3% to 8.7% (compared to the

baseline error rate, 18%, of the null model) in the ex-

ample, and each of the models was found to be different

from the null model at a p value less than 1025 based on

the chi-square test applied to the model deviance under

cross validation.

A comparison of the correlations of the strong dipole

PCs and of the global field PCs with extreme pre-

cipitation is provided, and it shows that the correlations

of the dipole PCs are uniformly stronger. Consequently,

it appears that an approach toward dimension reduction

using the correlation networks rather than a brute force

PCA on the global gridded fields of SST and SLP could

potentially be more effective in building empirical

models for extended range forecasting of extreme pre-

cipitation. A corresponding comparison of forecast skill

using the first 30 PCs of global SST and SLP fields as

candidate predictors was also pursued; the global SST/

SLP PCs are uninformative (p value. 0.05) in the fitting

of the logistic regression model. Of course, issues of

nonstationarity and nonlinearity were not addressed in

this work, and a rather specific application of correlation

networks was pursued. We recognize that for a non-

linear or nonstationary system, a finite sample may not

be able to capture the full state space of the underlying

system. Thus, 1) our model may not be able to effec-

tively forecast in regions of the state space that have not

been visited in the record used and 2) if we subsample

the past record to construct the predictors, it is also

possible that the prediction skill in the blocks of data

used for validation will suffer since the construction of

the correlation network and the PCA used to develop

the predictors will not have sampled this part of the state

space. We believe that these issues apply to any statis-

tical model that relies on a dataset with a limited ex-

ploration of the underlying state space. Given these

caveats, we believe that the cross validation of the

forecast part of the model is justified. We note that the

record used is quite short in terms of number of years,

even though the sample size in terms of the number of

pentads is reasonably large. These issues, as well as a test

of correlation networks and their predictability in SST,

SLP, and precipitation fields simulated by model in-

tegrations from phase 5 of CMIP (CMIP5) for historical

and climate change scenarios, still need to be performed.

An alternate formulation of the approach could be to

consider a specific region where the prediction of pre-

cipitation extremes is of interest and to explore a cor-

relation network that is relevant directly to it. Our

interest in this paper was to screen globally for SST/SLP

dipole patterns at the pentad to monthly time scales

using the basic correlation network algorithm, and to

then see if the patterns identified have any utility for the

prediction of precipitation extremes anywhere in the
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world. This is a first step in an exploratory process of

model building and for making the case for potential

predictability of precipitation extremes over the ensuing

30-day period.
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