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ABSTRACT

Retrievals of ice-cloud properties from cloud-radar observations are challenging because the retrieval

methods are typically underdetermined. Here, the authors investigate whether additional information can be

obtained from higher-order moments and the slopes of the radar Doppler spectrum such as skewness and

kurtosis as well as the slopes of the Doppler peak. To estimate quantitatively the additional information

content, a generalized Bayesian retrieval framework that is based on optimal estimation is developed. Real

and synthetic cloud-radar observations of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) dataset

obtained around Barrow, Alaska, are used in this study. The state vector consists of the microphysical

(particle-size distribution, mass–size relation, and cross section–area relation) and kinematic (vertical wind

and turbulence) quantities required to forwardmodel themoments and slopes of the radarDoppler spectrum.

It is found that, for a single radar frequency, more information can be retrieved when including higher-order

moments and slopes than when using only reflectivity and mean Doppler velocity but two radar frequencies.

When using all moments and slopes with two or even three frequencies, the uncertainties of all state variables,

including the mass–size relation, can be considerably reduced with respect to the prior knowledge.

1. Introduction

Ice clouds play a key role in the atmosphere of Earth,

but in situ observations of ice clouds are difficult tomake

and thus are sparse. Remote sensing instruments have

the potential to fill this gap because they can provide

observations at high temporal and spatial resolutions.

Among remote sensing instruments, ground-based ver-

tically pointing Doppler cloud radars are the only in-

struments that can penetrate optically thick ice clouds

and provide measurements of the fall velocity of hy-

drometeors. However, the observables of cloud radars

are only indirectly linked to cloud and precipitation

properties. The required transfer functions are not

uniquely defined, resulting in substantial uncertainties in

radar-based ice-cloud retrievals.

Different strategies have been used to increase the

information content of radar observations: some stud-

ies suggested the use of radar–microwave radiometer

combinations (Grecu and Olson 2008; Posselt and

Mace 2014), radar–lidar combinations (Intrieri et al.

1993; Delanoë and Hogan 2008), or multiple radars

operating at two (Hogan et al. 2000; Szyrmer and

Zawadzki 2014) or three frequencies (Sekelsky et al.

1999; Kneifel et al. 2011). For single-instrument re-

trievals, some studies proposed to exploit not only

equivalent radar reflectivity factor Ze but also mean

Doppler velocity W (Matrosov et al. 2002; Szyrmer

et al. 2012) and Doppler spectrum width s (Mace et al.

2002; Deng and Mace 2006) of zenith-pointing radars.

Also, the use of the full radar Doppler spectrum has

been suggested (Verlinde et al. 2013).

Our research addresses the point of increasing the in-

formation content of observations from ice-cloud radars

by studying whether additional information can be ob-

tained from the higher-order moments and the slopes of

the radar Doppler spectrum. For this, not only are Ze,W,

and s studied but also skewness g and kurtosis k. In ad-

dition to the higher-order moments, the left slope Sl and

the right slopeSr of the radarDopplermaximumpeak are

also investigated. While s, g, and k have the advantage
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that they are not influenced by radar calibration, they

are strongly influenced by turbulence. Therefore, the

retrieval implemented in this study provides not only

microphysical properties—such as particle-size distribu-

tion, mass–size relation, and cross section–area relation—

but also kinematic variables, such as vertical air motion

and turbulent spectral broadening.

Lack of information about the mass–size relation of

hydrometeors is one major reason for the uncertainty of

most radar retrievals. A few studies solve this problem

by including particle mass (or density) into the retrieval

(e.g., Posselt and Mace 2014; Szyrmer and Zawadzki

2014). A retrieval providing microphysical parameters

including the mass–size relation as well as kinematic

properties, together with the corresponding uncertainties,

has, to the authors’ knowledge, not yet been developed.

The same is true for ice-cloud retrievals using higher-

order moments even though there are studies using g and

k for detection of drizzle onset (e.g., Kollias et al. 2011)

and to locate supercooled liquid water (e.g., Luke et al.

2010). Maahn et al. (2015) found higher-order radar

moments to be useful for evaluating ice-cloud pa-

rameterizations using observations from the Indirect

and Semi-Direct Aerosol Campaign (ISDAC;

McFarquhar et al. 2011), which took place in 2008 in the

environs of the Atmospheric Radiation Measurement

Program North Slope of Alaska (NSA) site in Barrow,

Alaska. The dataset and the parameterizations rec-

ommended by Maahn et al. (2015) are the basis for

this study.

To study the information content of higher-order

moments and slopes qualitatively, response functions

to ice-cloud parameters are assessed. For a quantitative

analysis, the number of independent information pieces

(total degrees of freedom for signal Df) are estimated

using a retrieval that is based on optimal-estimation

theory (Rodgers 2000). Optimal estimation is widely

used in atmospheric remote sensing, in particular for

passive and activemicrowave applications (e.g., Löhnert
et al. 2004; Steinke et al. 2014).

The radar simulator of the Passive and Active Micro-

wave Radiative Transfer (PAMTRA) model (Maahn

2015) is utilized as the forward operator. As input, both

real and synthetic radar observations from the ISDAC

campaign are used. The retrieval output is composed of

variables that describe the particle-size distributionN(D),

the mass–size relation m(D), and the cross section–area

relationA(D) and kinematic variables that are related to

turbulence and wind. For this, the a priori dataset and

the parameterizations recommended by Maahn et al.

(2015) are used. They usedmaximumparticle dimension

as the size descriptor, which is adopted here for consis-

tency. Optimal estimation provides not only a retrieved

state but also its uncertainty, assuming a Gaussian un-

certainty distribution. Therefore, the analysis of re-

trieval results is not limited to bias but also covers

uncertainties. The retrieval results are further analyzed

in terms of the use of additional radar frequencies, the

impact of calibration offset, measurement uncertainty,

and prior knowledge of kinematic variables.

The datasets used, the forward model, and the optimal-

estimation retrieval algorithm are described in section 2.

The response functions of radar moments and slopes to

microphysical parameters are discussed in section 3. In

section 4, the retrieval results are investigated, and the

impact of modifications to the retrieval is analyzed in

section 5. The findings are discussed and concluding re-

marks are given in section 6.

2. Setup

In this section, the datasets and methods used in this

study are introduced. This includes the definition of the

state vector x and the measurement vector y and how

they are connected by optimal estimation.

a. Dataset

All data used in this study were obtained during the

ISDAC campaign (McFarquhar et al. 2011; Jackson

et al. 2012), which took place in 2008 at the NSA site in

Barrow and covered mostly stratocumulus ice and

mixed-phase clouds. The ISDAC dataset consists of

in situ cloud measurements by the Convair aircraft

(McFarquhar and Jackson 2012) as well as ground-

based spectral radar observations by the millimeter-

wavelength cloud radar (MMCR) operating at a

frequency of 34.86GHz (Moran et al. 1998), which are

available on request (Bharadwaj and Johnson 2003).

Supercooled liquid water (SCLW) can be visible in the

radar Doppler spectrum at high concentrations (Luke

et al. 2010), which could bias the analysis. Therefore,

only aircraft observations in the vicinity of the NSA

site that contain less than 0.01 gm23 of SCLW as

measured by the ‘‘King’’ probe are used for this study.

Even though such low SCLW values are, in the pres-

ence of cloud ice, usually not visible in the radar

spectrum, rimed ice particles are probably still in-

cluded in the dataset. Most of the observed clouds were

precipitating, but aircraft observations were usually

above cloud base. In the following, the quantities de-

rived from the ISDAC dataset are briefly introduced.

See Maahn et al. (2015) for a detailed discussion about

why the following methods are used to parameterize

the ISDAC dataset.

Particle mass is expressed by a normalized power law

as proposed by Szyrmer et al. (2012):
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m(D)5aC
0
(D/D*)b , (1)

where D* and C0 describe a reference particle size and

mass, respectively, and a is a dimensionless factor. In

accordance with Szyrmer et al. (2012) and Maahn et al.

(2015),D* andC0 are set to 1.23 1023m and 33 1028 kg,

respectively. In comparison with the common power-law

formulation of the mass–size relation m(D) 5 aDb, the

normalized version is more robust and has less corre-

lation between the parameters [cf. with Wood et al.

(2014)] but still has two degrees of freedom. Because

the coefficients a and b have not been measured during

ISDAC, they are retrieved as a closure from a combi-

nation of ISDAC airborne measurements and ground-

based radar observations of the MMCR as shown in

Maahn et al. (2015). Factor a can be transformed to the

a parameter of the more commonly used power-law

mass–size relation with a 5 aC0 /(D*)b. Note that the

b exponent value of 2.2 found by Maahn et al. (2015) is

closer to the values found by, for example, Heymsfield

et al. (2010) (2.1–2.2) and Wood et al. (2014) (2.1) than

to the value of 1.9 found by Brown and Francis

(1995) that is frequently used for remote sensing.

The particle-size distribution N(D) is estimated

from the aircraft observations using the a normalized

gamma distribution by Testud et al. (2001) and Delanoë
et al. (2005). Instead of the equivalent melted di-

ameter, the maximum particle dimension D is used as

particle-size descriptor as introduced in Maahn et al.

(2015):

N(D)5N
0
*
(b1m1 1)b1m11G(b1 1)

G(b1m1 1)(b1 1)b11

�
D

D
m

�m

3 exp[2(b1m1 1)D/D
m
] , (2)

where N0* is the intercept parameter, Dm is the mass–

weighted scaling parameter,m describes the shape of the

distribution, G is the gamma function, and b is the ex-

ponent of the mass–size relation. Note that in the fol-

lowing, m is replaced by m* 5 b 1 m 1 1 to increase the

numerical stability of the gamma function when using it

within a retrieval. The coefficients N0* and Dm are de-

rived directly from the moments of the particle distri-

butions measured by the cloud probes; m* is obtained

by a least squares fit to the measured distribution. Be-

cause rare, large particles cannot be sufficiently sampled

with in situ probes, N(D) is extrapolated to the largest

size class (12.8mm) of the in situ probes as discussed in

Maahn et al. (2015).

The projected area A(D) is required for estimation of

the quiet-air fall velocity. A power law is used to de-

scribe the observations:

A(D)5 cDd , (3)

with prefactor c and exponent d. Maahn et al. (2015)

found that an additional noise vector has to be applied to

the area–size relation allowing for a deviation of A(D)

from the power law so as to match the radar moments

observed by the MMCR. However, a random term

cannot be handled properly by the optimal-estimation

framework, and the corresponding error is treated as

forward-model error instead (see section 2h). Note that

this random vector is, however, used when creating

synthetic radar observations.

For kinematic effects, vertical air motion w (re-

sulting in a shift of the Doppler peak) and kinematic

broadening sk of the Doppler peak are considered.

As discussed in Maahn et al. (2015), sk depends

mainly on the horizontal wind u, the turbulence ex-

pressed by the eddy dissipation rate «, the radar in-

tegration time, and the radar beamwidth. The u andw

are obtained from aircraft measurements, whereby

w is offset corrected as suggested by Gultepe et al.

(1990). Even though the Convair aircraft was equipped

with a Tropospheric Airborne Meteorological Data

Report (TAMDAR) instrument (Moninger et al. 2010)

that was capable of measuring turbulence, during

ISDAC « was mostly below the detection threshold of

1023m2 s23 of the TAMDAR instrument. As a conse-

quence, the TAMDAR instrument only provides an

upper bound of «; for ISDAC, Maahn et al. (2015) es-

timated « to be 1026m2 s23 on the basis of the com-

parison of in situ aircraft and ground-based radar

observations.

b. Forward model

To simulate the full radar spectrum s and the corre-

sponding moments and slopes on the basis of the pro-

vided in situ hydrometeor profiles, the PAMTRAmodel

is used (Maahn 2015). Different from the method in

Maahn et al. (2015), the self-similar Rayleigh–Gans

(SSRG) approximation (Hogan andWestbrook 2014) is

used here instead of the soft spheroid T-matrix approach

(Mishchenko 2000) to estimate the ice-particle scatter-

ing properties. The approximation is orders of magni-

tude faster than the spheroidal T-matrix approach and is

applicable to any particle type, thereby providing more

robust results for particles that are larger than the radar

wavelength l (see the online supplemental material).

SSRG depends onD,m, and aspect ratio AR, which was

fixed at 0.6 (assuming horizontal alignment) in accor-

dance with Hogan et al. (2012) and because no de-

pendence of higher-order moments and slopes to AR

was found by Maahn et al. (2015). In contrast to the soft

spheroid T-matrix approach, the refractive index of pure
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ice (Warren and Brandt 2008) is used for SSRG. The

quiet-air particle fall velocity of the hydrometeors is

estimated using the method of Heymsfield and

Westbrook (2010), which depends on D, m(D), A(D),

and air density. The resulting quiet-air radar Doppler

spectrum is convolved with a Gaussian distribution with

standard deviation sk to account for kinematic broad-

ening and is shifted by w to account for vertical air

motion. Last, noise is applied in accordance with the

MMCR specifications.

In this study, the PAMTRA forward simulator is

configured in accordance with the technical specifi-

cations of the MMCR that was operating during

ISDAC. It operated at a frequency of 34.86GHz with

Doppler velocity resolution of 4.1 cm, a full-width

beamwidth of 0.318, and a noise level of 233.25 dBz

[as defined by Smith (2010)] at 1-km height (Moran

et al. 1998; Bharadwaj and Johnson 2003). As atten-

uation is expected to be negligible for snow and

ice at Ka band (Matrosov 2007), attenuation is not

considered here.

c. Radar observables

The radar Doppler spectrum ŝ (SI units: m2m23) is

converted to s (mm6m23) with

s5 1018
l4

jK
w
j2p5

ŝ , (4)

where l is the radar wavelength and jKwj2 is the di-

electric factor for water. It is convention to fix jKwj2 to
0.93 for the Ka band. Note that neither s nor ŝ is nor-

malized with the Doppler resolution Dy.
With this definition, the equivalent radar reflectivity

factor Ze can be obtained in decibels with respect to

a reference level of 1mm6m23 (dBz; Smith 2010) with

Z
e
5 10 log

10
z
e
, (5)

where

z
e
5 �

i

s(i) . (6)

The sum is taken over all bins i of the Doppler spectrum

that belong to themost significant peak. For consistency,

PAMTRA’s peak-recognition scheme is applied to both

the MMCR Doppler spectra (Bharadwaj and Johnson

2003) and the synthetic spectra of PAMTRA’s radar

simulator, because moments and particularly slopes can

depend on the method used for Doppler peak definition

and recognition.

The mean Doppler velocity W (first moment) is de-

fined as

W5
�
i

s(i)y(i)

z
e

, (7)

where y(i) is the Doppler velocity of bin i. In the absence

of vertical air motion, W is equal to the reflectivity-

weighted mean particle fall velocity. There is no common

convention for the sign of W; in this study positive W

refers to particles falling toward the ground.

The width of the spectrum is given by the standard

deviation of the Doppler spectrum, called the Doppler

spectrum width s (second central moment):

s5

8><
>:
�
i

s(i)[y(i)2W]2

z
e

9>=
>;

1/2

. (8)

Width s depends not only on the particle-size distribu-

tion and quiet-air particle fall velocities but also on ki-

nematic broadening by wind shear and turbulence

occurring within the volume observed by the radar.

Skewness g, the third central moment, is given by

g5
�
i

s(i)[y(i)2W]3

z
e
s3

(9)

and describes whether the peak is skewed to the left

(g , 0) or right (g . 0).

Kurtosis k, the fourth central moment, defined as

k5
�
i

s(i)[y(i)2W]4

z
e
s4

, (10)

is a measure of the shape of the peak. A k equal to 3

indicates aGaussian shape, smaller values of k indicate a

more round peak, and spectra with a more pointed peak

have k values larger than 3.

In addition to themoments, theDoppler spectrum can

also be described by the left slope Sl and the right slope

Sr (Kollias et al. 2007) of the peak:

S
l
5 10

log
10
N

y
2 log

10
s(i

p
)

y(i
l
)2 y(i

p
)

and (11)

S
r
5 10

log
10
N

y
2 log

10
s(i

p
)

y(i
r
)2 y(i

p
)

(12)

whereNy is the mean spectral noise level and il, ir, and ip
are the indices of the leftmost, rightmost, and maximum

bin of the Doppler peak, respectively. Note also that the

sign of g and the definitions of Sl and Sr depend on the

convention used for the sign of W. The slopes, in
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contrast to the other moments are derived from the

spectrum in logarithmic units. As a consequence, they

are particularly sensitive to the tails of the peak. Slope Sl
depends on the particles with slow fall velocity; Sr is

governed by the fast-falling particles. In this study, the

lower moments Ze and W are collectively referred to as

‘‘LM’’ in contrast to s, g, k, Sl, and Sr, which are referred

to as higher moments, or ‘‘HM’’ (even though the slopes

are not technically moments). All moments and slopes

taken together are referred to as ‘‘AM.’’

d. Optimal estimation

Optimal estimation (Rodgers 2000) is a simplified

Bayesian retrieval technique that is based on a Gaussian

statistical model that combines the observation vector y

of lengthM with prior information to estimate the state

vector x of dimension N. Optimal estimation requires

that the forward operator P be moderately linear and

that the probability density distributions of state vector x

and observation vector y follow aGaussian shape. Then,

the optimal solution of x can be found by an iterative

procedure in which the updated state vector xi11 is ob-

tained as

x
i11

5 x
a
1 (g

i
S21
a 1KT

i S
21
e K

i
)21KT

i S
21
e

3 [y2P(x
i
, b)1K

i
(x

i
2 x

a
)], (13)

where xa is the a priori assumption for x,Sa is the a priori

uncertainty expressed as the covariance matrix of xa, Se

is the covariance matrix of the combined measurement

uncertainty and forward model error, b contains addi-

tional, fixed model parameters, and Ki is the Jacobian

matrix of P linearized around xi. Following the method

of Turner and Löhnert (2014), an additional decreasing

factor gi 5 1000, 300, 100, 30, 10, 3, 1, 1, . . . is used: in

the case of a bad first guess, those elements of x are

adjusted first that can be obtained best from the ob-

servation. This enhances the stability of the retrieval.

Uncertainties in b are expressed by the covariance

matrix Sb and can be considered by replacing Se with

Se 1 KT
bSbKb.

From the Bayesian concept, the uncertainty in the

optimal solution can be estimated from

S
i
5B21

i (g2
i S

21
a 1KT

i S
21
e K

i
)B21

i , (14)

where

B
i
5 (g

i
S21
a 1KT

i S
21
e K

i
) . (15)

The a priori state xa is used as the starting value x1, and

the iteration is stopped when gi5 1 and the convergence

criterion

(x
i
2 x

i11
)TS21

i (x
i
2 x

i11
) � N (16)

is met. Then, the individual degrees of freedom for sig-

nal df, which describe the number of independent pieces

of information that can be obtained from the measure-

ments, can be estimated for each element of x from the

diagonal of the averaging kernel

A
i
5B21

i KT
i S

21
e K

i
(17)

after convergence. The diagonal of Ai consists of the df
values for the elements of x. The total degrees of free-

dom for signal Df can be obtained from the trace of Ai,

that is, the sum of df values down the diagonal ofAi. The

Df is usually less than the number of observations M,

because the elements of y share redundant information.

The optimal-estimation code developed for this study

is written in Python. It has been released as open source

and is available online (https://github.com/maahn/

pyOptimalEstimation).

e. State vector x

To simulate the radar Doppler spectrum, the

PAMTRA forward operator requires information about

particle mass m(D), particle cross-sectional area A(D),

and particle number N(D) as a function of particle

maximum dimension D. In addition, kinematic broad-

ening sk and vertical air motion w are required to ac-

count for kinematic effects.

The state vector consists of the quantities introduced

in section 2a (see also Table 1 for an overview). To es-

timate the prior information, Sa and xa are computed

from the covariance and mean, respectively, of the

quantities in the ISDAC dataset introduced by Maahn

et al. (2015), which contains 1360 ISDAC aircraft ob-

servations that were closer than 10km to Barrow. The a

priori information is obtained from one homogeneous

data source that allows for consideration of off-diagonal

entries of Sa (covariances) and leads to a consistent

definition of particle dimension throughout the dataset.

Variance and prior knowledge of sk are combined from

the horizontal wind u and «. The mean and variability of

u can be estimated from the ISDAC dataset, but that is

not possible for «, because the TAMDAR instrument

only provides an upper boundary for « of 1023m2 s23.

Maahn et al. (2015) estimated «5 1026m2 s23 for ISDAC

by comparing forward-modeled radar spectra that are

based on in situ data with radar observations. In

comparison with the values reported by Shupe et al.

(2012) for the Mixed-Phase Arctic Cloud Experiment

(MPACE), which also took place in Barrow, this value is

small. Therefore, an increased value of 1.253 1024m2 s23

is used as the mean of « for the a priori in this study.
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For the response functions (section 3), the lower

(1026 m2 s23) and upper values (1023m2 s23) of « are

investigated as well. The a priori uncertainty of log10« is

assumed to be 1.0 as observed by Shupe et al. (2012) for

MPACE. Covariances of kinematic variables with mi-

crophysical parameters are not considered.

Optimal estimation requires that the uncertainties of

xa (and y) be described by a Gaussian distribution with

variance as provided in Sa (Se). For most elements of x,

it is found that the distribution of the logarithmic value

follows a Gaussian distribution better. As a conse-

quence, for Dm, N0*, m*, c, and sk, the logarithm of the

quantities is used instead. Because of the different units

of the quantities of x, the correlation matrix belonging to

Sa is presented in Fig. 1a instead. Note that the logarithm

of the prefactor c of A(D) is highly correlated (correla-

tion coefficient squaredR25 0.99893) with the exponent

d for the ISDAC dataset. Even though a high correlation

(0.836) between the coefficients of A(D) was also found

by Wood et al. (2014), the reason for this almost perfect

correlation in the ISDAC dataset remains unclear. It

could be related to issues with the measurements, the

postprocessing, or the fitting technique. Also the corre-

lation between N0* and Df is high (20.804).

In addition to these quantities, PAMTRA output

depends also butweakly on pressure p and temperatureT,

TABLE 1. A priori values and uncertainties of the state vector x and of derived quantities. Here, PSD is particle size distribution.

Name Source Unit Used scale Linear prior Log10 prior

Dm Mass-weighted diameter of PSD ISDAC cloud probes m Log10 0.0010 6 0.0006 23.0 6 0.3

N0* Intercept parameter of PSD ISDAC cloud probes m24 Log10 (1.3 6 2.0) 3 107 7.1 6 0.7

m* Shape parameter of PSD ISDAC cloud probes — Log10 5.5 6 5.1 0.74 6 0.40

a Dimensionless intercept factor

of m(D)

Closure from ISDAC

and MMCR data

— Linear 0.97 6 0.20 —

b Exponent of m(D) Closure from ISDAC

and MMCR data

— Linear 2.0 6 0.2 —

c Intercept factor of A(D) ISDAC cloud probes m22d Log10 0.17 6 0.35 20.77 6 0.89

d Exponent of A(D) ISDAC cloud probes — Linear 1.9 6 0.3 —

sk Kinematic broadening ISDAC horizontal wind

and TAMDAR

m s21 Log10 0.074 6 0.052 21.1 6 0.3

w Vertical wind ISDAC vertical wind m s21 Linear 0.04 6 0.32 —

IWC Ice water content Derived from x kgm23 Log10 (2.0 6 5.0) 3 1025 24.7 6 1.1

Ntot Number of particles Derived from x m23 Log10 (1.8 6 3.4) 3 103 3.3 6 0.8

reff Effective radius Derived from x m Linear (5.2 6 3.2) 3 1024 —

FIG. 1. (a) Correlation matrix of state vector x used for all profiles, and (b) an example correlation matrix of the measurement vector y for

s 5 0.08m s21.
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which are required for estimation of the particle fall

velocity and the scattering properties. In this study, they

are obtained from the ISDAC dataset; in a real-world

application they can be estimated from radiosondes or

model data. Therefore, they are treated as known pa-

rameters in the retrieval.

f. Measurement vector y

In what follows, different configurations of the mea-

surement vectors are evaluated. In all cases, the mea-

surement vector is composed of one or several quantities

taken from the moments and slopes of the Doppler

spectrum: equivalent radar reflectivity factor Ze, mean

Doppler velocity W, Doppler spectrum width s, skew-

ness g, and kurtosis k as well as the left slope Sl and right

slope Sr.

g. Measurement uncertainty

The measurement uncertainty and forward-model

error are combined in the covariance matrix Se. For

the former, values of 0.5 dB forZe and 0.1m s21 forW as

well as s have been reported by Widener and Johnson

(2005) for the MMCR. Uncertainties for higher mo-

ments or the slopes have not been published for the

MMCRyet. Therefore, we use a different approach here

to estimate the measurement uncertainty for all mo-

ments and slopes consistently: We assume that the

measurement uncertainty of the MMCR is dominated

by random effects (in contrast to a possible bias—see

section 5b for a discussion of systematic offsets resulting

from wrong calibration). This means that we exclude

other possible uncertainty sources such as receiver and

transmitter instability. We are confident that we can

neglect the former because the variability of the radar

noise was found to be very low (,0.0015dB), and the

latter is monitored for the MMCR in order to adjust the

calibration accordingly (Widener and Johnson 2005).

Random effects are included in PAMTRA by per-

turbing each bin of the Doppler spectrum with a ran-

dom number drawn from an exponential distribution as

in Zrnić (1975). Therefore, we can run PAMTRA a

sufficient number of times for the same profile and

compute the covariance from the spread of the results.

With this approach, we obtain the uncertainties not

only for the lower moments but also for the higher

moments and the slopes. Furthermore, this method

allows for estimation of the covariances between the

elements of y. These covariances provide a more real-

istic uncertainty estimate than does a purely diagonal

Se matrix, giving more weight to the measurements

(Ebell et al. 2010).

Measurement uncertainties are usually assumed to be

constant, but they depend strongly on the signal-to-noise

ratio (SNR) and on the number of bins of the Doppler

spectrum that are covered by the peak (NB). In general,

observations with highest SNR and largest NB have the

smallest Se. To estimate the specific Se for a particular

state x, PAMTRA is run 1000 times for the same x (we

found that running the forward model 1000 times leads

to stable results). When using real observations instead

of synthetic ones, x is not known in advance and Se

has to be estimated differently: the Doppler spectrum

width s depends on both SNR and NB; therefore, we

take log10s (accounting for nonlinear effects by the

use of log10) as a parameter to choose the appropriate

Se from a lookup table. This lookup table is created by

estimating Se and s for all profiles of the ISDAC

dataset. The resulting Se are sorted into classes de-

pending on log10s, and for every class the mean Se is

calculated. The impact of using a lookup table for Se

instead of estimating Se from x on retrieval perfor-

mance is negligible. Therefore, only the lookup-table

method is used in the following.

The measurement uncertainties corresponding to the

square root of the diagonal of Se are presented in Fig. 2

as a function of log10s. It can be seen that the un-

certainty for Ze varies between 0.2 and 0.7 dB, which

means that we assume lower and higher uncertainties for

Ze than were reported by Widener and Johnson (2005)

depending on s. ForW and for s itself, we find, however,

significantly lower uncertainty values than 0.1ms21.

Given that the MMCR had a spectral resolution of

0.04ms21 during ISDAC, an uncertainty of 0.1ms21

appears to be a very conservative estimate for W (this

might be different for observations with a much lower

SNR than those investigated in this study—e.g., liquid

clouds). This is also confirmed by Matrosov (2011),

who found a standard deviation between W observa-

tions of ice clouds of an MMCR and aW-band radar of

0.03–0.06m s21. Given that this corresponds to the

difference between two radar systems that were nei-

ther completely beam matched nor free of pointing

errors, we are confident that the measurement uncer-

tainty of W is considerably lower. Therefore, we stick

to our uncertainty estimate for W of 0.01–0.02m s21

and assume that—at least for the investigated ice

clouds—the reported uncertainty value for s is too

high as well. For g, k, and the slopes, we found very

high measurement uncertainties for s , 0.1ms21 and

significantly reduced uncertainties for larger values. We

attribute this to a more stable estimation of these quan-

tities for wider peaks.

h. Forward-model error

In addition to the measurement uncertainty, Se

contains also the forward-model error, which can
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propagate to the retrieval solution. Maahn et al.

(2015) used m(D) [Eq. (1)] as a closure between

aircraft in situ observations and ground-based radar

observations for ISDAC. By this, they ensured that

potential biases due to scattering assumptions, y(D)

parameterization, radar calibration, and aircraft

in situ measurements are balanced by m(D). The

similarity of the foundm(D) coefficients to literature

values gives confidence that these biases are small.

Because the same m(D) relations are used in this

study for the a priori together with the same forward

operator, we are confident that our forward operator

is generally not biased. Note that Maahn et al. (2015)

used the T-matrix approach instead of the SSRG

approximation; the equality of both methods for the

presented dataset is shown in the online supple-

mental material.

In addition to biases, there are random errors such as

the following:

1) There is discretization error of measured N(D)

and A(D). The impact of discretization of N(D)

and A(D) was investigated in Maahn et al. (2015).

For N(D), no significant impact was found when

describing N(D) by a normalized gamma distribu-

tion [Eq. (2)], but for A(D) it was found that the

approximation of A(D) as a power law leads to a

differences inA of up to a factor of 2, which in turn

cause biases in g and k. These differences are

accounted for when running PAMTRA 1000

times. In this way, Se also contains the forward-

model error that originates from the description of

A(D) using a power law.

2) There is also error in the fall velocity relation y(D).

In our forward model PAMTRA, the uncertainty in

A(D) described above relates directly to an uncer-

tainty in y(D) of 11%. This is becauseA(D) is used in

PAMTRA solely for estimation of y(D). Therefore,

we decided not to consider an additional uncertainty

for y(D) although Heymsfield andWestbrook (2010)

reported an uncertainty of 25% for y(D). We expect,

however, in practice an error for y(D) of smaller than

25%because of the large ensemble of simultaneously

observed particles.

3) Third, there are errors in the estimation of backscat-

tering cross section sbsc. In this study, a fixed value of

0.6 is used for the aspect ratio AR. Because the two

other quantities, which according to SSRG theory

determine the ensemble scattering properties, N(D)

and m(D) are not fixed but are included in x, we can

assume that the forward-model error for estimating

sbsc is determined by the assumption of a fixed AR.

Maahn et al. (2015) found that AR is greater than 0.5

on the basis of ISDAC in situ data, and literature

values for AR vary between 0.6 (Hogan et al. 2012)

and 0.7 (Tyynelä et al. 2011). Therefore, we drawAR

from a normal distribution with mean 0.6 and

standard deviation 0.1 when running PAMTRA

1000 times to estimate Se. Because AR only affects

the estimation of sbsc within PAMTRA, this ap-

proach is equivalent to assuming an uncertainty for

the estimation of sbsc directly. Note that this method

includes the implicit assumption that the bulk scat-

tering properties of ice particles depend only on

D, m, and AR. This will likely lead to biases when

applying the retrieval to clouds consisting of particles

other than these for which SSRG was developed, for

example, pristine or heavily rimed particles. For the

ISDAC dataset, we are, however, confident that

heavily rimed particles were rare because observations

FIG. 2. Measurement uncertainty (dashed) and combined mea-

surement uncertainty and forward-model error (solid) for the

quantities of y as a function of s.
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containing SCLW were filtered. Also pristine parti-

cles were—with the exception of at cloud top—likely

scarce given that cloud depths were typically larger

than 1000m.

Using the same data and forward-operator set in

Maahn et al. (2015) and in this study allows for a con-

sistent handling of the assumptions and uncertainties

associated with the ISDAC dataset. The forward-model

error combined with the measurement uncertainty is

presented in Fig. 2. Inclusion of the forward-model error

leads to clearly enhanced uncertainties for all elements of

y. Only for small s, the forward-model error does not

increase the combined error for Ze, Sl, and Sr that is re-

lated to the dominating measurement uncertainty for

small SNR. Themeasurement uncertainty is even slightly

larger than the combined error for two data points, which

we attribute to the averaging of Se. Because Ze does not

depend on y(D) and the assumed uncertainty, the in-

creased values for Ze depend only on the assumed un-

certainty for AR. For small s values, which typically

coincide with small Ze values, the forward-model error

does not contribute to the uncertainty estimate of Ze,

which is most likely related to the domination of small-

particle scattering in the Rayleigh regime. For larger s,

the forward-model error increases, which is probably

related of the presence of larger particles for which the

scattering properties depend stronger onAR. In contrast,

W depends only on the assumed uncertainties of y(D)

[or rather A(D)]. Because a relative error is assumed,

the forward-model uncertainty is increasing with larger

s values that are typically related to largerW values. The

full Se matrix corresponding to the combined measure-

ment and forward-model error is shown in Fig. 1b for

s 5 0.08ms21.

To investigate the possibility that the discussion

of forward-model and/or measurement errors is in-

complete or that uncertainties have been under-

estimated, we analyze in section 5c the retrieval

performance under the assumption that Se is 4 times

as large; this corresponds to a duplication of the

uncertainties.

3. Response functions

The response functions of the forward model that

show the impact of the parameters on the moments and

slopes of the radar Doppler spectrum are now in-

vestigated. Note that this section follows Maahn (2015),

with minor modifications.

The response functions are presented in Fig. 3. Be-

cause kinematic broadening sk can lead to peaks that

are more Gaussian shaped and can potentially reduce

the response functions of other elements of x, the re-

sponse functions are estimated for three different

values of sk. Because sk depends on the horizontal

wind and on «, this is implemented by assuming a fixed

horizontal wind of 10ms21 and three different values of

« (13 1026, 1.25 3 1024, and 1 3 1023m2 s23) covering

the range of « values found by Shupe et al. (2008) for the

MPACE campaign in Barrow. Each response function

is estimated 1000 times to assess its measurement un-

certainty, that is, to investigate whether the moments

and slopes are stable with respect to radar noise. The

resulting uncertainty range indicated by the 10th and

90th percentiles is shown in addition to the median

value.

Reflectivity Ze (Fig. 3a) depends strongly on Dm and

on N0* but very little on the shape parameter m*. Fur-

thermore, Ze is affected by the coefficients of the nor-

malized mass–size relation a and b; Ze is not affected by

the area–size relation and the vertical air motion w be-

cause these quantities influence only the fall velocity of

the particles.

Mean Doppler velocityW (Fig. 3b) depends on both

mass–size and area–size coefficients (a, b, c, and d)

through the fall-velocity parameterization, with the

response of W to c and d being particularly strong.

For N(D), W depends only on Dm and not on N0*

because N0* scales N(D) only in the direction of the

ordinate. The shape parameter m* has only little impact

on W. As expected, vertical air motion w affects W

linearly.

In contrast to Ze andW, Doppler spectrum width s

(Fig. 3c) depends strongly on the assumed turbu-

lence level, which causes an offset of s but has little

influence on the response functions of the various

microphysical parameters. Apart from the coeffi-

cients of the area–size and mass–size relations, with a

particularly strong response to b, s also depends on

the shape parameter m* but does not depend on Dm

and N0*.

Skewness g (Figs. 3d) is influenced by all of the pa-

rameters but N0*. The response is small in comparison

with the lower-order moments (with the exception of b),

and the interval of estimated uncertainty (;0.25) is of-

ten of a size that is similar to that of the response. For

b only is the response greater than 1, but it is also very

nonlinear and not monotonic. In theory, g should not

depend on w, but a small, sinuous response can be seen

that is related to discretization effects.When configuring

the radar simulator with a higher Doppler spectrum

resolution (e.g., 512 FFT points), the sinuous response

vanishes (not shown). Because increasing turbulence

leads to a more Gaussian shape of the peak, which

typically has a skewness value that is near zero, the
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response functions are reduced for the medium turbu-

lence level. For the high turbulence level, the response

of g is less than the estimated uncertainty range for all

parameters even though also the uncertainty range of

g is reduced.

Kurtosis k (Fig. 3e) is mainly determined by the shape

parameter m* and the coefficients of the area–size and

mass–size relations, leading to a response of up to 3. This

is larger than the uncertainty of k (;0.4). The response

to b is, however, saturated for values of greater than 1.9.

Similar to g, the response of k is reduced for themedium

turbulence level. For the highest turbulence level,

k—like a Gaussian distribution—generally has a value

of 3; the response functions are greatly reduced and are

smaller than the uncertainties.

The left slope Sl (Fig. 3f) responds to all parameters

except w, but only for m*, b, c, and d is the response

clearly greater than the uncertainty of up to 20dB sm21.

In comparison with g and k, the uncertainty appears

larger because the slopes are obtained from the Doppler

spectrum in logarithmic scale, which increases the im-

pact of radar noise. The moments, on the contrary, are

FIG. 3. Impact of the parameters of the state vector (columns) onmoments and slopes of the radarDoppler spectrum (rows) for values of

the eddy dissipation rate of 1026 (yellow), 1.253 1024 (green), and 1023 (blue) m2 s23. The uncertainties of moments and slopes (10th and

90th percentiles) caused by radar noise are indicated as colored areas around the median values’ lines. The black vertical line denotes the

mean value of the parameters in the ISDAC dataset.
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estimated from the spectrum in linear scale. Similar to

g and k, the response functions are reduced for the

medium and high turbulence intervals and are often

within or close to the noise estimate. The uncertainty

estimate is, however, reduced for higher turbulence,

which is probably related to the smoothing effect of

turbulence. Hence, Slmight be evenmore exploitable by

the retrieval in higher turbulence conditions despite the

smaller response functions.

The response functions of the right slope Sr (Fig. 3g),

which is mainly determined by the fastest-falling parti-

cles, are similar to Sl with respect to noise. For Dm, b,

and c, the responses are largest and are significantly

larger than the uncertainty.

4. Retrieval results

To investigate the benefit of adding higher-order

moments and slopes to a radar retrieval, an optimal-

estimation-based retrieval is applied to synthetic radar

observations based on ISDAC in situ profiles using the

parameterizations introduced in section 2a. The training

dataset for a priori estimation is based on Maahn et al.

(2015), who used only aircraft observations that were

closer than 10km to Barrow (Table 1). For separation of

the training and the validation datasets, the retrieval is

applied to 1371 synthetic radar observations obtained at

distances from 40 to 10 km from Barrow. Using a max-

imum distance of 40 km results in almost equal sizes for

the training and validation datasets.

The percentage of the 1371 ISDAC profiles that

converge successfully to a solution P is presented in

Fig. 4. The values of P vary between 80% and 100%. A

profile does not converge if either the convergence cri-

terion [Eq. (16)] is not met within 30 iteration steps or

the retrieval iterates to a state that either is below radar

sensitivity or is physically inconsistent (e.g., ice crystals

with a density that is greater than that of pure ice) and

that cannot be forward modeled. Addition of higher-

order moments or slopes and omission of lower-order

moments reduces P, which is most likely related to the

greater noise in higher-order moments and slopes as

well as their less linear response to parameters de-

scribing microphysical properties.

a. Total degrees of freedom for signal

The total degrees of freedom for signalDf that can be

obtained from radar observations are presented in

Fig. 4. As expected, a retrieval exploiting only re-

flectivity can achieve only Df 5 1.0. Addition of W

(using only Ze andW is called LM in the following) adds

1.0 toDf. If s is also included,Df reaches values around

2.8 depending on the profile. When adding higher-order

moments g and k to the retrieval, the median of Df in-

creases only by 0.1–0.2 per moment. For some profiles,

however, g and k can contribute a multiple as can be

seen from the spread. This is probably due to the re-

duced response functions of the higher-order moments

for stronger turbulence: higher-order moments contain

exploitable information only, if the radar peak is not

Gaussian shaped. This is similar for the slopes. For

some profiles, Sl and Sr do not contribute any in-

formation to the retrieval, but on average they add 0.1

and 0.7, respectively, to Df. The greater additional in-

formation content of Sr in comparison with Sl is prob-

ably related to the sensitivity of Sr to large, fast

particles. Since fall velocity depends on particle mass

and cross-sectional area, this reveals microphysical

properties of these particles that cannot be captured by

other moments. The Sl, in contrast, describes the slowly

falling particles whose fall velocities converge to zero

with decreasing size. Therefore, the fall velocity does

not reveal microphysical properties for these particles.

When using all moments and slopes (AM) together, Df

is 3.9 6 0.9.

When Ze is removed from the retrieval, Df is reduced

by approximately 1 as long as Sl is not added to y. Then,

Df is only reduced by 0.5. Therefore, it can be con-

cluded that Sl can partly replace Ze because they share

partly redundant information. This is different than for

Sr, which is particularly sensitive to large particles with

large fall velocities, and therefore addition of Sr always

increases Df by 0.5–0.7.

FIG. 4. Mean (solid) and 10th and 90th percentile (shaded area)

of total degrees of freedom for signal Df obtained for the 1371

synthetic observations. The different lines are for different, cu-

mulative sets of measurement variables; e.g., the yellow line shows

Df of a retrieval only with Ze (first point), for a retrieval with Ze

andW (point marked with a 1 in a gray box), and so forth. The first

point of the light-green line is for a configuration only with W, the

second point is for W and s, and so forth. For the configurations

marked with a 1 in a box, the retrieval solutions are investigated in

detail. The dashed lines denote the percentage of retrievals of the

different configurations that converged successfully.
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A retrieval consisting only of s to Sl (HM) can

achieve a value of Df around 2.8 6 0.7, which is ap-

proximately 1.1 less than when using AM. Configura-

tions without Ze andW have in general a high spread of

up to 0.7 around the mean value for Df.

Using a retrieval that is based only on a single higher-

order moment or slope shows that Df values of 0.3–1.0

are reached. This means that the reason for the small

increase in Df when adding g or k to a lower-order-

moments retrieval is not that g and k do not contain any

information but rather that this information is partly

redundant with that included in the lower-order mo-

ments, particularly in W and s.

b. Using additional frequencies

Here, the benefit of adding additional frequencies to

the measurement vector is investigated. For this, the

impact of a dual-frequency (Ka and W bands) combi-

nation as well as a triple-frequency (Ku, Ka, and

W band) configuration is studied. For simplicity,

beamwidth, Nyquist range, number of FFT points, and

radar noise characteristics of all frequencies were con-

figured with respect to the MMCR specifications. This

might underestimate the obtainedDf because kinematic

broadening sk can be directly retrieved from s if radars

with different beam widths are used (Maahn and Kollias

2012). When applied to real W-band observations, at-

tenuation has to be accounted for even though attenu-

ation for ice and snow is low in the W band (Nemarich

et al. 1988).

The impact on Df of using two or three frequencies is

presented in Fig. 5 for three configurations: LM (lower

moments Ze and W), HM (s, g, k, Sl, and Sr), and AM

(all moments and slopes). It can be seen that the use of

additional frequencies increasesDf up to 5.4. Using AM

in a single-frequency retrieval leads to aDf value of 3.9,

which is 1.2 (1.0) more thanwhen using a dual-frequency

(triple frequency) retrieval with LM with multiple fre-

quencies. Note that this additional information, how-

ever, has to be used to retrieve sk as well, which is not

required for the LM configuration. Also when using a

dual- or triple-frequency configuration, the inclusion of

higher-order moments and slopes into the retrieval is

beneficial because Df rises faster with the number of

frequencies for AM than for LM. If only HM are used,

the retrieved Df is between the configurations with AM

and LM.

The increase of Df by adding a second frequency is

greater than when adding a third one. This is especially

true for the LM configuration for which only a little

additional information can be obtained for most cases

when using a third frequency. This is in contrast to the

findings of, for example, Leinonen and Moisseev (2015)

and Kneifel et al. (2015), who found information in the

triple-frequency signatures of reflectivity for aggrega-

tion and riming. This is most likely because our dataset

contains mostly cloud ice and only a few precipitating

snow particles because the aircraft was probing above

cloud basemost of the time. Also heavily rimed particles

are expected to be infrequent in the dataset because

data that contain larger amounts of supercooled water

are filtered out. It is also unclear whether the SSRG

approximation is able to reproduce triple-frequency

signatures or whether the coefficients found by Hogan

and Westbrook (2014) have to be altered to represent

heavily aggregated and/or rimed particles better [see

also Kneifel et al. (2016)].

c. Application to real radar data

So far, retrieval performance was only investigated by

using synthetic radar observations. For the Ka band, real

radar observations from the MMCR in Barrow are

available during ISDAC. To make sure that the real

dataset contains ice clouds with microphysical proper-

ties comparable to the synthetic dataset, only the radar

observations that are closest in time and space to

ISDAC in situ observations of the training dataset are

analyzed. The MMCR dataset is offset corrected as

proposed by Protat et al. (2011) and is filtered for values

of liquid water path of greater than 0.1 kgm22, which is

the detection threshold of the used microwave radiom-

eter retrieval (Cadeddu 1993). For a cloud with 2.5-km

thickness, 0.1 kgm22 of liquid corresponds to approxi-

mately 232dBz. Therefore, the impact of SCLW on the

radar moments and slopes can be neglected. The radar

dataset contains 1354 profiles, and Df is estimated for

FIG. 5. Mean (solid) and 10th and 90th percentile (shaded area)

of total degrees of freedom for signal Df obtained for the three

retrieval configurations LM (gray), HM (green), and AM (yellow)

as a function of observations used: real single-frequency observa-

tions (R in a box) as well as synthetic single-, dual-, and triple-

frequency observations (1, 2, and 3, respectively, in the boxes). The

dashed lines indicate the percentage of converged profiles.
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these profiles and the three retrieval configurations of

LM, HM, and AM (Fig. 5). It can be seen that Df is as

large as for the synthetic observations. This result shows

that retrievals using HM or AM are feasible in practice

and that the forward model works sufficiently well. Only

the percentage of converged profiles P is reduced by

11% and 4% for HM and AM, respectively. This is

most likely related to measurement effects that were

not considered in the measurement uncertainty such as

nonuniform beam filling but can also be related to

forward-model errors.

d. Individual degrees of freedom for signal

The individual degrees of freedom for signal df for the

elements of x can be estimated from the diagonal ele-

ments of A. For the synthetic Ka-band retrieval, best

results are obtained for the AM configuration (Fig. 6).

Even though the LM configuration features, on average,

the lowest values of df, the spread is usually smallest,

indicating the stability of the retrieval. Negative df
values and values that are larger than 1 occur forDm and

N0* as well as for c and d. This is due to the high corre-

lation of these pairs, and these pairs have to be consid-

ered together. The sum of both df of each pair is always

smaller than 1.

As expected, no information about sk can be obtained

from the LM. Moreover, df is low for N0*, m*, a, and b,

when using only LM. Using AM increases df for all

variables exceptDm (for which df is generally very high)

and a. The generally low df values for a are in contrast to

the clear response functions of Ze and W, showing that

not all state quantities can be derived unambiguously.

HM respond only little to a, which implies that there is

little benefit when adding higher-order moments and

slopes. The increase of df by using AM is particularly

strong for m*, sk, b, and d.

FIG. 6. Box-and-whisker plots showing individual degrees of freedom for signal df that can be achieved for the elements of x. The boxes

indicate the 25th and 75th percentiles, and the whiskers show the 5th and 95th percentiles. Note that the color indicates the set of moments

and slopes (gray: LM, yellow: AM, and green: HM) and the symbol indicates the median for real (labelR for Ka band) and synthetic radar

observations (label 1 for Ka band; label 2 for Ka andWband; label 3 for Ku, Ka, andWband). The blue3 indicates the impact of previous

knowledge of w and sk on the retrieval; the magenta3 is for quadrupling Se corresponding to a doubling of measurement and forward-

model errors.

FEBRUARY 2017 MAAHN AND LÖHNERT 275

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 01:05 PM UTC



The spread of df is strongly increased when using HM

and/or multiple frequencies. This shows the noisiness of

HM and that they do not work for all conditions equally

well. Another reason is likely that the retrieval might

distribute the information content among the variables

differently depending on the profile. For example, for

k the response function of b saturates for values larger

than 1.9, which might reduce df of b for profiles with

b . 1.9.

The impact of using additional frequencies is partic-

ularly large for N0* if only LM are used. This is coun-

terintuitive at first sight, becauseN0* is expected to cancel

out from the dual-wavelength ratio (e.g., Kneifel et al.

2011). The reason is probably that the availability of two

reflectivity values allows one to retrieve not only Dm,

but also N0* unambiguously. Also for m*, df is increased

by approximately 0.2–0.3 for both LM andAM. For a, b,

d, and sk, the increase of df by adding additional fre-

quencies is much more pronounced when using AM

than when using only LM. The decrease of df for Dm is

overcompensated by the increase of the highly corre-

lated N0*. Except for Dm and w, there is no variable that

does not benefit from adding additional frequencies.

Using only HM gives mostly results between LM and

AM, but the spread is largest, indicating the variability

of how much information can be obtained from HM

among the individual profiles. Applying the retrieval to

real observations gives results very similar to the syn-

thetic single-frequency configuration. Only between the

highly correlated pair c and d is the information dis-

tributed differently among the variables when using HM

or AM.

e. Retrieval uncertainty

The relative uncertainty of the retrieval solution is

shown together with the relative a priori uncertainties in

Fig. 7 for the individual elements of x. Note that the

uncertainty of the variables treated in logarithmic scale

by the retrieval (Dm, N0*, m*, c, and sk) is expressed

logarithmically as well. Because log10c andw are varying

FIG. 7. Relative uncertainty of the solution for the elements of x. Colors and symbols are as in Fig. 6. The thick horizontal line indicates the

a priori uncertainty.
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around 0, their relative uncertainty can reach very high

numbers. The absolute, prior uncertainties of log10c and

w are 0.89 and 0.32ms21, respectively (Table 1), and the

retrieved absolute uncertainties are accordingly smaller.

Similar to df, the impact of usingAMand addingmore

frequencies to the retrieval can be clearly seen. The

uncertainty of some variables depends more on the

number of frequencies (Dm,N0*, andw), while others can

be better obtained when using AM (a, b, c, d, and sk).

For all variables except a and b, the median of the un-

certainty is more than 50% smaller than the a priori

knowledge when using AM and three frequencies. The

small improvement for a can be explained by the fact

that not more than 0.2 for df can be retrieved. For a

and b, the small a priori uncertainties of 0.20 and 0.24,

respectively, have to be accounted for.

When using multiple frequencies, but in particular

when using HM, the spread of uncertainties among re-

trieval solutions is very large. This highlights, similar to

df, that the advantage of using higher-order moments

and slopes but also of multiple frequencies depends on

the profile. Similar to df, the results for the real obser-

vations are on average very similar to the results of the

synthetic single-frequency observations.

When using only HM, the median of the relative un-

certainty is between LM and AM for a, b, c, d, and sk.

ForDm,N0*, andw, the retrieval works better when using

only LM than when using only HM.

f. Retrieval bias

For the synthetic observations, it is also possible to

investigate whether the retrieval solution is in agree-

ment with the aircraft in situ profile that was used to

simulate the observations (Fig. 8). In general, the bias

between truth and retrieved state is below 5%, with

the exception of c and w. This result is related to the

fact that these quantities typically have values close to

zero, which leads to large relative biases even though

the absolute biases are small. The spread of parame-

ters describing N(D) is slightly increased for single-

frequency retrievals but reduced for multifrequency

retrievals.

FIG. 8. Solution with respect to truth, in percent. Colors and symbols are as in Fig. 6. The thick horizontal line indicates a bias of zero.
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g. Derived values

The uncertainty of the retrieval solution can also be

estimated for variables derived from x such as

IWC5�N(D,N
0
*,D

m
,m*)m(D,a, b)DD, (18)

N
tot

5�N(D,N
0
*,D

m
,m*)DD, and (19)

r
eff

5
�(D/2)3N(D,N

0
*,D

m
,m*)DD

�(D/2)2N(D,N
0
*,D

m
,m*)DD

, (20)

with Gaussian error propagation (Fig. 9). IWC and Ntot

are investigated in logarithmic scale because they can span

several magnitudes. The derived variables depend heavily

onDm andN0*, which benefit less from the use of AM than

other quantities. Therefore, the impact on the investigated

derived quantities of adding higher-order moments and

slopes to a single-frequency retrieval is smaller than when

using LM but adding more frequencies. When using AM

and multiple frequencies, the uncertainty (see Table 1) of

log10IWC and reff can be reduced by a factor of 3 with

respect to the prior uncertainty. For log10Ntot, an im-

provement of 40% can be achieved.

5. Retrieval modifications

a. Prior knowledge of kinematics

Apotential improvement of the retrieval would be the

inclusion of continuity in time and space because mi-

crophysical and, in particular, kinematic variables do not

change drastically between two range gates and/or time

steps. In practice, this could be achieved by updating

the a priori knowledge depending on neighboring/

previous observations and the correlation length of the

corresponding parameters (analogous to a Kalman fil-

ter). Because only the potential of this modification is

evaluated, here a different approach is chosen: we in-

vestigate how the retrieval changes if w and sk are ex-

cluded from the retrieval and assumed to be known from

another source (two-step retrieval). Uncertainties of

externally retrieved w and sk are expressed by Sb. For

log10sk, Shupe et al. (2012) report an uncertainty of

0.4, which is assumed to be the 2-sigma uncertainty of

log10sk. For w, Kalesse and Kollias (2013) developed a

retrieval for cirrus clouds with a 2-sigma uncertainty of

0.3m s21. Covariance elements of Sb are neglected. This

corresponds to relative prior uncertainties of 349% and

18% for w and sk, respectively, which is similar to their

posterior uncertainty when including the kinematic

variables into the retrieval. Note that this modifica-

tion can only be applied to the synthetic retrieval

configurations.

Exclusion of the kinematic variables from the re-

trieval reduces the total Df by 0.6–1.3 depending on

configuration when using AM and HM (not shown).

This indicates that the advantage of knowing w and sk

can only be partly exploited by a retrieval when using

HM or AM. The impact of known kinematic variables

on the median of df and the relative uncertainty are

presented in Figs. 6 and 7, respectively. When using

LM, a significant increase of df can be found only forN0*

and c. The increase of the latter is, however, compen-

sated by the more negative df values for d so that for

both quantities together only a small net effect remains.

This leads to a reduction of the posterior uncertainty of

log10c by 10 percentage points. For AM, df is increased

for all variables butDm—where df is already large—and

d, which is compensated by the increase of c. The re-

duction of posterior uncertainty is particularly strong for

b, and—when using more than one frequency—a. When

assuming a smaller Sb, the uncertainties for a and b can

be further reduced (not shown). Note that when using

only HM the impact of prior knowledge about kine-

matics is less, which is likely related to the fact thatW is

not included in HM.

b. Radar calibration

Radar calibration is still an urgent topic, and com-

parisons with satellite-based radar revealed large offsets

(Protat et al. 2011). Of the radar moments, only Ze is

FIG. 9. Relative uncertainty of the solution for the derived variables IWC, Ntot, and reff. Colors and symbols are as in Fig. 6. The thick

horizontal line indicates the a priori uncertainty.
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affected by radar calibration (exceptions are possible for

very low SNR ratios). The slopes are only a relative

measure between the noise level and the top of the peak,

and they should not be affected by calibration either.

However, correct determination of the noise level is

crucial for estimating the slopes correctly from the

simulated Doppler spectrum. Because the absolute es-

timation of the noise level depends on the calibration as

well, the slopes are indirectly affected by calibration

offsets, a fact that is also considered in the following. To

investigate the impact of a potential radar miscalibration

on retrieval bias, the retrieval was applied to synthetic

observations assuming a relatively large calibration offset

of 63dB. A comparison with the retrieval configured

without calibration offset revealed only a small increase

of the bias of 1%–5% for most variables (not shown).

Only for w and a, the change in bias is found to be up to

10% for some retrieval configurations. For all variables,

the median bias is still within the 25th–75th-percentile

range of the spread among the ISDAC profiles.

c. Increased forward-model error

To investigate the impact of a doubled forward-model

and measurement error, Se has been multiplied by a

factor of 4 (section 2h). Figure 6 shows how this reduces

df by up to 0.2. The reduction is particularly strong for

m*, d, and sk with AM but is negligible for all quantities

when using LM as well as for a, c, and w with AM. A

reduced df value leads to an increased posteriori un-

certainty, but for AM and all quantities except sk and

Dm, the median stays between the 25th and 75th per-

centiles of the normal retrieval configuration (Fig. 7).

Increasing Se has negligible impact on the bias of the

retrieval solution (not shown).

6. Discussion and outlook

The potential of adding higher-order moments of the

radar Doppler spectrum (Doppler spectrum width s,

skewness g, and kurtosis k) as well as the left and right

slope of the Doppler spectrum (Sl and Sr, respectively)

to a retrieval targeted to Arctic ice clouds with low to

medium turbulence conditions was investigated with a

vertically pointing radar. An optimal-estimation-based

retrieval was set up that retrieves quantities describing

microphysical properties such asN(D) (N0*,Dm, andm*),

m(D) (a and b), andA(D) (c and d) as well as kinematic

quantities describing air motion and turbulence (w and

sk). To the authors’ knowledge, this is the first study to

characterize microphysical quantities including ice par-

ticle mass (and indirectly density) at the same time as

kinematic properties based on radar observations and

the first study using higher-order moments and slopes

for ice-cloud retrievals. Both real and synthetic radar

observations obtained during the ISDAC campaign

around Barrow were used. The use of a single, homoge-

neous dataset allowed for a consistent definition of par-

ticle dimension.

The key findings of this study can be summarized as

follows:

1) Higher-order moments and slopes respond to

quantities describing microphysical and kinematic

properties even though they are more noisy than

lower-order moments.

2) For single-frequency observations, the use of lower-

and higher-order moments as well as the slopes

(AM) can double the information content in com-

parison with the use of lower-order moments (LM).

When using more than one frequency, the increase in

information content is larger for AM than for LM.

The information that higher-order moments and

slopes can contribute to a retrieval varies from pro-

file to profile.

3) When using only higher-order moments and the

slopes (HM), retrieval performance is between those

of LM and AM.

4) The use of AM reduces the uncertainty of all state

quantities with respect to the prior knowledge. The

use of multiple frequencies can reduce the posterior

uncertainties for all quantities even further. Best

results can be obtained when using AM and a

triple-frequency configuration.

5) Application to real MMCR observations shows only

minor differences with synthetic radar observations.

This result indicates the general feasibility of the

approach.

6) Prior knowledge about kinematic quantities enhances

retrieval results—in particular, for m(D)—while an

increased measurement/forward-model error decreases

retrieval results. Calibration offset was found to have

only a secondary impact on the results. Doubling of the

combined measurement uncertainty and forward-

model error leads to enhanced retrieval uncertainties

but has no impact on the general conclusions.

Together with the methods to estimate the a priori

dataset developed in Maahn et al. (2015), this study

introduces a generalized retrieval framework that can

also be transferred to periods other than ISDAC and/or

locations other than Barrow. The question of whether

this is also true for the a priori dataset itself has yet to be

answered. For this, the representativeness of the used

ISDAC dataset has to be investigated. This could be

achieved by, for example, comparing the prior infor-

mation of microphysical properties with other studies

(e.g., Wood et al. 2014). Because the aircraft was mostly
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probing above cloud base, it also has to be estimated as

to whether the prior can be successfully applied to

snowfall consisting of larger particles. As of now, the

applicability of the retrieval method is limited to ice

clouds consisting of aggregates. To overcome this limi-

tation, the applicability of SSRG theory to heavily rimed

and pristine particles has to be investigated.Moreover, a

key assumption in the retrieval is that knowledge of D,

m, and aspect ratio is sufficient to estimate the ensemble

backscattering properties (Hogan andWestbrook 2014).

If this assumption is invalid (e.g., because of an addi-

tional dependence on particle type), the retrieval results

might be biased to a degree that exceeds the reported

uncertainties. The same is true for the estimation of fall

velocity, which was assumed to depend only on D, m,

and A (Heymsfield and Westbrook 2010).

Most Arctic clouds are mixed phase (Battaglia and

Delanoë 2013), and the retrieval includes no limitations

with respect to lightly rimed particles. However, the

retrieval is not designed for mixed-phase clouds for

which the SCLW is visible in the radar Doppler spec-

trum. Therefore, a cloud-classification algorithm (e.g.,

Shupe 2007) has to be used when applying the retrieval

in mixed-phase clouds. An extension of the retrieval to

mixed-phase clouds is desirable but requires the addi-

tion of multiple, additional variables to the state vector.

Moreover, high amounts of liquid can create bimodal

peaks or even two separate peaks in the radar Doppler

spectrum (Luke et al. 2010). For these peaks, new mo-

ments or other quantities have to be developed to ex-

press the bimodality properly. As an alternative, the full

Doppler spectrum could be used instead of radar mo-

ments and slopes for the observation vector y [as was

done for rain by Tridon and Battaglia (2015)]. Using the

full spectrum would also allow one to investigate

whether there is additional information included in

Doppler spectra of ice clouds that cannot be obtained

from moments and slopes. Another possibility would be

the use of radar attenuation, which is stronger for liquid

water (Gosset and Sauvageot 1992), or the inclusion of

other remote sensing instruments such as microwave

radiometer and lidar that are sensitive to cloud water.

Even though the statistical agreement of retrieval

results of real and synthetic radar observations indicates

that the retrieval gives consistent results for real obser-

vations as well, its output has to be evaluated. This is

challenging because collocated, independent observa-

tions of microphysical properties do not exist. Possible

options would be comparison with models such as nu-

merical weather models or large-eddy simulations (e.g.,

Solomon et al. 2014), comparison with surface obser-

vations (e.g., Wood et al. 2014), or radiative closure

studies (e.g., Shupe et al. 2015).

A Monte Carlo–based retrieval approach could be

used as an alternative to optimal estimation. Even though

it is much more expensive, it could be used for selected

profiles to map the solution space and to investigate

whether optimal estimation converges to a global mini-

mum or to a local minimum (Posselt and Mace 2014).

Estimating the scattering properties from database-

supported discrete dipole approximation calculations

(e.g., Liu 2008; Tyynelä et al. 2011) is potentially more

accurate than the self-similar Rayleigh–Gans approxi-

mation and could increase the quality of the retrieval.

The problem has yet to be solved, however, as to how

particle distributions that follow arbitrary mass–size and

area–size relations (as it is required by retrievals) can be

obtained from a database that contains only certain

particle types with certain discrete mass–size and area–

size relations. One possibility to solve this issuewould be

to select different particles from the database and mix

them such that the mixture matches the required mi-

crophysical bulk properties.
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