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ABSTRACT

Correlation networks identified from financial, genomic, ecological, epidemiological, social, and climatic data
are being used to provide useful topological insights into the structure of high-dimensional data. Strong convection
over the oceans and the atmospheric moisture transport and flow convergence indicated by atmospheric pressure
fields may determine where and when extreme precipitation occurs. Here, the spatiotemporal relationship among
sea surface temperature (SST), sea level pressure (SLP), and extreme global precipitation is explored using a
graph-based approach that uses the concept of reciprocity to generate cluster pairs of locations with similar
spatiotemporal patterns at any time lag. A global time-lagged relationship between pentad SST anomalies and
pentad SLP anomalies is investigated to understand the linkages and influence of the slowly changing oceanic
boundary conditions on the development of the global atmospheric circulation. This study explores the use of this
correlation network to predict extreme precipitation globally over the next 30 days, using a logistic principal
component regression on the strong global dipoles found between SST and SLP. Predictive skill under cross
validation and blind prediction for the occurrence of 30-day precipitation that is higher than the 90th percentile of
days in the wet season is indicated for the selected global regions considered.

1. Introduction information about stable, teleconnected patterns of sea
surface temperature (SST) and sea level pressure (SLP).
Recently developed methods that identify a connected
graph from climate data are used to identify a correla-
tion network from pentad SST and SLP data. The
strong dipoles from this correlation network are then
used as predictors in a regression model to assess where
the occurrence of extreme precipitation may be pre-
dictable over the next 30 days.

Lorenz (1996) reviewed the progress of estimates of

The application of complex networks in climate science
(Tsonis and Roebber 2004; Tsonis et al. 2006, 2011) is an
emerging field that has provided some novel insights into
the nature of Earth systems. This paper explores whether
extreme precipitation occurrence in some parts of the
world may be predictable over the next 30 days, given
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the ECMWF model. While this seems to suggest that
the limits of deterministic predictability based on the
growth of small random errors may only be 5 days or so,
Lorenz noted that the SST evolves rather slowly and
that even atmospheric phenomena such as the quasi-
biennial oscillation (QBO) and ocean—atmosphere phe-
nomena such as El Nifio-Southern Oscillation (ENSO)
may have significant predictability for days to seasons, as
long as they stay in the same mode. Given this context, a
question that motivates this work is whether a global
correlation network of SST and SLP can inform the
prediction of precipitation extremes over the next
30 days, at least at some places in the world.

The links between the most important oceanic climate
indices [e.g., Atlantic multidecadal Oscillation (AMO),
Pacific-North American pattern (PNA), ENSO, North
Atlantic Oscillation (NAO), and Madden—Julian oscil-
lation (MJO)] and precipitation at various space and
time scales have been examined by several authors
(Ropelewski and Halpert 1986, 1987; Leathers et al.
1991; Huntington et al. 2004; Trigo et al. 2004; Sutton
and Hodson 2005; Kim et al. 2006; Cafidn et al. 2007;
Jeong et al. 2008). Indeed, the pioneering studies by
Walker (1923, 1924, 1928) and Walker and Bliss (1930,
1932, 1937), which first documented ENSO on a global
scale, were motivated by attempts to understand and
predict variations in Indian monsoon rainfall.

Given these potential sources of predictability, vari-
ous studies have been done on rainfall and temperature
prediction (Wang and Warner 1988; Buizza et al. 1999;
Chen and Hwang 2000; Silverman and Dracup 2000;
Barnston et al. 2005; Lin et al. 2005; Abukhshim et al.
2006; Smith et al. 2007; Schepen et al. 2012; Badr et al.
2014; Song et al. 2014; Nicholson 2014). The most widely
studied temporal scales are seasonal to interannual
(Diallo et al. 2013; Landman et al. 2012; Schepen et al.
2012; Charles et al. 2013; Jiang et al. 2013; Lee et al.
2013; Singh et al. 2013; Kang et al. 2014; Nicholson 2014)
and weather forecasts, through either quantitative pre-
cipitation forecasts (QPFs) or numerical weather pre-
diction (NWP) (e.g., Lin et al. 2005), typically up to 7 days,
and radar-based nowcasting (Ligda 1953; Golding 1998;
Wilson et al. 1998; Foresti et al. 2015; Olsson et al. 2014;
Sokol et al. 2013; Dai et al. 2014), that is, a short-term
forecast, usually a few hours. The statistics of precipitation
at seasonal to interannual time scales have been shown to
have some usable predictability for regions that have
strong teleconnections to the ENSO phenomena. Rea-
sonable skill from QPF is demonstrated for lead times of
0-72h in most places. However, there is a dearth of lit-
erature exploring predictability between the two time
scales, and there is interest in subseasonal to seasonal
predictability (Brunet et al. 2010; Vitart et al. 2012).
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Recently, atmospheric rivers (Zhu and Newell 1998;
Bao et al. 2006) have been widely studied as the major
contributor to extreme precipitation and floods (Ralph
et al. 2006; Leung and Qian 2009; Lavers et al. 2011,
2013; Ralph and Dettinger 2011). Extreme precipitation
in the midlatitudes is often associated with anomalous
atmospheric moisture transported from tropical and sub-
tropical warmer oceanic areas. Lu et al. (2013) identified
the major moisture sources for the 1995 January flood in
western France as the Gulf of Mexico and tropical North
Atlantic Ocean east to the Bahamas, and demonstrated
the predictability of the extreme precipitation given
midlatitude SLP fields. The atmospheric circulation pat-
terns led to a coherent and persistent transport of mois-
ture from these sources, with convergence of flow and
precipitation over a large region covering western France
for a period of nearly a month. Nakamura et al. (2013)
provided a similar analysis for the Ohio River basin,
where a persistent dipole in the SLP led to the wavelike
transport of moisture from the Gulf of Mexico into the
Ohio River basin every 4-7 days over the March-May
season (Nakamura et al. 2013).

Several research groups are considering climate as a
network of dynamical systems and are applying ideas
from graph theory to a global dataset to study its col-
lective behavior (Hsieh 2001; Tsonis and Roebber 2004;
Tsonis et al. 2006, 2011; Yamasaki et al. 2008; Donges
et al. 2009; Steinhaeuser et al. 2011, 2012; Berezin et al.
2012). The connections of these climate networks to
ENSO, NAO, and so forth have been studied by these
authors at interannual time scales. Berezin et al. (2012)
considered daily surface temperature and the 850-hPa
geopotential height fields in this context and identified a
robust global network pattern that reflects physical
coupling across the two fields that is stable over time. A
significance of the findings from this literature is that
there are certain locations whose climatic evolutions at
different time scales tend to be more connected to each
other, and potentially more predictable. Climate scien-
tists have traditionally analyzed the global climate data
fields using principal component analysis (PCA). At one
level, the correlation network literature can be viewed
as a similar dimension reduction method. However, it
differs in the criteria used to derive the reduced repre-
sentation and in the objective of finding a graphically
connected system that represents the spatiotemporal
associative memory and multiple variables’ coexpres-
sion rather than explaining the maximal correlation in
the full dataset. The particular method used here con-
siders correlation associated with locations in space but
also with time delays, and hence it differs in that regard
from PCA, which typically examines only the spatial
correlation structure.
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We use the spatiotemporal correlation network algo-
rithm developed and documented by (Kawale et al. 2013)
to explore the spatiotemporal relationships among the
climate variables of interest, and study the following
questions:

1) Do correlation networks that can be identified from
global SST and SLP fields at a pentad resolution
inform global precipitation extremes over the sub-
sequent month?

2) Are there regions in the world where the dipoles
identified from the SST-SLP analysis provide robust
predictability of precipitation extremes?

3) How does this predictability compare with what is
achieved using traditional principal component anal-
ysis applied to global SLP or SST data?

This paper is organized as follows. Section 2 describes
the data. The approach and methodology are presented
in section 3. The results of the 1) exploration of the global
dipole networks between SST and SLP, 2) examples of
using dipole signals for regional monthly precipitation
extremes predictability for different seasons, and 3) the
model assessments are shown and discussed in section 4.
The final section has a summary of the work.

2. Data

For our analysis we considered the NCEP-NCAR
reanalysis dataset (Kalnay et al. 1996, available online
at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.html) and the CPC Merged Analysis of Pre-
cipitation (CMAP) dataset (Xie and Arkin 1997, avail-
able online at http://www.esrl.noaa.gov/psd/data/gridded/
data.cmap.html) provided by the NOAA/OAR/ESRL
Physical Sciences Division (PSD; http://www.esrl.noaa.
gov/psd). The primary variables we used are SST anom-
alies and SLP anomalies from each pentad mean from the
NCEP-NCAR reanalysis dataset and pentad mean pre-
cipitation from the CMAP dataset. The anomalies were
calculated by subtracting the corresponding pentad cli-
matology values for each grid. All variables have a grid
resolution of 2.5° latitude X 2.5° longitude. The analysis
and modeling were done using data from 1985 to 2011.
Additionally, we assessed the skill of the model fit to the
abovementioned data in a blind prediction mode using
data from 2012 to 2014.

3. Approach

We start with a summary of the important steps of our
approach and map them to the subsections that describe
the crucial methods.

(i) Dipole identification (section 3a):
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1) Construct lagged negative correlation network,
dipoles, between global SST and SLP.
2) Filter network to retain strong dipole regions.

(ii) Principal component analysis (section 3b) of fil-

tered dipole SST and dipole SLP:

1) A PCA of the strong dipole SST and SLP fields
separately.

2) Comparison of the correlations (section 3c)
with seasonal precipitation extremes of these
dipole PCs with those from PCA with the full
global fields.

Generalized linear regression for predicting occur-

rence of precipitation extremes:

1) Logistic regression using standardized dipole
SST principal components (PCs) 1-30 and di-
pole SLP PCs 1-30 as candidate predictors to
predict the occurrence of precipitation extremes
at different regions in their respective wet
seasons (section 3d).

2) For performance evaluation, the dependence
between successive forecasts of the binary precip-
itation extreme variable is considered using a boot-
strapping and leave-one-year-out cross-validation
setup such that no serially correlated samples are
selected in any cross-validation set (section 3e).

3) Model performance is assessed in terms of the
deviance statistic, error rate in the bootstrapping
and leave-one-year-out cross-validation mode,
and blind prediction using data from 2012 to
2014 (section 3f).

(iii)

a. Dipole identification using spatiotemporal
correlation network

We first use the spatiotemporal correlation network al-
gorithm developed and documented by Kawale et al
(2013) to identify the time-lagged bivariate dipole net-
works between global SST anomalies and global SLP
anomalies. We use data from 1985 to 2011 to train the
dipole networks without dividing them into different sea-
sons, because preliminary analyses showed no significant
differences in the seasonality of the dipole networks be-
tween the two variables. Thus, the analysis is a priori
limited to the annual dipoles. The algorithm is based upon
the concept of reciprocity to generate cluster pairs of lo-
cations such that two locations within the same cluster
have similar lagged correlations with the members of other
clusters. The identification of these cluster pairs is done
considering different time lags. The lagged correlation
networks are built upon both positive and negative lagged
correlations. The algorithm first constructs the complete
directed lag graph based on the lagged correlations and
then computes the clusters by performing a sequence of
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thresholding, k-nearest neighbor (KNN) filtering, reci-
procity, and identification of shared nearest neighbors.
Finally, cluster pairs are identified as the ones that
maximize a lagged correlation. Liess et al. (2014) demon-
strated an application of the algorithm for identifying
teleconnection patterns based on negative correlations
around Australia. The constructed networks exhibit a high
degree of local clustering but a small number of long-range
connections. The details of each step of the algorithm are
presented below.

1) STEP 1: CONSTRUCT COMPLETE DIRECTED LAG
GRAPH

For each time lag [/, a directed weighted graph
G = (v, El) is constructed with nodes V= {vy, ..., v,}
representing the spatial grids of interest; E' is the matrix
of directed edges in the graph; each entity Efj, 1=ij=n
is the edge strength linking location v; to v; and Ef] is di-
rected; and E; £ E]Z-i, since it specifies that the ith loca-
tion’s variable is leading that at the jth location by time /.
The mathematical expression of Efj is as follows:

m—1
£ E‘l (= %) - (7 = X) O
i T, — — \T,. 12’
[(x,' xi) (xi xi) ! (x}. x]') (X]. x,)]

where x; is the time series at location i, m is the length of
the time series, /is the lag, and x!' is the value of x; at time .
The graph G' = (V, E) is further separated into two
groups—one positive, G' = (V, E'"), and the other one
negative, G'~ = (V, E'")—by separating E’ into two

groups as follows:

I I I 1
FlY — E,, if E;>0 and E;>Ej; and  (2)
Y 0, otherwise
I I [ 1
g — E;, if E;<0 and E;<E; ' 3)
Y 0, otherwise

This separation process also eliminates the edges whose
strength is not significant by setting their edge weight to
be zero. The separation deals with the polarity of the lag
correlation, which conveys different meanings: positive
lag correlation indicates the traveling of a phenomenon
from one location to another, whereas negative lag
correlation indicates a receiver of information. Together
the pair specifies a lagged dipole.

2) STEP 2: CONSTRUCT RECIPROCAL LAG GRAPH

Based on the directed positive and negative edge
matrices (E'" and E'”, respectively), a KNN list for any
location node v; is constructed by sorting all edges of v;
based on edge weights and then picking the top K nodes
with edge weights from v;. The KNN list for location
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node v; is denoted as ", 8", 87, 8/~ Terms {S"*,
§"*} are from E'"; {8, §""} are from E'". For ex-
ample, S"" is constructed by picking all outward edges
from v; and then sorting the edges from highest to lowest
based on the edge weights in E'* and then picking the
top K edges. The superscripts “o” and ‘i represent
“outgoing” from and “incoming” to any location /, re-
spectively. Kawale et al. (2011) demonstrated the effect
of choosing different K values (K = 25 vs K =100) on
the final network. In this paper, we choose K = 50 as
suggested by Kawale et al. (2011, 2013). The following
steps of the algorithm ensure that the final dipole net-
work is less sensitive to the choice of K.

The KNN list {S[0+, st gl S”_} is the foundation
for reciprocal lag graphs or matrices. The concept of
directed reciprocity (Kawale et al. 2011, 2013) helps
remove spurious correlations while considering the ef-
fect of spatial autocorrelation on the interconnections:
graph nodes a and b are said to be connected by the
directed (time lagged) reciprocal edge a — b if and only
if a lies in b’s in-KNN list and b appears in a’s out-KNN
list. Based on this directed reciprocity concept, the re-
ciprocal graph G' = (V, E') is constructed as follows:

1, if v € S;“ and v, € Slo+
Ej=¢ -1, if v e S}"’ and v € Slo=, (4)
0, otherwise

where E; is the entity of E’. Note that only one of the three
conditions can be satisfied for any location node.

3) STEP 3: CLUSTERING THE GRAPH NODES

The shared reciprocal nearest neighbor (SRNN)
(Kawale et al. 2011) is used to cluster the nodes. It con-
structs SRNN graphs or matrices {G**, G**, G, G}
by computing the edge weights between two nodes
based on how many edges they have in common. For
example, G*" = (V, E"") is constructed by consider-
ing the positive (with edge weight 1) outgoing edges in
E". Mathematically,

E;?j.”+ =[{v:Vk,E} =1 and Ej =1},

E;}'* =y VK E;=1 and Ej; =1},

EY ={v VK Ep=—1 and E;=-1}|, and

Ej” =|{v:Vk,E;=—1 and Ej;=—1}|. Q)
The clustering is based upon these four SRNN graphs
{G*", G"", G*, G" }. The idea is to find cluster pairs
A and B such that the locations in A have a lot of outgoing

edges to locations in B in the graph G* and locations in B
should have a lot of incoming edges from A in the graph
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G* (Kawale et al. 2013). The SRNN ensures that two lo-
cations within one end of a dipole not only share high
positive correlations due to their spatial autocorrelation
but also share high negative correlations with the members
of the other end of the dipole. This process is based upon
the edge densities {D**, D**, D*~, D¥"} for the graphs
G* and G", and each of the positive and negative corre-
lations uses a local density attractor algorithm (Kawale
et al. 2011). For example, the edge density for negative
correlations is computed by taking the sum of the edge
weights at each node in the graph as follows:

N
VieyDi" = Vjergi By~ and
V., Di = vjevj; Ej". (6)

The first step is to find clusters based on densities
{D*", D**, D*~, D" } in each of the two graphs G** and
G using the local attractor algorithm, which iteratively
attaches nodes in the graph to the local attractors, which
are determined as points with the highest density in the
neighborhood of locations; then the second step is to find
the links across the clusters that have reciprocal edges.
Note that the algorithm does allow a fixed edge threshold
to be forced into the construction of edges. However, a
very low edge threshold will not generate too many edges
either, as the algorithm is built upon reciprocity and clus-
tering that consider both inter- and intraconnections of a
dipole. The spurious edges are eliminated through the it-
erations, and the final clusters that are considered to form a
dipole are entitled with strong connections with the other
end of a dipole. We use —0.01 to eliminate very small
floating-point numbers. A higher threshold will yield fewer
dipoles. A more detailed illustration of the steps from
merging the shared nearest neighbors graphs to form the
shared reciprocal nearest neighbors can be found in
Kawale et al. (2011, 2013).

The algorithm can identify both positive and negative
lagged correlations. We only focus on the negative lag-
ged correlation, which specifies a lagged dipole (Kawale
et al. 2013).

We constructed the time-lagged dipole networks be-
tween global SST and SLP, with SST leading SLP for up to
30 days using the pentad average data. The dipole net-
works identify strong linked regions such that the leading
SST signals (areas in red in Fig. 1) are sent out to the re-
ceiving SLP areas (in blue), and the regions are linked by
colored lines indicating their dipole strength, that is, the
correlation between the two identified clusters.

The spatiotemporal networks constructed at dif-
ferent lags are further cleaned by retaining only the
dipole regions whose dipole strength exceeds the 80th
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percentile of dipole strength at each time lag. This
helps to identify the primary signals across the globe
by eliminating weak to moderate dipoles and elimi-
nating random connections. Since the cleaning is done
at each time lag, the process also allows for the iden-
tification of the dipoles’ persistency with time.

b. Principal component analysis

With the aim of understanding the leading modes of
the strong dipole patterns and their relationship to
global precipitation extremes, a PCA of the strong di-
pole [i.e., identified dipole regions between SST,—; and
SLP, fields, with / = 5, 10 ... , 30 days (5 days corre-
sponding to 1 pentad data point)], whose dipole strength
exceeds the 80th percentile, was used. This criterion was
chosen to select an adequate sample size while retaining
potentially important features; 427 and 452 grid boxes
(2.5° X 2.5°) were selected for the SLP and SST regions,
respectively. The PCA was done separately on the
strong dipole SST regions and strong dipole SLP re-
gions, to obtain two sets of principal components that
extract the leading patterns of the interconnected
1) slowly changing boundary conditions (SST) and
2) responses of atmospheric circulation (SLP).

The pentad SST and SLP anomaly fields for the selected
strong dipole areas contain a total of P spatial grids. Here,
P is the number of grids retained after the selection pro-
cess. Let Z be a N X P data matrix, where N is the total
number of pentad data points from 1985 to 2011, so
N =73X27=1971. For each single spatial field, each
column is standardized (column mean subtracted and then
dividing by the column standard deviation). Since Z has
more columns than rows, a singular value decomposition is
used to extract the principal components. The PCA of Z is
then a factorization of the form

Z=UzW", (7)

where UTU =1 and W'W = 1. The columns of U are or-
thonormal eigenvectors of ZZ", the columns of W are
orthonormal eigenvectors of dimensions of Z'Z, and 3
is a diagonal matrix containing the square roots of
eigenvalues from U or Win descending order, and the
dimensions of U, 3, and WT are N XN, N X P, and
P X P, respectively. The analysis partitions a field into
orthogonal (independent) modes. The eigenvalues pro-
vide a measure of the variance explained by each mode.
The temporal and spatial variabilities of the field are iso-
lated and are represented by the columns of U and W,
respectively. From this point, we will use dipole SST/SLP
PCs to refer to the PCs extracted from pentad SST and
SLP anomaly fields of the selected strong dipole regions
that exceed the 80th percentile of the dipole strength. The
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FIG. 1. Spatiotemporal dipoles between SST and SLP with different time lags, from 5 to 30 days. (a)—(f) The red regions represent
outgoing SST signals, while the blue are receiving SLP regions. The edges link the centers of clusters identified as connected. The average
correlation between the two clusters is shown in blue as the edge strength, and data are pentad normalized anomalies. (g)—(1)
Selected strong dipole regions for different lags. The threshold is chosen as the 80% percentile of dipole strength. Persistence of
strong dipole regions is observed and concentrated in the tropical region.

PCA is also done on global SST and SLP anomaly fields
(80°S-80°N, all longitudes; excluding the North and South
Poles), to extract the leading modes (referred to as global
SST/SLP PCs) in order to provide a comparison to the
strong dipole SST/SLP PCs in terms of their correlations
with global precipitation extremes as follows.

c. Correlation maps with precipitation extremes

We constructed the time-lagged correlation maps be-
tween the climate variables’ PCs (i.e., SST and SLP) with
the binary global precipitation extremes defined as fol-
lows [Eq. (8)]. The first three PCs from the dipole SST
and dipole SLP fields were compared with their coun-
terparts from the global SST and SLP fields. The first
three PCs were selected because they explained much of
the total variance of their fields: 32% and 29% of dipole
SLP and SST fields, and 21% and 20% of global SLP and
SST fields. A binary precipitation extremes indicator
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(PE) was calculated for each 30-day period over the en-
tire globe for each season, as follows:

0, if pS<pS*
PEEs{ e ®)

Lt pl=pie’

where PE;S:, is the binary indicator for precipitation ex-
treme over the subsequent 30 days, at location (grid) i,
time step ¢, in season S = 1, 2, 3, and 4, corresponding to
the seasons 1) December-February (DJF), 2) March-
May (MAM), 3) June—-August (JJA), and 4) September—
Nov (SON); pf, is the sum of the pentad mean pre-
cipitation over the subsequent 30 days from CMAP, at
location (grid) i, time step ¢, in season S; and p;* is the
90% percentile of all subsequent 30-day precipitation
totals at location i, in season S, over the entire 27 years of
data (1985-2011). Note that there is an overlapping pe-
riod of the pentad data between any two consecutive PE,
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and the resulting serial correlation of PE is considered in
the model fitting setup in section 3e by using boot-
strapping in the cross-validation sampling process.

The point biserial correlation (Kornbrot 2014) maps
are constructed 1) between the dipole SST/SLP PCs and
the binary global PE and 2) between the global SST/SLP
PCs and the binary global PE, separately, with the SST’s
and SLP’s PCs 5 days (1 pentad data point) ahead of the
30-day PE. The point biserial correlation is the value of
Pearson’s product moment correlation when one of the
variables is dichotomous, taking on only two possible
values coded 0 and 1, and the other variable is metric
(Kornbrot 2014). It is defined as follows:

PE.=1

(PC.PE) =15 —PC" | Npg 1N
LA i o N, (N, —1)
PC, pE,!VpE,

©)

where PE,; is the time series of the binary variable de-
fined in Eq. (8) for 30-day precipitation extremes at
location i; PC; is the jth PC of either dipole SST/SLP fields
or global SST/SLP fields, 5 days (1 pentad data point)
ahead of PE;; PC;’E‘:I and PC]]-)E":0 are the means of the
jth PCs coded 0 and 1 by PE,, respectively; Npg,-; and
Npg,—o are the number of observations coded by PE; =1
and PE; = 0; Npg, is the total number of observations,
Npg,=1 + Npg,—0; and op; is the standard deviation of the
jth PC. The significance test for the point biserial cor-
relation is the same as that for the Pearson correlation.
More detailed information can be found in Kornbrot
(2014). Note that the effective sample size—that is, the
degree of freedom—for the significance test is adjusted
with consideration for the sequential dependency of the
PCs, with a reduction to M[(1 — a1)/(1 + a1)] (Mitchell
etal. 1966), where M is the total number of samples and
«aq is the lag-1 autocorrelation coefficient.

All correlation maps are constructed excluding the North
and South Poles—that is, 80°S — 80°N, all longitudes. The
purpose of constructing the two sets of correlation maps is
to compare their spatial correlations (primary dipole SST/
SLP PCs and global SST/SLP PCs, respectively) with the
binary global precipitation extremes and see whether the
dipole SST/SLP PCs correlate better or worse with global
precipitation extremes compared to the global SST/SLP
PCs, especially for certain regions of interest.

d. LPCR—Predictability of precipitation extremes

The first 30 PCs extracted from strong dipole SST and
SLP fields—that is, dipole SST PCs 1-30 or dipole SLP
PCs 1-30—are used as candidate predictors for global
PE over the subsequent month [Eq. (8)], with a lead
time of 5 days (1 pentad point), that is, PC?*} and PC?S]
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for PE, for the next 30 days. Many methods have been
proposed to address the question of component selec-
tion (Preisendorfer and Mobley 1988; Jolliffe 2002;
Jackson 2005). These methods may be categorized as
either heuristic or statistical approaches (Jackson 1993).
Our approach is heuristic, based on a combination of the
graphical scree test and the assessment of the proportion
of the total variance explained by the principal compo-
nents retained in the model (e.g., Jackson 1993). The
first 30 PCs of the strong dipole SST and SLP fields ex-
plain 73% and 81% of the total variance of the two
fields, respectively. Taking seasonality of precipitation
into consideration, the logistic principal component re-
gression (LPCR) is applied at different geographical
locations for different seasons (i.e., DJF, MAM, JJA,
and SON) to demonstrate the predictability of global
precipitation extreme occurrence over the subsequent
month using the extracted dipole SST/SLP PCs.

For each season S, and each location i, we fit a logistic
regression model (Bishop 2006), with standardized PC
candidates (subtracted by their means and divided by their
standard deviation). It is mathematically defined as follows:
ys

it S S
A T S d
1 th 1B; an

vi, =Pr(PE}, = 1),

logit(yi[) =In
(10)

where yﬁ, is the probability of the next 30 days’ pre-
cipitation total exceeding the 90% percentile of the
season’s 30-day precipitation total at location i at time
step £; X7, is a predictor matrix whose first column is the
unit vector and subsequent vectors represent all the
candidate predictors—that is, the standardized dipole
SST PCs 1-30 and SLP PCs 1-30—for the corresponding
S leading y;ft by 5 days. Term Xf,l is the same for all the
locations at which forecasts are made. The vector 8}
contains the intercept and regression coefficients for all
predictors estimated using maximum likelihood. Note
that we first fit the two sets of LPCR models with y}
covering the entire globe (80°S-80°N, all longitudes) for
different seasons (i.e., DJF, MAM, JJA, and SON)
separately with 1) th,l being the first 30 PCs of selected
dipole SST fields and 2) er—1 being the first 30 PCs of the
selected dipole SLP fields. This step assists to select the
regions of interest that have strong association with di-
pole SST/SLP PCs (significant LPCR coefficients) and
prescreen the predictors for the selected regions for each
season. Only statistically significant (p value < 0.05, at
the 95% significance level) predictors for the target
seasons and regions of interest are retained in the final
model: y? only covering the region of interest for each
season and Xf, , only containing the preselected subset
of the first 30 PCs of the selected dipole SST and SLP
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fields. Both steps estimate the associated B} using the
maximum likelihood criterion.

e. Bootstrapping and cross validation

Since forecasts are made for every 30-day period using
predictor data lagged by 5 days, forecast performance
evaluation periods are overlapping and may overly
emphasize the same information, since successive values
of PE, will be potentially correlated. The effect of serial
correlation of PE is considered in the setup of fitting
LPCR to include bootstrapping (Efron 1982) to gener-
ate nonserially correlated samples, together with leave-
one-year-out cross validation. The bootstrapping and
cross-validation process is described as follows:

Let year k move from 1985 to 2011, and for each § of
interest,

1) Leave 1 year out: Choose 26 years from 1985 to 2011
excluding year «, which will be used to test the
performance of the model built from these 26 years.

2) Draw nonoverlapping bootstrap samples for each
year selected:

(i) Randomly draw a starting position SP in index 1:
6 within each year and within each season. This
is a pentad index.

(i1) For that year and season select a paired sample
of {X, PE} values for selected grids using the
pentad indices { SP, SP + 6, SP + 12} to assure
that there is no overlapping 30-day period in the
model fitting or validation set.

3) Repeat the previous two steps 100 times to generate
100 bootstrap samples that are designed so that there
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is no serial correlation due to overlapping of the data
used in model building or validation.

LPCR models are fit for each S with this boot-
strapping and cross-validation setup, and the statistics
associated with the model fitting are analyzed cross all
27 X 100 samples.

f- Performance assessment through deviance, error
rate, and blind prediction

We use deviance and error rate to evaluate the
goodness of fit of the fitted logistic models with the
cross-validation and bootstrapping sampling tech-
nique described above. In addition, the entire ap-
proach is assessed with blind prediction using data
from 2012 to 2014 (Michaelsen 1987; Elsner and
Schmertmann 1994). Deviance is used widely as a
measurement of the lack of fit to the data in a logistic
regression model. Here, deviance is calculated
within the bootstrapping and leave-one-year-out
cross-validation process. We have 27 years of data
from 1985 to 2011. Moving sequentially from 1985 to
2011, 100 models are fit using nonserially correlated
samples without the data of that year and then used
to estimate the observations for that year given that
year’s predictors. The average deviance of S’s
models against the null model, A%, is then computed
using these estimated values. The deviance is aver-
aged across all the selected spatial grids and models
fitted using bootstrapped samples with leave-one-
year-out cross validation. The key equations are
provided as follows:

Ns N, )
2% Z] 6; [enai = £(B7™)]

T

NgXN, ’

~ 5,0 R —obs™?
LBy =TT I (1= g3t oma),

t=1

5,0

null

0

z
ald

0B;") =

~
1
s

null
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TABLE 1. Summary of the selected location for LPCR models for different seasons and the chosen informative predictors with their
estimated coefficients averaged over the selected grids (irregular areas from the location below due to selection process) and over the

bootstrapped cross validation process.

Season Location Predictors and average coefficients Xif test p values

DIJF North Africa SLP PC1 (—1.14); <107
20°N - 45°N, 5°W-=20°E SLP PC2 (+0.92)

MAM Central America SLP PC1 (—1.33); SLP PC2 (+1.48); <107
0°-20°N, 90°—40°W SLP PC3 (—1.42); SST PC4 (+1.13)

JIA Central Africa SLP PC1 (+1.33); SLP PC2 (—1.45); <1073
15°S-10°N, 10°-50°E SLP PC3 (+1.16); SST PC4 (—2.28)

SON East Brazil SLP PC1(—1.37); SLP PC2 (+1.34); SLP PC17 (—1.31); <107

15°-5°S, 60°-45°W

SST PC1 (+1.94); SST PC3 (+1.59)

where L(B}’) is the likelihood of the fitted model
6=1,..., Nyforlocationi=1, ..., Ns,in S; L34 is the
likelihood of the null model; £(85?) and ¢5f, are their
corresponding log likelihood. Term Ny = 2700 is the
total number of models for each season, Ny is the total
spatial grids selected for S, y;f;” is the estimated prob-
ability of extreme precipitation over the subsequent
30 days atlocationiin S forsampler=1, ..., Ni’g, N%e
is the sample size of the testing set (the observations of
the year that were left out of the model fitting) for §
and model 6, obsf:;e is the corresponding observation
of precipitation extreme in the testing set—that is,
obsf:;e =1if the subsequent 30 days’ precipitation total
exceeds the seasonal 90% percentile threshold for a
30-day rainfall amount. The average difference of
deviance against the null model (no predictor) is as-
sessed on a chi-square distribution 7, with k¥ degree
of freedom (Hosmer and Lemeshow 2004; Seager
etal. 2007). Here k5 is the number of predictors (Table
1) for S plus 1.

We also assessed the error rates in the leave-one-year-
out cross-validation process to assist in the evaluation of
the predictability of precipitation extremes with the
LPCR for each season. The error rate is calculated as
the proportion of predictions in which the model assigns
Pr(PE},=1)>0.5 to 0 observations (PE;,=0) or
Pr(PEf, =1)<0.5 to 1 observations (PEit =1). Error
rates assist the measurement of goodness of fit
with a comparison to the baseline in which the null
model predicts 1 with Pr(PE;, = 1)y = 0.1 and 0 with
Pr(PEft =0)uun = 0.9, as the extreme precipitation is
defined as events exceeding the seasonal 90% percen-
tile; the corresponding baseline error rate here is
1-01X01-09X%X09=18%.

The model fit is also tested with the most recent
data (2012-14) with a blind prediction process. The
error rates of the blind prediction are tabulated in
Tables 2e—f) and compared to those for the training
period (Tables 2a-d).
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4. Results
a. Time-lagged dipole network between SST and SLP

The global dipole networks between the SST and SLP
fields with different time lags (SST leading SLP) are
shown in Figs. 1a—f). The red regions in Figs. 1a—f rep-
resent outgoing SST signals, while the blue areas are
receiving SLP regions. The edges link the centers of
clusters identified as connected. The average correlation
between the connected clusters is shown in blue as the
edge strength, that is, dipole strength. The key findings
are as follows:

1) The dipole networks are identified are persistent
through 30 days, indicating persistent informative
signals—that is, a strong spatiotemporal relationship
between linked dipole SST clusters and dipole SLP
clusters. As expected from the construction, this is a
sparse network.

2) The persistent outgoing/leading SST signals are
concentrated in the tropical regions, consistent with
the knowledge that most of the climate signals are
from the tropical ocean, and are possibly the domi-
nant drivers of climate variability at this time scale,
throughout the year. This suggests that coupled
ocean—atmosphere variability and the time-lagged
responses of atmosphere to the variance of the ocean
play a dominant role in the tropics on the 30-day time
scale we presented here.

3) Persistent outgoing SST dipole areas are in (i) the
tropical Atlantic ocean, consistent with the region Lu
et al. (2013) identified as the major tropical moisture
sources for western France precipitation extremes
and Nakamura et al. (2013) identified as important
for Ohio River floods; (ii) the equatorial Pacific
Ocean at the Nifio-3.4 region, which is well identified
as classifying ENSO episodes; and (iii) the west
equatorial Pacific at the Mariana Trench, east to
the Philippines and Indonesia.
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TABLE 2. Summary of prediction accuracy probabilities for different seasons: (a) DJF, (b) MAM, (c) JTA, and (d) SON. (e)-(h) Summary
of the blind prediction’s performance (error rates and its 95% uncertainty intervals) using data from 2012 to 2014.

Observations Observations
(a) DJF 0 1 (b) MAM 0 1
Predictions 1 0.0070, 0.003] 0.022° Predictions 1 0.02%[.003, 0.1] 0.036°
0 0.893° 0.078%[.067, 0.08] 0 0.88° 0.064%[.048, 0.07]
Observations Observations
(c) JJA 0 1 (d) SON 0 1
Predictions 1 0.017%[.002, 0.07] 0.03° Predictions 1 0.002°[.003, 0.1] 0.029°
0 0.88° 0.07%[.053, 0.077] 0 0.90° 0.0712[.054, 0.076]
Observations
Baseline 0 1
Predictions 1 0.09* 0.01°
0 0.81° 0.09*
Observations Observations
(e) DJF 0 1 (fy MAM 0 1
Error rates 0.006 [0, 0.041] 0.1 [.096, 0.1] Error rates 0.04 [.003, 0.17] 0.1[.09, 0.16]
Observations Observations
(g) JA 0 1 (h) SON 0 1

Error rates 0.167 [.042, 0.4] 0.069 [.050, 0.08]

Error rates 0.027 [.002, 0.14] 0.080 [.070, 0.082]

#Mean error rate for each scenario: the sum of the entities in each season is the error rate, and the 95% uncertainty interval is in the
bracket. Entities larger than the baseline table’s entities indicate worse than the null model.
® Accuracy rate: the sum of the entities in each season is the accurate prediction rate. Entities larger than the baseline table’s entities

indicate better than the null model.

4) The receiving SLP regions are also quite persis-
tent for different lags. They include northern
South America, the tropical Indian Ocean, East
Africa, and northern Australia and its nearby
Indian Ocean region.

We eliminated weak to moderate signals that are less
than the 80th percentile of the dipole strength at each
time lag. The resulting strong dipole network is shown in
Figs. 1g-1. The strong dipole regions (blue and red areas
in Figs. 1g-1) remain almost the same from the 5- to the
30-day lag, consistent with what we observed from
Figs. 1a—f.

b. Correlation maps with precipitation extremes

PCA as described in section 3b is used to extract the
leading patterns of the interconnected 1) slowly chang-
ing boundary conditions (SST) and 2) responses of at-
mospheric circulation (SLP) from the selected strong
dipole network to generate dipole SST PCs and dipole
SLP PCs. The same analysis is done on the global SST
and SLP fields to generate global SST PCs and global
SLP PCs.

We then constructed time-lagged correlation maps
between the primary climate variables’ PCs (i.e., SST
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and SLP) with the binary global PE, defined above in
Eq. (8): 1) dipole SLP PCs 1-3 versus PE (Figs. 2a—c);
2) global SLP PCs 1-3 versus PE (Figs. 2d-f); 3) di-
pole SST PCs 1-3 versus PE (Figs. 2g-i1); and 4) global
SST PCs 1-3 versus PE (Figs. 2j-1). All the correla-
tion maps are constructed with the SST and SLP PCs
5 days (1 pentad data point) ahead of PE. From the
correlation maps with the first three PCs of each of
the field in Fig. 2, we can see that the strong dipole
PCs appear to be more informative in terms of this
metric and we subsequently use them for prediction
with the logistic regression. Though we only provide
the comparison of the first three PCs for illustration,
the first 30 PCs are used as candidate predictors in the
LPCR model described in section 3d, and a corre-
sponding comparison of forecast skill using PCs of
both global SST/SLP fields and dipole SST/SLP are
also pursued to examine the merits of using dipole
predictors for prediction.

Comparing Figs. 2a—c to Figs. 2d-f, the patterns are
similar between the two sets for strong correlations in
the maps with dipole fields. Both the dipole SLP PCs and
global SLP PCs show high correlations with central
Africa, Central America, Brazil, India, and southeastern
China. The correlation strengths associated with these
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FI1G. 2. (a)—(c) Correlation maps between 5-day-ahead dipole SLP regions’ PCs 1-3 and global PE over the subsequent month; the three
PCs explain 16%, 9%, and 7% of the total variance, respectively. (d)—(f) Correlation maps between 5-day-ahead global SLP regions’
PCs 1-3 and global PE over the subsequent month; the three PCs explain 9%, 7%, and 5% of the total variance, respectively. (g)—(i) Correlation
maps between 5-day-ahead dipole SST regions’ PCs 1-3 and global PE over the subsequent month; the three PCs explain 12%, 10%, and
7% of the total variance, respectively. (j)—(1) Correlation maps between 5-day-ahead global SST regions’ PCs 1-3 and global PE over the
subsequent month; the three PCs explain 8%, 7%, and 5% of the total variance, respectively. For the 95% significance level (p value <
0.05), the effect of the highest serial correlations of SST (0.83) and SLP (0.5) on the effective degree of freedom of the significance test is
considered; the effective degree of freedom for SST and SLP are 189 and 660, respectively. The significance level of SST and SLP are 0.119

and 0.064, respectively.

identified regions are higher in the dipole correlation
maps, indicating a potentially better prediction skill than
for global SLP PCs. The North Africa, Indonesia, and
Thailand regions are significantly correlated to the di-
pole SLP PCs but not to the global SLP PCs. The
strengths of the correlations are strong for the first three
dipole SLP PCs, while they degrade rapidly with the
global SLP PCs. Similar results are observed in Figs. 2g-1
for the SST PCs. The dipole SST PC correlation maps
(Figs. 2g—i) share some regions with the global SST
PCs maps (Figs. 2j-1), and they have overall higher
correlations with precipitation extremes. While both
Fig. 2g and Fig. 2j indicate correlations with extreme
precipitation in central Africa, Central America, North
America, Indonesia and Thailand, and China, the
dipole SST PC1 shows much stronger correlation
with these regions, especially central Africa, Central
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America, and Brazil. These are subsequently chosen
as examples for prediction with logistic regression for
different seasons—specifically, we consider the following
examples: central Africa (JJA), Central America (MAM),
and Brazil (SON).

c. Seasonal predictability of precipitation extremes

We fit the LPCR models for different seasons with the
first 30 PCs of the selected dipole SST and dipole SLP
fields as candidate predictors. The predictors included in
the final models are summarized in Table 1. The areas of
extreme precipitation to predict as examples are chosen
based on an initial exploratory analysis (described in
section 3d) of the predictability of precipitation ex-
tremes over the subsequent month using the candidate
PC predictors. For each grid point (2.5° X 2.5° grid,
10512 grid boxes in total), in the exploratory analysis, an
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(b) Central America [0 — 20N, 90W — 40W]
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FIG. 3. Average monthly rainfall (1900-2009) of the selected regions for different seasons: (a) DJF, North Africa
(20°—45°N, 5°W=-20°E); (b) MAM, Central America (0°-20°N, 90°-40°W); (c) JJA, central Africa (15°S-10°N, 10°-
50°E); and (d) SON, east Brazil (15°-5°S, 60°—45°W); the information is from the World Bank Group website
(http://sdwebx.worldbank.org/climateportal/). The selected seasons’ rainfall amounts for the four regions are

plotted in black.

LPCR model is fit to each candidate predictor set. For
each of these locations, we identify the wet season. For
each wet season, we chose the areas that have significant
coefficients (at the 95% level) for the leading predictors,
and then fit an LPCR model using the predictors iden-
tified (Table 1) from the global exploratory analysis.
The chosen areas might be irregular due to the selection
process; that is, the chosen grids might be subset areas
from the candidate rectangular regions in Table 1. The
results for different seasons for the example locations
are shown next.

1) DIF

The selected region for this season is the North
Africa-Mediterranean area (20°—45°N, 5°W-20°E). The
total number of selected grid boxes is 53, a subset area
from the abovementioned box. DJF is the wet season for
the area according to the average monthly rainfall
(Fig. 3a) based on data from 1900 to 2009. The statisti-
cally significant predictors for the area are the stan-
dardized dipole SLP PC1 and PC2. Some dipole SST
PCs also show their strong association with the area’s
precipitation extremes. However, the likelihood-ratio
test showed that the model fit using dipole SLP PC1 and
PC2 is the best. The dipole SLP PC1 and PC2 explain
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16% and 9% of the total variance of the SLP dipole field,
respectively. The estimated coefficients associated with
the two PCs have opposite signs, PC1 (—1.14) and PC2
(+0.92), indicating their changes have the opposite ef-
fect on the odds ratio of the probability of having pre-
cipitation extremes over the subsequent month. The
fitted model passed the )(is test with p value < 107
(Table 1) against the null model in the bootstrapped
cross-validation process. The average error rate of the
prediction in this season is 8.4%, less than half of the
baseline error rate (18%) of the null model. Table 2a
tabulated the prediction accuracy/errors of the LPCR
model with bootstrapped cross validation, with the
sum of the error entities as the error rate of the sea-
son—that is, prediction = 1 with observation = 0 and
prediction = 0 with observation = 1, the sum of ac-
curacy entities as the prediction rate of precipitation
extremes [defined in Eq. (8)] over the subsequent
month in the season. The accurate predictions are both
larger than the baseline probability of the null model,
that is, the fitted LPCR achieves 0.89 (0.022) against a
baseline of 0.81 (0.01). The wrong predictions are
both smaller than the baseline probability of the null
model; that is, the fitted LPCR achieves 0.007 (0.078)
against 0.09 (0.09).
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2) MAM

A Central American region (30 grid boxes out of the
box 0°-20°N, 90°-40°W) is selected to assess the pre-
dictability of using dipole signals for precipitation
extremes over the subsequent 30 days in MAM, which
corresponds to the beginning and peak of the wet
season for the region (Fig. 3b). Four predictors are
included in the final LPCR model: dipole SLP PCs 1-3
and dipole SST PC4. The coefficients of dipole SLP
PCs 1-3 have different signs—PC1 (—1.33), PC2
(+1.48), and PC3 (—1.42)—as summarized in Table 1.
The first three PCs of the dipole SLP have strong year-
round correlations (Figs. 2a—c) with the precipitation
extremes in Central America. The signs of the co-
efficients for PC1, PC2, and PC3 are all consistent with
their year-around correlations (Figs. 2a—c). The fitted
model passed the test with p value < 107> (Table 1)
against the null model in the cross-validation process.
The average error rate of the prediction in this season
is 8.3%, again much better than the null model’s error
rate. Table 2b tabulated the prediction accuracy/errors of
the LPCR model for precipitation extremes over the
subsequent month in MAM. The accurate predictions are
both larger than the baseline probability of the null
model; that is, the fitted LPCR achieves 0.88 (0.036)
against a baseline of 0.81 (0.01). The wrong predictions
are both smaller than the baseline probability of the null
model; that is, the fitted LPCR achieves 0.02 (0.064)
against 0.09 (0.09).

3) JJA

This is the wet season for central Africa (15°S—-10°N,
10°-50°E). The total number of selected grid boxes is
52 from the abovementioned box. Four predictors are
included in the final LPCR model: dipole SLP PCs 1-3
and dipole SST PC4 (Table 1). Table 1 summarizes the
estimated coefficients for the four predictors of the
fitted LPCR models, averaged over the selected grids
and over the leave-one-year-out cross validation. The
estimated coefficients are all statistically significant
(p value < 0.05). The coefficients of dipole SLP PCs 1-3
have alternating signs—PC1 (+1.33), PC2 (—1.45), and
PC3 (+1.16)—which is consistent with their year-round
spatial correlation, shown in Figs. 2a—c. The fitted model
passed the test with p value < 107> (Table 1) against the
null model in the cross-validation process. The average
error rate of the prediction in this season is 8.7%
(baseline error rate is 18%). Table 2c tabulated the
prediction accuracy/errors of the LPCR model for
precipitation extremes over the subsequent month for
this season. The probability of the fitted model telling
extreme when the observation is nonextreme is 0.017,
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which is better than the null model’s 0.09, while the
probability of the fitted model telling nonextreme when
the observation is actually extreme is 0.07, better than
the baseline of the null model, 0.09. The probability of the
fitted model telling extreme—consistent with the obser-
vation, that is, 0.03—is twice better than the null model’s
baseline, 0.01. Finally, the model is better than the null
model in terms of predicting nonextremes as having a
probability of 0.88 and a baseline of 0.81.

4) SON

SON is the beginning of the wet season in east Brazil
(15°-5°S, 60°—45°W). The total number of selected grid
boxes is 106; their precipitation extremes are selected as
predictands for the model. Five predictors are included
in the final LPCR model: dipole SLP PCs 1, 2, and 17
and dipole SST PCs 1 and 3 (Table 1). Table 1 summa-
rizes the estimated coefficients for the predictors in the
fitted LPCR models, averaged over the selected grids
and over the bootstrapped leave-one-year-out cross
validation. The fitted model passed the test with a
p value < 107> (Table 1) against the null model in the
cross-validation process. The coefficients of dipole SLP
PC1 and PC2 have opposite signs, PC1 (—1.37) and PC2
(+1.34), which is the same as their year-round spatial
correlation, shown in Figs. 2a,b. The opposite signs in-
dicate their changes have the opposite effect on the odds
ratio of the probability of having precipitation extremes
over the subsequent month. The coefficients of dipole
SST PC1 and PC3 also have the same signs, PC1 (+1.94)
and PC3 (+1.59), which is different from their year-
round spatial correlation, shown in Figs. 2g,i. The av-
erage error rate of the prediction in this season is 7.3%,
less than half of the baseline error rate, 18%. Table 2d
tabulates the prediction accuracy/errors of the LPCR
model for precipitation extremes over the subsequent
month for this season. The predictions are superior to
the baseline probability of the null model; that is, the
fitted LPCR achieves 0.9 (0.029) against a baseline of
0.81 (0.01). The probability of the fitted model telling
extreme when the observation is nonextreme is 0.002,
better than the null model’s 0.09, while the probability
of the fitted model telling nonextreme when the obser-
vation is actually extreme is 0.071, less than the baseline
of the null model, 0.09.

d. Blind prediction

In addition to the cross-validated and bootstrap
verifications, we felt that it was important to see
whether the relationships were robust in a completely
out of sample fitting and prediction setting. Given the
short dataset, a limited experiment was performed.
We used each of the models fitted above to the 1985-2011
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SST, SLP, and precipitation data and checked the fore-
cast skill for the same seasons and locations as above for
data from 2012 to 2014, which was not used in model
fitting. The pentad dipole SST/SLP fields for 2012-14 are
projected to the orthogonal PC bases derived from 1985
to 2011. The selected predictors for each region and
season presented are used in the models presented in
section 4c and Table 1 to predict the 30-day extreme
precipitation. By comparing with the observations from
2012 to 2014, the error rates are summarized in Tables
2e-h. We note that the patterns in forecast skill identified
originally are similar to those noted under this blind
prediction setting.

5. Summary and discussion

This paper presents a novel application of the corre-
lation network extraction algorithm to the identification
of stable, correlated SST and SLP patterns using pentad
data and considering persistent correlation up to at least
30 days. The motivation was to see whether the identi-
fication of such a pattern could provide useful forecasts
of the probability of extreme rainfall at any region in the
world over the ensuing 30-day period. Such a forecast
would be potentially very useful for flood preparation
at a lead time that is well beyond the lead time of me-
teorological forecasts, and it corresponds to a gap in
predictability between QPF and seasonal to interannual
climate prediction.

We focused on the identification of dipoles between
SST and SLP with the idea that the warm SSTs that in-
dicate strong, persistent convection would then link to
SLPs where there is a strong, persistent low pressure,
which increases the chance of extreme precipitation.
Tropical SST and SLP pairs were identified where there
were strong regional dipoles, as defined by a contiguous
spatial cluster of SST being negatively correlated with a
contiguous spatial cluster of SLP. An arbitrary threshold
corresponding to the 80th percentile of global dipole
strength across clusters was used to prune the network,
and then the principal components of the SST and of the
SLP fields associated with the subset of retained dipole
grids were used as potential predictors of 30-day pre-
cipitation that exceeds the 90th percentile of the clima-
tological seasonal 30-day precipitation totals. A number
of regions across the world were identified where there
may be potential skill in forecasting 30-day extreme
precipitation, defined as precipitation in excess of the
90th percentile of that 30-day period. Of these, one ex-
ample was selected for each season, and its forecasting
skill was assessed under leave-one-year-out cross valida-
tion. The misclassification rate in these cross-validated
forecasts ranged from 7.3% to 8.7% (compared to the
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baseline error rate, 18%, of the null model) in the ex-
ample, and each of the models was found to be different
from the null model at a p value less than 10> based on
the chi-square test applied to the model deviance under
cross validation.

A comparison of the correlations of the strong dipole
PCs and of the global field PCs with extreme pre-
cipitation is provided, and it shows that the correlations
of the dipole PCs are uniformly stronger. Consequently,
it appears that an approach toward dimension reduction
using the correlation networks rather than a brute force
PCA on the global gridded fields of SST and SLP could
potentially be more effective in building empirical
models for extended range forecasting of extreme pre-
cipitation. A corresponding comparison of forecast skill
using the first 30 PCs of global SST and SLP fields as
candidate predictors was also pursued; the global SST/
SLP PCs are uninformative (p value > 0.05) in the fitting
of the logistic regression model. Of course, issues of
nonstationarity and nonlinearity were not addressed in
this work, and a rather specific application of correlation
networks was pursued. We recognize that for a non-
linear or nonstationary system, a finite sample may not
be able to capture the full state space of the underlying
system. Thus, 1) our model may not be able to effec-
tively forecast in regions of the state space that have not
been visited in the record used and 2) if we subsample
the past record to construct the predictors, it is also
possible that the prediction skill in the blocks of data
used for validation will suffer since the construction of
the correlation network and the PCA used to develop
the predictors will not have sampled this part of the state
space. We believe that these issues apply to any statis-
tical model that relies on a dataset with a limited ex-
ploration of the underlying state space. Given these
caveats, we believe that the cross validation of the
forecast part of the model is justified. We note that the
record used is quite short in terms of number of years,
even though the sample size in terms of the number of
pentads is reasonably large. These issues, as well as a test
of correlation networks and their predictability in SST,
SLP, and precipitation fields simulated by model in-
tegrations from phase 5 of CMIP (CMIP5) for historical
and climate change scenarios, still need to be performed.

An alternate formulation of the approach could be to
consider a specific region where the prediction of pre-
cipitation extremes is of interest and to explore a cor-
relation network that is relevant directly to it. Our
interest in this paper was to screen globally for SST/SLP
dipole patterns at the pentad to monthly time scales
using the basic correlation network algorithm, and to
then see if the patterns identified have any utility for the
prediction of precipitation extremes anywhere in the
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world. This is a first step in an exploratory process of
model building and for making the case for potential
predictability of precipitation extremes over the ensuing
30-day period.
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