A ’ I l ADVANCING
nu EARTH AND

= SPACE SCIENCES

Woater Resources Research -

RESEARCH ARTICLE
10.1029/2023WR034466

Special Section:
Advancing flood charac-
terization, modeling, and
communication

Key Points:

e A framework is proposed for
fine-scale assessment of urban floods
that incorporates historical as well as
future changes in precipitation

e It also provides estimates of
uncertainty from statistical modeling
of extremes, multiple climate models,
and stochastic uncertainty

e The framework is demonstrated for
an urbanized watershed in Houston,
Texas, United States to answer two
important research questions

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

L. Pal,
lalitpl4 @ gmail.com

Citation:

Pal, L., Saksena, S., Dey, S., Merwade,
V., & Ojha, C. S. P. (2023). An
integrative framework for assessment
of urban flood response to changing
climate. Water Resources Research,
59, €2023WR034466. https://doi.
org/10.1029/2023WR034466

Received 10 JAN 2023
Accepted 9 AUG 2023

Author Contributions:

Conceptualization: Lalit Pal

Data curation: Lalit Pal

Formal analysis: Lalit Pal

Funding acquisition: Lalit Pal,
Venkatesh Merwade, Chandra Shekhar
Prasad Ojha

© 2023. The Authors.

This is an open access article under

the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

An Integrative Framework for Assessment of Urban Flood
Response to Changing Climate

Lalit Pal'?>? (2, Siddharth Saksena*
Chandra Shekhar Prasad Ojha?

, Sayan Dey! (2, Venkatesh Merwade! (*), and

'Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA, 2Department of Civil Engineering, Indian
Institute of Technology Roorkee, Roorkee, India, *Now at Department of Civil and Environmental Engineering, Virginia
Tech, Blacksburg, VA, USA, “Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract Increasing frequency of extreme rainfall induced catastrophic urban flood events in recent
decades demands proactive efforts to assess flood risk and vulnerability. Here, we develop an integrative
framework for fine spatiotemporal scale assessment of urban flood response to historical and future projected
changes in extreme precipitation. The framework includes three main components—nonstationary modeling of
historical extreme precipitation, modeling of future precipitation, and urban flood simulations. It also provides
robust estimates of uncertainty in design precipitation from statistical modeling, multiple climate models and
stochastic uncertainty, estimated using machine learning techniques. We demonstrate the proposed framework
for White Oak Bayou watershed in Houston, Texas, US. Two-dimensional hydrologic-hydraulic Interconnected
Channel and Pond Routing model is used to simulate flood response from design precipitation for historical
(1986-2020) and two future (2021-2050 and 2071-2100) periods in three (SSP1-2.5, SSP2-4.5, and SSP5-
8.5) future climate scenarios. Results show that nonstationary design estimates for historical precipitation are
14%—-25% higher than the stationary estimates for 100-year event of 1- to 24-hr duration. Contrary to general
global trends, we found a significant reduction in future design precipitation in all three emission scenarios.
Additionally, stochastic uncertainty in future design precipitations is found to be larger than the modeling
uncertainty in historical estimates and climate model uncertainty in future estimates. Flood response in terms of
peak flood and total flood volume suggests that the difference in stationary versus nonstationary historical and
future design precipitation are substantial to cause considerable change in simulated flood.

Plain Language Summary Global warming induced increase in extreme precipitation events has
been the primary cause of frequent catastrophic floods in the recent decades—majorly impacting the urban
agglomerations. Informed flood mitigation planning requires adequate consideration of these changes in
extreme precipitation. So far, researchers have developed methodologies to model flood response to either the
historical observed or future projected change in precipitation, but not for simultaneous consideration of both.
Regional-scale evidence shows that the changes in historical observations can be inconsistent or sometimes
contrasting to the changes in future projections from global climate models. Therefore, a collective assessment
that includes the information of both historical and future changes in extreme precipitation is crucial. Here,
we develop a comprehensive framework that incorporates both historical as well as future projected changes
in extreme precipitation for fine spatiotemporal scale assessment of urban flood response. The framework also
provides robust estimates of uncertainty from multiple components involved in the methodology which allows
a reliable communication of attained information to stake holders and water resources planners for efficient
decision making. The framework is independent of any regional assumption, thus can be used with confidence
for other major cities of the world.

1. Introduction

Intense global warming over the last century has altered the precipitation patterns around the world, as explained by
the Clausius-Clapeyron relationship (Allen & Ingram, 2002; IPCC, 2014; Trenberth et al., 2003). Extreme precip-
itation in particular exhibits a significant increase over large parts of the world in the last half century—Ilargely
attributed to anthropogenic climate warming (Alexander et al., 2006; Du et al., 2019; Fischer & Knutti, 2015;
Westra et al., 2013). Though, there also exist considerable regional heterogeneity in extreme precipitation trends,
driven by multiple factors including large-scale climate circulations, meso-scale weather systems (e.g., tropical
cyclones), urbanization, aerosol concentration, and agricultural irrigation systems (Asadieh & Krakauer, 2015;
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DeFlorio et al., 2013; Devanand et al., 2019; Kenyon & Hegerl, 2010; Sillmann et al., 2013; Singh et al., 2020;
W. Zhang et al., 2018; X. Zhang et al., 2010; Zhao et al., 2019). Future climate simulations further provide a
strong agreement on increased extreme precipitation in mid to late 21st century; significantly over parts of North
America, Australia, South America, and Southeast Asia (Chou et al., 2009; Donat et al., 2013, 2016; Scoccimarro
et al., 2013). The increasing trends in both historical and future extreme precipitation indicate an increasing
risk of floods and associated losses, worldwide (Hallegatte et al., 2013; Hirabayashi et al., 2013; S. Sharma
et al., 2021; Winsemius et al., 2016). Urban agglomerations are worst affected by the flood devastations due to
high population density, poorly planned or outdated infrastructure, and changing climate (Berndtsson et al., 2019;
Egger & Maurer, 2015; O’Donnell & Thorne, 2020; Yazdanfar & Sharma, 2015). Yet, existing standards for
infrastructure design and flood management policies in most countries are defined with the assumption of a
stationary climate. It constitutes a major challenge for engineers and water planners and highlights the need for
adequate consideration of changes in extreme precipitation in infrastructure design and flood mitigation plans.

Several studies have reported a significant increase in extreme precipitation over the United States (US), both in
historical observations and future projections from multiple climate models (Easterling et al., 2017; Groisman
et al.,, 2001; Huang et al., 2018; Janssen et al., 2014; Reidmiller et al., 2017; Villarini et al., 2013; Vu &
Mishra, 2019; Wright et al., 2019). A major consequence of the increase in extreme precipitation is observed as
frequent devastating floods in different parts of the US that constituted about 43% of total natural hazards between
1995 and 2015, thus emerging as second deadliest and most costly natural disaster (Ashley & Ashley, 2008;
Wallemacq et al., 2015). Multiple major cities of the US, particularly along the southern and eastern coastal
plains have experienced frequent catastrophic floods in recent years, causing more than 25,000 fatalities in the
last half century (Adhikari et al., 2010; Rappaport, 2014). The majority of these floods occurred from prolonged
episodes of extreme precipitation from landfalling intense cyclonic activities (hurricanes and tropical storms)
in the surrounding ocean (Kunkel et al., 2010; Villarini et al., 2014). Observational evidence suggests a rise
in the frequency and intensity of tropical cyclones and associated extreme precipitation events, particularly in
the Atlantic Ocean, in response to warming climate (Guzman & Jiang, 2021; IPCC, 2014; Van Oldenborgh
et al., 2017; Webster et al., 2005). The future projections on overall frequency of tropical cyclones lacks confi-
dence in the existing literature, though, there is a general agreement on potential increase in intense hurricanes
and the intensity of extreme precipitation from tropical cyclonic activities (Knutson et al., 2010, 2013; Patricola
& Wehner, 2018; Scoccimarro et al., 2014; Sobel et al., 2016; Van Oldenborgh et al., 2017; Wright et al., 2015).

Regardless of the observed and future projected increase in extreme precipitation, the existing design standards
for urban infrastructure and flood mitigation strategies in the US are based on the assumption of stationary climate
(L. Cheng & AghaKouchak, 2014; Das et al., 2013). For example, the design precipitation estimates provided
by the National Oceanic and Atmospheric Administration (NOAA) in Atlas-14 are computed by considering
stationary (i.e., no significant trends) extreme precipitation (Perica et al., 2018; Tousi et al., 2021; Underwood
et al., 2020). Recent studies have challenged this assumption and demonstrated that the stationarity assumption
considerably underestimate the design return levels in comparison to the nonstationarity based design precipi-
tation for different parts of the US (L. Cheng & AghaKouchak, 2014; Vu & Mishra, 2019). In addition, flood
inundation maps provided by the Federal Emergency Management Agency (FEMA) in the US also assume the
time series of extreme streamflow to be stationary (Federal Emergency Management Agency (FEMA), 2022; S.
Sharma et al., 2021; Villarini et al., 2009). Researchers have shown considerable differences in flood inundation
maps of FEMA and the maps that account for nonstationarity (S. Sharma et al., 2021; Wing et al., 2018). Studies
also report an increase in future projected flood magnitude and inundation under high emission climate scenario
(Das et al., 2013). The increasing evidences of unprecedented extreme precipitation resulting in severe urban
floods highlight the urgent need to factor the changing extreme precipitation patterns to re-evaluate existing
infrastructure design and flood mitigation strategies for urban landscapes (Milly et al., 2008; Wing et al., 2018).

Literature contains multiple approaches to model extreme precipitation changes and their applications in esti-
mation of design precipitation, flood frequency analysis, urban flood risk assessment, and attribution studies
(Das et al., 2013; Karamouz et al., 2017; Kourtis & Tsihrintzis, 2021; Mattos et al., 2021; Padulano et al., 2021;
S. Sharma et al., 2021; Tousi et al., 2021; Vemula et al., 2019). However, a close review reveals multiple gaps,
particularly in the studies concerning urban flood response to changing climate. First, existing studies have either
considered the historical changes or the future projected changes in their assessment, but not both. A reliable
impact assessment, however, should include the changes in both observed and future projected precipitation. It is
essential because extreme precipitation trends in future projections can be inconsistent, or sometimes in contrast
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to that in the observations (Ban et al., 2021; Feng et al., 2021; Ridder et al., 2021; Wehner et al., 2015). Second,
past studies on nonstationary modeling of historical extreme precipitation are limited to the estimation of nonsta-
tionary intensity-duration-frequency (IDF) curves. Therefore, an important question of how and to what extent
the change in design precipitation will reflect in the urban flood response remains unanswered. The difference in
simulated streamflow from nonstationarity versus stationary precipitation estimates can be insignificant owing
to the inherent complexities of a fine-scale urban flood model (Padulano et al., 2021; S. Sharma et al., 2021). It
is important to examine whether significant change in design precipitation from stationary versus nonstationary
modeling translates to a significant change in simulated flood response.

Third, studies involving future climate change impact assessment on urban floods are performed at continental
(Bates et al., 2021) and large watershed (C. Cheng et al., 2017; S. Sharma et al., 2021) scale. Large-scale anal-
ysis allows a direct use of general circulation model (GCM) outputs at native temporal resolution (i.e., daily
time steps), only requiring spatial downscaling. However, the hydrologic response time in urban catchments is
generally on the order of sub-daily to sub-hourly time scales, which requires simultaneous spatial and temporal
downscaling of GCM outputs (Zahmatkesh et al., 2015). Multiple approaches are available in the literature for
spatiotemporal downscaling of GCM precipitation yet there lacks a framework for their application in urban flood
analysis. Fourth, researchers have proposed efficient methods to quantify uncertainty from different sources in a
conventional urban flood modeling framework (Z. Liu & Merwade, 2018). However, there lacks a comprehen-
sive methodology to estimate relative and combined uncertainty from additional uncertainty sources involved
in modeling urban flood response to climate change such as, future projections from GCMs and spatiotemporal
downscaling. A robust estimation of uncertainty in flood simulations is critical for reliable communication of
flood hazards to stakeholder and decision makers (Collet et al., 2018; Sanders et al., 2020).

Here, we attempt to address these gaps and design a comprehensive framework for robust analysis of urban flood
response to historical and future change in climate. The influence of climate change is introduced by considering
changing patterns in extreme precipitation both in historical records and future projections. The novelty of the
proposed framework lies in—(a) translation of modeled change in extreme precipitation to flood responses, (b)
assimilation of stochastic weather generator based downscaling approach in urban flood assessment, (c) applica-
tion of probabilistic machine learning based uncertainty estimation technique for future design precipitation and
its representation in flood simulations. With the developed methodology, we attempt to address two important
research questions: (a) Does climate change induced precipitation changes reflect in fine-scale urban flood simu-
lations? and (b) Which source of uncertainty dominates the climate change driven flood simulations? We focus
on understanding the influence of climate change induced changes in extreme precipitation on flood response
in an urban environment. For the case study, we considered the watershed of White Oak Bayou in the city
of Houston, Texas, USA. Houston has experienced several flood events in the recent past, including the most
devastating floods from Hurricane Harvey in August 2017. The proposed framework will allow a comprehensive
assessment of urban flood response with the consideration of changing extreme precipitation characteristics that
would benefit in planning flood mitigation strategies and evaluate infrastructure safety in the region.

2. Study Area and Data
2.1. Study Area

To demonstrate the proposed framework, we selected the watershed of White Oak Bayou in Harris County of
Texas, US (Figure 1). White Oak Bayou originates near Highway 6 and US Highway 290, traverse southeast to
join Buffalo Bayou in downtown Houston. The watershed of White Oak Bayou covers an area of about 310 km?,
with relatively flat relief (~0.1%) and elevation range 0—49 m above mean sea level. According to National Land
Cover Database land cover data for 2019, more than 96% of the watershed is developed land where about 60% of
the area is impervious (Figure S1 in Supporting Information S2). Houston has historically experienced several
catastrophic floods mainly caused by prolonged episodes of extreme rainfall brought by landfalling tropical
cyclones in the Gulf of Mexico. The region shares a subtropical climate with hot and humid summers, and mild
winters. Mean (minimum/maximum) temperature in summer (June-August) rises to 28.2°C (11.7°C/42.2°C) and
drops to 11.6°C (—13°C/28.3°C) in winter (December-February). Relative humidity typically ranges between
70% and 75% throughout the year. The soil type in the region is loamy with high clay content that exhibits moder-
ate to very slow drainage, shallow water table, and is classified in hydrologic soil group D. The longest flow
path in the watershed is 48.7 km and the time of concentration estimated using Kirpich formula is 23.6 hr. The
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Figure 1. The watershed of White Oak Bayou in Harris County of Texas, US. Map shows the stream network of White Oak
Bayou, location of rain gage stations, elevation range, and streamflow gauging sites in the watershed.

watershed is characterized by subtropical climate with cyclonic activities induced extreme precipitation events,

extensive urbanization, and flatter topography. These attributes are common to several major cities of the world.

2.2.

Data

In observational data set, we acquired precipitation data for White Oak Bayou from Harris County Flood Control
District's Flood Warning System at 5-min intervals. Table 1 lists seven gauging stations selected for the study
based on the availability of a long-term record covering 1986—-2020. We obtained NOAA design precipitation
estimates for station 520 designated as “Houston Heights” (Site ID: 41-4321). Observed streamflow record is
obtained from the US Geological Survey National Water Information System for site 08074500 and 08074540 at
15-min interval (https://waterdata.usgs.gov/nwis). Meteorological variables used in the study are—air tempera-

ture, relative humidity, wind speed, atmospheric pressure, cloud cover, and shortwave solar radiation. Hourly data

of all meteorological variables except for shortwave radiation are acquired from NOAA's Local Climatological

Table 1
Geographic Details of Rainfall Gauge Stations in White Oak Bayou Adopted for Present Study

ID Rainfall gage (White Oak Bayou) Latitude Longitude Elevation (m)
520 ‘White Oak Bayou, Heights Boulevard 29.77488 —95.3971 12.27

540 White Oak Bayou, Alabonson Road 29.87042 —95.4804 23.6

550 White Oak Bayou, Lakeview Drive 29.88736 —95.5562 29.61

560 Little White Oak Bayou, Trimble Street 29.79296 —95.3678 14.18

570 Little White Oak Bayou, Tidwell Road 29.84514 —-95.3997 19.55

580 Brickhouse Gully, Costa Rica Road 29.82766 —-95.469 19.6

590 Cole Creek, Deihl Road 29.85089 —95.4877 24.35
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Data (https://www.ncei.noaa.gov/products/land-based-station/local-climatological-data). We used the meteoro-
logical data from six weather stations surrounding the watershed—Houston Ellington, Intercontinental Airport,
Houston William Hobby, Houston Dunn Helistop, Houston Clover Field, and Houston Hooks Memorial Airport.
Solar radiation data set is downloaded from the archive of National Solar Radiation Database (https://nsrdb.nrel.
gov/data-sets/archives). The fine resolution distributed hydrodynamic model used for flood simulation in this
study is data intensive requiring multiple high-quality data sets. We integrate several public domain data sets to
develop the model. In addition to rainfall and streamflow data set, we acquired impervious cover data in raster
grid format from The USGS National Map Viewer portal (https://apps.nationalmap.gov/downloader/) for the year
2019. The information on soil properties and sub-surface layers is obtained from the National Resources Conser-
vation Services Gridded Soil Survey Geographic Database for the year 2017.

The timeseries of Nifio 3.4 sea surface temperature (SST) index used as an indicator of El Nifio-Southern Oscil-
lations (ENSO) phases is downloaded from NOAA Working Group on Surface Pressure (https://psl.noaa.gov/
gcos_wgsp/Timeseries/). The global average surface temperature time series is obtained from NOAA Global
Surface Temperature Dataset version 4.0 (https://data.giss.nasa.gov/gistemp/). We used Hadley Centre Sea Ice
and SST data set (HadISST2) from Met Office Hadley Centre observations (https://www.metoffice.gov.uk/
hadobs/hadisst2/) to obtain SST over the Tropical North Atlantic (TNA) Ocean. Time series of TNA SST is
computed as area average SST over the domain 5°-25°N, 15°-55°W (Enfield et al., 1999). Each time series of
global surface and sea surface temperatures is detrended prior to use in the analysis. Note that historical records
of all the parameters are acquired for the period 19862020 designated as “historical” period. The historical
period of 19862020 is selected based on the availability of long-term observed precipitation data for rain gauges
located in the watershed.

Daily realizations of GCMs available under Coupled Model Intercomparison Project Phase 6 (CMIP6) are used to
obtain future projections of precipitation and temperature (https://esgf-node.llnl.gov/projects/cmip6/). We chose
a total of 15 GCMs based on their performance reported in the literature (Agel & Barlow, 2020; Srivastava
et al., 2020) (Table S1 in Supporting Information S3). In CMIP6 project, GCM simulations with historical
forcings are available for the period 1850-2014, therefore, we used GCM's historical outputs for the period
1986-2014 designated as “control” period in the study. GCM's future projections are acquired for two 30-year
future periods, 2021-2050 and 2071-2100 representing “near future” and “far future”, respectively. For this study
we strategically selected three future emission scenarios used in CMIP6 project called “Shared Socioeconomic
Pathways” (SSPs)—SSP1-2.6 denoting sustainable future with controlled GHG emissions, SSP2-4.5 denoting
moderate reduction in GHG emissions with intermediate mitigation and adaptation, and SSP5-8.5 denoting very
high GHG emissions with low mitigation (Riahi et al., 2017).

3. Methodology

Figure 2 illustrates the flow chart of proposed framework to investigate urban flood response in changing climate.
The framework broadly consists of three main components—modeling of changes in historical extreme precipita-
tion, modeling of extreme precipitation in future projections, and urban flood simulation for historical and future
design precipitation. Extreme precipitation series are obtained as the annual maximum values of accumulated
precipitation over different durations (5 min, 10 min, 15 min, 30 min, 1-hr, 2-hr, 3-hr, 6-hr, 12-hr, 24-hr, 2-day,
3-day, 4-day, 7-day, and 10-day). In the first step, historical time series of extreme precipitation for selected dura-
tions are tested for trend and stationarity at 5% significance level. Extreme precipitation series with statistically
significant trend or nonstationary is modeled using nonstationary extreme value distribution, else stationary
model is used. The extreme value distribution is used to obtain design precipitation for return period of 5, 10, 25,
50, 100, 200, 500, and 1,000 years to develop corresponding IDF curves. The uncertainty bounds on IDF curves
are defined by computing confidence interval on design precipitation estimates using non-parametric bootstrap
method at 95% confidence level (Gilleland, 2020).

Second, future projections of precipitation from selected GCMs are downscaled from daily to hourly time step
for each station in the watershed using a stochastic downscaling approach described in Kim et al. (2016), Fatichi
et al. (2013), and Fatichi et al. (2011). The approach utilizes delta change method in conjunction with a stochas-
tic weather generator, Advanced WEather GENerator (AWE-GEN) (Fatichi et al., 2011; Ivanov et al., 2007)
to simulate hourly precipitation for future period. The procedure also includes a probabilistic machine learn-
ing based technique called Bayesian Weighted Averaging (BWA) to estimate uncertainty from multiple GCMs
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Figure 2. Flowchart of proposed framework to evaluate urban flood response in changing climate.

in downscaled future projections (Tebaldi et al., 2005). The stepwise downscaling procedure is described in
Section 3.4. The procedure generates an ensemble of downscaled hourly time series of precipitation for two future
time periods (2021-2050 and 2071-2100) using projections for three climate scenarios (SSP1-2.6, SSP2-4.5,
and SSP5-8.5). Each precipitation time series in the ensemble of downscaled future projections is modeled using
stationarity approach, and design precipitation estimates are derived for selected return periods. The process
gives a set of design estimates for each return period, in which the median value is used to develop IDF curves
for future periods and 95% quantile bounds of the distribution of estimates define the uncertainty limits of IDF
curves. Using this procedure, future IDF curves are developed for each rainfall station in White Oak Bayou
watershed.

Lastly, we used IDF curves of historical and future periods to create design storm for 100-year 24-hr event. Flood
response corresponding to selected design storm is simulated using distributed Interconnected Channel and Pond
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Routing (ICPR) urban flood model developed for White Oak Bayou. Simulated flood response from stationary
design storm is compared with the historical nonstationary and future design storms in terms of peak flow and
total flood volume. A detailed description of different components in the methodology is given in the following
sections.

3.1. Test for Trend and Nonstationarity

Non-parametric Mann-Kendall (MK) test (Kendall, 1970; Mann, 1945) is used to detect monotonic trend in the
time series of extreme precipitation at 5% significance level. Serially correlated series are tested using modified
version of MK test proposed by Hamed and Ramachandra Rao (1998). Besides long-term trends, nonstationar-
ity in extreme precipitation is tested using three commonly used methods—Augmented Dickey Fuller (ADF)
test (Dickey & Fuller, 1979; Said & Dickey, 1984), Phillips-Perron (PP) test (Phillips & Perron, 1988), and
Kwiatkwoski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992). ADF and PP test are unit root tests
with the null hypothesis of a unit root (difference stationarity) process against trend stationarity. Conversely, the
null hypothesis of KPSS test assumes stationarity around a deterministic trend. KPSS test is used to validate the
results of ADF and PP test as unit root-based tests show low power against stationarity near unit root processes
(Dritsakis, 2004; Ganguli & Coulibaly, 2017). For time series to be strictly trend stationary, the null hypothesis
of ADF and PP test should be rejected and null hypothesis of KPSS test should be accepted at 5% significance
level. It is advised to log-transform the time series before applying the nonstationarity tests (Gimeno et al., 1999).

3.2. Statistical Modeling of Extreme Precipitation

We used the methods defined in extreme value theory to model extreme precipitation. In stationary modeling,
extreme precipitation defined as annual maximum series is modeled using the generalized extreme value (GEV)
distribution that describes the theoretical asymptotic distribution of block maxima (Coles, 2001). Van Der Wiel
et al. (2017) from a detailed analysis, report that heavy tail distribution of extreme precipitation in US Gulf coast
region is well described by GEV distribution. The mathematical description of GEV distribution and its param-
eter estimation is given in Appendix A.

In a widely adopted approach, nonstationarity is introduced by defining the parameters of selected extreme value
distribution as a function of covariates of the modeled variable. We define nonstationary GEV model by scaling
its location (u) parameter as a linear function of covariates, while scale and shape parameters are kept constant.
Potential covariates of extreme precipitation over southern coasts of the US considered in the study are—global
mean temperature (tas) motivated by the Clausius—Clapeyron relationship, ENSO for large scale teleconnections,
TNA SST as forcings to tropical cyclonic activities in the North Atlantic Ocean at synoptic to meso-scale, local
air temperature (7) as forcings to local weather patterns, and time (¢) as a measure of trends in extreme precip-
itation. Subsequently, candidate nonstationary GEV models are defined by scaling location parameter with the
selected covariates, individually and in combinations. The list of all candidate GEV (stationary and nonstation-
ary) models is given in Table 2.

The best-fit nonstationary GEV model is identified using three commonly used criteria—Akaike Information
Criteria (AIC), Bayesian Information Criteria (BIC), and Likelihood Ratio (LR) test (Appendix A). Multiple past
studies have used these criteria for the selection of best-fit nonstationary extreme value distribution (Katz, 2013;
Mondal & Mujumdar, 2015). The best-fit nonstationary GEV model is used to estimate design precipitation
for selected return periods. The confidence interval on the design estimates (for both stationary and nonsta-
tionary models) is estimated using non-parametric bootstrap resampling method explained by Gilleland (2020).
In the procedure, non-parametric resampling is performed on the fitted GEV distribution to obtain sampled
set of extremes for making statistical inference. Statistical modeling of extreme precipitation and estimation of
bootstrap-based confidence interval on design precipitation is performed using the R package “extRemes” v2.1-1
developed by (Gilleland & Katz, 2016).

3.3. Development of IDF Curves and Design Storm

The model (stationary or nonstationary) parameter estimates are used to compute the design precipitation inten-
sity (or return level) for a given probability of exceedance, p. The probability of exceedance (p) is linked to the
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Table 2
Description of Candidate Stationary and Nonstationary Generalized Extreme Value (GEV) Model Structure Adopted in the
Study

S. no. Description S. no. Description

1 X ~ GEV(u,0.8) 9 X ~ GEV(u, + p,.t + u,.TNA,0,)

2 X ~ GEV(y, + p,.t,0,) 10 X ~GEV(u, + py.t + p,.T,,0,8)

3 X ~ GEV(y, + u#,.ENSO,0,%) 11 X ~ GEV(y, + p,.tas + ,.ENSO,0,£)

4 X ~GEV(y, + u,.T,0,%) 12 X ~ GEV(y, + p,.tas + u,.TNA,0,£)

5 X ~ GEV(y, + p,.tas,0,) 13 X ~ GEV(y, + p,.tas + p,.T,,0,8)

6 X ~ GEV(u, + p,.TNA,0,8) 14 X ~ GEV(u, + 4#,.ENSO + 41,.TNA,0,)
7 X ~ GEV(yy + py.t + py.tas,o,8) 15 X ~ GEV(y, + 4,.ENSO + p,.T,,0.,8)

8 X ~ GEV(y, + p,.t + u,. ENSO,0.,8) 16 X ~GEV(y, + ;. TNA + pu,.T ,0.8)

return period (7) of a rainfall event as 7 = 1/p. In other words, “T” year rainfall event represents the intensity
of annual maximum rainfall of a given duration that has 1/T probability of exceeding in a given year (L. Cheng
& AghaKouchak, 2014). Design storm for a given duration and return period is developed using alternate block
method (Chow et al., 1988).

3.4. Downscaling of Future Precipitation

In the first step, we selected the best five out of 15 initially chosen GCMs by evaluating historical simulations of
GCMs against the observed precipitation for extreme precipitation characteristics (see Appendix A). In this study,
we performed point-scale stochastic downscaling of precipitation using an hourly stochastic weather generator,
AWE-GEN (Fatichi et al., 2011; Ivanov et al., 2007). AWE-GEN is capable of reproducing key meteorological
variables, including, precipitation, air temperature, wind speed, cloud cover, incoming shortwave radiation, and
atmospheric pressure at hourly time scale for a given location. AWE-GEN model setup generates a set of statistics
called model parameters, describing the stochastic and statistical properties of the modeled meteorological vari-
ables. Past applications of AWE-GEN demonstrate its competence to simulate low and high-frequency compo-
nents of hydrometeorological variables, the inter-annual variability, and extreme characteristics of precipitation
(Fatichi et al., 2011; Ivanov et al., 2007; Kim et al., 2016). A detailed description of AWE-GEN model structure
and working can be found in Fatichi et al. (2011) and Ivanov et al. (2007). A MATLAB package for AWE-GEN is
available as open source at the repository of ETH Ziirich (https://hyd.ifu.ethz.ch/research-data-models/awe-gen.
html) and University of Michigan (http://www-personal.umich.edu/~ivanov/HY DROWIT/Models.html).

A detailed description of stochastic downscaling procedure using AWE-GEN model is provided in Fatichi
etal. (2011,2013), and Kim et al. (2016). Following paragraphs briefly explain the steps involved in the procedure.

e The set of statistics generated in AWE-GEN model setup are also computed from GCM simulations for
control and future periods, separately for each GCM. The statistics for precipitation include mean, variance,
skewness, and frequency of no precipitation, computed for multiple aggregation interval (i.e., 24, 48, 72, and
96 hr) for each month. Temperature statistics include the monthly mean values.

e The uncertainty in future projections from multiple GCMs is estimated using BWA approach (R. L. Smith
et al., 2009; Tebaldi et al., 2005) that assigns weights to the realization of different GCMs. Model weights are
defined based on—(a) “bias” with respect to historical observations (model performance in current climate),
and (b) “convergence” among model realizations for future climate (deviation of model simulation from the
central tendency of the ensemble). The objective of the procedure is to obtain posterior probability distribution
for parameters of a five-parameter Bayesian statistical model—true mean value of hydrometeorological vari-
ables for control and future period (u, v), correlation coefficient between current and future projections (f),
“precision” parameter defined as inverse of variance for simulation from the members of GCM ensemble (4,,
where i is ensemble member), and a parameter that accounts for the “precision” of future simulations against
historical observation (¢). A detailed description of Bayesian model setup is provided in Tebaldi et al. (2005)
and its application to stochastic downscaling is explained by Fatichi et al. (2013) and Kim et al. (2016). The
posterior distribution of Bayesian model parameters is numerically simulated using Markov Chain Monte
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Carlo (MCMC) technique. In MCMC simulation procedure, we choose a burn-in period of 25,000 iterations
to ensure independent and identically distributed sample of parameters, and a sampling interval of 50 iter-
ations. The posterior distribution for each model parameter is defined with 1,000 sampled points estimated
from a total of 75,000 iterations. The procedure is used to estimate posterior distribution of AWE-GEN model
parameters for control and future period.

e Each set of simulated parameters (u, v) representing the true value of variable for control and future climate
is used to compute factor of change (FC) for 170 distinct statistics of temperature and precipitation used in
AWE-GEN. Product FCs are applicable to the statistics of precipitation, computed as the ratio of value of
statistics for future and control period. Additive FCs are applicable to the statistics of temperature, computed
as the difference of statistics between future and control period.

(h)GCM,FUT
Product FC = W M
Additive FC = (TSEMFUT _ 7,00MCT) 2)

¢ For computational efficiency, we sample 51 sets of FCs from the posterior pdfs using Sobol quasi-random low
discrepancy sequence (Saltelli et al., 2009; Sobol, 1976). One in 51 sets of FCs is obtained from the median
of posterior pdfs that corresponds to the median future trajectory. Each sampled set of FCs is applied to the
AWE-GEN model parameters derived from historical observations to get a new set of model parameters
representing a trajectory in future climate. For each set of model parameters, 50 simulations are performed
to describe stochastic uncertainty in model simulations. Thus, we performed a total of 2,550 (51 trajecto-
ries X 50 simulations) simulations for a given future period in a given scenario at each station that capture
stochastic and climate model uncertainties in future downscaled hourly time series of precipitation.

3.5. Partitioning of Uncertainties in Future Precipitation

Ensemble of AWE-GEN model simulations are used to partition uncertainty in design precipitation from two main
sources—climate models (multiple GCMs) and stochastic (climate internal variability) uncertainty, considering
the sources to be dependent by accounting for the co-variance among uncertainty sources (Fatichi et al., 2016).
The uncertainties are partitioned for two future periods and three emission scenarios. To estimate climate model
uncertainty, for a given duration and return period, we take the median of design precipitation from 50 stochastic
simulation of AWE-GEN for all 51 future climate trajectories. We compute the difference in 5th and 95th percen-
tiles of the 51 median values corresponding to a future climate trajectory and take the average of 5-95th percen-
tile ranges for three emission scenarios. To compute the stochastic uncertainty, we compute the 5-95th percentile
range from 50 stochastic simulations for median future trajectory and take the average of percentile ranges for
three emission scenarios. Total uncertainty in future design precipitation is computed as the 5-95th percentile
range estimated from all 2,550 simulations (51 future trajectories X 50 stochastic simulations). Note that the total
uncertainty computed here will not amount to the sum of climate model and stochastic uncertainty due to their
mutual overlap as the two sources are not considered to be independent. Accordingly, the computed uncertainty
magnitudes are normalized by the total uncertainty to quantify their fractional contribution.

3.6. Hydrodynamic Model Description

The goal of urban flood modeling in this study is to investigate the flood response of selected urbanized water-
shed to design extreme precipitation obtained with and without the consideration of changing climate. We
use physically based distributed ICPR approved by FEMA (Ahmad et al., 2014; Joyce et al., 2018; Saksena
et al., 2019; Streamline Technologies, 2016, 2018). ICPR allows the application of variable surface roughness
for shallow and deep overland flow. During large flood events, the roughness changes over time when the depth
of the water in the floodplain increases due to persistent flooding. Popular hydraulic models such as the Hydro-
logic Engineering Center's River Analysis System (HEC-RAS) and LISFLOOD-FP, do not account for this
variability (Bates & De Roo, 2000; Brunner, 2016). Saksena et al. (2020) developed a detailed ICPR model for
a portion of Harris County covering several watersheds including the San Jacinto River Basin and the Buffalo
Bayou that also encompassed the watershed of White Oak Bayou. In that study, ICPR model was developed with
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two configurations—“small” model with fine spatial resolution and smaller

Table 3
Trend and Stationarity Test Results for Annual Maximum Series of 24-Hour hydraulic time steps and “large” model with coarser resolution and lager
Precipitation at Seven Stations in White Oak Bayou, Houston, Texas hydraulic time steps. For the present study, we use a subset of previously
MK test Sen's slope ADF PP KPSS developed ICPR model for White Oak Bayou watershed with “small” model
) configuration. Reader is requested to refer to Saksena et al. (2020) for the
Station Zevalue p-value p(mmiyear) p-value p-value p-value detailed information on the model structure, setup and performance. Here,
520 2102 0.036 1.588 0.056  0.010  0.072 we briefly summarize the important information on the model configuration
540 9.949 0.000 1.869 0.224 0.010 0.100 and setup.
550 3.281 0.001 2.642 0016 0.010  0.100 Watershed boundaries and integrated network of natural and artificial
560 2.172 0.030 1.626 0.010  0.010  0.100 channels in the watershed for White Oak Bayou are obtained from USGS's
570 3.494  0.001 2.609 0012 0010  0.081 National Hydrology Database and NHDPIlus High resolution data set of catch-
520 4222 0.000 2339 0016 0.010 0.100 ments and stream networks (Figure 1). We adopted a two-dimensional (2-D)
model structure of ICPR that is simplified to include only the diffusive wave
590 2.743 0.006 2.078 0.010 0.010 0.100

components of the full St. Venant equation to achieve higher computational

Note. The null hypothesis of trend and stationarity test is rejected for p-value efficiency. For more information on 1-D 2-D flow dynamics in ICPR, please

less than 0.05 at 5% significance.

refer to Saksena et al. (2020). The soil moisture is accounted for by including

up to two of the three “vertical layers” defined to discretize the vadose zone,

where third layer is assumed to be impervious, thus no water is lost from the
system. Although, the dynamics of saturated aquifer can be modeled in ICPR by including a dynamic water table
using groundwater module of ICPR model (Streamline Technologies, 2018). The maximum available water for
subsurface layers above the third (impervious) layer is fixed based on the soil classes. We also employed the adap-
tive multiresolution scheme with local time stepping referred to as “FIREBALL” used by Saksena et al. (2020)
that results in a significant reduction in runtimes. Since this study is focused on examining the relative response
of the watershed for change in design precipitation, the initial hydrologic parameters of the model are not cali-
brated to reduce modeling efforts. The model simulations in term of streamflow are generated at half-hourly time
steps for both historical and future design storms. The flood response is evaluated by comparing the simulated
streamflow corresponding to 24-hr 100-year design storm generated from nonstationary IDF curves for historical
period and future IDF curves for three scenarios and two future periods. Detailed mathematical formulations of
different components of ICPR model can be found in Saksena et al. (2020) and Streamline Technologies (2018).

4. Results
4.1. Trend and Stationarity Test

Table 3 summarizes the results of trend and stationarity test for 24-hr extreme precipitation at each station in White
Oak Bayou. Results show statistically significant increasing trend in extreme precipitation at all stations. The rate of
increase in 24-hr extreme precipitation at different stations lies in the range 15.9-26.4 mm per decade, as obtained
from Sen's slope values. The extreme precipitation series are also tested for higher order (unit root) nonstationarity
using specialized statistical tests. Due to the presence of significant trends, unit root nonstationarity is tested around a
deterministic trend using ADF, PP, and KPSS test. Results show that the annual maximum series at all seven stations
is stationary around a deterministic trend at 5% significance level (Table 3). ADF and PP test reject the null hypothe-
sis of unit root autoregressive nonstationarity at all the stations except for station 520 and 540 in ADF test. In addition,
the KPSS test fails to the reject the null hypothesis of trend stationarity in all the series. Extreme precipitation series of
1-hr duration and above exhibit significant increase at most stations, while sub-hourly series show statistically insig-
nificant increase (Tables S3—S9 in Supporting Information S3). In contrast, extreme precipitation of 5-min duration
at most stations show declining trend but statistically insignificant. Overall, the results reveal statistically significant
increase in extreme precipitation at all stations, however, higher order unit root process based nonstationarity is statis-
tically insignificant for most durations (Table S3—S9 in Supporting Information S3). Nonetheless, the nonstationarity
in the form of significant trend in extreme precipitation is accounted in statistical modeling of extremes.

4.2. Stationarity Based Design Precipitation Estimates

In compliance with NOAA Atlas 14, design precipitation estimates in the form of IDF curves are estimated
assuming the annual maximum series of precipitation to be stationary (i.e., no trend). Stationarity based IDF
curves form the basis for comparison with nonstationary and future design precipitation, and their corresponding
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Figure 3. Estimated stationary intensity-duration-frequency (IDF) curves for station 520 in White Oak Bayou watershed and
their comparison with National Oceanic and Atmospheric Administration (NOAA) based IDF curves for 50- and 100-year
return period. (a) Stationarity-based IDF curves for station 520 in White Oak Bayou watershed. (b) Comparison of estimated
stationary IDF and NOAA's IDF curves for 50-year and 100-year return period.

flood simulations. Note that results from most of the analyses in the study are similar for all stations in White Oak
Bayou watershed. Therefore, we have shown the results for station 520 for brevity, unless mentioned otherwise.
Figure 3 shows the stationary IDF curves developed for station 520 and their comparison with NOAA IDF curve
for 50- and 100-year return period. The region receives substantial precipitation from extreme events as 10-year
1-hr design precipitation amounts to 50 mm, which rises to about 150 mm for a 100-year event. As evident from
the comparison, estimated stationary design precipitation is fairly consistent with the NOAA estimates in which
minor differences for short duration events can be due to the difference in period of analysis. The stationary IDF
curves for all seven stations are provided in Figures S2-S8 in Supporting Information S2.

4.3. Nonstationarity Based Design Precipitation Estimates

An important step in nonstationary-based modeling of extremes is to identify potential large-scale or local physi-
cal drivers of observed changes to use as covariates. A preliminary correlation-based analysis between covariates
and extreme precipitation of selected durations gives higher value of Spearman rank correlation for global aver-
age temperature (tas), suggesting its relatively higher potential for covariate in nonstationary model (Figure S9 in
Supporting Information S2). However, a combination of more than one covariate can provide better model-fit to
nonstationary extremes. Nonetheless, we performed a robust evaluation of candidate nonstationary GEV distribu-
tions based on AIC/BIC values and statistical significance in LR test. Figure 4 shows the rank of AIC/BIC values
arranged in ascending order and statistical significance of LR test results for candidate models fitted to 24-hr
extreme precipitation for all the stations. Extended results for all selected durations are provided in Figures S10-S12
in Supporting Information S2. As evident from Figure 4a, candidate GEV model with tas as covariate gives mini-
mum value of AIC and BIC for majority of stations. Also, LR test results between nonstationary candidate model
and stationary model are statistically significant for tas at all seven stations (Figure 4b). We obtained similar results
for extreme precipitation of other durations with exceptions for a few durations at station 520 and 570 (Figures S10-
S11 in Supporting Information S2). At these stations, combination of tas and ENSO gives best-fit model and tas
only model gives the second best fit. Considering the applicability to majority of stations and to maintain consist-
ency, candidate model with tas as covariate is adopted as best-fit nonstationary GEV model for further analyses.

Using the nonstationary GEV model with location parameter scaled on tas, we developed nonstationary IDF curves
for all seven stations in the White Oak Bayou watershed. We obtained design precipitation using fitted nonsta-
tionary model corresponding to the value of covariate in the year 2020. Figure 5 shows the nonstationary IDF
curves for station 520 and their comparison with stationary IDF curves for selected return periods. This figure
also represents 95% uncertainty bounds of design precipitation computed using non-parametric bootstrap resa-
mpling. Evidently, stationarity-based design precipitation intensity for a given duration is considerably less than
the nonstationarity-based estimates for all return periods. For instance, for 100-year 1-hr event at station 520,
nonstationary (127 mm/hr) design precipitation is about 13.4% higher than the stationary (112 mm/hr) design
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Figure 4. Evaluation of candidate nonstationary generalized extreme value (GEV) model for best-fit to 24-hr extreme
precipitation at seven stations in White Oak Bayou watershed. (a) Rank of Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC) values arranged in ascending order for candidate nonstationary GEV model. (b) Statistical
significance of candidate nonstationary GEV models versus stationary GEV model obtained from Likelihood Ratio (LR) test.

precipitation; while for 10-year 24-hr event, nonstationary (17 mm/hr) precipitation is about 19.8% higher than
stationary (14 mm/hr) precipitation. Similar results are obtained at all seven stations in the watershed, except for
station 550 where the difference between nonstationary and stationary estimates is relatively small (Figures S2—-S8
in Supporting Information S2). Further examination shows that smaller difference at station 550 is evident for short
(1- to 6-hr) durations (Figure S13 in Supporting Information S2). It can be due to inconsistent performance of
selected covariates for time series of different duration. For urban watersheds that are typically characterized with
quick hydrologic response, a 13%—-20% increase in precipitation intensity can cause substantial increase in peak
flood and consequent flood inundation. Accordingly, the actual risk of floods and its associated impact on infra-
structure and services in this region can be much higher compared to estimates with stationary assumption. Also,
flood mitigation measures designed on stationarity assumption can be under potential risk of failure. Note that for
all durations, the difference in nonstationary and stationary estimates decreases for higher return period events, such
that the difference is negligible for 1,000-year return period events. It is possibly due to the relatively short length
of record (35 years) used in this study, whereby estimates for longer (500- and 1,000-year) return period involve
considerable extrapolation with fitted GEV model that diminishes the effect of nonstationarity. The short length
record is also responsible for substantially large uncertainty range for design precipitation of longer return periods.

Furthermore, the relative increase in design precipitation from nonstationary versus stationary modeling is higher
for longer duration events and lower for short durations at all stations (Figure S13 in Supporting Information S2).
It suggests that the longer duration extreme events have experienced larger changes than the short duration events
in the historical period.

4.4. Future Design Precipitation Estimates
4.4.1. AWE-GEN Model Setup

AWE-GEN model is set up individually for all seven stations in the White Oak Bayou watershed for the histor-
ical (1986-2020) period. Due to the unavailability of weather station in the watershed, hourly time series of
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Figure 5. Comparison of nonstationary and stationary intensity-duration-frequency (IDF) curves for different return periods
at station 520. Nonstationary IDF curves are developed using nonstationary generalized extreme value distribution with
location parameter scaled on global average temperature (tas). Shaded region denotes 95% uncertainty bound of design
precipitation computed using non-parametric bootstrap method.

meteorological variables required for model setup is obtained by interpolating from six surrounding weather
stations using partial thin plate spline (PTPS) interpolation technique (Hutchinson & Gessler, 1994). PTPS is a
commonly used technique for spatial interpolation of meteorological variables due to its computational efficiency
and robust detection of error (Hofstra et al., 2008; Szentimrey et al., 2007). In case of missing values at three or
more weather stations, the value at the closest station is adopted.

A comparison of observed and AWE-GEN simulated mean monthly precipitation and 24-hr extreme precipitation
of different return periods is shown in Figure 6. Evidently, AWE-GEN model shows remarkable performance
in reproducing mean monthly precipitation at all stations. Monthly precipitation from observations practically
overlaps with the median of 50 stochastic simulations from AWE-GEN for all months. AWE-GEN model simu-
lations give a narrow range of stochastic uncertainty for all months that reflects the model's potential in simu-
lating historical observations in the study region. The model also performs satisfactorily in the simulation of
extreme precipitation. Extreme precipitation estimates from observations are close to the median of extremes
from model's stochastic simulations up to 15- to 20-year return period at different stations. For longer return
periods, the extreme precipitation from observations deviates from the median value but falls well within the
stochastic uncertainty limits of simulated precipitation. Further examination shows that the model performance in
simulating extreme precipitation considerably improves when 2017 (the year when Hurricane Harvey occurred)
is not considered. The Neyman-Scott Rectangular pulse process used in AWE-GEN exhibit limited capability
in simulating low frequency variances (Fatichi et al., 2011). Thus, the deviations in simulated extreme precipi-
tation for higher return period is probably due to unprecedented precipitation received from Hurricane Harvey
in August 2017 (return period exceeding 1,000-year). Its effect on model performance can also be seen in the
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Figure 6. Comparison of mean monthly precipitation and extreme precipitation of 24-hr duration from observations and
Advanced WEather GENerator (AWE-GEN) model simulations for historical (1986-2020) period. Red line (left) and marker
(right) denote the median and shaded region denotes 95% uncertainty limits of 50 AWE-GEN simulations denoting stochastic
uncertainty from internal climate variability.
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relatively wider uncertainty range for the month of August in monthly precipitation estimates. Nonetheless, the
downscaling methodology adopted in this study computes the stochastic uncertainty in future simulation, there-
fore reliable inferences can be made on future changes of extreme precipitation. The AWE-GEN model shows
similar performance for hourly simulations at all stations thus improving its reliability in simulations of future
changes (Figure S14 in Supporting Information S2).

4.4.2. BWA-Based Factors of Change

FCs for future climate are derived from the realizations of GCMs for control and future periods. In this study, we
use GCM outputs at the grid cell closest to White Oak Bayou watershed for all stations because the spatial extent
of watershed (~310 km?) is very small relative to the extent of GCM grid cell. Fatichi et al. (2011) examined the
sensitivity of GCM outputs with respect to a given location and found that GCM realizations for a given model
are spatially self-consistent. In other words, the difference in change factors for a given GCM along neighboring
cells is very small in comparison to the difference among different models for the same location. Therefore,
GCM outputs at a single grid cell can be taken as representative for a small area enclosed within. Out of initially
considered 15 GCMs listed in Table S1 in Supporting Information S3, the five best performing models are
selected using the scatterplot (Figure S15 in Supporting Information S2) of Model RMSE Index (MRI) versus
Model PBIAS Index (MPI) index for extreme precipitation indices from 15 GCMs (Table S2 in Supporting
Information S3). Finally selected five GCMs are—HadGEM3-GC31-LL, IPSL-CM6A-LR, CNRM-ESM2-1,
EC-Earth3, and EC-Earth3-Veg.

We compute the posterior distribution of FC for 170 distinct statistics of temperature and precipitation used in
AWE-GEN model using BWA approach. Figure 7 illustrates the product FCs for mean monthly precipitation
computed from individual GCMs and 95% quantile range of posterior distribution of FC for station 520. As can
be seen, FC for monthly precipitation from individual GCMs exhibits large variability with values ranging from
0.3 to 2.2 in different months. The variability of FC is relatively larger for SSP5-8.5 and SSP1-2.6 than SSP2-4.5.
The uncertainty in FC from individual GCMs considerably reduces in pdf of FC obtained from BWA (Figure 7).
In all scenarios, the value of FC in the pdf is larger than 1 in spring and early summer (March-June) suggesting an
increase, and less than 1 for summer and early autumn (July-September) suggesting a reduction in future precip-
itation. For the remaining months, FCs are distributed around unity indicating no definite change. Similarly,
pdfs of FCs are obtained for 169 other statistics of temperature and precipitation for two future periods and three
future scenarios at each station. An example posterior distribution of FC for mean temperature and precipitation
for August month is shown in Figure S16 in Supporting Information S2.

4.4.3. Future Hourly Precipitation

We sampled 51 sets of FCs from the posterior pdfs and each set of FCs is applied to the parameters of AWE-GEN
model setup for historical period to get a new set of model parameter representing a trajectory in future climate.
With each new set of AWE-GEN model parameters, 50 simulations are performed to generate an ensemble of
30-year long hourly time series of meteorological parameters. Figure 8 shows the distribution of design extreme
precipitation estimated by fitting stationary GEV model to each stochastic simulation of hourly precipitation for
median future trajectory. For station 520 (Figure 8a), the comparison of observations with median of distribution
for future period shows a consistent reduction in design extreme precipitation for all selected return periods in
near future period (2021-2050). In addition, the reduction in design precipitation is found in all three future
scenarios. In the far future (2071-2100) period, however, we obtain varying results for different scenarios—the
median of projected design precipitation shows considerable decline in SSP2-4.5, a minor reduction in SSP5-
8.5, and no observable change in SSP1-2.6. As evident from Figure 8b, we obtain similar results for projected
extreme precipitation at all other stations in White Oak Bayou. Overall, extreme precipitation shows considerable
reduction in the near future in all three future scenarios at all stations. Whereas design extreme precipitation in
the far future period exhibits consistent reduction in SSP2-4.5 scenario, and minor changes in other two scenarios
with an increase at few stations and decline at others. The ensemble of AWE-GEN model simulations also gives a
wide range of uncertainty about the median in which quantile range above median is much wider than the quantile
range below median. The upper quantile limit for future estimates is considerably larger (1.2-2 times) than the
observational design precipitation. It suggests that the future design precipitation is fairly likely to exceed the
observational estimates by a large magnitude, particularly in high future emission scenario. Interestingly, monthly
precipitation shows marginal change in future periods in three scenarios. The median monthly precipitation for
future periods is fairly close to the observed monthly precipitation (Figure S17 in Supporting Information S2).
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Figure 7. Product factor of change (FC) for mean monthly 24-hr precipitation from individual general circulation models

(GCMs) and 95% quantile bound of posterior pdf of FC estimated using Bayesian weighted average of GCMs. Product FC
is computed as ratio of general circulation model simulated mean precipitation for future (2021-2050 and 2071-2100) and
control (1986-2014) period for selected three future scenarios (SSP1-2.6, SSP2-4.5., SSP5-8.5).

4.5. Uncertainty in Design Precipitation

In future design precipitation the uncertainty from climate models and stochastic uncertainty are computed to
ascertain their relative contribution and dominance in total uncertainty. Figure 9 shows the distribution of percent
contribution of the two uncertainty sources in total uncertainty in design precipitation for selected durations and
return period at station 520. Evidently, future design precipitation is dominated by stochastic uncertainty that
accounts to approximately 50%—100% of total uncertainty, whereas contribution of climate model uncertainty
varies in the range 30%—-70%, approximately (Figure 9a). The fractional contribution of stochastic uncertainty
in design precipitation increases in the far (2071-2100) future period than the near (2021-2050) future period.
Figure 9b shows the distribution of relative magnitude of stochastic and climate model uncertainty computed as
their ratio. In the figure, relative magnitude for majority of future design precipitation events is distributed above
unity which shows a higher magnitude of stochastic uncertainty than climate model uncertainty for majority of
extreme events. The magnitude of stochastic uncertainty is 1.5-2.5 times larger than the magnitude of climate
model uncertainty for most future events in the near future, that further rises to 2-3 fold in the far future period.
Similar results are obtained for all other stations in White Oak Bayou watershed. It shows that the uncertainty
induced from the use of multiple GCM:s is considerably smaller than the stochastic uncertainty emerging from
natural variability of regional climate. Figure 9c shows the distribution of the ratio of total uncertainty in future
design precipitation to historical design precipitation. Evidently, total uncertainty in future and historical design
precipitation is comparable in the near (2021-2050) future period as the median is close to unity. However,
uncertainty in future design precipitation is larger than that in historical estimates in the far (2071-2100) future
period.
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Figure 8. Design extreme precipitation of 24-hr aggregation from observations and 50 stochastic simulations of Advanced
WEather GENerator for median future trajectory for two (2021-2050 and 2071-2100) future periods in three (SSP1-2.6,
SSP2-4.5, and SSP5-8.5) future emission scenarios. Future projections of precipitation are compared with the observations
(bar, black). Median future trajectory corresponds to median of pdf of factor of change in a given future scenario. Point
represents the median of values from stochastic simulations and range gives the 95% uncertainty limits. Comparison of 24-hr
design extreme precipitation from observations and two future (2021-2050 and 2071-2100) periods (a) at station 520 for all
selected return periods (b) at all stations in White Oak Bayou for 100-year return period.

4.6. Simulated Flood Response

To achieve the equilibrium of mass balance in the ICPR model, model simulations are generated for 48 hr (two
days) before the design storm of 24-hr duration. To investigate the nature and magnitude of difference in flood
response to design storm for historical and future period, we compare the peak streamflow corresponding to
24-hr 100-year design storm (Figure S18 in Supporting Information S2). Comparison of simulated streamflow
for design storm of future period in three emission scenarios is shown in Figure 10. Consistent with the results
for design extreme precipitation, for SSP1-2.6 and SSP2-4.5 scenario, simulated streamflow in the far future
(2071-2100) is higher than the streamflow for the near future (2021-2050). The peak streamflow in 2071-2100
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Figure 9. Relative contribution of uncertainty from climate model and internal climate variability (stochastic uncertainty) to
total uncertainty in future design precipitation for two (2021-2050 and 2071-2100) future periods. (a) Distribution of percent
contribution from two sources for design precipitation of selected durations and return periods. (b) Distribution of the ratio of
stochastic to climate model uncertainty for selected duration and return period events. (c) Distribution of ratio of uncertainty
in future and historical design precipitation.
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Figure 10. Interconnected Channel and Pond Routing simulated streamflow hydrograph corresponding to 24-hr 100-year
design storm for two future periods (2021-2050 and 2071-2100) in three emission scenarios (SSP1-2.6, SSP2-4.5, and
SSP5-8.5).

is ~19% and ~11% higher than 2021-2050 in SSP1-2.6 and SSP2-4.5 scenarios, respectively. On the other hand,
simulated streamflow for SSP5-8.5 scenarios is comparable in both future periods. These results indicate that
the difference in design precipitation for future periods is evident in simulated streamflow from the urban flood
model, especially in low and moderate emission scenarios.

5. Discussion and Conclusions

This study proposes a comprehensive framework for fine-scale assessment of urban flood response to changing
climate. The influence of climate change is accounted for through modeling the changes in extreme precipitation
in historical observations as well as future projections. We demonstrate the proposed framework on a highly
urbanized watershed of White Oak Bayou in Houston, Texas considering a historical period (1986-2020) and
two future periods (2021-2050 and 2071-2100) in three emission scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5).
Nonstationary modeling of extreme precipitation in historical period gives significantly higher design precipi-
tation estimates than the stationary models at all stations in White Oak Bayou watershed. It is mainly due to a
significant increasing trend of extreme precipitation in observed records. In White Oak Bayou, the difference in
design precipitation from nonstationary versus stationary models is especially prominent (up to 35%—40%) for
longer duration (>12-hr) and smaller return period (<200-year) events. These results suggest that the assumption
of stationary extreme precipitation as used in, for example, NOAA Atlas 14, may not be valid for the Houston
region. Consequently, a direct use of NOAA's design precipitation estimates in infrastructure design or flood
mitigation planning for this region would involve considerable risk. For the White oak Bayou watershed, we
recommend correction factors to NOAA's precipitation estimates for different return periods (or exceedance
probabilities) corresponding to 24-hr duration precipitation as listed in Table S10 in Supporting Information S3.
It may be used by Harris County Flood Control District for different analysis and infrastructural design.

On the contrary, future extreme precipitation for White Oak Bayou exhibits a considerable decline in both the
future periods in all scenarios. Results show that the design precipitation for median future trajectory is consist-
ently less than the observational design precipitation in all three emission scenarios. Although, among two future
periods, the decline is larger in near future (2021-2050) than far future (2071-2100) period, and among three
scenarios, decline is smaller in SSP8-4.5 scenario. These results are in contrast to the widely reported increase in
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extreme precipitation from future GCM projections for different parts of the world including the US (Donat
et al., 2016; Easterling et al., 2017; IPCC, 2014; Scoccimarro et al., 2013). The contrasting patterns for the study
region are possibly due to the limited performance of GCMs in resolving small-scale (synoptic to meso-scale)
weather processes owing to the course spatial resolution of existing GCMs (Feng et al., 2021; Ridder et al., 2021;
Villarini et al., 2014; Wehner et al., 2015). Extreme precipitation events along the southern and eastern coasts
of the US are largely associated with such small-scale weather systems, such as tropical cyclones (Khouakhi
et al., 2017; J. A. Smith et al., 2011; Villarini et al., 2014). Therefore, GCM projections show limited capability
in providing a correct representation of extreme precipitation response to future climate in the region.

These contrasting results for historical and future period indicate that flood response assessment in the study
area with only the consideration of future projected changes in precipitation from GCMs may lead to erroneous
conclusions. Such discrepancy in observed and future projected changes in extreme precipitation may exist for
other parts of the world, particularly in the regions where extreme precipitation dynamics is dominated by small
scale phenomena and local factors. Therefore, collective assessment with the consideration of changes in both
historical observations and future projections is necessary for reliable decision making and planning. A collective
assessment is also crucial to ascertain whether flood response to historical changes envelopes the flood response
to future projected changes in extreme precipitation and vice-versa. The framework proposed in the present study
would serve as an efficient tool for such a holistic assessment of urban floods in changing climate, that can be
used for other major cities with confidence.

With the proposed framework, we attempt to answer two important research questions. Whether the difference
in design precipitation from nonstationary versus stationary modeling is reflected in flood simulations? Yes.
Distributed urban flood models are characterized with considerable inherent complexities from model structure
and parameterization that can suppress minor changes in input meteorological variables (Y. Liu & Gupta, 2007,
Merwade et al., 2008; Wang et al., 2018). Also, external factors such as LULC change, flow control structures,
and infrastructure development may alter sensitivity of system response (e.g., streamflow) to inputs (e.g., precip-
itation and temperature) (Gangrade et al., 2018). Past studies report that while extreme precipitation exhibits
significant trends in larger parts of the US, observed streamflow show no significant change at most gauging
sites (A. Sharma et al., 2018). In this study, we find that model simulated streamflow for nonstationary design
precipitation is substantially higher than that for stationary estimates in terms of peak flow and total flow volume.
It shows that the difference in stationary versus nonstationarity based design precipitation are substantial to
cause significant change in hydrologic response of White Oak Bayou watershed. Considerably higher streamflow
response for nonstationary design precipitation highlights the risk associated with the assumption of stationary
extreme precipitation for the study region.

In the second question, we examine which source of uncertainty dominates the design precipitation estimates
obtained by incorporating the changing climate. Stochastic uncertainty dominates the future design precipitation.
Stochastic uncertainty represents the uncertainty due to natural variability in the local climate, thus is irreduci-
ble. Its dominance in total uncertainty involved with future design precipitation narrows down the possibility of
reduction of uncertainty in local-scale precipitation projections even with future improvements in climate model
structure and emission scenarios. Nonetheless, the distinct signal of climate change evident from median future
trajectory should be taken into consideration for future planning. The dominance of stochastic uncertainty high-
lights the importance of its comprehensive evaluation along with climate model uncertainty in future projections
of regional climate variables. Although, it will continue to restrict the communication of precise information on
local precipitation changes in future climate. In addition, large uncertainty in future design precipitation also
suggests that the commonly used approach in climate change impact studies that consider one or a few determin-
istic climate projections (Ali & Mishra, 2018; Seager et al., 2007), could be misleading especially in regards to
interpretation and communication of precise conclusions for practical applications. Study results also show that
total uncertainty in future precipitation is comparable with the uncertainty in historical design precipitation in the
near future period, whereas, higher in the far future period. Thus, concentrated efforts are needed for improve-
ment in methods for modeling of changes in extremes to reduce the uncertainty in nonstationary modeling of
historical design precipitation.

As previously mentioned, White Oak Bayou watershed is characterized by cyclonic activities-driven extreme precipi-
tation, saturation level of urbanization, and flatter terrain. These attributes are common to multiple major cities around
the world, especially located along the coastlines in tropical and subtropical climates. In addition, most of the prominent
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cities are either approaching or projecting toward a saturation level of urbanization. Thus, White Oak Bayou water-
shed can be considered a “bellwether” watershed for similar urban agglomerations. Accordingly, the conclusion from
the present study that significant change in extreme precipitation due to nonstationarity consideration has resulted in
a significant change in flood response can be extended for such urbanized catchments. However, some of the find-
ings from the case study may not be generalized for other similar catchments because of the regional heterogeneity
in climate patterns and geophysical characteristics of the catchment. We suggest that distinctive analysis should be
performed for an urban watershed of interest to assess the impacts of climate change on flood response. The framework
proposed in the present study would certainly facilitate such analysis by providing a collective assessment of historical
as well as future changes in precipitation and robust estimates of associated uncertainties.

While the proposed framework fills multiple critical gaps in the existing literature and show potential for appli-
cation in urban flood assessment and decision making, there still exists a few limitations suggesting potential
avenues of improvement and future research.

e The proposed framework does not account for uncertainty from hydrodynamic flood modeling. Thus, caution
should be taken in interpreting the results in reference to other potential sources. Past studies show that
the relative contribution of uncertainty from hydrodynamic modeling in climate change impact assessment
depends on several factors including, catchment properties, selection of hydrodynamic model, and selected
hydrologic indicator (Meresa et al., 2021; Steinschneider et al., 2015; Velazquez et al., 2013). We recommend
an adequate evaluation of the uncertainty from hydrodynamic model together with the uncertainty estimates
given by the present framework for robust assessment and reliable communication of the findings. Literature
contains efficient methods for evaluation of uncertainty in distributed flood modeling (Bates et al., 2014; Z.
Liu & Merwade, 2018, 2019). In future work, our efforts will be concentrated on developing a fully Bayesian
approach-based framework for comprehensive uncertainty estimation from different sources in urban flood
assessment in changing climate.

e We used two-dimensional distributed ICPR model for flood simulations with a conventional assumption of
impervious surface. This assumption may not provide realistic estimates of flood inundation. A recent study
shows that 2-D hydrodynamic surface water model overpredicts the peak and underpredicts the low flows
(Saksena et al., 2019). Thus, for detailed and more accurate applications such as, analysis of inundation extent
and time of inundation, users are advised to use an integrated hydrodynamic model with surface and sub-surface
processes. Nonetheless, the current model structure serves satisfactorily for the aims of this study primarily for
two reasons—first, we are interested in evaluation of relative response of the system that is, stationary versus
nonstationary and stationary versus future changes; second, the study region is 96% urbanized with more than
60% impervious land cover that closely validates the assumption of impervious surface in model structure.

¢ The present methodology uses future climate projections from GCMs that are typically efficient in simulating
large-scale atmosphere-ocean processes. Urban climate, however, is affected by multiple local urbanization
effects such as, urban heat island, urban canopy layer, and varying aerosol concentration. These factors can
potentially affect the precipitation climatology of flood events (Huong & Pathirana, 2013). Alternatively, a
meso-scale regional climate model such as Weather Research and Forecasting model can be used to assess
dynamic response of local climatology to the influence of urbanization as well as for spatiotemporal down-
scaling of GCM (Patel et al., 2019, 2020). RCM:s are also capable of simulating meso-scale processes such as
tropical cyclones, thus may provide accurate response of associated extreme precipitation to future climate (K.
Emanuel et al., 2008; K. A. Emanuel, 2013).

e We assume LULC to be unchanged in flood simulations for future periods based on the fact that 96% of the
watershed is urban land cover in 2019, thus the watershed is almost at saturation level of urbanization. The
LULC change in the future would be minor over the study region, if at all, that justifies our assumption.
However, adequate consideration of possible future LULC in the assessment is recommended in application
to cities with high LULC change potential.

e We selected five GCMs for future projections that may not include the entire range of climate model uncer-
tainty. More climate models can be included to cover a wider range of information on future climate projec-
tions for better evaluation of climate model uncertainty.

¢ In nonstationary modeling of historical extreme precipitation, GEV distribution parameters can be scaled on
the covariates using a non-linear model for improved assessment of change in extremes.

e The stochastic downscaling procedure used in the proposed framework requires higher computational
resources that may be realized in application to a larger domain with larger number of rainfall gauging sites.

PAL ET AL.

20 of 27



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2023WR034466

With the aforementioned scope of improvements, the demonstration of proposed framework in the case study
reveals its capability in providing critical insights on the influence of climate change on regional extreme precip-
itation characteristics and the response of urban floods to these changes. The framework is designed to make use
of the entire available knowledge on change in climate through the consideration of historical as well as future
periods. Thus, the framework would help in robust evaluation of flood risk and potential flood damage in the
backdrop of climate change. A potential application of the proposed framework can be envisaged in the revision
of NOAA's design precipitation estimates to incorporate nonstationarity in extreme precipitation with the consid-
eration of regional heterogeneity in local or large-scale drivers of nonstationarity. The framework would also be
beneficial in re-evaluation of FEMA's flood inundation maps with the consideration of changing extreme precip-
itation patterns. We envisage several potential applications of the framework including, identification of flood
risk hotspots and vulnerability assessment, re-evaluation of flood inundation maps and subsequent assessment
of expected losses for insurance industries, revaluation of efficiency, stability of flood protection structure, etc.

Appendix A: Mathematical Description
Al. Stationary Generalized Extreme Value (GEV) Distribution

The GEV distribution represents the theoretical asymptotic distribution of block maxima. For x;, x,, ..., x, be
a sequence of n independent and identically distributed random variables denoting annual maximum series, the
cumulative distribution function of GEV distribution is given by (Coles, 2001):

-1/
exp{—[l + M] },1+§(x—;4)/0>0,§7é0

(A1)

where py, 6 > 0, and £ are location, scale and shape parameters, respectively. The distribution is characterized as
heavy tailed 4y — 0/& < x < oo for £ > 0, unbound light tailed —c0 < x < oo for § = 0, and bounded upper
tailed —co < x < p — o/éfor £ <O0.

The estimates of the GEV distribution parameters are obtained using the method of maximum likelihood. The
log-likelihood function for the above distribution can be derived as (Beirlant et al., 2004; Coles, 2001):

log L(s,0,]X) = —nlogo — (1 + 1/'3)21"%[1 +’f(x';”>]
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For the ease of computation, the negative log-likelihood —logL(61X);60 = {u,0.£} is minimized to obtain the
parameter estimates. The model parameter estimates are then used to compute the rainfall intensity (or return
level) for a given probability of exceedance, p as (Agilan & Umamahesh, 2018; Coles, 2001):

(A4)

Zr =

i+t togt -y -], %0
£=0

A+ 6[~log(=log(l - p))],
The probability of exceedance (p) is linked to the return period (7) of a rainfall event as 7 = 1/p. In other words,

“T” year rainfall event represents that intensity of annual maximum rainfall of a given duration that has 1/T prob-
ability of exceeding in a given year (L. Cheng & AghaKouchak, 2014).

A2. Selection of Best-Fit Candidate Nonstationary GEV Model

The best-fit nonstationary GEV model is identified using three criteria—Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), and Likelihood Ratio (LR) test. The AIC and BIC values for a given model is given by
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AIC = —2log L(8]X) + 2p (A5a)
BIC = -2log L(0|X) + plog(n) (A5b)

where p is the number of parameters of the model. The model with minimum value for AIC and BIC represents
the most significant covariate.

The statistical significance of best-fit nonstationary model can be checked by testing a null hypothesis of no trend
(stationary model). The test can be performed by comparing the minimized negative log-likelihood function for
two given models. For 6 and 6, be the parameters of the two models under comparison, then the deviance statis-
tics (D) is given by (Coles, 2001):

D(9)) = 2[log L(6o) — log L(61)) (A6)

Under suitable regularity conditions and large n, the deviance statistics approximately follows a chi-square distri-
bution (D(0,) ~ x?) with the degree of freedom equal to the difference between the number of parameters of the
two models. The significance of model-fit is tested at 5% significance level in the present study.

A3. Selection of GCMs

Following the approach used by Srivastava et al. (2020), Extreme Precipitation Indices defined by the Expert Team
on Climate Change (ETCCDI) are analyzed for GCM's historical and observed precipitation for control period
(See Table S2 in Supporting Information S3). The performance of GCMs is evaluated using two measures—
Normalized Root Mean Squared Error (NRMSE) and Normalized Percent Bias (NPBIAS) given as (Akinsanola
et al., 2021; Srivastava et al., 2020):

RMSE,,; — med (RMSEcmipe. )
NRMSE,,; = (ATa)
med (RMSEcuips. )

abs(PBIAS,,;) — med (abs (PBIAScmipe.i ) )
NPBIAS,,; = (A7b)
med (abs (PBIAScmipe. ) )

where med(RMSE ) denotes the median of RMSE across all the considered CMIP6 GCMs for a given index

'cmipb,i
i, and
N 1/2
_ |1 2

RMSE,; = [ﬁ ; (Sn — 0n) ] (A8)
N
—1Sn — On

PBIAS,.; = M x 100 (A9)

On

n=1

for a given model m, computed over N observations. Here, s, and o, represent GCM simulated, and station
observed value of index for a given year n. The accumulated performance of a GCM over all extreme indices is
evaluated by a median of NRMSE and NPBIAS namely Model RMSE Index (MRI) and Model PBIAS Index
(MPI). The top five GCM are selected based on the overall performance evaluated through a scatterplot of
MRI versus MPIL. The lesser the value of MRI and MPI, better the model performance in simulating extreme
precipitation.

Data Availability Statement

All data used in the study are publicly available. The precipitation data used in the study are retrieved from Harris
County Flood Warning System at https://www.harriscountyfws.org/Document_Library. NOAA's precipitation
frequency estimates are obtained from Precipitation Frequency Data Server (PFDS) of NOAA at https://hdsc.
nws.noaa.gov/pfds/. River discharge and stage data set is obtained from the US Geological Survey National
Water Information System at https://waterdata.usgs.gov/nwis. Meteorological data are downloaded from NOAA's
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provided by US Department of Agriculture Natural Resources Conservation Service is downloaded from https://
gdg.sc.egov.usda.gov/. SST index for Nifio 3.4 is obtained from Working Group on Surface Pressure of NOAA's
Physical Sciences Laboratory at http://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/index.html. Hadley Centre
Sea Ice and Sea Surface Temperature (Version 2.1) (HadISST2) (Titchner & Rayner, 2014) from Met Office
Hadley Centre observations can be downloaded at https://www.metoffice.gov.uk/hadobs/hadisst/. Precipita-
tion and temperature projections from GCMs under CMIP6 (Eyring et al., 2016) are downloaded from https://
esgf-node.llnl.gov/search/cmip6/. All data processing, statistical analysis and visualization are performed in R
environment (R Core Team, 2021). Statistical modelling of extreme precipitation is performed using extRemes
v2.1-1 (Gilleland & Katz, 2016) package licensed under GPL-3. The MATLAB source code of AWE-GEN
(Ivanov et al., 2007) model with a sample data can be downloaded at http://www-personal.umich.edu/~ivanov/
HYDROWIT/Models.html.
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