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of Severe Convection
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ABSTRACT: Ensemble sensitivity analysis (ESA) is a statistical technique applied within an ensemble
to reveal the atmospheric flow features that relate to a chosen aspect of the flow. Given its ease
of use (it is simply a linear regression between a chosen function of the forecast variables and the
entire atmospheric state earlier or simultaneously in time), ensemble sensitivity has been the focus
of several studies over roughly the last 10 years. Such studies have primarily tried to understand
the relevant dynamics and/or key precursors of high-impact weather events. Other applications of
ESA have been more operationally oriented, including observation targeting within data assimila-
tion systems and real-time adjustment techniques that attempt to utilize both sensitivity informa-
tion and observations to improve forecasts. While ESA has gained popularity, its fundamental
properties remain a substantially underutilized basis for realizing the technique’s full scientific
potential. For example, the relationship between ensemble sensitivity and the pure dynamics of
the system can teach us how to appropriately apply various sensitivity-based applications, and
combining sensitivity with other ensemble properties such as spread can distinguish between a
fluid dynamics problem and a predictability one. This work aims to present new perspectives on
ensemble sensitivity, and clarify its fundamentals, with the hopes of making it a more accessible,
attractive, and useful tool in the atmospheric sciences. These new perspectives are applied in part
to a short climatology of severe convection forecasts to demonstrate the unique knowledge that
can gained through broadened use of ESA.
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is a statistical tool applied within an ensemble of forecasts that reveals relationships

between some forecast aspect of importance (e.g., magnitude of rotation within
convection, or the strength of a tropical cyclone) and the atmosphere at times at, before,
and even after the event. Specifically, ensemble sensitivity values are the slopes of linear
regressions (regression coefficients) between a response function (a function of forecast
variables that diagnoses the forecast aspect of interest) and the model state variables.
Over the last 10 years or so the body of published work regarding ensemble sensitivity has
become substantial and has involved several types of high-impact weather phenomena
at a variety of scales. Such studies include investigations into large-scale blocking events
(Parker et al. 2018; Quandt et al. 2019), synoptic-scale features such as midlatitude
cyclones (Ancell and Hakim 2007; Hakim and Torn 2008; Torn and Hakim 2008;
Zheng atal. 2013; Chang et al. 2013; Ancell 2016; Berman and Torn 2019), convective events
(Hanley at al. 2013; Bednarczyk and Ancell 2015; Torn and Romine 2015; Hill et al. 2016;
Berman et al. 2017; Limpert and Houston 2018; Kerr et al. 2019; Coleman and Ancell
2020; Hill et al. 2020), tropical cyclones (Torn and Hakim 2009; Torn 2010; Nystrom et al. 2018;
Ren et al. 2019; Hu and Wu 2020), and flows in complex terrain with applications to wind
power (Zack et al. 2010a,b,c; Wile et al. 2015; Smith and Ancell 2017). Ensemble sensitivity
studies such as these primarily fall into three categories: 1) examining sensitivity fields to
understand the relevant dynamics or predictability associated with a high-impact weather
event (e.g., Nystrom et al. 2018), 2) using sensitivity within a data assimilation framework
to understand the forecast value of targeted observations (e.g., Hill et al. 2020), and
3) supporting the development of operational tools that use sensitive regions to beneficially
adjust probabilistic forecasts in a real-time environment (e.g., Coleman and Ancell 2020).

While prior ensemble sensitivity studies have contributed to a valuable and growing col-
lection of research with key insights into dynamics and predictability, most of them have
focused on applying the strict statistical formulation and interpreting subsequent experiments.
However, ensemble sensitivity analysis (ESA) possesses the means to go well beyond a simple
linear regression in ways that can substantially enhance its usefulness as a research tool.
First and foremost, ensemble sensitivity’s fundamental and explicit dependence on both the
pure dynamics and the ensemble statistics of the atmospheric state (Ancell and Hakim 2007)
provides a key concept that can provide a deeper understanding of the true nature of the
ensemble sensitivity field. This fundamental property can also help us understand a main
limitation of ESA—the inability to distinguish between direct and indirect dynamical processes
(akey distinction when ESA is used for dynamical interpretation). The statistical-dynamical
basis of ensemble sensitivity can even shed light on how multivariate regressions might, or
might not, add additional value to ESA applications. Finally, simple manipulation of ensemble
sensitivity fields with other ensemble parameters such as standard deviation can lead to new
perspectives that, for example, can distinguish dynamics problems from those focusing on
predictability. In short, ESA possesses far more potential as an important research and op-
erational tool than has been realized to date.

The purpose of this study is to establish a comprehensive roadmap regarding how ensemble
sensitivity can be used and interpreted within atmospheric sciences problems in ways that
have gone mostly untapped in the past. We seek to provide a better understanding of basic
ESA fundamentals, and ESA’s strengths and weaknesses, toward enhancing its effectiveness
as aresearch technique. We hope this “user’s guide” makes ESA substantially more accessible

E nsemble sensitivity (Hakim and Torn 2008; Ancell and Hakim 2007; Torn and Hakim 2008)
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to researchers who are interested in atmospheric dynamics and predictability problems. To
illustrate some of the new ESA perspectives discussed here, a brief analysis of ensemble
sensitivity-related quantities is provided within a short climatology of severe storms.

Expanding the scope of ensemble sensitivity research

At its core ensemble sensitivity is simply the slope of the linear regression, within an ensemble
of forecasts, between a chosen scalar forecast response function and the entire atmospheric
state. Statistically this amounts to the covariance between the response function R (at response
time, or the time the response is defined) and each state variable (at sensitivity time, or
the time sensitivity is calculated) divided by the variance of the state variable (also at sen-
sitivity time). Performing this calculation with respect to the entire atmospheric state (state
vector X) results in the full three-dimensional ensemble sensitivity vector OR/OX:

OR _ Cov(R,X)

oX  Var(X) @

Plotting the ensemble sensitivity field reveals atmospheric features that are dynamically
relevant to the response function, which is shown, for example, in Fig. 1. The response func-
tion in this case is the number of grid points exceeding 40 dBZ in the green box in Florida
between 30- and 36-h forecast time (summed over each hourly output time); the sensitivity
to 500-hPa geopotential height at 9-h forecast time (points per meter) is shown in color here
as an example (sensitivity to other atmospheric variables exists but is not shown). We see
several primary sensitivity features outlined in yellow—negative values within the ridge in
the western United States, a dipole over the subtropical jet over Mexico and the Caribbean,
and a dipole surrounding the base of a shortwave trough near the Great Lakes—that tell us
these features are related to the coverage of convection in Florida a day later. The negative
sensitivities over the western U.S. ridge indicate a stronger ridge is associated with less con-
vection in Florida 25 h later, and vice versa. The dipole signal near the Great Lakes suggests
that a more intense trough (lower heights over negative sensitivity and higher heights over
positive sensitivity resulting in a tighter geopotential height gradient) is related to enhanced
coverage of Florida convection the following day, while a less intense trough is linked to a lower
coverage of storms. Finally, a more pronounced trough-ridge couplet in the subtropical jet in
the lower portion of the domain west of Florida
(lower heights over the negative sensitivities
and higher heights over the positive values)
appears to be associated with more convection
in Florida 25 h later. Interpreting these types
of signals in a more detailed way has been one
common, key use of ensemble sensitivity. Such
interpretation usually becomes very involved
since we could also view the sensitivity with
respect to several other atmospheric variables
at numerous different vertical levels.

If we stopped there, we would have found
key, basic relationships across time between the
atmosphere and the chosen response function. Fig. 1. Ensemble sensitivity (shaded) of 30-36-h number
Interpreting ensemble sensitivity in this way is of grid points exceeding 40 dBZ in the green box to 9-h

. . 500-hPa geopotential height and the ensemble mean
the s'ub]e?t of mu.ch 9f t},le ESA literature, and 9-h 500-hPa geopotential height (black contours). The
provides interesting insights and new knowl-

) ) ) blue box depicts the 4-km nested domain used for the
edge regarding the relevant dynamics associ- sensitivity climatology, while the outer domain repre-
ated with high-impact weather. However, diving  sents the CONUS 12-km grid.
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deeper into the details of ensemble sensitivity cannot only enhance these interpretations, but
can guide the development of ensemble sensitivity—based tools (and show why these tools
either would or would not be expected to work) to improve atmospheric predictability. Several
examples of an expanded viewpoint on ESA, starting with the fundamental properties that
make them possible, are presented below.

The fundamentals: Dynamics and statistics. While ensemble sensitivity results from a simple
univariate linear regression as shown in Eq. (1), its fundamental nature can be expressed

through a product of statistical and dynamical aspects (Ancell and Hakim 2007):
oR _D'A oR ’
X, X,

@

where (9R/(9Xe is the ensemble sensitivity vector, D is a diagonal matrix with the variance of the
state variables on the diagonal, A is the symmetric analysis error covariance matrix (variance
of state variables on the diagonal, covariances between each pair of state variables off the
diagonal), and OR/0X _ is the adjoint sensitivity vector. The importance of the relationship in
Eqg. (2), which includes discrete statistical and dynamical pieces, is absolutely key for tapping
into the potential of ESA. The product D'A is purely a statistical term calculated through en-
semble members describing the atmospheric state at sensitivity time, while adjoint sensitivity
(OR/0X ) is purely dynamical and estimates the dynamical change to the response function
due to any perturbation to the atmospheric state at sensitivity time within a deterministic
simulation (Talagrand and Courtier 1987; Errico 1997).

More specifically, the product D-'A in Eq. (2) reduces to a matrix with the value of one on
the diagonal, and the quotient of the covariance of state variable pairs and the variance of
one of those variables off the diagonal. These off-diagonal terms, like ensemble sensitivity,
represent the slopes of linear regressions between different state variables at sensitivity time.
In turn, this matrix product simply contains the relationships among all pairs of sensitivity-
time atmospheric state variables. The entire right-hand side of Eq. (2), and thus the building
blocks that constitute ensemble sensitivity, represents a product of the relationships among
different atmospheric variables and the pure dynamical sensitivity of the chosen response
function to those same variables.

Figure 2 shows this fundamental difference through a conceptual schematic—both adjoint
(orange) and ensemble (light turquoise) sensitivity are shown relative to a midlatitude cyclone
(all valid at 0600 LT) for an area of thunderstorms later that day at 1800 LT. These hypothetical
areas of sensitivity (shaded areas
represent large sensitivity mag-
nitudes) are shown with respect

to the surface temperature field,
and thus correspond closely to
the location of the warm and
cold front in the figure, indicat-
ing a sensitivity to the strength
and/or position of those fronts.
The localized area of adjoint
sensitivity represents the only
area where perturbations matter
in a direct, dynamical way—
perturbations there to tempera-
ture will change the nature of

Location of Thunderstorms
at 6PM
6AM

J40 N

30 N

20 N

Adjoint Sensitivity
(Direct Dynamical
Influence)

Ensemble Sensitivity .

(Areas of the
Atmosphere
Related to
Locations of
Adjoint Sensitivity)

|
\

v

[
! .\

|
|
/

Fig. 2. Schematicillustrating the fundamental differences between adjoint

the thunderstorms 12 h later,  and ensemble sensitivity.
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perturbations elsewhere will not (assuming the areas not shaded possess zero sensitiv-
ity). Ensemble sensitivity, however, exists along both fronts because a change anywhere
along and behind the fronts means a change in the area of adjoint sensitivity (the OR/0X
term) since the fronts are all related to themselves and each other structurally (the D-'A
term) within the cyclone. For ensemble sensitivity to be large at a point, it necessarily
needs to be related to the areas of direct dynamical sensitivity. In other words, ensemble
sensitivity is the result of mapping direct dynamical sensitivity onto all other areas and
variables with covariance relationships. Since producing adjoint sensitivity is computa-
tionally intensive (more so than producing an ensemble since the model state must be
saved and used at every model time step) and requires the use of an adjoint model which
must contain tangent-linear versions of sometimes complex and highly nonlinear phys-
ics parameterizations (Errico 1997), a significant advantage is gained through ensemble
sensitivity in that it intrinsically possesses the pure dynamical sensitivity without hav-
ing to determine it explicitly. From another perspective, ensemble sensitivity estimates
how statistically defined perturbations, if allowed to evolve, would affect the response
function without the need to calculate adjoint sensitivity.
Mathematically, the change in response function (AR) can be estimated by

OR
AR ~ — AX, 3
0Xe G)

where the ensemble sensitivity (OR/0X ) and state variable perturbation (AX) correspond
to a single variable at a single model grid point. Equation (3) is the same method by which
adjoint sensitivity would be used to estimate a change to a response function due to early
forecast-time perturbations with the exception that ensemble sensitivity inherently in-
corporates a domainwide perturbation [through the statistical term in Eq. (2)] instead of
a single point. This is why ensemble sensitivity is generally several orders of magnitude
larger than adjoint sensitivity with respect to the same variable. Ancell and Hakim (2007)
provide a more in-depth discussion on these key differences between adjoint and ensemble
sensitivity.

The ability to separate the statistical and dynamical contributions to each ensemble sensi-
tivity value provides an extremely important basis for interpretation of ensemble sensitivity.
For conceptual ease, consider only three state variables at a single model grid point: tempera-
ture (T), pressure (P), and water vapor mixing ratio (Q). By expanding Eq. (2), the ensemble
sensitivity to temperature (OR/0T) can be expressed as

OR _OR 0QOR 0P OR
oT, 0T, 0T O0Q, OTOP,

a

(4)

Here we see the ensemble sensitivity value is a sum of terms, the first the pure dynamical
sensitivity (OR/OT), and the remaining consisting of the pure dynamical sensitivity with
respect to all other variables (e.g., OR/0Q ) multiplied by the relationships of temperature
to those variables (e.g., 9Q/OT). Ensemble sensitivity thus describes how a perturbation to
a single state variable is spread throughout the rest of the atmospheric state space (through
ensemble statistical relationships) and projected onto the entire dynamical sensitivity field
[since the dynamical sensitivity to each state variable is represented within each term of the
sum on the right-hand side of Eq. (4)]. In turn, ensemble sensitivity at a single point, with
respect to a single variable, inherits both the domainwide relationships between that point/
variable and all other points and variables, as well as the dynamical sensitivity with respect
to every point and variable. These autocorrelations (the “domainwide relationships”) at sen-
sitivity time are a basic aspect of any single ensemble sensitivity value. Equation (2) was the
basis of this interpretation, and that equation thus reveals both the fundamental difference

AMERICAN METEOROLOGICAI’B?OQJ%L%T% you by NOAE%Mn%raI Library | UnauthenticaEE&Rluﬁtﬁ/yngé)agd%d 0%5&';&4 07:41 PM UTC



between ensemble and pure dynamical sensitivity and the multivariate nature of a univariate
regression (more on this later). These fundamentals of ensemble sensitivity provide a greater
perspective on several aspects of ESA which will be discussed now.

Direct or indirect dynamics? A key use of ESA is to understand the dynamics relevant to
high-impact weather events. For example, one might ask, “What atmospheric features con-
trol the coverage of rotating thunderstorms within a predicted area of convection 24 hours
later?” ESA can provide one quick, potential answer to this question since it would show any
significant relationships across the entire modeling domain between the atmospheric state a
day prior and the chosen rotating convection coverage response function (although spurious
correlations must be considered as discussed in the “ESA limitations” section). However, the
answer ensemble sensitivity provides cannot distinguish between direct dynamical causation
and indirect relationships. This reveals a major limitation of ESA for dynamical interpretation
purposes, which can be completely understood through Eq. (2).

Consider the situation in Fig. 1 for example. In this case, one may aim to understand
how storm coverage is controlled dynamically through the nature of different atmospheric
features, several of which are shown to be sensitive through the ensemble sensitivity to
500-hPa geopotential height field. However, whereas pure dynamical sensitivity (as estimated
by an adjoint model) would reveal any direct dynamical influence from a change to a given
atmospheric feature, ensemble sensitivity shows us those dynamical features with a direct
effect [the adjoint sensitivity term OR/0X  in Eq. (2)] in addition to any other features related
to those dynamical features [the statistical term DA in Eq. (2)]. In turn, far-off features like
the ridge in the northwestern United States are shown to be sensitive in Fig. 1 because the
ensemble statistics possess relationships to the pure dynamical sensitivities that directly con-
trol Florida storm coverage a day later. Modifying the northwestern U.S. ridge itself, however,
would likely have no direct dynamical effect on the Florida convection. Unfortunately, this
issue does not go away with respect to sensitive features much closer to, or upstream of, the
response function location, illustrating the inability more generally of ensemble sensitivity
to reveal whether direct or indirect dynamical processes are in play.

Overcoming this limitation simply involves additional analysis. Whereas ensemble sen-
sitivity fields alone cannot distinguish between direct (causation) or indirect (association)
dynamics themselves, they do reveal sensitive regions, that if perturbed independently, will
subsequently reveal any direct dynamical influence. This type of experimentation effectively
removes the statistical term from the fundamental building blocks of ensemble sensitivity,
indicating whether only direct dynamics plays a role (as adjoint sensitivity fields would
show). This allows one to use ensemble sensitivity as guidance to isolate the relevant direct
dynamical processes affecting a chosen response function without the use of an adjoint model.
These concepts illustrate why far-off features, sometimes well downstream, are very common
throughout the domain within ensemble sensitivity fields, showing the interesting interplay
across vast areas ultimately linked through large-scale dynamical evolution.

How ensemble sensitivity fundamentals help us design ensemble sensitivity—based
forecast tools. The fundamental basis of ensemble sensitivity in Eq. (2) can pave the way
for the development of ensemble sensitivity—based tools for improving high-impact weather
forecasts. Forecast sensitivity in any form can be valuable since it highlights areas where
errors most degrade the prediction of a chosen forecast response. In turn, ensemble sen-
sitivity has been leveraged in different ways as an operational tool to improve forecasts.
One way has been to use sensitivity (in conjunction with initial condition uncertainty) to
target observations that would produce the largest reduction in forecast response function
uncertainty (e.g., Ancell and Hakim 2007; Hill et al. 2020). Another approach has been to
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adjust ensemble forecasts in some way using ensemble sensitivity as a guide. For example,
Madaus and Hakim (2015) show how forecasts can be directly adjusted once observations
become available at early forecast times by changing later forecast variables based on covari-
ances between the ensemble estimate of the observations and those later forecast variables.
Ancell (2016) demonstrates a method that chooses subsets of the ensemble based on retaining
members with the smallest errors in sensitive regions (both studies demonstrated forecast
improvements). These adjustment techniques, whether objectively calculated or performed
subjectively by forecasters, benefit from the numerous long-distance relationships to flow
features (e.g., troughs, jet streaks, or gradients) revealed trough ESA. Unlike adjoint sensitiv-
ity, which tends to exist at smaller scales and is less obviously associated with discernable
flow features (Ancell and Hakim 2007), ensemble sensitivity provides ample opportunity
to make beneficial adjustments through the way it maps dynamical sensitivity across the
domain with ensemble statistics.

Interestingly, what gives an advantage for adjustment techniques becomes a disadvan-
tage for ensemble sensitivity—based observation targeting methods. Equation (2) reveals
a substantial obstacle—since ensemble sensitivity cannot include localization around the
pure dynamical sensitivity field at data assimilation time (since it is unknown explicitly),
the impacts of targeted observations can be significantly overestimated since localization
is typically applied when they are assimilated. This issue was found to be a major reason
why ESA-based targeting might be problematic (Hill et al. 2020) and should be kept under
consideration for any ensemble-based targeting scheme. While estimating the location of the
pure dynamical sensitivity field may help mitigate this problem by applying a localization
around that estimated location to reduce the ensemble sensitivity field, the success of such
a technique is unclear given the likely errors in estimating pure dynamical sensitivity in the
first place. Nonetheless, knowing the reasons behind this issue as expressed through Eq. (2)
is the first step at improving ensemble sensitivity—based targeting.

A tale of two sensitivities: Raw versus standardized. In addition to the raw ensemble
sensitivity field (the regression coefficients between a chosen response function and the
atmospheric state), the raw sensitivity can be multiplied by the ensemble standard deviation
at each model grid point to produce “standardized sensitivity”:

R __R sgev(x), (5)

standardized raw

oxX

where Stdev(X) represents the state variable standard deviation within the ensemble (for
the same state variable to which sensitivity is calculated). Note that in some previous ESA
studies (e.g., Torn and Romine 2015) this is referred to as “normalized sensitivity,” although
it is the same quantity and is hereafter referred to as “standardized sensitivity” since it is as-
sociated with a product and not a quotient. Mathematically, standardized sensitivity (which
possesses the same units as the response function) in an estimate of the change in response
function AR as a product of raw sensitivity and state variable spread. Since the same quantity
(AR) is produced at every point, standardized sensitivity allows for a fair comparison across
all model variables of the estimated change in the response function due to a combination
of sensitivity and the expected size of perturbations that project onto that sensitivity. Thus,
unlike raw sensitivity that estimates the change in response from any arbitrary early forecast
perturbation, standardized sensitivity considers the expected size of those early perturbations
to estimate changes to the response in tune with the ensemble’s early forecast uncertainty.
Standardized sensitivity presents itself more as a predictability quantity as it considers how
expected errors evolve dynamically, while raw sensitivity represents more of a fluid dynamics
problem in that it shows sensitivity without any estimate of early forecast error.
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To illustrate the differences between raw and standardized sensitivity, both quantities are
shown in Fig. 3 with respect to the 6-h forecast 2-m dewpoint (this is a different case than
shown in Fig. 1). The response function in this example is the 30-36-h number of grid points
of 2—5-km updraft helicity greater than 50 m? s~2in the green box (a location where ensemble
members forecast a range of helicity values, not shown). The highlighted area in the south-
west corner of the raw sensitivity plot (left panel) shows very little sensitivity to the dryline
shown by the strong gradient along the Texas—New Mexico border or the air mass behind it,
indicating that changes to these features are not associated with large changes in rotating
storm coverage the following day (particularly relative to much more sensitive features in
north central Texas). The same dryline and trailing air mass in the standardized sensitivity
field, however, possess the largest magnitudes in the field, revealing that the uncertainty in
those features, combined with their sensitivity, is much more important than that in other
areas. Thus, while the coverage of rotation (in the form of 2—-5-km updraft helicity) within
convection the next day in Missouri is less sensitive dynamically to the dryline and its trail-
ing air mass in southwest Texas, it is those features in the 2-m dewpoint field which most
contribute to the uncertainty of the rotating convection coverage response.

Statistically, standardized sensitivity can be written as

OR Cov(R,X)
Stdev(X)Stdev(R)

X Stdev(R), (6)

standardized

which is obtained by combining Egs. (1) and (5) and multiplying both numerator and de-
nominator by the response function standard deviation [Stdev(R)]. This quantity is simply
the correlation coefficient between the state variable and the response function (in brackets)
multiplied by the standard deviation of the response function (a constant for an existing en-
semble). In turn, when performing a linear regression between a response function and the
atmospheric state, the predictability of the response is linked to the correlation coefficient
(found through standardized sensitivity) while the sensitivity (with its more fluid dynamics
perspective produced through raw sensitivity) is linked to the slope (regression coefficient).
In this interesting way, one can examine with different statistical parameters of a regres-
sion how atmospheric features preceding a high-impact weather event might be associated
in different ways with its predictability (correlation coefficient) or its dynamical sensitivity
(regression coefficient) as shown in Fig. 3.

RAW STANDARDIZED
2/ #
| |
a b
6, o » \
% o \’ . y i
Q F
A A
D » Il .
;ﬁ o - ‘\ |
) LN s
&;." \l " b
o e
I:\ - ,‘ 1™ U B,
1R 1 M1
-264 -198 -132 -66 0 66 132 198 264 -63.2 -47.4 -31.6 -15.8 0.0 158 31.6 474 63.2

Number of points/deg K Number of points

Fig. 3. Raw and standardized ensemble sensitivity (shaded) of 30-36-h number of grid points
exceeding 50 m? s-2 2-5-km updraft helicity in the green box to 6-h 2-m dewpoint and the
ensemble mean 6-h 2-m dewpoint (black contours).
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Can multivariate regression add value? Ensemble sensitivity is generated through a univari-
ate regression of a response function onto each atmospheric state variable. Since the response
is a function of forecast variables, which in turn are a function of atmospheric state variables
earlier in time through the model governing equations, it is natural to suspect that information
is being left out of ensemble sensitivity given its univariate nature, and that perhaps a multi-
variate regression would incorporate more data and usefulness. Both Hacker and Lei (2015)
and Ren et al. (2019) explored this possibility. Hacker and Lei (2015) found some improvements
in a low-dimensional model using multivariate regression, and Ren et al. (2019) showed very
similar spatial patterns (but overestimations from traditional, univariate sensitivity) between
the univariate and multivariate sensitivity fields within a more realistic typhoon simulation.
Both studies, however, use a localization technique with the multivariate sensitivities which
may be contributing to the differences presented.

Equations (1) and (2) here show that ensemble sensitivity, while calculated through a
simple univariate regression, is actually a multivariate quantity by nature. In particular,
Eqg. (2) reveals that ensemble sensitivity simultaneously considers the covariance relation-
ships between all other variables as well as the pure dynamical sensitivity of the entire
state. In other words, the slope of a univariate linear regression valid at a single point is
equivalent to the dynamical sensitivity of a domainwide perturbation. It would thus be
expected that multivariate regression could add only redundant information to a traditional
ensemble sensitivity value, and that the univariate nature of a single ensemble sensitivity
value provides an appropriate, domainwide perspective with little expected additional
value from multivariate techniques. This situation may explain the strong similarities
found in Hacker and Lei (2015) and Ren et al. (2019) between univariate and multivariate
sensitivities, although further investigation is needed to fully understand the differences
that do occur. As in the prior discussion on targeting and its overestimation of the impacts
of early perturbations on later forecasts due to localization, we speculate the localization
in the studies investigating multivariate sensitivity may have caused the demonstrated
similar overestimations.

ESA limitations. Given the purpose of this article is to provide a complete guide to ESA, its
limitations must be discussed. The most obvious ESA limitation is nonlinearity, which can
manifest itself in different ways. If perturbation evolution is nonlinear (e.g., the adjoint model,
based on tangent-linear principles, would poorly estimate how perturbations evolve), then the
equality in Eq. (2) becomes an approximation, and ensemble sensitivity must be thought of as
a term that varies based on the value of the atmospheric state (i.e., it is no longer a constant
sensitivity). In general, nonlinearity becomes more significant as forecast time increases,
but also depends on the response function and the scale of the structure it is designed to
diagnose. Ancell and Mass (2006) discuss how the linear approximation holds for periods of
1-2 days at synoptic scales (and for ESA using response functions like midlatitude cyclone
central pressure) but for convection (and response functions like storm rotation) last only
hours. While these time scales provide some beneficial guidance on applying ESA for different
weather phenomena, ensemble sensitivity can still provide useful insights when nonlinearity
arises at longer forecast times—both at synoptic scales (e.g., Chang et al. 2013) and for con-
vection (e.g., Coleman and Ancell 2020). In cases of convection, Coleman and Ancell (2020)
show how nonlinearity can be less significant when larger response functions that diagnose
rotation, for example, over potentially stormy areas are used instead of those that diagnose
specific aspects of individual storms.

Ultimately the presence of significant nonlinear ensemble perturbation evolution should
lead to weak linear relationships within the regressions that produce ensemble sensitivity val-
ues. If some nonlinear dependence is strong (e.g., a scatterplot that exhibits a parabola shape

AMERICAN METEOROLOGICAI’B?OQJ%L%T% you by NOAE%Mn%raI Library | UnauthenticaEE&Rluﬁtﬁ/yngé)agd%d 0%539/24 07:41 PM UTC



when plotting response function/sensitivity variable pairs), nonlinear relationships might be
apparent which could be detected with nonlinear regressions, adding a higher-order cor-
rection to ESA. This type of analysis may help particularly when fine-scale processes like
convection are considered that possess substantial nonlinearity (Limpert and Houston 2018;
Hill et al. 2020) and is suggested as an avenue for future ESA enhancement. Such higher-
order regressions might identify early atmospheric dependencies that reveal “Goldilocks”
behavior for severe weather like tornadoes (Markowski and Richardson 2014), where nei-
ther high nor low temperature values in some portion of the storm’s evolution, for example,
result in tornadoes, but temperatures in-between are associated with them. Nonlinearity
also becomes an issue when the response function is not continuously distributed such as
when a bimodal ensemble distribution may show members with strong convection and those
with no convection. In this case, while ESA will show the correct trend (Hill et al. 2016), it
is unrealistic to interpret changes to the state producing a linear response that results in
weak convection (since only strong convection or the lack of convection altogether were
forecast as possibilities). While it is difficult to assess the precise degree of nonlinearity
in any ESA application, inspection of the response function distribution is the best way to
determine the validity of the linear assumption—continuous, unimodal distributions that
show significance in the regression coefficient are likely good candidates for ESA and its
applications discussed here.

Another issue with ensemble sensitivity occurs within an ensemble that suffers from too
much or too little spread. Since the calculation of ensemble sensitivity involves the variance
of the sensitivity-time state variable in the denominator [Eq. (1)], very small variance values
can inflate raw sensitivities substantially. The authors have witnessed on numerous occa-
sions that sensitivities to surface variables such at 2-m temperature or 10-m winds within a
Weather Research and Forecasting (WRF; Skamarock et al. 2008) Model ensemble are several
orders of magnitude larger than the same types of variables slightly aloft (corresponding to
too little ensemble variance in those surface variables; not shown). Tiny spread at the surface
associated with underdispersiveness there relates to much larger spread aloft (where spread
is appropriate) through the ensemble statistics, and thus a unit change in surface variables,
which may be much larger than the ensemble spread, is associated with massive perturba-
tions aloft. These massive perturbations are then the cause of huge changes to the response
function through the ensemble sensitivity value in Eq. (3). Turning this argument around,
overdispersive areas will experience very small raw sensitivity values.

From the perspective of the ensemble, which has no knowledge of whether or not it is ap-
propriately calibrated, none of this is a problem—the ensemble expects only tiny perturba-
tions at the surface, for example, such that the seemingly overinflated raw sensitivity values
there still estimate reasonable response function perturbations. It is only when ensembles
are truly over- or underdispersive when very large (or too small) raw sensitivities become
an issue. For targeted observing, for example, if near-surface observations deviated from
the ensemble mean to a degree that was much larger than the underdispersive ensemble
spread in that variable, the ensemble expected perturbation size is violated, leading to truly
overinflated estimates to a change in response function through the raw sensitivity field.
In turn, ESA performed with poorly calibrated ensembles will suffer if applied outside the
ensemble more generally. Thus, ensemble spread characteristics and the general quality of
the ensemble must be scrutinized when developing ESA-based tools. It should be noted that
ESA applies most appropriately within ensembles that vary by their initial conditions since
sensitivity itself relates to how initial or early forecast perturbations relate to differences in
the response later in time. If an ensemble was generated by different physics schemes, all
with identical initial conditions, ensemble sensitivity at initial time loses its meaning since
a regression onto all members with the same value provides no useful relationship. While
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ESA within ensembles based purely on physics variability may provide useful sensitivity
values once ensemble members have evolved in time, it remains most appropriate to apply
ESA within an ensemble driven by differences in initial conditions.

Last, spurious correlations are always possible when performing millions of linear regres-
sions of a chosen response onto a large atmospheric state space. It is likely that some of the
very small-scale variability that is common in sensitivity fields (as can be seen in Fig. 1 in the
Gulf of Mexico, for example) exist due to sample size limitations of the ensemble in the form
of these spurious correlations. These issues can be objectively addressed through statistical
testing of the regression coefficient (as shown in Ancell and Hakim 2007), a process that will
reveal whether the regression slope is significantly different than zero at some confidence
level. Whether sensitivities are significant depends partly on the ensemble size, which is
usually practically limited due to computational constraints to around 100 members or less
(e.g., Torn and Romine 2015; Limpert and Houston 2018; Bednarczyk and Ancell 2015; a
number much less than the millions of state variables sampled). Thus, general practice usu-
ally involves running the largest ensemble allowed by the available computational resources
and assessing the resulting sensitivities for significance. In addition to objective statistical
significance testing [as performed in Torn and Romine (2015), for example], the temporal
evolution of sensitivity signals can be examined subjectively to reveal any continuity of the
signal, which for several adjacent grid points is very unlikely to be associated with random
spurious correlations.

Application of new perspectives to a climatology of severe storms

To demonstrate some of the new perspectives discussed here, ESA is applied to a climatology
of severe storms over a period from late April to early June 2016. This application to severe
storms is made here because 1) ESA studies involving convection nearly all involve a small
number of cases and demonstrating unique ESA perspectives within many cases of severe
storms can provide new insights, and 2) adjoint sensitivity, which lies at the heart of ESA
interpretation via Eq. (2), is not computationally feasible at convective scales and thus ESA
can provide a framework to answer research questions involved with forecast sensitivity. For
each 0000 and 1200 UTC ensemble initialization from 27 April to 3 June, response function
rectangles were chosen for 6-h periods within the 48-h ensemble forecasts within which at
least 10%—20% probabilities of 2—5-km updraft helicity exceeding 25 m? s~ occurred over the
6-h window (response windows started no earlier than 12-h forecast time such that they always
exist after the 6-h sensitivity time examined below). These response boxes were subjectively
chosen by the authors and varied in size to capture the probability signals associated with
rotating convection. Figure 4 shows an example of one such response box, which was chosen
to contain significant probabilities of neighborhood maximum hourly 2—-5-km updraft helicity
exceeding 25 m? s throughout the 6-h response time. Multiple response boxes existed for
some initializations as there sometimes were several separate areas of convection, and these
areas may exhibit different sensitivities. Other studies, such as the Mesoscale Predictability
Experiment (MPEX; Weisman et al. 2015), also included ESA involved with numerous cases
of convection and might provide additional insights on case-to-case variability of ensemble
sensitivity fields.

Here we chose large response boxes that encompassed the entire probability signal
over the 6-h time frame (as in Fig. 4, thus diagnosing the event as a whole), although in
principle the choice of response location goes hand in hand with the problem of interest.
For example, a very small response box placed in an area where convection has different
forecast timing among ensemble members will show a sensitivity field that demonstrates a
positional signal of early atmospheric features (e.g., a dipole of sensitivity with maxima on
either side of a geopotential height trough). This is because the small response box contains
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less convection from the members further downstream, and thus the range of response
values reflects the timing of convection. A much larger response box (in space and perhaps
time) would capture the convection for all members irrespective of the timing details and
would demonstrate a sensitivity signal relevant to the magnitude of the event (e.g., a single
maximum of sensitivity over a geopotential height trough). Bednarczyk and Ancell (2015)
provide a detailed discussion of how the response box size and location influences the
sensitivity field in this way.

The ensemble forecasts (42 total) in this study came from the real-time Texas Tech Uni-
versity prediction system, which utilizes the WRF Model with 38 vertical levels and the Data
Assimilation Research Testbed (DART; Anderson et al. 2009) 42-member ensemble adjustment
Kalman filter with the parameters described in Ancell et al. (2015). Four response functions
were considered on a nested 4-km domain (4-km domain shown by the blue box in Fig.
1) encompassing the U.S. South Plains and Midwest: 1) maximum surface simulated reflectiv-
ity, 2) number of grid points exceeding 40-dBZ surface simulated reflectivity, 3) maximum
2-5-km updraft helicity, and 4) number of grid points exceeding 50 m? s 2—5-km updraft
helicity. Ensemble sensitivity of these response functions were calculated with respect to
the 6-h forecast three-dimensional (all model grid points) temperature, geopotential height,
wind speed, and water vapor mixing ratio fields on the parent 12-km domain over the con-
tinental United States (the larger domain shown in Fig. 1). This strategy takes advantage of
WRF’s nesting capability within a sensitivity framework, allowing response functions that
diagnose convection at convection-allowing scales (e.g., the 4-km domain) while also permit-
ting sensitivity to be calculated on a much larger, coarser grid (the 12-km domain). The 6-h
sensitivity time is used here as it produces sensitivities at an early forecast time when they
could be used to potentially improve forecasts in a real-time framework.

19HR 20HR 21HR

24HR

Fig. 4. Probability of maximum hourly 2-5-km updraft helicity exceeding 25 m? s-2 within 20 miles of a point over a 6-h
forecast period with the chosen response function box shown in orange.
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Fig. 5. Maximum magnitude of the raw ensemble sensitivity field with respect to temperature
over all cases for all four response functions.

Figure 5 shows the maximum magnitude of the raw ensemble sensitivity field across the
entire three-dimensional 12-km domain for all four response functions with respect to tem-
perature for all response boxes (about 150 total). Sensitivity values within 10 grid points of
the horizontal boundaries are not considered (here and throughout the study), and the values
are not tested for statistical significance. These plots show how sensitivity of any response
varies significantly across many cases, providing the range of sensitivities for which convec-
tive cases can be judged as highly or weakly sensitive. Picking out the cases with the highest
and lowest sensitivity values can further reveal whether any specific characteristics of the
flow, such as the jet stream pattern, are associated with the largest or smallest dynamic sen-
sitivity or predictability (depending on whether raw or standardized sensitivity is used to do
this). For example, Figs. 6 and 7 show the 500-hPa geopotential height field at 6-h forecast
time for the six largest (Fig. 6) and smallest (Fig. 7) values of mean raw three-dimensional
sensitivity to temperature for the updraft helicity coverage response. Clearly a consistent
pattern with an upstream trough emerges for the most sensitive cases, while the least sensi-
tive cases reveal a more mixed collection of flows. Note that these results are presented from
a response perspective in that the most or least sensitive cases may exist for the same 48-h
forecast periods (although different response boxes still identify different signals and 6-h time
windows within those periods), and results may change if the 48-h forecast periods were not
allowed to overlap. As in McMurdie and Ancell (2014), this type of analysis may reveal the
first semblance of a link between the general flow characterized by 500-hPa geopotential
height and the degree of domainwide sensitivity. If standardized sensitivity were instead
examined, different flows may be associated with the strongest and weakest predictability
of severe convection. Since all cases in this example use a response function that diagnoses
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Fig. 6. The 500-hPa ensemble mean geopotential height field (black contours), wind vectors, and
wind speed (shaded) valid at 6 h for the six most sensitive cases (response function location is
shown by the green box).

rotating convection (the response boxes were all chosen to surround substantial probabilities
of updraft helicity), a deeper dive with this type of analysis can help us understand differ-
ences in the dynamics and predictability among various flow types for specific convection
characteristics like rotation.

Interestingly, when different response functions are examined together, relatively loose
correlations exist. While some response box instances show similarities for all response func-
tions (such as that around response 59 in Fig. 5 where all response functions reveal a low
sensitivity), it is not hard to notice the numerous other response instances where relatively
large or small values do not occur together. In fact, if we look more closely at how sensitivity
of different response functions (coverage of simulated reflectivity versus updraft helicity) for
the same event correlate (Fig. 8, which in this case shows standardized sensitivity to wind
speed) we see a very weak relationship for both maximum magnitude and mean absolute
value of the full three-dimensional sensitivity fields. These results are fairly universal across
the climatology—they are consistent whether or not we consider raw or standardized sensitiv-
ity, different response functions, different variables to which the sensitivity is calculated, or
whether we examine the maximum or mean (not shown). Analyzing the relationship between
mean and maximum sensitivity is yet another possible way to analyze sensitivity across many
cases that may provide insight into whether large, localized sensitivity can exist without
more extensive domainwide sensitivity (which would be characterized by the mean value).

These results indicate that it is common for different characteristics of the same storms to
be sensitive to features earlier in time in different ways. While this might be obvious at the
time of convection (e.g., more vertical shear might increase the number of rotating storms
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Fig. 7. The 500-hPa ensemble mean geopotential height field (black contours), wind vectors, and
wind speed (shaded) valid at 6 h for the six least sensitive cases (response function location is
shown by the green box).

while the total number of storms—rotating or not—remains the same), this suggests that
cleverly designed ESA may reveal new knowledge about how the dynamics and predictability
of individual severe hazards relate to different precursors. This idea is supported by Fig. 9,
which shows histograms of mean standardized sensitivity for all four response functions with
respect to the four sensitivity variables considered here (temperature, geopotential height,
wind speed, and water vapor mixing ratio). The shapes of the histograms look fairly similar
for a given response function across all sensitivity variables, but exhibit obvious differences
for any single variable across different response functions, suggesting fundamental differ-
ences in the way sensitivity manifests itself for different storm characteristics (but not so
much across different sensitivity variables).

Figure 10 provides an interesting perspective across the climatology of events on both raw
and standardized sensitivity, and how, as described above, they pertain to a dynamics prob-
lem and a predictability problem, respectively. Raw and standardized sensitivity of 2—5-km
updraft helicity coverage to 6-h wind speed is shown (both the mean and max value) for all
cases. Itis clear that the mean sensitivity fields correlate well across all events. However, when
considering the maximum in the standardized and raw sensitivity fields, this relationship
is substantially weaker (correlation coefficient of 0.76 compared to 0.98 when considering
mean sensitivity), although a general positive relationship still exists. This reveals that the
largest intrinsic potential for perturbation growth is not always associated with low predict-
ability (and vice versa), which must be a result of small ensemble spread where the dynami-
cal perturbation growth is fastest (or large uncertainty where perturbation growth is small).
In any case, this shows that frequently the potential for perturbation growth highlighted by
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Fig. 8. (left) Mean and maximum standardized sensitivity to wind speed for both the updraft
helicity and simulated reflectivity coverage response functions (for visual purposes updraft
helicity sensitivity is normalized to produce the same maximum value as simulated reflectivity
sensitivity) and (right) the scatterplot of the same data for all cases.

raw sensitivity (the dynamics problem) and the actual perturbation growth revealed by the
way expected perturbations interact with perturbation growth potential (the predictability
problem) are at odds at least for a response function diagnosing rotation and a wind speed
sensitivity variable (it would be interesting to examine whether this holds for other response
functions and sensitivity variables). In other words, simultaneous analysis of the raw and
standardized sensitivity fields can reveal the frequency and degree to which specific atmo-
spheric features tap into their potential to affect high-impact weather. Such analysis might
reveal how our practical predictability (Melhauser and Zhang 2012) could be improved for
certain types or regimes of convection, something that was explored for midlatitude cyclones
in McMurdie and Ancell (2014).

Summary

Our primary goal here was to establish a complete guide to the use of ensemble sensitiv-
ity analysis (ESA) toward enhancing its value as a research and operational tool. We felt
this effort to be beneficial to the field of atmospheric sciences since many studies have
employed some form of ESA with interesting results, but the broader context of how,
when, and why to apply ESA, particularly in light of its fundamental principles, has been
less clear. In turn, we hope the ESA roadmap presented here will help a powerful tool
become more commonplace. Several key aspects and new perspectives of ESA have been
demonstrated in this study:

e Ensemble sensitivity is a product of two fundamental building blocks: the pure dynamics
of the system and ensemble statistics describing the relationships of atmospheric variables
to each other.

e Understanding the fundamental building blocks is a key first step to guide the design of
ensemble sensitivity—based research and operational tools.

e Raw ensemble sensitivity (the regression coefficient) can be compared to standardized
ensemble sensitivity (raw sensitivity multiplied by the ensemble standard deviation,
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Fig. 9. Histograms of the mean standardized sensitivity (x axis is magnitude, y axis is number of occurrences) to the four
sensitivity variables used in this study (T = temperature, G = geopotential height, W = wind speed, Q = mixing ratio) for
all four response functions.

proportional to the correlation coefficient) to reveal differences between dynamical per-
turbation growth characteristics and the predictability associated with chosen response
functions.

e Ensemble sensitivity, while a univariate regression, is multivariate in nature, likely reduc-
ing the value of multivariate regression techniques within sensitivity analysis.

We also examined ensemble sensitivity within a short climatology of severe convection to
help demonstrate some practical applications of ESA that relate to the aforementioned key
principles and new perspectives. We showed that

e substantial variability of mean and maximum sensitivity exists across a large number of
convective events with the most sensitive cases showing a preferential flow pattern aloft,

e different aspects of the same convective event frequently exhibit different sensitivity
characteristics, and

e maximum raw and standardized sensitivity across many convective cases showed a weak
relationship, revealing for each case how the resulting predictability depends on how en-
semble uncertainty taps into the potential for dynamical error growth.

While these initial results are intentionally broad to allow the presentation of several ex-
amples, we hope they highlight some of the unique ways ESA can be subsequently applied
more thoroughly to help advance knowledge within atmospheric sciences dynamics and
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Fig. 10. (left) Mean and maximum raw and standardized sensitivity of 2-5-km updraft helicity
to wind speed (for visual purposes standardized sensitivity is normalized to produce the same
maximum value as raw sensitivity) and (right) the scatterplot of the same data for all cases.

predictability problems. Ultimately ESA is a form of data mining, and other more complex data
mining schemes such as those based on machine learning algorithms could potentially use
more sophistication to achieve some of the same goals of ESA. As a start, more sophisticated
methods could allow for nonlinearity in a way ESA cannot. However, ESA’s fundamental
properties owing to the interaction of covariance relationships and dynamical evolution (not
to mention its lack of reliance on a training dataset) is an attractive characteristic that will
always keep ESA and its wide array of uses demonstrated here well grounded in core principles.
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