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ABSTRACT

Retrievals of ice-cloud properties from cloud-radar observations are challenging because the retrieval
methods are typically underdetermined. Here, the authors investigate whether additional information can be
obtained from higher-order moments and the slopes of the radar Doppler spectrum such as skewness and
kurtosis as well as the slopes of the Doppler peak. To estimate quantitatively the additional information
content, a generalized Bayesian retrieval framework that is based on optimal estimation is developed. Real
and synthetic cloud-radar observations of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) dataset
obtained around Barrow, Alaska, are used in this study. The state vector consists of the microphysical
(particle-size distribution, mass-size relation, and cross section—area relation) and kinematic (vertical wind
and turbulence) quantities required to forward model the moments and slopes of the radar Doppler spectrum.
It is found that, for a single radar frequency, more information can be retrieved when including higher-order
moments and slopes than when using only reflectivity and mean Doppler velocity but two radar frequencies.
When using all moments and slopes with two or even three frequencies, the uncertainties of all state variables,
including the mass-size relation, can be considerably reduced with respect to the prior knowledge.

1. Introduction

Ice clouds play a key role in the atmosphere of Earth,
but in situ observations of ice clouds are difficult to make
and thus are sparse. Remote sensing instruments have
the potential to fill this gap because they can provide
observations at high temporal and spatial resolutions.
Among remote sensing instruments, ground-based ver-
tically pointing Doppler cloud radars are the only in-
struments that can penetrate optically thick ice clouds
and provide measurements of the fall velocity of hy-
drometeors. However, the observables of cloud radars
are only indirectly linked to cloud and precipitation
properties. The required transfer functions are not
uniquely defined, resulting in substantial uncertainties in
radar-based ice-cloud retrievals.
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Different strategies have been used to increase the
information content of radar observations: some stud-
ies suggested the use of radar-microwave radiometer
combinations (Grecu and Olson 2008; Posselt and
Mace 2014), radar-lidar combinations (Intrieri et al.
1993; Delanoé and Hogan 2008), or multiple radars
operating at two (Hogan et al. 2000; Szyrmer and
Zawadzki 2014) or three frequencies (Sekelsky et al.
1999; Kneifel et al. 2011). For single-instrument re-
trievals, some studies proposed to exploit not only
equivalent radar reflectivity factor Z, but also mean
Doppler velocity W (Matrosov et al. 2002; Szyrmer
et al. 2012) and Doppler spectrum width o (Mace et al.
2002; Deng and Mace 2006) of zenith-pointing radars.
Also, the use of the full radar Doppler spectrum has
been suggested (Verlinde et al. 2013).

Our research addresses the point of increasing the in-
formation content of observations from ice-cloud radars
by studying whether additional information can be ob-
tained from the higher-order moments and the slopes of
the radar Doppler spectrum. For this, not only are Z,, W,
and o studied but also skewness y and kurtosis k. In ad-
dition to the higher-order moments, the left slope S; and
the right slope S, of the radar Doppler maximum peak are
also investigated. While o, vy, and k have the advantage
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that they are not influenced by radar calibration, they
are strongly influenced by turbulence. Therefore, the
retrieval implemented in this study provides not only
microphysical properties—such as particle-size distribu-
tion, mass—size relation, and cross section—area relation—
but also kinematic variables, such as vertical air motion
and turbulent spectral broadening.

Lack of information about the mass—size relation of
hydrometeors is one major reason for the uncertainty of
most radar retrievals. A few studies solve this problem
by including particle mass (or density) into the retrieval
(e.g., Posselt and Mace 2014; Szyrmer and Zawadzki
2014). A retrieval providing microphysical parameters
including the mass-size relation as well as kinematic
properties, together with the corresponding uncertainties,
has, to the authors’ knowledge, not yet been developed.
The same is true for ice-cloud retrievals using higher-
order moments even though there are studies using y and
k for detection of drizzle onset (e.g., Kollias et al. 2011)
and to locate supercooled liquid water (e.g., Luke et al.
2010). Maahn et al. (2015) found higher-order radar
moments to be useful for evaluating ice-cloud pa-
rameterizations using observations from the Indirect
and Semi-Direct Aerosol Campaign (ISDAC;
McFarquhar et al. 2011), which took place in 2008 in the
environs of the Atmospheric Radiation Measurement
Program North Slope of Alaska (NSA) site in Barrow,
Alaska. The dataset and the parameterizations rec-
ommended by Maahn et al. (2015) are the basis for
this study.

To study the information content of higher-order
moments and slopes qualitatively, response functions
to ice-cloud parameters are assessed. For a quantitative
analysis, the number of independent information pieces
(total degrees of freedom for signal Dy) are estimated
using a retrieval that is based on optimal-estimation
theory (Rodgers 2000). Optimal estimation is widely
used in atmospheric remote sensing, in particular for
passive and active microwave applications (e.g., Lohnert
et al. 2004; Steinke et al. 2014).

The radar simulator of the Passive and Active Micro-
wave Radiative Transfer (PAMTRA) model (Maahn
2015) is utilized as the forward operator. As input, both
real and synthetic radar observations from the ISDAC
campaign are used. The retrieval output is composed of
variables that describe the particle-size distribution N(D),
the mass-size relation m(D), and the cross section-area
relation A(D) and kinematic variables that are related to
turbulence and wind. For this, the a priori dataset and
the parameterizations recommended by Maahn et al.
(2015) are used. They used maximum particle dimension
as the size descriptor, which is adopted here for consis-
tency. Optimal estimation provides not only a retrieved
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state but also its uncertainty, assuming a Gaussian un-
certainty distribution. Therefore, the analysis of re-
trieval results is not limited to bias but also covers
uncertainties. The retrieval results are further analyzed
in terms of the use of additional radar frequencies, the
impact of calibration offset, measurement uncertainty,
and prior knowledge of kinematic variables.

The datasets used, the forward model, and the optimal-
estimation retrieval algorithm are described in section 2.
The response functions of radar moments and slopes to
microphysical parameters are discussed in section 3. In
section 4, the retrieval results are investigated, and the
impact of modifications to the retrieval is analyzed in
section 5. The findings are discussed and concluding re-
marks are given in section 6.

2. Setup

In this section, the datasets and methods used in this
study are introduced. This includes the definition of the
state vector x and the measurement vector y and how
they are connected by optimal estimation.

a. Dataset

All data used in this study were obtained during the
ISDAC campaign (McFarquhar et al. 2011; Jackson
etal.2012), which took place in 2008 at the NSA site in
Barrow and covered mostly stratocumulus ice and
mixed-phase clouds. The ISDAC dataset consists of
in situ cloud measurements by the Convair aircraft
(McFarquhar and Jackson 2012) as well as ground-
based spectral radar observations by the millimeter-
wavelength cloud radar (MMCR) operating at a
frequency of 34.86 GHz (Moran et al. 1998), which are
available on request (Bharadwaj and Johnson 2003).
Supercooled liquid water (SCLW) can be visible in the
radar Doppler spectrum at high concentrations (Luke
et al. 2010), which could bias the analysis. Therefore,
only aircraft observations in the vicinity of the NSA
site that contain less than 0.01gm > of SCLW as
measured by the “King” probe are used for this study.
Even though such low SCLW values are, in the pres-
ence of cloud ice, usually not visible in the radar
spectrum, rimed ice particles are probably still in-
cluded in the dataset. Most of the observed clouds were
precipitating, but aircraft observations were usually
above cloud base. In the following, the quantities de-
rived from the ISDAC dataset are briefly introduced.
See Maahn et al. (2015) for a detailed discussion about
why the following methods are used to parameterize
the ISDAC dataset.

Particle mass is expressed by a normalized power law
as proposed by Szyrmer et al. (2012):
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where D* and C, describe a reference particle size and
mass, respectively, and « is a dimensionless factor. In
accordance with Szyrmer et al. (2012) and Maahn et al.
(2015), D* and Cyare set to 1.2 X 10 3mand3 x 1078 kg,
respectively. In comparison with the common power-law
formulation of the mass—size relation m(D) = aD", the
normalized version is more robust and has less corre-
lation between the parameters [cf. with Wood et al.
(2014)] but still has two degrees of freedom. Because
the coefficients & and b have not been measured during
ISDAC, they are retrieved as a closure from a combi-
nation of ISDAC airborne measurements and ground-
based radar observations of the MMCR as shown in
Maahn et al. (2015). Factor « can be transformed to the
a parameter of the more commonly used power-law
mass—size relation with a = aCy/(D*)". Note that the
b exponent value of 2.2 found by Maahn et al. (2015) is
closer to the values found by, for example, Heymsfield
etal. (2010) (2.1-2.2) and Wood et al. (2014) (2.1) than
to the value of 1.9 found by Brown and Francis
(1995) that is frequently used for remote sensing.

The particle-size distribution N(D) is estimated
from the aircraft observations using the a normalized
gamma distribution by Testud et al. (2001) and Delanoé
et al. (2005). Instead of the equivalent melted di-
ameter, the maximum particle dimension D is used as
particle-size descriptor as introduced in Maahn et al.
(2015):

N(D) =N T(h+p+1)b+1)P

X exp[—(b+un+1)DID, ], (2)

Lo+ + DT+ 1) (2)“
D

m

where N is the intercept parameter, D,, is the mass—
weighted scaling parameter, u describes the shape of the
distribution, I' is the gamma function, and b is the ex-
ponent of the mass—size relation. Note that in the fol-
lowing, u is replaced by u* = b + u + 1 to increase the
numerical stability of the gamma function when using it
within a retrieval. The coefficients N§ and D,, are de-
rived directly from the moments of the particle distri-
butions measured by the cloud probes; u* is obtained
by a least squares fit to the measured distribution. Be-
cause rare, large particles cannot be sufficiently sampled
with in situ probes, N(D) is extrapolated to the largest
size class (12.8 mm) of the in situ probes as discussed in
Maahn et al. (2015).

The projected area A(D) is required for estimation of
the quiet-air fall velocity. A power law is used to de-
scribe the observations:
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with prefactor ¢ and exponent d. Maahn et al. (2015)
found that an additional noise vector has to be applied to
the area-size relation allowing for a deviation of A(D)
from the power law so as to match the radar moments
observed by the MMCR. However, a random term
cannot be handled properly by the optimal-estimation
framework, and the corresponding error is treated as
forward-model error instead (see section 2h). Note that
this random vector is, however, used when creating
synthetic radar observations.

For kinematic effects, vertical air motion w (re-
sulting in a shift of the Doppler peak) and kinematic
broadening o, of the Doppler peak are considered.
As discussed in Maahn et al. (2015), o, depends
mainly on the horizontal wind u, the turbulence ex-
pressed by the eddy dissipation rate ¢, the radar in-
tegration time, and the radar beamwidth. The u and w
are obtained from aircraft measurements, whereby
w is offset corrected as suggested by Gultepe et al.
(1990). Even though the Convair aircraft was equipped
with a Tropospheric Airborne Meteorological Data
Report (TAMDAR) instrument (Moninger et al. 2010)
that was capable of measuring turbulence, during
ISDAC & was mostly below the detection threshold of
107> m?s > of the TAMDAR instrument. As a conse-
quence, the TAMDAR instrument only provides an
upper bound of &; for ISDAC, Maahn et al. (2015) es-
timated & to be 10 ®m?s™> on the basis of the com-
parison of in situ aircraft and ground-based radar
observations.

b. Forward model

To simulate the full radar spectrum s and the corre-
sponding moments and slopes on the basis of the pro-
vided in situ hydrometeor profiles, the PAMTRA model
is used (Maahn 2015). Different from the method in
Maahn et al. (2015), the self-similar Rayleigh—-Gans
(SSRG) approximation (Hogan and Westbrook 2014) is
used here instead of the soft spheroid T-matrix approach
(Mishchenko 2000) to estimate the ice-particle scatter-
ing properties. The approximation is orders of magni-
tude faster than the spheroidal T-matrix approach and is
applicable to any particle type, thereby providing more
robust results for particles that are larger than the radar
wavelength A (see the online supplemental material).
SSRG depends on D, m, and aspect ratio AR, which was
fixed at 0.6 (assuming horizontal alignment) in accor-
dance with Hogan et al. (2012) and because no de-
pendence of higher-order moments and slopes to AR
was found by Maahn et al. (2015). In contrast to the soft
spheroid T-matrix approach, the refractive index of pure
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ice (Warren and Brandt 2008) is used for SSRG. The
quiet-air particle fall velocity of the hydrometeors is
estimated using the method of Heymsfield and
Westbrook (2010), which depends on D, m(D), A(D),
and air density. The resulting quiet-air radar Doppler
spectrum is convolved with a Gaussian distribution with
standard deviation o to account for kinematic broad-
ening and is shifted by w to account for vertical air
motion. Last, noise is applied in accordance with the
MMCR specifications.

In this study, the PAMTRA forward simulator is
configured in accordance with the technical specifi-
cations of the MMCR that was operating during
ISDAC. It operated at a frequency of 34.86 GHz with
Doppler velocity resolution of 4.1cm, a full-width
beamwidth of 0.31°, and a noise level of —33.25dBz
[as defined by Smith (2010)] at 1-km height (Moran
et al. 1998; Bharadwaj and Johnson 2003). As atten-
uation is expected to be negligible for snow and
ice at Ka band (Matrosov 2007), attenuation is not
considered here.

c¢. Radar observables

The radar Doppler spectrum § (SI units: m>m>) is
converted to s (mm®m~?) with

s=10

/\4
s, 4
K, |7 @

where A is the radar wavelength and |K,,|* is the di-
electric factor for water. It is convention to fix |K,,|* to
0.93 for the Ka band. Note that neither s nor § is nor-
malized with the Doppler resolution Av.

With this definition, the equivalent radar reflectivity
factor Z, can be obtained in decibels with respect to
a reference level of 1 mm®m > (dBz; Smith 2010) with

Z,=10log,z,, ®)
where

z,= 2s(i). (6)

i

The sum is taken over all bins i of the Doppler spectrum
that belong to the most significant peak. For consistency,
PAMTRA'’s peak-recognition scheme is applied to both
the MMCR Doppler spectra (Bharadwaj and Johnson
2003) and the synthetic spectra of PAMTRA'’s radar
simulator, because moments and particularly slopes can
depend on the method used for Doppler peak definition
and recognition.

The mean Doppler velocity W (first moment) is de-
fined as
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Ls(ip(i)

Wt ™
where v(i) is the Doppler velocity of bin i. In the absence
of vertical air motion, W is equal to the reflectivity-
weighted mean particle fall velocity. There is no common
convention for the sign of W; in this study positive W
refers to particles falling toward the ground.

The width of the spectrum is given by the standard
deviation of the Doppler spectrum, called the Doppler
spectrum width o (second central moment):

> s - W)
E— (8)

Z

e

o=

Width o depends not only on the particle-size distribu-
tion and quiet-air particle fall velocities but also on ki-
nematic broadening by wind shear and turbulence
occurring within the volume observed by the radar.
Skewness vy, the third central moment, is given by

2 s()[vi) - WP
=4 9
Y e )
and describes whether the peak is skewed to the left
(y <0) or right (y > 0).
Kurtosis k, the fourth central moment, defined as

_ i
K=

2 s - wl'
- 10
- (10)
is a measure of the shape of the peak. A k equal to 3
indicates a Gaussian shape, smaller values of k indicate a
more round peak, and spectra with a more pointed peak
have k values larger than 3.
In addition to the moments, the Doppler spectrum can
also be described by the left slope S; and the right slope
S, (Kollias et al. 2007) of the peak:

log, N, — logms(ip)

S, = o) = v(ip) and (11)
B log, N, — logms(ip)
S, =10—" ) (12)

where N, is the mean spectral noise level and i}, 7,, and i,,
are the indices of the leftmost, rightmost, and maximum
bin of the Doppler peak, respectively. Note also that the
sign of vy and the definitions of S; and S, depend on the
convention used for the sign of W. The slopes, in
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contrast to the other moments are derived from the
spectrum in logarithmic units. As a consequence, they
are particularly sensitive to the tails of the peak. Slope S,
depends on the particles with slow fall velocity; S, is
governed by the fast-falling particles. In this study, the
lower moments Z, and W are collectively referred to as
“LM” in contrast to o, v, k, S, and §,, which are referred
to as higher moments, or “HM” (even though the slopes
are not technically moments). All moments and slopes
taken together are referred to as “AM.”

d. Optimal estimation

Optimal estimation (Rodgers 2000) is a simplified
Bayesian retrieval technique that is based on a Gaussian
statistical model that combines the observation vector y
of length M with prior information to estimate the state
vector x of dimension N. Optimal estimation requires
that the forward operator P be moderately linear and
that the probability density distributions of state vector x
and observation vector y follow a Gaussian shape. Then,
the optimal solution of x can be found by an iterative
procedure in which the updated state vector x;. is ob-
tained as

X, =x, + (S, +K'S;'K) 'K'S;"
X [y — P(x;,b) + K/(x; —x,)], (13)
where x, is the a priori assumption for x, S, is the a priori
uncertainty expressed as the covariance matrix of x,, S,
is the covariance matrix of the combined measurement
uncertainty and forward model error, b contains addi-
tional, fixed model parameters, and K; is the Jacobian
matrix of P linearized around x;. Following the method
of Turner and Lohnert (2014), an additional decreasing
factor y; = 1000, 300, 100, 30, 10, 3, 1, 1, ... is used: in
the case of a bad first guess, those elements of x are
adjusted first that can be obtained best from the ob-
servation. This enhances the stability of the retrieval.
Uncertainties in b are expressed by the covariance
matrix S, and can be considered by replacing S, with
S, + K} S;K,.
From the Bayesian concept, the uncertainty in the
optimal solution can be estimated from

S, =B (xS, +KIS,'K)B\, (14

where
B.=(vS,' +K'S,'K). 15)

The a priori state x, is used as the starting value x;, and
the iteration is stopped when y; = 1 and the convergence
criterion
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(x, — xiH)TS;l(xi -x., . )<N (16)

i+1
is met. Then, the individual degrees of freedom for sig-
nal dy, which describe the number of independent pieces
of information that can be obtained from the measure-
ments, can be estimated for each element of x from the
diagonal of the averaging kernel
A =B 'K'S, 'K, 17
after convergence. The diagonal of A; consists of the dy
values for the elements of x. The total degrees of free-
dom for signal D can be obtained from the trace of A,
that is, the sum of dy values down the diagonal of A;. The
Dy is usually less than the number of observations M,
because the elements of y share redundant information.
The optimal-estimation code developed for this study
is written in Python. It has been released as open source
and is available online (https://github.com/maahn/
pyOptimalEstimation).

e. State vector X

To simulate the radar Doppler spectrum, the
PAMTRA forward operator requires information about
particle mass m(D), particle cross-sectional area A(D),
and particle number N(D) as a function of particle
maximum dimension D. In addition, kinematic broad-
ening o and vertical air motion w are required to ac-
count for kinematic effects.

The state vector consists of the quantities introduced
in section 2a (see also Table 1 for an overview). To es-
timate the prior information, S, and x, are computed
from the covariance and mean, respectively, of the
quantities in the ISDAC dataset introduced by Maahn
et al. (2015), which contains 1360 ISDAC aircraft ob-
servations that were closer than 10 km to Barrow. The a
priori information is obtained from one homogeneous
data source that allows for consideration of off-diagonal
entries of S, (covariances) and leads to a consistent
definition of particle dimension throughout the dataset.
Variance and prior knowledge of o are combined from
the horizontal wind u and e. The mean and variability of
u can be estimated from the ISDAC dataset, but that is
not possible for ¢, because the TAMDAR instrument
only provides an upper boundary for & of 10 >m?*s™>.
Maahn et al. (2015) estimated & = 10~ ®m?s > for ISDAC
by comparing forward-modeled radar spectra that are
based on in situ data with radar observations. In
comparison with the values reported by Shupe et al.
(2012) for the Mixed-Phase Arctic Cloud Experiment
(MPACE), which also took place in Barrow, this value is
small. Therefore, an increased value of 1.25 X 10" *m?s ™3
is used as the mean of € for the a priori in this study.
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TABLE 1. A priori values and uncertainties of the state vector x and of derived quantities. Here, PSD is particle size distribution.

Name Source Unit Used scale Linear prior Log; prior
D,, Mass-weighted diameter of PSD  ISDAC cloud probes m Logio 0.0010 = 0.0006 -3.0=*+03
N§ Intercept parameter of PSD ISDAC cloud probes m* Logio (1.3 +2.0) X 107 7.1 *0.7
¥ Shape parameter of PSD ISDAC cloud probes — Logio 55*+51 0.74 = 0.40
a Dimensionless intercept factor Closure from ISDAC — Linear 0.97 £ 0.20 —
of m(D) and MMCR data
b Exponent of m(D) Closure from ISDAC — Linear 20+02 —
and MMCR data
c Intercept factor of A(D) ISDAC cloud probes m? ¢ Logio 0.17 = 0.35 —0.77 = 0.89
d Exponent of A(D) ISDAC cloud probes — Linear 1.9+03 —
T Kinematic broadening ISDAC horizontal wind  ms ™! Logio 0.074 = 0.052 -1.1+0.3
and TAMDAR
w Vertical wind ISDAC vertical wind ms~! Linear 0.04 = 0.32 —
IWC  Ice water content Derived from x kgm™> Logio (2.0 £5.0)x107° 47+ 1.1
Niot Number of particles Derived from x m 3 Logo (1.8 = 3.4) x 10° 33+038
Teff Effective radius Derived from x m Linear (52+32) % 1074 —

For the response functions (section 3), the lower
(107°m?s %) and upper values (10 >m?s™?) of ¢ are
investigated as well. The a priori uncertainty of log e is
assumed to be 1.0 as observed by Shupe et al. (2012) for
MPACE. Covariances of kinematic variables with mi-
crophysical parameters are not considered.

Optimal estimation requires that the uncertainties of
x, (and y) be described by a Gaussian distribution with
variance as provided in S, (S.). For most elements of x,
it is found that the distribution of the logarithmic value
follows a Gaussian distribution better. As a conse-
quence, for D,,, N{, u*, ¢, and oy, the logarithm of the
quantities is used instead. Because of the different units

a) state space

kin: w
kin: oy,
A(D): d
A(D): ¢
m(D): b -0.08 -0.08
m(D): o 0.09 0.09 0.00 0.00

N(D): u* 0.15 0.16 0.00 0.00

N(D): N%, 0.51 -0.04 -0.13 0.11 0.13 0.00 0.00
N(D): D,, -0.44 0.09 0.35 -0.10 -0.12 0.00 0.00
S £ %S 258
- = o o o o ¢ £
— — [a) = f— ~ f — <~
= = =
zZ =2

of the quantities of x, the correlation matrix belonging to
S, is presented in Fig. 1a instead. Note that the logarithm
of the prefactor ¢ of A(D) is highly correlated (correla-
tion coefficient squared R* = 0.99893) with the exponent
d for the ISDAC dataset. Even though a high correlation
(0.836) between the coefficients of A(D) was also found
by Wood et al. (2014), the reason for this almost perfect
correlation in the ISDAC dataset remains unclear. It
could be related to issues with the measurements, the
postprocessing, or the fitting technique. Also the corre-
lation between N and Dyis high (—0.804).

In addition to these quantities, PAMTRA output
depends also but weakly on pressure p and temperature 7,

b) measurement space

1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0

pairwise correlation [-]

FIG. 1. (a) Correlation matrix of state vector x used for all profiles, and (b) an example correlation matrix of the measurement vector y for
o =008ms .
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which are required for estimation of the particle fall
velocity and the scattering properties. In this study, they
are obtained from the ISDAC dataset; in a real-world
application they can be estimated from radiosondes or
model data. Therefore, they are treated as known pa-
rameters in the retrieval.

f- Measurement vector y

In what follows, different configurations of the mea-
surement vectors are evaluated. In all cases, the mea-
surement vector is composed of one or several quantities
taken from the moments and slopes of the Doppler
spectrum: equivalent radar reflectivity factor Z,, mean
Doppler velocity W, Doppler spectrum width o, skew-
ness vy, and kurtosis k as well as the left slope S; and right
slope S,.

g Measurement uncertainty

The measurement uncertainty and forward-model
error are combined in the covariance matrix S,. For
the former, values of 0.5 dB for Z, and 0.1 ms ™! for W as
well as o have been reported by Widener and Johnson
(2005) for the MMCR. Uncertainties for higher mo-
ments or the slopes have not been published for the
MMCR yet. Therefore, we use a different approach here
to estimate the measurement uncertainty for all mo-
ments and slopes consistently: We assume that the
measurement uncertainty of the MMCR is dominated
by random effects (in contrast to a possible bias—see
section 5b for a discussion of systematic offsets resulting
from wrong calibration). This means that we exclude
other possible uncertainty sources such as receiver and
transmitter instability. We are confident that we can
neglect the former because the variability of the radar
noise was found to be very low (<0.0015dB), and the
latter is monitored for the MMCR in order to adjust the
calibration accordingly (Widener and Johnson 2005).
Random effects are included in PAMTRA by per-
turbing each bin of the Doppler spectrum with a ran-
dom number drawn from an exponential distribution as
in Zrni¢ (1975). Therefore, we can run PAMTRA a
sufficient number of times for the same profile and
compute the covariance from the spread of the results.
With this approach, we obtain the uncertainties not
only for the lower moments but also for the higher
moments and the slopes. Furthermore, this method
allows for estimation of the covariances between the
elements of y. These covariances provide a more real-
istic uncertainty estimate than does a purely diagonal
S. matrix, giving more weight to the measurements
(Ebell et al. 2010).

Measurement uncertainties are usually assumed to be
constant, but they depend strongly on the signal-to-noise
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ratio (SNR) and on the number of bins of the Doppler
spectrum that are covered by the peak (Np). In general,
observations with highest SNR and largest N have the
smallest S,. To estimate the specific S, for a particular
state x, PAMTRA is run 1000 times for the same x (we
found that running the forward model 1000 times leads
to stable results). When using real observations instead
of synthetic ones, x is not known in advance and S,
has to be estimated differently: the Doppler spectrum
width o depends on both SNR and Np; therefore, we
take logigo (accounting for nonlinear effects by the
use of logo) as a parameter to choose the appropriate
S. from a lookup table. This lookup table is created by
estimating S, and o for all profiles of the ISDAC
dataset. The resulting S, are sorted into classes de-
pending on log;go, and for every class the mean S, is
calculated. The impact of using a lookup table for S,
instead of estimating S, from x on retrieval perfor-
mance is negligible. Therefore, only the lookup-table
method is used in the following.

The measurement uncertainties corresponding to the
square root of the diagonal of S, are presented in Fig. 2
as a function of logjgo. It can be seen that the un-
certainty for Z, varies between 0.2 and 0.7 dB, which
means that we assume lower and higher uncertainties for
Z, than were reported by Widener and Johnson (2005)
depending on o. For W and for o itself, we find, however,
significantly lower uncertainty values than 0.1ms .
Given that the MMCR had a spectral resolution of
0.04ms~ ! during ISDAC, an uncertainty of 0.1ms'
appears to be a very conservative estimate for W (this
might be different for observations with a much lower
SNR than those investigated in this study—e.g., liquid
clouds). This is also confirmed by Matrosov (2011),
who found a standard deviation between W observa-
tions of ice clouds of an MMCR and a W-band radar of
0.03-0.06ms~'. Given that this corresponds to the
difference between two radar systems that were nei-
ther completely beam matched nor free of pointing
errors, we are confident that the measurement uncer-
tainty of W is considerably lower. Therefore, we stick
to our uncertainty estimate for W of 0.01-0.02ms "'
and assume that—at least for the investigated ice
clouds—the reported uncertainty value for o is too
high as well. For v, k, and the slopes, we found very
high measurement uncertainties for o < 0.1ms ! and
significantly reduced uncertainties for larger values. We
attribute this to a more stable estimation of these quan-
tities for wider peaks.

h. Forward-model error

In addition to the measurement uncertainty, S,
contains also the forward-model error, which can
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FIG. 2. Measurement uncertainty (dashed) and combined mea-
surement uncertainty and forward-model error (solid) for the
quantities of y as a function of o.

propagate to the retrieval solution. Maahn et al.
(2015) used m(D) [Eq. (1)] as a closure between
aircraft in situ observations and ground-based radar
observations for ISDAC. By this, they ensured that
potential biases due to scattering assumptions, v(D)
parameterization, radar calibration, and aircraft
in situ measurements are balanced by m(D). The
similarity of the found m(D) coefficients to literature
values gives confidence that these biases are small.
Because the same m(D) relations are used in this
study for the a priori together with the same forward
operator, we are confident that our forward operator
is generally not biased. Note that Maahn et al. (2015)
used the T-matrix approach instead of the SSRG
approximation; the equality of both methods for the
presented dataset is shown in the online supple-
mental material.
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In addition to biases, there are random errors such as
the following:

1) There is discretization error of measured N(D)
and A(D). The impact of discretization of N(D)
and A(D) was investigated in Maahn et al. (2015).
For N(D), no significant impact was found when
describing N(D) by a normalized gamma distribu-
tion [Eq. (2)], but for A(D) it was found that the
approximation of A(D) as a power law leads to a
differences in A of up to a factor of 2, which in turn
cause biases in y and k. These differences are
accounted for when running PAMTRA 1000
times. In this way, S, also contains the forward-
model error that originates from the description of
A(D) using a power law.

2) There is also error in the fall velocity relation v(D).
In our forward model PAMTRA, the uncertainty in
A(D) described above relates directly to an uncer-
tainty in v(D) of 11%. This is because A(D) is used in
PAMTRA solely for estimation of v(D). Therefore,
we decided not to consider an additional uncertainty
for v(D) although Heymsfield and Westbrook (2010)
reported an uncertainty of 25% for v(D). We expect,
however, in practice an error for v(D) of smaller than
25% because of the large ensemble of simultaneously
observed particles.

3) Third, there are errors in the estimation of backscat-
tering cross section o,g.. In this study, a fixed value of
0.6 is used for the aspect ratio AR. Because the two
other quantities, which according to SSRG theory
determine the ensemble scattering properties, N(D)
and m(D) are not fixed but are included in x, we can
assume that the forward-model error for estimating
Opsc 1s determined by the assumption of a fixed AR.
Maahn et al. (2015) found that AR is greater than 0.5
on the basis of ISDAC in situ data, and literature
values for AR vary between 0.6 (Hogan et al. 2012)
and 0.7 (Tyyneld et al. 2011). Therefore, we draw AR
from a normal distribution with mean 0.6 and
standard deviation 0.1 when running PAMTRA
1000 times to estimate S,. Because AR only affects
the estimation of oy Within PAMTRA, this ap-
proach is equivalent to assuming an uncertainty for
the estimation of o,s. directly. Note that this method
includes the implicit assumption that the bulk scat-
tering properties of ice particles depend only on
D, m, and AR. This will likely lead to biases when
applying the retrieval to clouds consisting of particles
other than these for which SSRG was developed, for
example, pristine or heavily rimed particles. For the
ISDAC dataset, we are, however, confident that
heavily rimed particles were rare because observations
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containing SCLW were filtered. Also pristine parti-
cles were—with the exception of at cloud top—likely
scarce given that cloud depths were typically larger
than 1000 m.

Using the same data and forward-operator set in
Maahn et al. (2015) and in this study allows for a con-
sistent handling of the assumptions and uncertainties
associated with the ISDAC dataset. The forward-model
error combined with the measurement uncertainty is
presented in Fig. 2. Inclusion of the forward-model error
leads to clearly enhanced uncertainties for all elements of
y. Only for small o, the forward-model error does not
increase the combined error for Z,, S, and S, that is re-
lated to the dominating measurement uncertainty for
small SNR. The measurement uncertainty is even slightly
larger than the combined error for two data points, which
we attribute to the averaging of S,. Because Z, does not
depend on v(D) and the assumed uncertainty, the in-
creased values for Z, depend only on the assumed un-
certainty for AR. For small o values, which typically
coincide with small Z, values, the forward-model error
does not contribute to the uncertainty estimate of Z,,
which is most likely related to the domination of small-
particle scattering in the Rayleigh regime. For larger o,
the forward-model error increases, which is probably
related of the presence of larger particles for which the
scattering properties depend stronger on AR. In contrast,
W depends only on the assumed uncertainties of v(D)
[or rather A(D)]. Because a relative error is assumed,
the forward-model uncertainty is increasing with larger
o values that are typically related to larger W values. The
full S, matrix corresponding to the combined measure-
ment and forward-model error is shown in Fig. 1b for
o =008ms".

To investigate the possibility that the discussion
of forward-model and/or measurement errors is in-
complete or that uncertainties have been under-
estimated, we analyze in section 5c the retrieval
performance under the assumption that S, is 4 times
as large; this corresponds to a duplication of the
uncertainties.

3. Response functions

The response functions of the forward model that
show the impact of the parameters on the moments and
slopes of the radar Doppler spectrum are now in-
vestigated. Note that this section follows Maahn (2015),
with minor modifications.

The response functions are presented in Fig. 3. Be-
cause kinematic broadening o can lead to peaks that
are more Gaussian shaped and can potentially reduce
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the response functions of other elements of x, the re-
sponse functions are estimated for three different
values of 0. Because o, depends on the horizontal
wind and on ¢, this is implemented by assuming a fixed
horizontal wind of 10ms ™! and three different values of
g(1x107%125%x107% and 1 X 10 *m*s ™) covering
the range of ¢ values found by Shupe et al. (2008) for the
MPACE campaign in Barrow. Each response function
is estimated 1000 times to assess its measurement un-
certainty, that is, to investigate whether the moments
and slopes are stable with respect to radar noise. The
resulting uncertainty range indicated by the 10th and
90th percentiles is shown in addition to the median
value.

Reflectivity Z, (Fig. 3a) depends strongly on D, and
on N but very little on the shape parameter u*. Fur-
thermore, Z, is affected by the coefficients of the nor-
malized mass-size relation « and b; Z, is not affected by
the area-size relation and the vertical air motion w be-
cause these quantities influence only the fall velocity of
the particles.

Mean Doppler velocity W (Fig. 3b) depends on both
mass-size and area-size coefficients (a, b, ¢, and d)
through the fall-velocity parameterization, with the
response of W to ¢ and d being particularly strong.
For N(D), W depends only on D,, and not on N§
because Nj scales N(D) only in the direction of the
ordinate. The shape parameter u* has only little impact
on W. As expected, vertical air motion w affects W
linearly.

In contrast to Z, and W, Doppler spectrum width o
(Fig. 3c) depends strongly on the assumed turbu-
lence level, which causes an offset of o but has little
influence on the response functions of the various
microphysical parameters. Apart from the coeffi-
cients of the area—size and mass—size relations, with a
particularly strong response to b, o also depends on
the shape parameter u* but does not depend on D,
and N}

Skewness y (Figs. 3d) is influenced by all of the pa-
rameters but Ni The response is small in comparison
with the lower-order moments (with the exception of b),
and the interval of estimated uncertainty (~0.25) is of-
ten of a size that is similar to that of the response. For
b only is the response greater than 1, but it is also very
nonlinear and not monotonic. In theory, y should not
depend on w, but a small, sinuous response can be seen
thatis related to discretization effects. When configuring
the radar simulator with a higher Doppler spectrum
resolution (e.g., 512 FFT points), the sinuous response
vanishes (not shown). Because increasing turbulence
leads to a more Gaussian shape of the peak, which
typically has a skewness value that is near zero, the
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FIG. 3. Impact of the parameters of the state vector (columns) on moments and slopes of the radar Doppler spectrum (rows) for values of
the eddy dissipation rate of 10~° (yellow), 1.25 X 10~ * (green), and 10> (blue) m?s . The uncertainties of moments and slopes (10th and
90th percentiles) caused by radar noise are indicated as colored areas around the median values’ lines. The black vertical line denotes the

mean value of the parameters in the ISDAC dataset.

response functions are reduced for the medium turbu-
lence level. For the high turbulence level, the response
of v is less than the estimated uncertainty range for all
parameters even though also the uncertainty range of
7 is reduced.

Kurtosis  (Fig. 3e) is mainly determined by the shape
parameter u* and the coefficients of the area—size and
mass-size relations, leading to a response of up to 3. This
is larger than the uncertainty of k (~0.4). The response
to b is, however, saturated for values of greater than 1.9.
Similar to v, the response of « is reduced for the medium
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turbulence level. For the highest turbulence level,
k—Ilike a Gaussian distribution—generally has a value
of 3; the response functions are greatly reduced and are
smaller than the uncertainties.

The left slope S; (Fig. 3f) responds to all parameters
except w, but only for u*, b, ¢, and d is the response
clearly greater than the uncertainty of up to 20dBsm ™.
In comparison with y and «, the uncertainty appears
larger because the slopes are obtained from the Doppler
spectrum in logarithmic scale, which increases the im-
pact of radar noise. The moments, on the contrary, are
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estimated from the spectrum in linear scale. Similar to
v and k, the response functions are reduced for the
medium and high turbulence intervals and are often
within or close to the noise estimate. The uncertainty
estimate is, however, reduced for higher turbulence,
which is probably related to the smoothing effect of
turbulence. Hence, S; might be even more exploitable by
the retrieval in higher turbulence conditions despite the
smaller response functions.

The response functions of the right slope S, (Fig. 3g),
which is mainly determined by the fastest-falling parti-
cles, are similar to S, with respect to noise. For D,,, b,
and c, the responses are largest and are significantly
larger than the uncertainty.

4. Retrieval results

To investigate the benefit of adding higher-order
moments and slopes to a radar retrieval, an optimal-
estimation-based retrieval is applied to synthetic radar
observations based on ISDAC in situ profiles using the
parameterizations introduced in section 2a. The training
dataset for a priori estimation is based on Maahn et al.
(2015), who used only aircraft observations that were
closer than 10 km to Barrow (Table 1). For separation of
the training and the validation datasets, the retrieval is
applied to 1371 synthetic radar observations obtained at
distances from 40 to 10km from Barrow. Using a max-
imum distance of 40 km results in almost equal sizes for
the training and validation datasets.

The percentage of the 1371 ISDAC profiles that
converge successfully to a solution P is presented in
Fig. 4. The values of P vary between 80% and 100%. A
profile does not converge if either the convergence cri-
terion [Eq. (16)] is not met within 30 iteration steps or
the retrieval iterates to a state that either is below radar
sensitivity or is physically inconsistent (e.g., ice crystals
with a density that is greater than that of pure ice) and
that cannot be forward modeled. Addition of higher-
order moments or slopes and omission of lower-order
moments reduces P, which is most likely related to the
greater noise in higher-order moments and slopes as
well as their less linear response to parameters de-
scribing microphysical properties.

a. Total degrees of freedom for signal

The total degrees of freedom for signal D, that can be
obtained from radar observations are presented in
Fig. 4. As expected, a retrieval exploiting only re-
flectivity can achieve only Dy = 1.0. Addition of W
(using only Z, and W is called LM in the following) adds
1.0 to Dy. If o is also included, Dyreaches values around
2.8 depending on the profile. When adding higher-order
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of total degrees of freedom for signal Dy obtained for the 1371
synthetic observations. The different lines are for different, cu-
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Dy of a retrieval only with Z, (first point), for a retrieval with Z,
and W (point marked with a 1 in a gray box), and so forth. The first
point of the light-green line is for a configuration only with W, the
second point is for W and o, and so forth. For the configurations
marked with a 1 in a box, the retrieval solutions are investigated in
detail. The dashed lines denote the percentage of retrievals of the
different configurations that converged successfully.

moments y and « to the retrieval, the median of Dyin-
creases only by 0.1-0.2 per moment. For some profiles,
however, y and k can contribute a multiple as can be
seen from the spread. This is probably due to the re-
duced response functions of the higher-order moments
for stronger turbulence: higher-order moments contain
exploitable information only, if the radar peak is not
Gaussian shaped. This is similar for the slopes. For
some profiles, S; and S, do not contribute any in-
formation to the retrieval, but on average they add 0.1
and 0.7, respectively, to Dy The greater additional in-
formation content of S, in comparison with S, is prob-
ably related to the sensitivity of S, to large, fast
particles. Since fall velocity depends on particle mass
and cross-sectional area, this reveals microphysical
properties of these particles that cannot be captured by
other moments. The S}, in contrast, describes the slowly
falling particles whose fall velocities converge to zero
with decreasing size. Therefore, the fall velocity does
not reveal microphysical properties for these particles.
When using all moments and slopes (AM) together, Dy
is3.9 £ 0.9.

When Z, is removed from the retrieval, Dfis reduced
by approximately 1 as long as S; is not added to y. Then,
Dy is only reduced by 0.5. Therefore, it can be con-
cluded that S, can partly replace Z, because they share
partly redundant information. This is different than for
S,, which is particularly sensitive to large particles with
large fall velocities, and therefore addition of S, always
increases Dby 0.5-0.7.
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A retrieval consisting only of o to S; (HM) can
achieve a value of Dy around 2.8 * 0.7, which is ap-
proximately 1.1 less than when using AM. Configura-
tions without Z, and W have in general a high spread of
up to 0.7 around the mean value for Dy

Using a retrieval that is based only on a single higher-
order moment or slope shows that Dy values of 0.3-1.0
are reached. This means that the reason for the small
increase in Dy when adding y or k to a lower-order-
moments retrieval is not that y and k do not contain any
information but rather that this information is partly
redundant with that included in the lower-order mo-
ments, particularly in W and o.

b. Using additional frequencies

Here, the benefit of adding additional frequencies to
the measurement vector is investigated. For this, the
impact of a dual-frequency (Ka and W bands) combi-
nation as well as a triple-frequency (Ku, Ka, and
W band) configuration is studied. For simplicity,
beamwidth, Nyquist range, number of FFT points, and
radar noise characteristics of all frequencies were con-
figured with respect to the MMCR specifications. This
might underestimate the obtained Dsbecause kinematic
broadening o can be directly retrieved from o if radars
with different beam widths are used (Maahn and Kollias
2012). When applied to real W-band observations, at-
tenuation has to be accounted for even though attenu-
ation for ice and snow is low in the W band (Nemarich
et al. 1988).

The impact on Dy of using two or three frequencies is
presented in Fig. 5 for three configurations: LM (lower
moments Z, and W), HM (o, v, «, S;, and S,), and AM
(all moments and slopes). It can be seen that the use of
additional frequencies increases Dyup to 5.4. Using AM
in a single-frequency retrieval leads to a Dy value of 3.9,
which is 1.2 (1.0) more than when using a dual-frequency
(triple frequency) retrieval with LM with multiple fre-
quencies. Note that this additional information, how-
ever, has to be used to retrieve o as well, which is not
required for the LM configuration. Also when using a
dual- or triple-frequency configuration, the inclusion of
higher-order moments and slopes into the retrieval is
beneficial because Dy rises faster with the number of
frequencies for AM than for LM. If only HM are used,
the retrieved Dyis between the configurations with AM
and LM.

The increase of Dy by adding a second frequency is
greater than when adding a third one. This is especially
true for the LM configuration for which only a little
additional information can be obtained for most cases
when using a third frequency. This is in contrast to the
findings of, for example, Leinonen and Moisseev (2015)
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dashed lines indicate the percentage of converged profiles.

and Kneifel et al. (2015), who found information in the
triple-frequency signatures of reflectivity for aggrega-
tion and riming. This is most likely because our dataset
contains mostly cloud ice and only a few precipitating
snow particles because the aircraft was probing above
cloud base most of the time. Also heavily rimed particles
are expected to be infrequent in the dataset because
data that contain larger amounts of supercooled water
are filtered out. It is also unclear whether the SSRG
approximation is able to reproduce triple-frequency
signatures or whether the coefficients found by Hogan
and Westbrook (2014) have to be altered to represent
heavily aggregated and/or rimed particles better [see
also Kneifel et al. (2016)].

c. Application to real radar data

So far, retrieval performance was only investigated by
using synthetic radar observations. For the Ka band, real
radar observations from the MMCR in Barrow are
available during ISDAC. To make sure that the real
dataset contains ice clouds with microphysical proper-
ties comparable to the synthetic dataset, only the radar
observations that are closest in time and space to
ISDAC in situ observations of the training dataset are
analyzed. The MMCR dataset is offset corrected as
proposed by Protat et al. (2011) and is filtered for values
of liquid water path of greater than 0.1 kgm ™2, which is
the detection threshold of the used microwave radiom-
eter retrieval (Cadeddu 1993). For a cloud with 2.5-km
thickness, 0.1kgm 2 of liquid corresponds to approxi-
mately —32dBz. Therefore, the impact of SCLW on the
radar moments and slopes can be neglected. The radar
dataset contains 1354 profiles, and Dy is estimated for
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knowledge of w and o on the retrieval; the magenta X is for quadrupling S, corresponding to a doubling of measurement and forward-

model errors.

these profiles and the three retrieval configurations of
LM, HM, and AM (Fig. 5). It can be seen that Dy is as
large as for the synthetic observations. This result shows
that retrievals using HM or AM are feasible in practice
and that the forward model works sufficiently well. Only
the percentage of converged profiles P is reduced by
11% and 4% for HM and AM, respectively. This is
most likely related to measurement effects that were
not considered in the measurement uncertainty such as
nonuniform beam filling but can also be related to
forward-model errors.

d. Individual degrees of freedom for signal

The individual degrees of freedom for signal d¢for the
elements of x can be estimated from the diagonal ele-
ments of A. For the synthetic Ka-band retrieval, best
results are obtained for the AM configuration (Fig. 6).
Even though the LM configuration features, on average,
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the lowest values of dj, the spread is usually smallest,
indicating the stability of the retrieval. Negative dy
values and values that are larger than 1 occur for D,,, and
N as well as for ¢ and d. This is due to the high corre-
lation of these pairs, and these pairs have to be consid-
ered together. The sum of both d; of each pair is always
smaller than 1.

As expected, no information about o7 can be obtained
from the LM. Moreover, d;is low for N§; u*, a, and b,
when using only LM. Using AM increases dy for all
variables except D,, (for which dyis generally very high)
and a. The generally low dyvalues for « are in contrast to
the clear response functions of Z, and W, showing that
not all state quantities can be derived unambiguously.
HM respond only little to @, which implies that there is
little benefit when adding higher-order moments and
slopes. The increase of dy by using AM is particularly
strong for u*, oy, b, and d.
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FIG. 7. Relative uncertainty of the solution for the elements of x. Colors and symbols are as in Fig. 6. The thick horizontal line indicates the
a priori uncertainty.

The spread of dyis strongly increased when using HM
and/or multiple frequencies. This shows the noisiness of
HM and that they do not work for all conditions equally
well. Another reason is likely that the retrieval might
distribute the information content among the variables
differently depending on the profile. For example, for
k the response function of b saturates for values larger
than 1.9, which might reduce dy of b for profiles with
b>1.0.

The impact of using additional frequencies is partic-
ularly large for N if only LM are used. This is coun-
terintuitive at first sight, because NV is expected to cancel
out from the dual-wavelength ratio (e.g., Kneifel et al.
2011). The reason is probably that the availability of two
reflectivity values allows one to retrieve not only D,,,
but also N unambiguously. Also for u*, dyis increased
by approximately 0.2-0.3 for both LM and AM. For «, b,
d, and oy, the increase of d; by adding additional fre-
quencies is much more pronounced when using AM
than when using only LM. The decrease of dyfor D,, is
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overcompensated by the increase of the highly corre-
lated Nt Except for D,, and w, there is no variable that
does not benefit from adding additional frequencies.

Using only HM gives mostly results between LM and
AM, but the spread is largest, indicating the variability
of how much information can be obtained from HM
among the individual profiles. Applying the retrieval to
real observations gives results very similar to the syn-
thetic single-frequency configuration. Only between the
highly correlated pair ¢ and d is the information dis-
tributed differently among the variables when using HM
or AM.

e. Retrieval uncertainty

The relative uncertainty of the retrieval solution is
shown together with the relative a priori uncertainties in
Fig. 7 for the individual elements of x. Note that the
uncertainty of the variables treated in logarithmic scale
by the retrieval (D,,, N§, u*, ¢, and oy) is expressed
logarithmically as well. Because log;oc and w are varying
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FI1G. 8. Solution with respect to truth, in percent. Colors and symbols are as in Fig. 6. The thick horizontal line indicates a bias of zero.

around 0, their relative uncertainty can reach very high
numbers. The absolute, prior uncertainties of log;oc and
ware 0.89 and 0.32ms !, respectively (Table 1), and the
retrieved absolute uncertainties are accordingly smaller.

Similar to dg, the impact of using AM and adding more
frequencies to the retrieval can be clearly seen. The
uncertainty of some variables depends more on the
number of frequencies (D,,, N§ and w), while others can
be better obtained when using AM (a, b, ¢, d, and o).
For all variables except @ and b, the median of the un-
certainty is more than 50% smaller than the a priori
knowledge when using AM and three frequencies. The
small improvement for « can be explained by the fact
that not more than 0.2 for dy can be retrieved. For a
and b, the small a priori uncertainties of 0.20 and 0.24,
respectively, have to be accounted for.

When using multiple frequencies, but in particular
when using HM, the spread of uncertainties among re-
trieval solutions is very large. This highlights, similar to
dy, that the advantage of using higher-order moments
and slopes but also of multiple frequencies depends on
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the profile. Similar to d, the results for the real obser-
vations are on average very similar to the results of the
synthetic single-frequency observations.

When using only HM, the median of the relative un-
certainty is between LM and AM for «, b, ¢, d, and 0.
For D,,,, N{; and w, the retrieval works better when using
only LM than when using only HM.

f- Retrieval bias

For the synthetic observations, it is also possible to
investigate whether the retrieval solution is in agree-
ment with the aircraft in situ profile that was used to
simulate the observations (Fig. 8). In general, the bias
between truth and retrieved state is below 5%, with
the exception of ¢ and w. This result is related to the
fact that these quantities typically have values close to
zero, which leads to large relative biases even though
the absolute biases are small. The spread of parame-
ters describing N(D) is slightly increased for single-
frequency retrievals but reduced for multifrequency
retrievals.
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FIG. 9. Relative uncertainty of the solution for the derived variables IWC, Ny, and r.g. Colors and symbols are as in Fig. 6. The thick
horizontal line indicates the a priori uncertainty.

g. Derived values

The uncertainty of the retrieval solution can also be
estimated for variables derived from x such as

IWC = Y N(D,N%, D, , uw*)m(D,a,b)AD,  (18)

=X.N(D,N§,D,,,p*)AD, and (19)
DR2)’N(D, N £)AD

_ 2(DR)’N(D,N§, D, u*) 20

r 9
it S (DR2)’N(D,Ni, D, , u*)AD

with Gaussian error propagation (Fig. 9). IWC and Ny
are investigated in logarithmic scale because they can span
several magnitudes. The derived variables depend heavily
on D,,, and N which benefit less from the use of AM than
other quantities. Therefore, the impact on the investigated
derived quantities of adding higher-order moments and
slopes to a single-frequency retrieval is smaller than when
using LM but adding more frequencies. When using AM
and multiple frequencies, the uncertainty (see Table 1) of
log1)IWC and rg can be reduced by a factor of 3 with
respect to the prior uncertainty. For log;oNy, an im-
provement of 40% can be achieved.

5. Retrieval modifications
a. Prior knowledge of kinematics

A potential improvement of the retrieval would be the
inclusion of continuity in time and space because mi-
crophysical and, in particular, kinematic variables do not
change drastically between two range gates and/or time
steps. In practice, this could be achieved by updating
the a priori knowledge depending on neighboring/
previous observations and the correlation length of the
corresponding parameters (analogous to a Kalman fil-
ter). Because only the potential of this modification is
evaluated, here a different approach is chosen: we in-
vestigate how the retrieval changes if w and o are ex-
cluded from the retrieval and assumed to be known from
another source (two-step retrieval). Uncertainties of
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externally retrieved w and o, are expressed by S,. For
logi00, Shupe et al. (2012) report an uncertainty of
0.4, which is assumed to be the 2-sigma uncertainty of
logygo. For w, Kalesse and Kollias (2013) developed a
retrieval for cirrus clouds with a 2-sigma uncertainty of
0.3ms " '. Covariance elements of S, are neglected. This
corresponds to relative prior uncertainties of 349% and
18% for w and oy, respectively, which is similar to their
posterior uncertainty when including the kinematic
variables into the retrieval. Note that this modifica-
tion can only be applied to the synthetic retrieval
configurations.

Exclusion of the kinematic variables from the re-
trieval reduces the total Dy by 0.6-1.3 depending on
configuration when using AM and HM (not shown).
This indicates that the advantage of knowing w and o
can only be partly exploited by a retrieval when using
HM or AM. The impact of known kinematic variables
on the median of d; and the relative uncertainty are
presented in Figs. 6 and 7, respectively. When using
LM, a significant increase of dy can be found only for N
and c. The increase of the latter is, however, compen-
sated by the more negative dy values for d so that for
both quantities together only a small net effect remains.
This leads to a reduction of the posterior uncertainty of
log;gc by 10 percentage points. For AM, dis increased
for all variables but D,,—where dy is already large—and
d, which is compensated by the increase of c. The re-
duction of posterior uncertainty is particularly strong for
b, and—when using more than one frequency—a. When
assuming a smaller S,, the uncertainties for « and b can
be further reduced (not shown). Note that when using
only HM the impact of prior knowledge about kine-
matics is less, which is likely related to the fact that Wis
not included in HM.

b. Radar calibration

Radar calibration is still an urgent topic, and com-
parisons with satellite-based radar revealed large offsets
(Protat et al. 2011). Of the radar moments, only Z, is
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affected by radar calibration (exceptions are possible for
very low SNR ratios). The slopes are only a relative
measure between the noise level and the top of the peak,
and they should not be affected by calibration either.
However, correct determination of the noise level is
crucial for estimating the slopes correctly from the
simulated Doppler spectrum. Because the absolute es-
timation of the noise level depends on the calibration as
well, the slopes are indirectly affected by calibration
offsets, a fact that is also considered in the following. To
investigate the impact of a potential radar miscalibration
on retrieval bias, the retrieval was applied to synthetic
observations assuming a relatively large calibration offset
of £3dB. A comparison with the retrieval configured
without calibration offset revealed only a small increase
of the bias of 1%-5% for most variables (not shown).
Only for w and «, the change in bias is found to be up to
10% for some retrieval configurations. For all variables,
the median bias is still within the 25th-75th-percentile
range of the spread among the ISDAC profiles.

c. Increased forward-model error

To investigate the impact of a doubled forward-model
and measurement error, S, has been multiplied by a
factor of 4 (section 2h). Figure 6 shows how this reduces
dy by up to 0.2. The reduction is particularly strong for
p*, d, and o, with AM but is negligible for all quantities
when using LM as well as for «, ¢, and w with AM. A
reduced dy value leads to an increased posteriori un-
certainty, but for AM and all quantities except o and
D,,, the median stays between the 25th and 75th per-
centiles of the normal retrieval configuration (Fig. 7).
Increasing S, has negligible impact on the bias of the
retrieval solution (not shown).

6. Discussion and outlook

The potential of adding higher-order moments of the
radar Doppler spectrum (Doppler spectrum width o,
skewness vy, and kurtosis k) as well as the left and right
slope of the Doppler spectrum (S; and §,, respectively)
to a retrieval targeted to Arctic ice clouds with low to
medium turbulence conditions was investigated with a
vertically pointing radar. An optimal-estimation-based
retrieval was set up that retrieves quantities describing
microphysical properties such as N(D) (N D,,, and pu*),
m(D) (a and b), and A(D) (c and d) as well as kinematic
quantities describing air motion and turbulence (w and
o). To the authors’ knowledge, this is the first study to
characterize microphysical quantities including ice par-
ticle mass (and indirectly density) at the same time as
kinematic properties based on radar observations and
the first study using higher-order moments and slopes
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for ice-cloud retrievals. Both real and synthetic radar
observations obtained during the ISDAC campaign
around Barrow were used. The use of a single, homoge-
neous dataset allowed for a consistent definition of par-
ticle dimension.

The key findings of this study can be summarized as
follows:

1) Higher-order moments and slopes respond to
quantities describing microphysical and kinematic
properties even though they are more noisy than
lower-order moments.

2) For single-frequency observations, the use of lower-
and higher-order moments as well as the slopes
(AM) can double the information content in com-
parison with the use of lower-order moments (LM).
When using more than one frequency, the increase in
information content is larger for AM than for LM.
The information that higher-order moments and
slopes can contribute to a retrieval varies from pro-
file to profile.

3) When using only higher-order moments and the
slopes (HM), retrieval performance is between those
of LM and AM.

4) The use of AM reduces the uncertainty of all state
quantities with respect to the prior knowledge. The
use of multiple frequencies can reduce the posterior
uncertainties for all quantities even further. Best
results can be obtained when using AM and a
triple-frequency configuration.

5) Application to real MMCR observations shows only
minor differences with synthetic radar observations.
This result indicates the general feasibility of the
approach.

6) Prior knowledge about kinematic quantities enhances
retrieval results—in particular, for m(D)—while an
increased measurement/forward-model error decreases
retrieval results. Calibration offset was found to have
only a secondary impact on the results. Doubling of the
combined measurement uncertainty and forward-
model error leads to enhanced retrieval uncertainties
but has no impact on the general conclusions.

Together with the methods to estimate the a priori
dataset developed in Maahn et al. (2015), this study
introduces a generalized retrieval framework that can
also be transferred to periods other than ISDAC and/or
locations other than Barrow. The question of whether
this is also true for the a priori dataset itself has yet to be
answered. For this, the representativeness of the used
ISDAC dataset has to be investigated. This could be
achieved by, for example, comparing the prior infor-
mation of microphysical properties with other studies
(e.g., Wood et al. 2014). Because the aircraft was mostly
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probing above cloud base, it also has to be estimated as
to whether the prior can be successfully applied to
snowfall consisting of larger particles. As of now, the
applicability of the retrieval method is limited to ice
clouds consisting of aggregates. To overcome this limi-
tation, the applicability of SSRG theory to heavily rimed
and pristine particles has to be investigated. Moreover, a
key assumption in the retrieval is that knowledge of D,
m, and aspect ratio is sufficient to estimate the ensemble
backscattering properties (Hogan and Westbrook 2014).
If this assumption is invalid (e.g., because of an addi-
tional dependence on particle type), the retrieval results
might be biased to a degree that exceeds the reported
uncertainties. The same is true for the estimation of fall
velocity, which was assumed to depend only on D, m,
and A (Heymsfield and Westbrook 2010).

Most Arctic clouds are mixed phase (Battaglia and
Delanoé 2013), and the retrieval includes no limitations
with respect to lightly rimed particles. However, the
retrieval is not designed for mixed-phase clouds for
which the SCLW is visible in the radar Doppler spec-
trum. Therefore, a cloud-classification algorithm (e.g.,
Shupe 2007) has to be used when applying the retrieval
in mixed-phase clouds. An extension of the retrieval to
mixed-phase clouds is desirable but requires the addi-
tion of multiple, additional variables to the state vector.
Moreover, high amounts of liquid can create bimodal
peaks or even two separate peaks in the radar Doppler
spectrum (Luke et al. 2010). For these peaks, new mo-
ments or other quantities have to be developed to ex-
press the bimodality properly. As an alternative, the full
Doppler spectrum could be used instead of radar mo-
ments and slopes for the observation vector y [as was
done for rain by Tridon and Battaglia (2015)]. Using the
full spectrum would also allow one to investigate
whether there is additional information included in
Doppler spectra of ice clouds that cannot be obtained
from moments and slopes. Another possibility would be
the use of radar attenuation, which is stronger for liquid
water (Gosset and Sauvageot 1992), or the inclusion of
other remote sensing instruments such as microwave
radiometer and lidar that are sensitive to cloud water.

Even though the statistical agreement of retrieval
results of real and synthetic radar observations indicates
that the retrieval gives consistent results for real obser-
vations as well, its output has to be evaluated. This is
challenging because collocated, independent observa-
tions of microphysical properties do not exist. Possible
options would be comparison with models such as nu-
merical weather models or large-eddy simulations (e.g.,
Solomon et al. 2014), comparison with surface obser-
vations (e.g., Wood et al. 2014), or radiative closure
studies (e.g., Shupe et al. 2015).
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A Monte Carlo-based retrieval approach could be
used as an alternative to optimal estimation. Even though
it is much more expensive, it could be used for selected
profiles to map the solution space and to investigate
whether optimal estimation converges to a global mini-
mum or to a local minimum (Posselt and Mace 2014).

Estimating the scattering properties from database-
supported discrete dipole approximation calculations
(e.g., Liu 2008; Tyyneli et al. 2011) is potentially more
accurate than the self-similar Rayleigh—Gans approxi-
mation and could increase the quality of the retrieval.
The problem has yet to be solved, however, as to how
particle distributions that follow arbitrary mass—size and
area-size relations (as it is required by retrievals) can be
obtained from a database that contains only certain
particle types with certain discrete mass—size and area—
size relations. One possibility to solve this issue would be
to select different particles from the database and mix
them such that the mixture matches the required mi-
crophysical bulk properties.
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