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New Perspectives on Ensemble Sensitivity 
Analysis with Applications to a Climatology  
of Severe Convection
Brian C. Ancell and Austin A. Coleman

ABSTRACT: Ensemble sensitivity analysis (ESA) is a statistical technique applied within an ensemble 
to reveal the atmospheric flow features that relate to a chosen aspect of the flow. Given its ease 
of use (it is simply a linear regression between a chosen function of the forecast variables and the 
entire atmospheric state earlier or simultaneously in time), ensemble sensitivity has been the focus 
of several studies over roughly the last 10 years. Such studies have primarily tried to understand 
the relevant dynamics and/or key precursors of high-impact weather events. Other applications of 
ESA have been more operationally oriented, including observation targeting within data assimila-
tion systems and real-time adjustment techniques that attempt to utilize both sensitivity informa-
tion and observations to improve forecasts. While ESA has gained popularity, its fundamental 
properties remain a substantially underutilized basis for realizing the technique’s full scientific 
potential. For example, the relationship between ensemble sensitivity and the pure dynamics of 
the system can teach us how to appropriately apply various sensitivity-based applications, and 
combining sensitivity with other ensemble properties such as spread can distinguish between a 
fluid dynamics problem and a predictability one. This work aims to present new perspectives on 
ensemble sensitivity, and clarify its fundamentals, with the hopes of making it a more accessible, 
attractive, and useful tool in the atmospheric sciences. These new perspectives are applied in part 
to a short climatology of severe convection forecasts to demonstrate the unique knowledge that 
can gained through broadened use of ESA.
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Ensemble sensitivity (Hakim and Torn 2008; Ancell and Hakim 2007; Torn and Hakim 2008) 
is a statistical tool applied within an ensemble of forecasts that reveals relationships 
between some forecast aspect of importance (e.g., magnitude of rotation within 

convection, or the strength of a tropical cyclone) and the atmosphere at times at, before, 
and even after the event. Specifically, ensemble sensitivity values are the slopes of linear 
regressions (regression coefficients) between a response function (a function of forecast 
variables that diagnoses the forecast aspect of interest) and the model state variables. 
Over the last 10 years or so the body of published work regarding ensemble sensitivity has 
become substantial and has involved several types of high-impact weather phenomena 
at a variety of scales. Such studies include investigations into large-scale blocking events 
(Parker et al. 2018; Quandt et al. 2019), synoptic-scale features such as midlatitude 
cyclones (Ancell and Hakim 2007; Hakim and Torn 2008; Torn and Hakim 2008; 
Zheng at al. 2013; Chang et al. 2013; Ancell 2016; Berman and Torn 2019), convective events 
(Hanley at al. 2013; Bednarczyk and Ancell 2015; Torn and Romine 2015; Hill et al. 2016; 
Berman et al. 2017; Limpert and Houston 2018; Kerr et al. 2019; Coleman and Ancell  
2020; Hill et al. 2020), tropical cyclones (Torn and Hakim 2009; Torn 2010; Nystrom et al. 2018; 
Ren et al. 2019; Hu and Wu 2020), and flows in complex terrain with applications to wind 
power (Zack et al. 2010a,b,c; Wile et al. 2015; Smith and Ancell 2017). Ensemble sensitivity 
studies such as these primarily fall into three categories: 1) examining sensitivity fields to 
understand the relevant dynamics or predictability associated with a high-impact weather 
event (e.g., Nystrom et al. 2018), 2) using sensitivity within a data assimilation framework 
to understand the forecast value of targeted observations (e.g., Hill et al. 2020), and  
3) supporting the development of operational tools that use sensitive regions to beneficially 
adjust probabilistic forecasts in a real-time environment (e.g., Coleman and Ancell 2020).

While prior ensemble sensitivity studies have contributed to a valuable and growing col-
lection of research with key insights into dynamics and predictability, most of them have 
focused on applying the strict statistical formulation and interpreting subsequent experiments. 
However, ensemble sensitivity analysis (ESA) possesses the means to go well beyond a simple 
linear regression in ways that can substantially enhance its usefulness as a research tool. 
First and foremost, ensemble sensitivity’s fundamental and explicit dependence on both the 
pure dynamics and the ensemble statistics of the atmospheric state (Ancell and Hakim 2007) 
provides a key concept that can provide a deeper understanding of the true nature of the 
ensemble sensitivity field. This fundamental property can also help us understand a main 
limitation of ESA—the inability to distinguish between direct and indirect dynamical processes 
(a key distinction when ESA is used for dynamical interpretation). The statistical–dynamical 
basis of ensemble sensitivity can even shed light on how multivariate regressions might, or 
might not, add additional value to ESA applications. Finally, simple manipulation of ensemble 
sensitivity fields with other ensemble parameters such as standard deviation can lead to new 
perspectives that, for example, can distinguish dynamics problems from those focusing on 
predictability. In short, ESA possesses far more potential as an important research and op-
erational tool than has been realized to date.

The purpose of this study is to establish a comprehensive roadmap regarding how ensemble 
sensitivity can be used and interpreted within atmospheric sciences problems in ways that 
have gone mostly untapped in the past. We seek to provide a better understanding of basic 
ESA fundamentals, and ESA’s strengths and weaknesses, toward enhancing its effectiveness 
as a research technique. We hope this “user’s guide” makes ESA substantially more accessible 
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to researchers who are interested in atmospheric dynamics and predictability problems. To 
illustrate some of the new ESA perspectives discussed here, a brief analysis of ensemble 
sensitivity-related quantities is provided within a short climatology of severe storms.

Expanding the scope of ensemble sensitivity research
At its core ensemble sensitivity is simply the slope of the linear regression, within an ensemble 
of forecasts, between a chosen scalar forecast response function and the entire atmospheric 
state. Statistically this amounts to the covariance between the response function R (at response 
time, or the time the response is defined) and each state variable (at sensitivity time, or 
the time sensitivity is calculated) divided by the variance of the state variable (also at sen-
sitivity time). Performing this calculation with respect to the entire atmospheric state (state 
vector X) results in the full three-dimensional ensemble sensitivity vector ∂R/∂X:
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Plotting the ensemble sensitivity field reveals atmospheric features that are dynamically 
relevant to the response function, which is shown, for example, in Fig. 1. The response func-
tion in this case is the number of grid points exceeding 40 dBZ in the green box in Florida 
between 30- and 36-h forecast time (summed over each hourly output time); the sensitivity 
to 500-hPa geopotential height at 9-h forecast time (points per meter) is shown in color here 
as an example (sensitivity to other atmospheric variables exists but is not shown). We see 
several primary sensitivity features outlined in yellow—negative values within the ridge in 
the western United States, a dipole over the subtropical jet over Mexico and the Caribbean, 
and a dipole surrounding the base of a shortwave trough near the Great Lakes—that tell us 
these features are related to the coverage of convection in Florida a day later. The negative 
sensitivities over the western U.S. ridge indicate a stronger ridge is associated with less con-
vection in Florida 25 h later, and vice versa. The dipole signal near the Great Lakes suggests 
that a more intense trough (lower heights over negative sensitivity and higher heights over 
positive sensitivity resulting in a tighter geopotential height gradient) is related to enhanced 
coverage of Florida convection the following day, while a less intense trough is linked to a lower 
coverage of storms. Finally, a more pronounced trough–ridge couplet in the subtropical jet in 
the lower portion of the domain west of Florida 
(lower heights over the negative sensitivities 
and higher heights over the positive values) 
appears to be associated with more convection 
in Florida 25 h later. Interpreting these types 
of signals in a more detailed way has been one 
common, key use of ensemble sensitivity. Such 
interpretation usually becomes very involved 
since we could also view the sensitivity with 
respect to several other atmospheric variables 
at numerous different vertical levels.

If we stopped there, we would have found 
key, basic relationships across time between the 
atmosphere and the chosen response function. 
Interpreting ensemble sensitivity in this way is 
the subject of much of the ESA literature, and 
provides interesting insights and new knowl-
edge regarding the relevant dynamics associ-
ated with high-impact weather. However, diving 

AQ3

Fig. 1. Ensemble sensitivity (shaded) of 30–36-h number 
of grid points exceeding 40 dBZ in the green box to 9-h 
500-hPa geopotential height and the ensemble mean 
9-h 500-hPa geopotential height (black contours). The 
blue box depicts the 4-km nested domain used for the 
sensitivity climatology, while the outer domain repre-
sents the CONUS 12-km grid.
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deeper into the details of ensemble sensitivity cannot only enhance these interpretations, but 
can guide the development of ensemble sensitivity–based tools (and show why these tools 
either would or would not be expected to work) to improve atmospheric predictability. Several 
examples of an expanded viewpoint on ESA, starting with the fundamental properties that 
make them possible, are presented below.

The fundamentals: Dynamics and statistics. While ensemble sensitivity results from a simple 
univariate linear regression as shown in Eq. (1), its fundamental nature can be expressed 
through a product of statistical and dynamical aspects (Ancell and Hakim 2007):

∂
∂

= ∂
∂

− ,1

X X
D A

R R

e a
� (2)

where ∂R/∂Xe is the ensemble sensitivity vector, D is a diagonal matrix with the variance of the 
state variables on the diagonal, A is the symmetric analysis error covariance matrix (variance 
of state variables on the diagonal, covariances between each pair of state variables off the 
diagonal), and ∂R/∂Xa is the adjoint sensitivity vector. The importance of the relationship in 
Eq. (2), which includes discrete statistical and dynamical pieces, is absolutely key for tapping 
into the potential of ESA. The product D−1A is purely a statistical term calculated through en-
semble members describing the atmospheric state at sensitivity time, while adjoint sensitivity 
(∂R/∂Xa) is purely dynamical and estimates the dynamical change to the response function 
due to any perturbation to the atmospheric state at sensitivity time within a deterministic 
simulation (Talagrand and Courtier 1987; Errico 1997).

More specifically, the product D−1A in Eq. (2) reduces to a matrix with the value of one on 
the diagonal, and the quotient of the covariance of state variable pairs and the variance of 
one of those variables off the diagonal. These off-diagonal terms, like ensemble sensitivity, 
represent the slopes of linear regressions between different state variables at sensitivity time. 
In turn, this matrix product simply contains the relationships among all pairs of sensitivity-
time atmospheric state variables. The entire right-hand side of Eq. (2), and thus the building 
blocks that constitute ensemble sensitivity, represents a product of the relationships among 
different atmospheric variables and the pure dynamical sensitivity of the chosen response 
function to those same variables.

Figure 2 shows this fundamental difference through a conceptual schematic—both adjoint 
(orange) and ensemble (light turquoise) sensitivity are shown relative to a midlatitude cyclone  
(all valid at 0600 LT) for an area of thunderstorms later that day at 1800 LT. These hypothetical  
areas of sensitivity (shaded areas 
represent large sensitivity mag-
nitudes) are shown with respect 
to the surface temperature field, 
and thus correspond closely to 
the location of the warm and 
cold front in the figure, indicat-
ing a sensitivity to the strength 
and/or position of those fronts. 
The localized area of adjoint 
sensitivity represents the only 
area where perturbations matter 
in a direct, dynamical way—
perturbations there to tempera-
ture will change the nature of 
the thunderstorms 12 h later,  

Fig. 2. Schematic illustrating the fundamental differences between adjoint 
and ensemble sensitivity.
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perturbations elsewhere will not (assuming the areas not shaded possess zero sensitiv-
ity). Ensemble sensitivity, however, exists along both fronts because a change anywhere 
along and behind the fronts means a change in the area of adjoint sensitivity (the ∂R/∂Xa 
term) since the fronts are all related to themselves and each other structurally (the D−1A 
term) within the cyclone. For ensemble sensitivity to be large at a point, it necessarily 
needs to be related to the areas of direct dynamical sensitivity. In other words, ensemble 
sensitivity is the result of mapping direct dynamical sensitivity onto all other areas and 
variables with covariance relationships. Since producing adjoint sensitivity is computa-
tionally intensive (more so than producing an ensemble since the model state must be 
saved and used at every model time step) and requires the use of an adjoint model which 
must contain tangent-linear versions of sometimes complex and highly nonlinear phys-
ics parameterizations (Errico 1997), a significant advantage is gained through ensemble 
sensitivity in that it intrinsically possesses the pure dynamical sensitivity without hav-
ing to determine it explicitly. From another perspective, ensemble sensitivity estimates 
how statistically defined perturbations, if allowed to evolve, would affect the response 
function without the need to calculate adjoint sensitivity.

Mathematically, the change in response function (∆R) can be estimated by
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where the ensemble sensitivity (∂R/∂Xe) and state variable perturbation (ΔX) correspond 
to a single variable at a single model grid point. Equation (3) is the same method by which 
adjoint sensitivity would be used to estimate a change to a response function due to early 
forecast-time perturbations with the exception that ensemble sensitivity inherently in-
corporates a domainwide perturbation [through the statistical term in Eq. (2)] instead of 
a single point. This is why ensemble sensitivity is generally several orders of magnitude 
larger than adjoint sensitivity with respect to the same variable. Ancell and Hakim (2007) 
provide a more in-depth discussion on these key differences between adjoint and ensemble 
sensitivity.

The ability to separate the statistical and dynamical contributions to each ensemble sensi-
tivity value provides an extremely important basis for interpretation of ensemble sensitivity. 
For conceptual ease, consider only three state variables at a single model grid point: tempera-
ture (T), pressure (P), and water vapor mixing ratio (Q). By expanding Eq. (2), the ensemble 
sensitivity to temperature (∂R/∂Te) can be expressed as
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Here we see the ensemble sensitivity value is a sum of terms, the first the pure dynamical 
sensitivity (∂R/∂Ta), and the remaining consisting of the pure dynamical sensitivity with 
respect to all other variables (e.g., ∂R/∂Qa) multiplied by the relationships of temperature 
to those variables (e.g., ∂Q/∂T). Ensemble sensitivity thus describes how a perturbation to 
a single state variable is spread throughout the rest of the atmospheric state space (through 
ensemble statistical relationships) and projected onto the entire dynamical sensitivity field 
[since the dynamical sensitivity to each state variable is represented within each term of the 
sum on the right-hand side of Eq. (4)]. In turn, ensemble sensitivity at a single point, with 
respect to a single variable, inherits both the domainwide relationships between that point/
variable and all other points and variables, as well as the dynamical sensitivity with respect 
to every point and variable. These autocorrelations (the “domainwide relationships”) at sen-
sitivity time are a basic aspect of any single ensemble sensitivity value. Equation (2) was the 
basis of this interpretation, and that equation thus reveals both the fundamental difference 
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between ensemble and pure dynamical sensitivity and the multivariate nature of a univariate 
regression (more on this later). These fundamentals of ensemble sensitivity provide a greater 
perspective on several aspects of ESA which will be discussed now.

Direct or indirect dynamics? A key use of ESA is to understand the dynamics relevant to 
high-impact weather events. For example, one might ask, “What atmospheric features con-
trol the coverage of rotating thunderstorms within a predicted area of convection 24 hours 
later?” ESA can provide one quick, potential answer to this question since it would show any 
significant relationships across the entire modeling domain between the atmospheric state a 
day prior and the chosen rotating convection coverage response function (although spurious 
correlations must be considered as discussed in the “ESA limitations” section). However, the 
answer ensemble sensitivity provides cannot distinguish between direct dynamical causation 
and indirect relationships. This reveals a major limitation of ESA for dynamical interpretation 
purposes, which can be completely understood through Eq. (2).

Consider the situation in Fig. 1 for example. In this case, one may aim to understand 
how storm coverage is controlled dynamically through the nature of different atmospheric 
features, several of which are shown to be sensitive through the ensemble sensitivity to  
500-hPa geopotential height field. However, whereas pure dynamical sensitivity (as estimated 
by an adjoint model) would reveal any direct dynamical influence from a change to a given 
atmospheric feature, ensemble sensitivity shows us those dynamical features with a direct 
effect [the adjoint sensitivity term ∂R/∂Xa in Eq. (2)] in addition to any other features related 
to those dynamical features [the statistical term D−1A in Eq. (2)]. In turn, far-off features like 
the ridge in the northwestern United States are shown to be sensitive in Fig. 1 because the 
ensemble statistics possess relationships to the pure dynamical sensitivities that directly con-
trol Florida storm coverage a day later. Modifying the northwestern U.S. ridge itself, however, 
would likely have no direct dynamical effect on the Florida convection. Unfortunately, this 
issue does not go away with respect to sensitive features much closer to, or upstream of, the 
response function location, illustrating the inability more generally of ensemble sensitivity 
to reveal whether direct or indirect dynamical processes are in play.

Overcoming this limitation simply involves additional analysis. Whereas ensemble sen-
sitivity fields alone cannot distinguish between direct (causation) or indirect (association) 
dynamics themselves, they do reveal sensitive regions, that if perturbed independently, will 
subsequently reveal any direct dynamical influence. This type of experimentation effectively 
removes the statistical term from the fundamental building blocks of ensemble sensitivity, 
indicating whether only direct dynamics plays a role (as adjoint sensitivity fields would 
show). This allows one to use ensemble sensitivity as guidance to isolate the relevant direct 
dynamical processes affecting a chosen response function without the use of an adjoint model. 
These concepts illustrate why far-off features, sometimes well downstream, are very common 
throughout the domain within ensemble sensitivity fields, showing the interesting interplay 
across vast areas ultimately linked through large-scale dynamical evolution.

How ensemble sensitivity fundamentals help us design ensemble sensitivity–based 
forecast tools. The fundamental basis of ensemble sensitivity in Eq. (2) can pave the way 
for the development of ensemble sensitivity–based tools for improving high-impact weather 
forecasts. Forecast sensitivity in any form can be valuable since it highlights areas where 
errors most degrade the prediction of a chosen forecast response. In turn, ensemble sen-
sitivity has been leveraged in different ways as an operational tool to improve forecasts. 
One way has been to use sensitivity (in conjunction with initial condition uncertainty) to 
target observations that would produce the largest reduction in forecast response function 
uncertainty (e.g., Ancell and Hakim 2007; Hill et al. 2020). Another approach has been to 
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adjust ensemble forecasts in some way using ensemble sensitivity as a guide. For example, 
Madaus and Hakim (2015) show how forecasts can be directly adjusted once observations 
become available at early forecast times by changing later forecast variables based on covari-
ances between the ensemble estimate of the observations and those later forecast variables. 
Ancell (2016) demonstrates a method that chooses subsets of the ensemble based on retaining 
members with the smallest errors in sensitive regions (both studies demonstrated forecast 
improvements). These adjustment techniques, whether objectively calculated or performed 
subjectively by forecasters, benefit from the numerous long-distance relationships to flow 
features (e.g., troughs, jet streaks, or gradients) revealed trough ESA. Unlike adjoint sensitiv-
ity, which tends to exist at smaller scales and is less obviously associated with discernable 
flow features (Ancell and Hakim 2007), ensemble sensitivity provides ample opportunity 
to make beneficial adjustments through the way it maps dynamical sensitivity across the 
domain with ensemble statistics.

Interestingly, what gives an advantage for adjustment techniques becomes a disadvan-
tage for ensemble sensitivity–based observation targeting methods. Equation (2) reveals 
a substantial obstacle—since ensemble sensitivity cannot include localization around the 
pure dynamical sensitivity field at data assimilation time (since it is unknown explicitly), 
the impacts of targeted observations can be significantly overestimated since localization 
is typically applied when they are assimilated. This issue was found to be a major reason 
why ESA-based targeting might be problematic (Hill et al. 2020) and should be kept under 
consideration for any ensemble-based targeting scheme. While estimating the location of the 
pure dynamical sensitivity field may help mitigate this problem by applying a localization 
around that estimated location to reduce the ensemble sensitivity field, the success of such 
a technique is unclear given the likely errors in estimating pure dynamical sensitivity in the 
first place. Nonetheless, knowing the reasons behind this issue as expressed through Eq. (2) 
is the first step at improving ensemble sensitivity–based targeting.

A tale of two sensitivities: Raw versus standardized. In addition to the raw ensemble 
sensitivity field (the regression coefficients between a chosen response function and the 
atmospheric state), the raw sensitivity can be multiplied by the ensemble standard deviation 
at each model grid point to produce “standardized sensitivity”:
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where Stdev(X) represents the state variable standard deviation within the ensemble (for 
the same state variable to which sensitivity is calculated). Note that in some previous ESA 
studies (e.g., Torn and Romine 2015) this is referred to as “normalized sensitivity,” although 
it is the same quantity and is hereafter referred to as “standardized sensitivity” since it is as-
sociated with a product and not a quotient. Mathematically, standardized sensitivity (which 
possesses the same units as the response function) in an estimate of the change in response 
function ΔR as a product of raw sensitivity and state variable spread. Since the same quantity 
(ΔR) is produced at every point, standardized sensitivity allows for a fair comparison across 
all model variables of the estimated change in the response function due to a combination 
of sensitivity and the expected size of perturbations that project onto that sensitivity. Thus, 
unlike raw sensitivity that estimates the change in response from any arbitrary early forecast 
perturbation, standardized sensitivity considers the expected size of those early perturbations 
to estimate changes to the response in tune with the ensemble’s early forecast uncertainty. 
Standardized sensitivity presents itself more as a predictability quantity as it considers how 
expected errors evolve dynamically, while raw sensitivity represents more of a fluid dynamics 
problem in that it shows sensitivity without any estimate of early forecast error.

� (5)

where Stdev(X) represents the state variable standard deviation within the ensemble (for 
the same state variable to which sensitivity is calculated). Note that in some previous ESA 
studies (e.g., Torn and Romine 2015) this is referred to as “normalized sensitivity,” although 
it is the same quantity and is hereafter referred to as “standardized sensitivity” since it is as-
sociated with a product and not a quotient. Mathematically, standardized sensitivity (which 
possesses the same units as the response function) in an estimate of the change in response 
function ∆R as a product of raw sensitivity and state variable spread. Since the same quantity 
(∆R) is produced at every point, standardized sensitivity allows for a fair comparison across 
all model variables of the estimated change in the response function due to a combination 
of sensitivity and the expected size of perturbations that project onto that sensitivity. Thus, 
unlike raw sensitivity that estimates the change in response from any arbitrary early forecast 
perturbation, standardized sensitivity considers the expected size of those early perturbations 
to estimate changes to the response in tune with the ensemble’s early forecast uncertainty. 
Standardized sensitivity presents itself more as a predictability quantity as it considers how 
expected errors evolve dynamically, while raw sensitivity represents more of a fluid dynamics 
problem in that it shows sensitivity without any estimate of early forecast error.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/12/24 07:41 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 2 E518

To illustrate the differences between raw and standardized sensitivity, both quantities are 
shown in Fig. 3 with respect to the 6-h forecast 2-m dewpoint (this is a different case than 
shown in Fig. 1). The response function in this example is the 30–36-h number of grid points 
of 2–5-km updraft helicity greater than 50 m2 s−2 in the green box (a location where ensemble 
members forecast a range of helicity values, not shown). The highlighted area in the south-
west corner of the raw sensitivity plot (left panel) shows very little sensitivity to the dryline 
shown by the strong gradient along the Texas–New Mexico border or the air mass behind it, 
indicating that changes to these features are not associated with large changes in rotating 
storm coverage the following day (particularly relative to much more sensitive features in 
north central Texas). The same dryline and trailing air mass in the standardized sensitivity 
field, however, possess the largest magnitudes in the field, revealing that the uncertainty in 
those features, combined with their sensitivity, is much more important than that in other 
areas. Thus, while the coverage of rotation (in the form of 2–5-km updraft helicity) within 
convection the next day in Missouri is less sensitive dynamically to the dryline and its trail-
ing air mass in southwest Texas, it is those features in the 2-m dewpoint field which most 
contribute to the uncertainty of the rotating convection coverage response.

Statistically, standardized sensitivity can be written as
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which is obtained by combining Eqs. (1) and (5) and multiplying both numerator and de-
nominator by the response function standard deviation [Stdev(R)]. This quantity is simply 
the correlation coefficient between the state variable and the response function (in brackets) 
multiplied by the standard deviation of the response function (a constant for an existing en-
semble). In turn, when performing a linear regression between a response function and the 
atmospheric state, the predictability of the response is linked to the correlation coefficient 
(found through standardized sensitivity) while the sensitivity (with its more fluid dynamics 
perspective produced through raw sensitivity) is linked to the slope (regression coefficient). 
In this interesting way, one can examine with different statistical parameters of a regres-
sion how atmospheric features preceding a high-impact weather event might be associated 
in different ways with its predictability (correlation coefficient) or its dynamical sensitivity 
(regression coefficient) as shown in Fig. 3.

Fig. 3. Raw and standardized ensemble sensitivity (shaded) of 30–36-h number of grid points 
exceeding 50 m2 s−2 2–5-km updraft helicity in the green box to 6-h 2-m dewpoint and the 
ensemble mean 6-h 2-m dewpoint (black contours).
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Can multivariate regression add value? Ensemble sensitivity is generated through a univari-
ate regression of a response function onto each atmospheric state variable. Since the response 
is a function of forecast variables, which in turn are a function of atmospheric state variables 
earlier in time through the model governing equations, it is natural to suspect that information 
is being left out of ensemble sensitivity given its univariate nature, and that perhaps a multi-
variate regression would incorporate more data and usefulness. Both Hacker and Lei (2015) 
and Ren et al. (2019) explored this possibility. Hacker and Lei (2015) found some improvements 
in a low-dimensional model using multivariate regression, and Ren et al. (2019) showed very 
similar spatial patterns (but overestimations from traditional, univariate sensitivity) between 
the univariate and multivariate sensitivity fields within a more realistic typhoon simulation. 
Both studies, however, use a localization technique with the multivariate sensitivities which 
may be contributing to the differences presented.

Equations (1) and (2) here show that ensemble sensitivity, while calculated through a 
simple univariate regression, is actually a multivariate quantity by nature. In particular, 
Eq. (2) reveals that ensemble sensitivity simultaneously considers the covariance relation-
ships between all other variables as well as the pure dynamical sensitivity of the entire 
state. In other words, the slope of a univariate linear regression valid at a single point is 
equivalent to the dynamical sensitivity of a domainwide perturbation. It would thus be 
expected that multivariate regression could add only redundant information to a traditional 
ensemble sensitivity value, and that the univariate nature of a single ensemble sensitivity 
value provides an appropriate, domainwide perspective with little expected additional 
value from multivariate techniques. This situation may explain the strong similarities 
found in Hacker and Lei (2015) and Ren et al. (2019) between univariate and multivariate 
sensitivities, although further investigation is needed to fully understand the differences 
that do occur. As in the prior discussion on targeting and its overestimation of the impacts 
of early perturbations on later forecasts due to localization, we speculate the localization 
in the studies investigating multivariate sensitivity may have caused the demonstrated 
similar overestimations.

ESA limitations. Given the purpose of this article is to provide a complete guide to ESA, its 
limitations must be discussed. The most obvious ESA limitation is nonlinearity, which can 
manifest itself in different ways. If perturbation evolution is nonlinear (e.g., the adjoint model, 
based on tangent-linear principles, would poorly estimate how perturbations evolve), then the 
equality in Eq. (2) becomes an approximation, and ensemble sensitivity must be thought of as 
a term that varies based on the value of the atmospheric state (i.e., it is no longer a constant 
sensitivity). In general, nonlinearity becomes more significant as forecast time increases, 
but also depends on the response function and the scale of the structure it is designed to 
diagnose. Ancell and Mass (2006) discuss how the linear approximation holds for periods of 
1–2 days at synoptic scales (and for ESA using response functions like midlatitude cyclone 
central pressure) but for convection (and response functions like storm rotation) last only 
hours. While these time scales provide some beneficial guidance on applying ESA for different 
weather phenomena, ensemble sensitivity can still provide useful insights when nonlinearity 
arises at longer forecast times—both at synoptic scales (e.g., Chang et al. 2013) and for con-
vection (e.g., Coleman and Ancell 2020). In cases of convection, Coleman and Ancell (2020) 
show how nonlinearity can be less significant when larger response functions that diagnose 
rotation, for example, over potentially stormy areas are used instead of those that diagnose 
specific aspects of individual storms.

Ultimately the presence of significant nonlinear ensemble perturbation evolution should 
lead to weak linear relationships within the regressions that produce ensemble sensitivity val-
ues. If some nonlinear dependence is strong (e.g., a scatterplot that exhibits a parabola shape 
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when plotting response function/sensitivity variable pairs), nonlinear relationships might be 
apparent which could be detected with nonlinear regressions, adding a higher-order cor-
rection to ESA. This type of analysis may help particularly when fine-scale processes like 
convection are considered that possess substantial nonlinearity (Limpert and Houston 2018; 
Hill et al. 2020) and is suggested as an avenue for future ESA enhancement. Such higher-
order regressions might identify early atmospheric dependencies that reveal “Goldilocks” 
behavior for severe weather like tornadoes (Markowski and Richardson 2014), where nei-
ther high nor low temperature values in some portion of the storm’s evolution, for example, 
result in tornadoes, but temperatures in-between are associated with them. Nonlinearity 
also becomes an issue when the response function is not continuously distributed such as 
when a bimodal ensemble distribution may show members with strong convection and those 
with no convection. In this case, while ESA will show the correct trend (Hill et al. 2016), it 
is unrealistic to interpret changes to the state producing a linear response that results in 
weak convection (since only strong convection or the lack of convection altogether were 
forecast as possibilities). While it is difficult to assess the precise degree of nonlinearity 
in any ESA application, inspection of the response function distribution is the best way to 
determine the validity of the linear assumption—continuous, unimodal distributions that 
show significance in the regression coefficient are likely good candidates for ESA and its 
applications discussed here.

Another issue with ensemble sensitivity occurs within an ensemble that suffers from too 
much or too little spread. Since the calculation of ensemble sensitivity involves the variance 
of the sensitivity-time state variable in the denominator [Eq. (1)], very small variance values 
can inflate raw sensitivities substantially. The authors have witnessed on numerous occa-
sions that sensitivities to surface variables such at 2-m temperature or 10-m winds within a 
Weather Research and Forecasting (WRF; Skamarock et al. 2008) Model ensemble are several 
orders of magnitude larger than the same types of variables slightly aloft (corresponding to 
too little ensemble variance in those surface variables; not shown). Tiny spread at the surface 
associated with underdispersiveness there relates to much larger spread aloft (where spread 
is appropriate) through the ensemble statistics, and thus a unit change in surface variables, 
which may be much larger than the ensemble spread, is associated with massive perturba-
tions aloft. These massive perturbations are then the cause of huge changes to the response 
function through the ensemble sensitivity value in Eq. (3). Turning this argument around, 
overdispersive areas will experience very small raw sensitivity values.

From the perspective of the ensemble, which has no knowledge of whether or not it is ap-
propriately calibrated, none of this is a problem—the ensemble expects only tiny perturba-
tions at the surface, for example, such that the seemingly overinflated raw sensitivity values 
there still estimate reasonable response function perturbations. It is only when ensembles 
are truly over- or underdispersive when very large (or too small) raw sensitivities become 
an issue. For targeted observing, for example, if near-surface observations deviated from 
the ensemble mean to a degree that was much larger than the underdispersive ensemble 
spread in that variable, the ensemble expected perturbation size is violated, leading to truly 
overinflated estimates to a change in response function through the raw sensitivity field. 
In turn, ESA performed with poorly calibrated ensembles will suffer if applied outside the 
ensemble more generally. Thus, ensemble spread characteristics and the general quality of 
the ensemble must be scrutinized when developing ESA-based tools. It should be noted that 
ESA applies most appropriately within ensembles that vary by their initial conditions since 
sensitivity itself relates to how initial or early forecast perturbations relate to differences in 
the response later in time. If an ensemble was generated by different physics schemes, all 
with identical initial conditions, ensemble sensitivity at initial time loses its meaning since 
a regression onto all members with the same value provides no useful relationship. While 
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ESA within ensembles based purely on physics variability may provide useful sensitivity 
values once ensemble members have evolved in time, it remains most appropriate to apply 
ESA within an ensemble driven by differences in initial conditions.

Last, spurious correlations are always possible when performing millions of linear regres-
sions of a chosen response onto a large atmospheric state space. It is likely that some of the 
very small-scale variability that is common in sensitivity fields (as can be seen in Fig. 1 in the 
Gulf of Mexico, for example) exist due to sample size limitations of the ensemble in the form 
of these spurious correlations. These issues can be objectively addressed through statistical 
testing of the regression coefficient (as shown in Ancell and Hakim 2007), a process that will 
reveal whether the regression slope is significantly different than zero at some confidence 
level. Whether sensitivities are significant depends partly on the ensemble size, which is 
usually practically limited due to computational constraints to around 100 members or less 
(e.g., Torn and Romine 2015; Limpert and Houston 2018; Bednarczyk and Ancell 2015; a 
number much less than the millions of state variables sampled). Thus, general practice usu-
ally involves running the largest ensemble allowed by the available computational resources 
and assessing the resulting sensitivities for significance. In addition to objective statistical 
significance testing [as performed in Torn and Romine (2015), for example], the temporal 
evolution of sensitivity signals can be examined subjectively to reveal any continuity of the 
signal, which for several adjacent grid points is very unlikely to be associated with random 
spurious correlations.

Application of new perspectives to a climatology of severe storms
To demonstrate some of the new perspectives discussed here, ESA is applied to a climatology 
of severe storms over a period from late April to early June 2016. This application to severe 
storms is made here because 1) ESA studies involving convection nearly all involve a small 
number of cases and demonstrating unique ESA perspectives within many cases of severe 
storms can provide new insights, and 2) adjoint sensitivity, which lies at the heart of ESA 
interpretation via Eq. (2), is not computationally feasible at convective scales and thus ESA 
can provide a framework to answer research questions involved with forecast sensitivity. For 
each 0000 and 1200 UTC ensemble initialization from 27 April to 3 June, response function 
rectangles were chosen for 6-h periods within the 48-h ensemble forecasts within which at 
least 10%–20% probabilities of 2–5-km updraft helicity exceeding 25 m2 s−2 occurred over the 
6-h window (response windows started no earlier than 12-h forecast time such that they always 
exist after the 6-h sensitivity time examined below). These response boxes were subjectively 
chosen by the authors and varied in size to capture the probability signals associated with 
rotating convection. Figure 4 shows an example of one such response box, which was chosen 
to contain significant probabilities of neighborhood maximum hourly 2–5-km updraft helicity 
exceeding 25 m2 s−2 throughout the 6-h response time. Multiple response boxes existed for 
some initializations as there sometimes were several separate areas of convection, and these 
areas may exhibit different sensitivities. Other studies, such as the Mesoscale Predictability 
Experiment (MPEX; Weisman et al. 2015), also included ESA involved with numerous cases 
of convection and might provide additional insights on case-to-case variability of ensemble 
sensitivity fields.

Here we chose large response boxes that encompassed the entire probability signal 
over the 6-h time frame (as in Fig. 4, thus diagnosing the event as a whole), although in 
principle the choice of response location goes hand in hand with the problem of interest. 
For example, a very small response box placed in an area where convection has different 
forecast timing among ensemble members will show a sensitivity field that demonstrates a 
positional signal of early atmospheric features (e.g., a dipole of sensitivity with maxima on 
either side of a geopotential height trough). This is because the small response box contains 
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less convection from the members further downstream, and thus the range of response 
values reflects the timing of convection. A much larger response box (in space and perhaps 
time) would capture the convection for all members irrespective of the timing details and 
would demonstrate a sensitivity signal relevant to the magnitude of the event (e.g., a single 
maximum of sensitivity over a geopotential height trough). Bednarczyk and Ancell (2015) 
provide a detailed discussion of how the response box size and location influences the 
sensitivity field in this way.

The ensemble forecasts (42 total) in this study came from the real-time Texas Tech Uni-
versity prediction system, which utilizes the WRF Model with 38 vertical levels and the Data 
Assimilation Research Testbed (DART; Anderson et al. 2009) 42-member ensemble adjustment 
Kalman filter with the parameters described in Ancell et al. (2015). Four response functions 
were considered on a nested 4-km domain (4-km domain shown by the blue box in Fig.  
1) encompassing the U.S. South Plains and Midwest: 1) maximum surface simulated reflectiv-
ity, 2) number of grid points exceeding 40-dBZ surface simulated reflectivity, 3) maximum 
2–5-km updraft helicity, and 4) number of grid points exceeding 50 m2 s−2 2–5-km updraft 
helicity. Ensemble sensitivity of these response functions were calculated with respect to 
the 6-h forecast three-dimensional (all model grid points) temperature, geopotential height, 
wind speed, and water vapor mixing ratio fields on the parent 12-km domain over the con-
tinental United States (the larger domain shown in Fig. 1). This strategy takes advantage of 
WRF’s nesting capability within a sensitivity framework, allowing response functions that 
diagnose convection at convection-allowing scales (e.g., the 4-km domain) while also permit-
ting sensitivity to be calculated on a much larger, coarser grid (the 12-km domain). The 6-h 
sensitivity time is used here as it produces sensitivities at an early forecast time when they 
could be used to potentially improve forecasts in a real-time framework.

Fig. 4. Probability of maximum hourly 2–5-km updraft helicity exceeding 25 m2 s−2 within 20 miles of a point over a 6-h 
forecast period with the chosen response function box shown in orange.
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Figure 5 shows the maximum magnitude of the raw ensemble sensitivity field across the 
entire three-dimensional 12-km domain for all four response functions with respect to tem-
perature for all response boxes (about 150 total). Sensitivity values within 10 grid points of 
the horizontal boundaries are not considered (here and throughout the study), and the values 
are not tested for statistical significance. These plots show how sensitivity of any response 
varies significantly across many cases, providing the range of sensitivities for which convec-
tive cases can be judged as highly or weakly sensitive. Picking out the cases with the highest 
and lowest sensitivity values can further reveal whether any specific characteristics of the 
flow, such as the jet stream pattern, are associated with the largest or smallest dynamic sen-
sitivity or predictability (depending on whether raw or standardized sensitivity is used to do 
this). For example, Figs. 6 and 7 show the 500-hPa geopotential height field at 6-h forecast 
time for the six largest (Fig. 6) and smallest (Fig. 7) values of mean raw three-dimensional 
sensitivity to temperature for the updraft helicity coverage response. Clearly a consistent 
pattern with an upstream trough emerges for the most sensitive cases, while the least sensi-
tive cases reveal a more mixed collection of flows. Note that these results are presented from 
a response perspective in that the most or least sensitive cases may exist for the same 48-h 
forecast periods (although different response boxes still identify different signals and 6-h time 
windows within those periods), and results may change if the 48-h forecast periods were not 
allowed to overlap. As in McMurdie and Ancell (2014), this type of analysis may reveal the 
first semblance of a link between the general flow characterized by 500-hPa geopotential 
height and the degree of domainwide sensitivity. If standardized sensitivity were instead 
examined, different flows may be associated with the strongest and weakest predictability 
of severe convection. Since all cases in this example use a response function that diagnoses 

Fig. 5. Maximum magnitude of the raw ensemble sensitivity field with respect to temperature 
over all cases for all four response functions.
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rotating convection (the response boxes were all chosen to surround substantial probabilities 
of updraft helicity), a deeper dive with this type of analysis can help us understand differ-
ences in the dynamics and predictability among various flow types for specific convection 
characteristics like rotation.

Interestingly, when different response functions are examined together, relatively loose 
correlations exist. While some response box instances show similarities for all response func-
tions (such as that around response 59 in Fig. 5 where all response functions reveal a low 
sensitivity), it is not hard to notice the numerous other response instances where relatively 
large or small values do not occur together. In fact, if we look more closely at how sensitivity 
of different response functions (coverage of simulated reflectivity versus updraft helicity) for 
the same event correlate (Fig. 8, which in this case shows standardized sensitivity to wind 
speed) we see a very weak relationship for both maximum magnitude and mean absolute 
value of the full three-dimensional sensitivity fields. These results are fairly universal across 
the climatology—they are consistent whether or not we consider raw or standardized sensitiv-
ity, different response functions, different variables to which the sensitivity is calculated, or 
whether we examine the maximum or mean (not shown). Analyzing the relationship between 
mean and maximum sensitivity is yet another possible way to analyze sensitivity across many 
cases that may provide insight into whether large, localized sensitivity can exist without 
more extensive domainwide sensitivity (which would be characterized by the mean value).

These results indicate that it is common for different characteristics of the same storms to 
be sensitive to features earlier in time in different ways. While this might be obvious at the 
time of convection (e.g., more vertical shear might increase the number of rotating storms 

Fig. 6. The 500-hPa ensemble mean geopotential height field (black contours), wind vectors, and 
wind speed (shaded) valid at 6 h for the six most sensitive cases (response function location is 
shown by the green box).
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Fig. 7. The 500-hPa ensemble mean geopotential height field (black contours), wind vectors, and 
wind speed (shaded) valid at 6 h for the six least sensitive cases (response function location is 
shown by the green box).

while the total number of storms—rotating or not—remains the same), this suggests that 
cleverly designed ESA may reveal new knowledge about how the dynamics and predictability 
of individual severe hazards relate to different precursors. This idea is supported by Fig. 9, 
which shows histograms of mean standardized sensitivity for all four response functions with 
respect to the four sensitivity variables considered here (temperature, geopotential height, 
wind speed, and water vapor mixing ratio). The shapes of the histograms look fairly similar 
for a given response function across all sensitivity variables, but exhibit obvious differences 
for any single variable across different response functions, suggesting fundamental differ-
ences in the way sensitivity manifests itself for different storm characteristics (but not so 
much across different sensitivity variables).

Figure 10 provides an interesting perspective across the climatology of events on both raw 
and standardized sensitivity, and how, as described above, they pertain to a dynamics prob-
lem and a predictability problem, respectively. Raw and standardized sensitivity of 2–5-km 
updraft helicity coverage to 6-h wind speed is shown (both the mean and max value) for all 
cases. It is clear that the mean sensitivity fields correlate well across all events. However, when 
considering the maximum in the standardized and raw sensitivity fields, this relationship 
is substantially weaker (correlation coefficient of 0.76 compared to 0.98 when considering 
mean sensitivity), although a general positive relationship still exists. This reveals that the 
largest intrinsic potential for perturbation growth is not always associated with low predict-
ability (and vice versa), which must be a result of small ensemble spread where the dynami-
cal perturbation growth is fastest (or large uncertainty where perturbation growth is small). 
In any case, this shows that frequently the potential for perturbation growth highlighted by 
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raw sensitivity (the dynamics problem) and the actual perturbation growth revealed by the 
way expected perturbations interact with perturbation growth potential (the predictability 
problem) are at odds at least for a response function diagnosing rotation and a wind speed 
sensitivity variable (it would be interesting to examine whether this holds for other response 
functions and sensitivity variables). In other words, simultaneous analysis of the raw and 
standardized sensitivity fields can reveal the frequency and degree to which specific atmo-
spheric features tap into their potential to affect high-impact weather. Such analysis might 
reveal how our practical predictability (Melhauser and Zhang 2012) could be improved for 
certain types or regimes of convection, something that was explored for midlatitude cyclones 
in McMurdie and Ancell (2014).

Summary
Our primary goal here was to establish a complete guide to the use of ensemble sensitiv-
ity analysis (ESA) toward enhancing its value as a research and operational tool. We felt 
this effort to be beneficial to the field of atmospheric sciences since many studies have 
employed some form of ESA with interesting results, but the broader context of how, 
when, and why to apply ESA, particularly in light of its fundamental principles, has been 
less clear. In turn, we hope the ESA roadmap presented here will help a powerful tool 
become more commonplace. Several key aspects and new perspectives of ESA have been 
demonstrated in this study:

•	 Ensemble sensitivity is a product of two fundamental building blocks: the pure dynamics 
of the system and ensemble statistics describing the relationships of atmospheric variables 
to each other.

•	 Understanding the fundamental building blocks is a key first step to guide the design of 
ensemble sensitivity–based research and operational tools.

•	 Raw ensemble sensitivity (the regression coefficient) can be compared to standardized 
ensemble sensitivity (raw sensitivity multiplied by the ensemble standard deviation, 

Fig. 8. (left) Mean and maximum standardized sensitivity to wind speed for both the updraft 
helicity and simulated reflectivity coverage response functions (for visual purposes updraft 
helicity sensitivity is normalized to produce the same maximum value as simulated reflectivity 
sensitivity) and (right) the scatterplot of the same data for all cases.
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proportional to the correlation coefficient) to reveal differences between dynamical per-
turbation growth characteristics and the predictability associated with chosen response 
functions.

•	 Ensemble sensitivity, while a univariate regression, is multivariate in nature, likely reduc-
ing the value of multivariate regression techniques within sensitivity analysis.

We also examined ensemble sensitivity within a short climatology of severe convection to 
help demonstrate some practical applications of ESA that relate to the aforementioned key 
principles and new perspectives. We showed that

•	 substantial variability of mean and maximum sensitivity exists across a large number of 
convective events with the most sensitive cases showing a preferential flow pattern aloft,

•	 different aspects of the same convective event frequently exhibit different sensitivity 
characteristics, and

•	 maximum raw and standardized sensitivity across many convective cases showed a weak 
relationship, revealing for each case how the resulting predictability depends on how en-
semble uncertainty taps into the potential for dynamical error growth.

While these initial results are intentionally broad to allow the presentation of several ex-
amples, we hope they highlight some of the unique ways ESA can be subsequently applied 
more thoroughly to help advance knowledge within atmospheric sciences dynamics and 

Fig. 9. Histograms of the mean standardized sensitivity (x axis is magnitude, y axis is number of occurrences) to the four 
sensitivity variables used in this study (T = temperature, G = geopotential height, W = wind speed, Q = mixing ratio) for 
all four response functions.
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predictability problems. Ultimately ESA is a form of data mining, and other more complex data 
mining schemes such as those based on machine learning algorithms could potentially use 
more sophistication to achieve some of the same goals of ESA. As a start, more sophisticated 
methods could allow for nonlinearity in a way ESA cannot. However, ESA’s fundamental 
properties owing to the interaction of covariance relationships and dynamical evolution (not 
to mention its lack of reliance on a training dataset) is an attractive characteristic that will 
always keep ESA and its wide array of uses demonstrated here well grounded in core principles.

Acknowledgments. The authors wish to thank the Texas Tech High Performance Computing Center 
which maintained the computing cluster on which this work was performed. This study was supported 
by NOAA Grant NA20NWS4680045.

Fig. 10. (left) Mean and maximum raw and standardized sensitivity of 2–5-km updraft helicity 
to wind speed (for visual purposes standardized sensitivity is normalized to produce the same 
maximum value as raw sensitivity) and (right) the scatterplot of the same data for all cases.
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