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Abstract Many radiative transfer schemes approximate the spectral integration over ~105 to ~108
wavelengths with correlated k-distributions methods that typically require only 10'-10? spectral integration
points (g-points). The exact number of g-points is then chosen as an optimal balance between computational
costs and accuracy, normally assessed in terms of a number of radiative quantities. How this radiative
accuracy propagates to simulation accuracy, however, is not straightforward. In this study, we therefore explore
the sensitivity of cloud properties in large-eddy simulations (LES) to the accuracy of radiative fluxes and
heating rates. We first generate smaller sets of g-points from existing k-distributions by repeatedly combining
adjacent g-points while maintaining the highest possible accuracy on a chosen set of radiative metrics. Next,
we perform three sets of LES with varying cloud—radiation coupling pathways, and therefore different
requirements for the accuracy of the radiative transfer computations, to investigate how these smaller and thus
less accurate k-distributions affect simulation characteristics. The decrease in radiative accuracy with 3—4 times
smaller k-distributions results in biases in cloud properties that are relative small compared to their temporal
fluctuations. These results show potential for speeding up radiative transfer computations in cloud-resolving
models by reducing the resolved spectral detail. However, more statistically converged simulations and a wider
set of case studies is required to fully assess the robustness of our results.

Plain Language Summary Radiation emitted by the sun and the earth drives our weather and
climate. Atmospheric models therefore need to compute how solar and thermal radiation interacts with

cloud droplets, aerosols, and gas molecules. These computations can be performed very accurately by doing
independent calculations for many wavelengths, but that is very time-consuming. Here, we study to what extent
the accuracy of the radiation computations affects the accuracy of simulations of the atmosphere. We find that
the reduction in radiative accuracy corresponding to 3—4 times fewer representative computations results in
relative small mean errors in cloud properties compared to the temporal fluctuations. In further research, we
should aim to better understand whether the mean errors are small enough to represent accurate simulations.

1. Introduction

To produce accurate simulations of clouds, atmospheric models require computationally expensive parametri-
zations of physical processes such as radiative transfer. The accuracy of radiative transfer computations largely
depends on the spectral detail that is resolved (e.g., Hogan & Matricardi, 2022) because the absorption and
scattering of radiation by the atmosphere is strongly wavelength dependent. Instead of integrating directly over
all absorption lines in the solar and thermal spectra, requiring O(10°) — O(10°) monochromatic computations,
the spectral integration is often parameterized using correlated k-distribution or similar methods (e.g., Fu &
Liou, 1992) that use just O(10') — O(10?) spectral quadrature points (g-points). Such parametrizations for spec-
tral integration are developed to minimize errors in radiative quantities across some set of atmospheric condi-
tions. How such errors propagate to errors in simulations of clouds and atmospheric circulation is often not clear.

The large computational costs of radiative transfer parametrizations have sparked multiple efforts to develop
k-distributions with as few g-points as possible without sacrificing radiative accuracy. The widely used RRTM
for General circulation model applications (RRTMG; Iacono et al., 2008), a reduced spectral resolution version of
RRTM (Iacono et al., 2000; Mlawer et al., 1997), uses 140 g-points for longwave and 112 g-points for shortwave.
Its successor, the more accurate Radiative Transfer for Energetics and RRTMG-Parallel (RTE + RRTMGP;
Pincus et al., 2019), has a default k-distribution with 224 shortwave and 256 longwave g-points, generated using
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a fixed spectral discretization, but later added more optimized k-distributions with just 128 longwave and 112
shortwave g-points. Algorithms that directly tie the spectral discretization to radiative accuracy (e.g., Hogan &
Matricardi, 2022; Sekiguchi & Nakajima, 2008) typically produce more compact k-distributions. For example,
Sekiguchi and Nakajima (2008) produced a k-distribution with just 40 g-points for shortwave and longwave
radiation combined, suitable for current climate conditions. Recently, Hogan and Matricardi (2022) generated
k-distributions with just 16 g-points they considered accurate enough for short-term weather forecasts and
k-distributions with 32 g-points that produced accurate greenhouse gas forcings. In the aforementioned stud-
ies, k-distributions were optimized against highly accurate line-by-line models (Clough et al., 2005), using radia-
tive metrics such as downwelling surface fluxes, upwelling top-of-atmosphere (TOA) fluxes, or radiative heating
rates (see cost functions in Sekiguchi and Nakajima (2008), Hogan and Matricardi (2022)).

The extent to which errors in radiative fluxes or heating rates affect the outcome of atmospheric simulations
may be very application specific. Large-scale climate simulations, in which small radiative imbalances due to
enhanced concentrations of greenhouse gases can accumulate over long time periods, are likely sensitive to small
errors in radiative fluxes that may arise when approximating the spectral integration (Chung & Soden, 2015;
Zhang & Huang, 2014). The sensitivity of cloud-resolving simulations such as large-eddy simulations (LES)
is likely much smaller because these simulations have short integration times, typically one diurnal cycle up to
a couple of days (e.g., Gristey et al., 2020; Seifert et al., 2015). Furthermore, in marine LES cases, sea surface
temperatures or surface heat fluxes are often fixed and thus not even coupled to the surface irradiance (Klinger
et al., 2017; Wing et al., 2018). Pincus and Stevens (2009) have shown that even relatively large random spatio-
temporal noise in radiative heating rates, arising from their Monte Carlo approach to spectral integration, does
not significantly affect the cloud and turbulence statistics of a stratocumulus LES.

In this study, we further explore the link between radiative metrics and simulation accuracy using three different
numerical experiments: (a) radiative-convective equilibrium (RCE), (b) shallow convection over the tropical
ocean and (c) shallow convection over land. Our focus here is on LES, where we expect a low sensitivity of
simulation accuracy to radiative accuracy and thus a large potential for speeding up simulations by reducing the
size of the k-distributions. LES are typically used to compute the statistics of turbulent atmospheric flows under
idealized conditions, so we are concerned with the mean properties of the simulations rather than specific flow
features. To allow radiative transfer computations with different degrees of accuracy, we first create smaller sets
of g-points from an existing k-distribution by repeatedly combining adjacent g-points while minimizing a cost
function composed of radiative metrics. A number of reduced k-distributions are then implemented in the simu-
lations, where we study either the long-term mean cloud properties and state of the atmosphere (RCE), or the
transient behavior of the shallow cumulus cloud fields. Whereas Pincus and Stevens (2009) studied the effects
of spectral noise at short spatiotemporal scales, our focus here is on the impact of systematic biases in radiative
heating rates resulting from the reduction in the spectral detail of the k-distributions. By comparing simulations
performed with k-distributions of different accuracies, we can better understand where the optimal balance lies
between computational performance and radiative accuracy for cloud-resolving LES.

In Section 2, we describe the optimization algorithm used to produce smaller k-distributions as well as the result-
ing k-distributions used further in this study. The numerical LES experiments are described in Section 3. The
results are shown in Section 4 and in Section 5 we provide a discussion and short conclusions.

2. Reducing the Number of g-Points

We generate smaller sets of g-points to lower the spectral detail in gaseous optical properties resolved by the
radiative transfer scheme and thus its accuracy. Instead of developing k-distributions from scratch (e.g., Hogan &
Matricardi, 2022; Pincus et al., 2019; Sekiguchi & Nakajima, 2008), we create smaller k-distributions by combin-
ing adjacent g-points (Appendix Al), starting from the k-distributions of Pincus et al. (2019). This procedure
of combining g-points is similar to how RRTMG was constructed from its predecessor RRTM (not well docu-
mented, but an overview of RRTM and RRTMG is given by Iacono et al. (2008)). Rather than manually selecting
which g-points are combined, we use an exhaustive and greedy optimization approach to iteratively reduce the
number of g-points. At each iteration, the cost function (Appendix A2) is computed for every possible g-point
merging and the merging which increases the costs least is chosen for the next k-distribution with one g-point
fewer. This procedure is repeated until no more g-point combinations are possible, that is, one g-point remains in
each spectral band. Cloud optical properties are computed per spectral band in RRTMGP and therefore unaffected
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Table 1

by our optimization, because we retain the same bands as RRTMGP and only

Overview of the Radiative Metrics (Downwelling Surface Irradiance, combine g-points within spectral bands.
Upwelling Top-Of-Atmosphere (TOA) Irradiance, Atmospheric Heating
Rates) Used in the Three Cost Functions (cf) Are Explored in This Study An advantage of our optimization procedure is its simplicity and computa-

Surface irradiance

TOA irradiance i s tional efficiency. However, we can not add spectral detail beyond what is

cfl
cf2
cf3

contained in the reference k-distributions of RRTMGP and may not produce
2 the most optimal k-distribution because the algorithm simply searches the
X X local minimum at each iteration. Our reduced sets of g-points are neverthe-

X (>100 hPa) less useful to explore the link between radiative and simulation accuracy,

which is the focus of this study. Producing new k-distributions directly from

high-resolution spectroscopic databases (e.g., Rothman et al., 2005) likely
enables a more efficient distribution of g-points and thus a smaller k-distribution to achieve the same accuracy
(see e.g., Hogan & Matricardi, 2022; Sekiguchi & Nakajima, 2008). Finding the most optimal k-distribution,
however, is beyond the aim of this study.

In this study, we explore three cost functions (Table 1) that are designed to minimize normalized root mean
squared errors of a set of radiative metrics (e.g., surface irradiance, upwelling TOA irradiance, heating rates) with
respect to line-by-line computations (LBLRTM; Clough et al., 2005). The first cost function (cf1) is motivated
by simulations with fixed surface temperatures or heat fluxes (e.g., marine cases; Siebesma et al., 2003; van
Zanten et al., 2011; Wing et al., 2018), and therefore accounts only for errors in atmospheric heating rates. The
second cost function (cf2) is designed for simulations with a stronger surface coupling or simulations with long
integration times (weeks, months), in which the net radiation balance of the atmosphere plays a larger role. This
cost function optimizes for atmospheric heating rates as well as surface and TOA irradiances, the same radiative
metrics used by Hogan and Matricardi (2022) to produce new k-distribution directly from line-by-line absorption
data. The last cost function (cf3) is aimed at typical LES experiments with a limited vertical extent and therefore
optimizes only for surface irradiance and tropospheric heating rates (>100 hPa).

Ideally, the optimization of k-distributions is directly based on interactive simulations of the atmosphere. Instead
of relying solely on radiative metrics, cost functions would then be additionally composed of metrics based on
for example, cloud statistics or thermodynamic quantities such as temperature and humidity. However, this would
be computationally extremely expensive since it requires a new simulation for each possible combination of
g-points. Our approach therefore still relies on radiative metrics, chosen in consideration of simulation accuracy
for different types of LES simulations.

We optimize of the set of 42 Garand et al. (2001) clear-sky atmospheres, consistent with how the k-distributions
of RRTMGP were developed. These atmospheric profiles cover a wide range of atmospheric conditions for
temperature, water vapor, ozone as several other gases, from 1013.25 hPa up to 0.1 hPa, with constant concentra-
tions of CO,, O,, and N,. The same set of profiles was used by Pincus et al. (2019) construct their k-distributions,
but with some data augmentation to also take the radiative forcing of several greenhouse gases into account.
The 100 atmospheric profiles chosen by the Radiative Forcing Model Intercomparison Project (REMIP; Pincus
et al., 2016) provide out-of-sample data to evaluate the cost functions based on the radiative metrics. During the
optimization and evaluation, radiative fluxes are computed using a two-stream method for shortwave radiation
and a no-scattering solution with three Gaussian quadrature angles for longwave radiation (Pincus et al., 2019).

The progressive changes in costs during the g-point reduction are shown in Figure 1. The initial costs and the change
therein with each iteration step, that is, one combination of adjacent g-points, strongly depend on the chosen radi-
ative metrics (Figure 1). The costs initially decrease after each iteration step, suggesting that the first couple of
reduced k-distributions are slightly more accurate than the original k-distribution. After this initial decrease, the
costs remain relatively constant for ~100 iterations, after which they start increasing rapidly (note the logarithmic
vertical axis). The initial insensitivity of the costs to the number of g-points is likely because of the fixed spectral
resolution that was used to generate the k-distributions of RRTMGP, meaning that these k-distributions already
have some redundant spectral detail that does not contribute significantly to the accuracy of RRTMGP. More-
over, we relieved some of the constraints used in the development of RRTMGP, such as the need to provide
accurate radiative forcings due to increased greenhouse gas concentrations. The relative errors of most of the
k-distributions, including the initial k-distributions, are higher in the out-of-sample evaluation with the RFMIP
profiles than with the Garand profiles (Figure 1). However, the costs computed from either the Garand or the
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Figure 1. Costs averaged over each radiative metric (see Table 1) (a, b), mean absolute error (MAE) of downwelling surface
irradiance (c, d), MAE of upwelling top-of-atmosphere irradiance (e, f), and MAE of atmospheric heating rates (g, h), as
function of the remaining number of shortwave (left) or longwave (right) g-points for each cost function. Solid lines are
computed with the 42 Garand et al. (2001) profiles used for the optimization, dotted lines with the 100 Radiative Forcing
Model Intercomparison Project (Pincus et al., 2016) profiles as out-of-sample evaluation.

REMIP profiles show a similar trend, indicating that the optimization results can be generalized beyond the
Garand atmospheres.

Including surface and TOA irradiance in the cost function generally improves the accuracy of these radiative
fluxes, but slightly degrades the accuracy of the atmospheric heating rates (Figure 1). Optimizing for only surface
irradiance and tropospheric heating rates also improves the TOA irradiance in the longwave spectrum, but results
in worse TOA irradiances in the shortwave spectrum. The heating rate errors are computed from the full vertical
extent of the RFMIP and Garand profiles, and consequently larger for the cost function that only considers trop-
ospheric heating rates.

3. Numerical Experiments

To study the sensitivity of simulation accuracy to radiative accuracy, we perform a number of LES using the
MicroHH (van Heerwaarden et al., 2017) model coupled to a C++ front-end of RTE + RRTMGP for radiative
transfer. Based on the results of the optimization procedure (Section 2), a number of reduced longwave or short-
wave k-distributions are chosen from each cost function. Simulations performed with the k-distributions (224
shortwave, 256 longwave g-points) provided by Pincus et al. (2019) serve as reference.

We use three LES experiments that differ in initial and background conditions as well as variables and statistics
of interest. The first experiment is the radiative-convective equilibrium (RCE), a slowly developing equilibrium
between radiative cooling and (deep) convection, where our main focus is on capturing the mean state of the
atmosphere. The simulations follow the RCE Model Intercomparison Project (RCEMIP; Wing et al., 2018, 2020)
specifications for LES, with a horizontal domain of 48 X 48 km? a horizontal resolution of 200 X 200 m? and a
fixed sea surface temperature (SST) of 300 K. The RCE simulations are run for 50 days and analyzed based on
hourly output of the last 10 days. We do not use k-distributions produced with cost function 3 (cf3; Table 1) in the
RCE experiment since its domain extends far above the troposphere. Since the SST is fixed, any improvements
in surface irradiance by including it in cost function 2 will not directly impact the simulations. However, adding
multiple terms to the cost function slightly deteriorates the accuracy of the heating rates (Figure 1) after a given
number of iterations in the optimization, which may affect the RCE simulations.
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The second and third experiments focus more on the shorter-term (e.g., diurnal) variability. The second experi-
ment (RICO) is based on the Rain in Cumulus over the Ocean (Rauber et al., 2007) case described by van Zanten
et al. (2011), which has a fixed SST of 299.8 K. However, we use a domain of 48 X 48 X 6 km?, a resolution of
100 x 100 x 20 m?, a longer simulation period of 30 hr and we neglect the 2.5 K d~' large scale cooling originally
prescribed by van Zanten et al. (2011) because we use interactive radiative transfer, comparable to the irad-
zero experiment of Seifert et al. (2015). The third experiment (Cabauw) is based on a case developed and
thoroughly compared to observations by Tijhuis et al. (2022); a summer day (15 August 2016) in Cabauw, the
Netherlands, with shallow cumulus clouds developing in the afternoon. The Cabauw simulations are run from 6
to 18 UTC (8-20 local time), with a domain of 24 X 24 X 8.5 km?, a horizontal resolution of 50 X 50 m? and a
stretched vertical grid from 20 m at the surface to 95 m near the domain top. Initial and boundary conditions are
obtained from the ERAS reanalysis (Hersbach et al., 2020).

To account for radiative effects such as ozone absorption above the shallow domains of the Cabauw and RICO
simulations, we first compute radiative fluxes based on one-dimensional background profiles of temperature,
water vapor, ozone, and other gases. The downwelling radiative fluxes at the domain top are then used as bound-
ary conditions for the radiative transfer computations in the simulation domain. The background profile of the
Cabauw simulations is obtained from the ERAS reanalysis, the background profile of the RICO simulations is
based on the RCEMIP specifications.

In the RCE experiment, we parametrize microphysics using the six-class microphysics scheme of Tomita (2008)
and the sedimentation parametrization of Stevens and Seifert (2008). In the Cabauw and RICO experiments, we
use the two-moment warm cloud parametrization of Seifert and Beheng (2006) because clouds are too warm for
ice to develop.

To understand how radiative accuracy propagates to simulation accuracy, we first need to define the latter.
However, choosing appropriate metrics to assess simulation accuracy is challenging. For example, Pincus and
Stevens (2009) argued that random radiative heating rates errors introduced by Monte Carlo spectral integration
are acceptable as long as the most energetic eddies are unaffected. Since our focus is on LES of convective clouds,
we choose to primarily compare statistical cloud properties between simulations. For the RCE simulations, we
therefore compute mean liquid and ice water paths (LWPs, IWPs), liquid water and ice cloud Covers (CCyiqyig» €Cice)s
and mean cloud radiative effect (CRE) over the last 10 days of each simulation. The CRE serves as an integral
measure of the accuracy of the simulated cloud properties because it depends on LWP, IWP, cc;; 4 and ¢, As
we do not modify the spectral bands of RRTMGP, the per-band defined cloud optical properties are not changed
and do not directly contribute to any biases in CRE. In addition to cloud properties, we examine more convective
metrics such as vertical turbulent temperature fluxes and vertical velocity variances. For the simulations of the
RICO and Cabauw experiments we mostly use a subset of the quantities we consider in the RCE simulation. As
the focus in these experiments is on the shorter-term variability, we compare time series rather than temporal
averages. For the RICO simulations, we compare time series of mean LWP and cloud cover, precipitation statis-
tics, and vertical velocities. For the Cabauw simulations, we consider mean LWP and cloud cover, as well as
surface latent and sensible heat fluxes.

4. Spectral Accuracy in Large-Eddy Simulations
4.1. Heating Rates and Radiative-Convective Equilibrium Solutions

For the RCE simulations, we first take five reduced k-distributions each from cost functions 1 and 2 for both
longwave and shortwave radiation and perform a simulation with each reduced k-distribution. We select the
k-distributions with the lowest costs and the smallest k-distributions whose costs do not exceed that of the
initial k-distribution. Additionally, we use the k-distributions after 100, 200, and 220 iterations (156, 56, and 32
g-points, respectively) for longwave and after 100, 175, and 190 iterations (124, 49, and 34 g-points, respectively)
for shortwave radiation. These k-distributions at a fixed number of iterations are chosen as exploration and help
to assess to what extent the specific radiative metrics that are optimized for affect simulation accuracy after a
given number of iterations.

Reducing the number of g-points results in larger radiative heating rate biases and larger deviations in cloud
statistics from the Reference simulation (Figures 2a—2d, e-h). The accuracy of the mean shortwave heating
rates is generally affected more than the accuracy of the mean longwave heating rates. We hypothesize that this
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h, m), liquid water path (LWP; d, i, n), and cloud radiative effect (CRE; e, j, 0) against shortwave (a—e), longwave (f—j)

and total (k—o) tropospheric (<15.5 km) radiative heating rates for all radiative-convective equilibrium
simulations with reduced k-distributions for shortwave radiation (a—e), longwave (f—j) radiation, or both (k—0). CRE shows the
combined shortwave and longwave effect of clouds on the upwelling top-of-atmosphere irradiance, negative values indicate
less radiation escaping to space. All metrics are averaged over the last 10 days (day 40-50) of each simulation. The dashed
horizontal lines show the 25th-75th percentile range of Reference to indicate the typical temporal variability of the cloud
statistics. Linear trendlines (solid lines) are shown for visual guidance.
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Figure 3. Vertical profiles, averaged over the last 10 days, of absolute temperatures (7) and deviations thereof (AT) from
Reference forall radiative-convective equilibrium simulations with reduced k-distributions for (a)
shortwave, (b) longwave, and (c) both shortwave and longwave. The shaded area shows the 5-95th percentile range of the
temporal variability, based only on the Re ference simulation.

is because in the shortwave spectrum only the absorption is affected when the number of g is reduced, whereas
in the longwave spectrum both absorption and emission are affected, which leads to compensating errors. Addi-
tionally, any deviation in longwave heating rates due to a reduced number of g-points may be partly compensated
by differences in the vertical temperature profile arising from these deviations. Simulations with reduced short-
wave k-distributions show strong correlations of mean shortwave radiative heating rates with cc, . (correlation
coefficient p = —0.86), IWP (p = —0.73), and LWP (p = —0.94), whereas simulations with reduced longwave
k-distributions show strong correlations of mean longwave radiative heating rates with cc,,, (p = 0.68), LWP
(p = —0.83) and CRE (p = —0.63). If we only compare the simulations with the three largest k-distributions,
however, the correlation between deviations in heating rates and deviations in cloud properties is much less clear.
Except with the smallest k-distributions (-sw034, -1w036), differences in cloud properties between the simu-

lations are well within the temporal variability of Reference.

Among the smallest shortwave and longwave k-distributions, cost function 2 consistently produces the largest
heating rate errors, consistent with a cost function that minimizes errors in both heating rates and boundary
fluxes. However, neither cost function seems to produce consistently more accurate k-distributions in terms of
cloud properties than the other, which suggests a relatively small sensitivity of simulation accuracy to the chosen
cost function. In simulations with interactive surface heat fluxes, rather than a fixed SST, we may expect a larger
sensitivity to including surface irradiance in the cost function.

We consider a detailed analysis of the physical mechanisms that relate heating rate errors to differences in cloud
properties out of scope. Nevertheless, it is important to note that causal relationships between radiative heating
rates and cloud properties can be bidirectional: radiative heating affects clouds formation by modifying the verti-
cal temperature distribution, while clouds modify the vertical structure of radiative heating by locally enhancing
the absorptivity and emissivity of the atmosphere. For example, the correlation between longwave heating rates
and cc,, (Figure 2f) is likely driven to a large extent by the enhanced trapping of longwave radiation in the trop-
osphere in simulations with higher mean ice cloud covers.

To further compare the simulations, we examine vertical profiles of absolute temperature 7 and specific humidity
g, (Figures 3 and 4). Errors in the T and ¢, profiles with respect to Reference are mostly about two orders of
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Figure 4. Vertical profiles, averaged over the last 10 days, of specific humidity (¢¢) and deviations thereof (Agt) from
Reference forall radiative-convective equilibrium simulations with reduced k-distributions for (a)
shortwave, (b) longwave, (c) and both shortwave and longwave. The shaded area shows the 5-95th percentile range of the
temporal variability, based only on the Reference simulation.

magnitude smaller than their means. In the lower atmosphere (below 12 km), only the simulations with the small-
est k-distributions (-sw034, -1w036) have temperature and humidity errors exceeding 0.3 K and 0.1 g kg7,
respectively. In the upper atmosphere, temperature errors are up to 4.6 K with the smallest k-distributions and
errors in relative humidity (not shown) are up to about 20%. In RCE, however, stratospheric temperature and
humidity errors do not significantly impact the dynamics of the troposphere and are therefore not considered
relevant for the metrics, that is, cloud cover and water path, we use to assess simulation accuracy. Since the focus
of this study is on producing accurate cloud statistics, we mainly consider the lower atmosphere.

To study the combined effect of lowering the accuracy of shortwave and longwave computations, we perform four
additional simulations with the second and third smallest longwave and shortwave k-distributions of cost functions
1 and 2 (Figures 2i-21, 3c, 4c*-?'). Deviations in cloud properties are similar to the deviations found in the simu-
lations where either the shortwave or the longwave k-distribution was reduced. However, the vertical profiles of
T and g, show larger errors than the corresponding simulations with only one reduced k-distribution, which could
be expected from Figures 2a—2h: tropospheric shortwave and longwave heating rates both increase (i.e., more
warming, less cooling) when the number of g-points in the respective k-distributions is reduced, so the impact of
both on the T and g, profiles add up. In the troposphere, only c£f1-1w082-sw074 and c£f2-1w107-sw083
are still within the 5-95th percentile range of Reference and in the stratosphere, all four simulations are
generally outside this range. The simulations using k-distributions based on cost function 2 produce lower cloud
condensates, lower vertical velocity variances and a weaker vertical liquid water vertical potential temperature
flux in the upper troposphere (8—12 km) (Figure 5). This indicates a minor degradation in simulation accuracy to
including surface and TOA irradiance to the cost function rather than optimizing solely for atmospheric heating
rates: due to their fixed SST, the RCE the simulations do not respond to errors in surface irradiance.

4.2. Shorter-Term Impact of Radiative Accuracy

In contrast to the RCE experiment, our focus in the RICO and Cabauw experiments is on accurately captur-
ing the transient behavior of the atmosphere. In both experiments, we use the combined longwave and
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Figure 5. Vertical profiles, averaged over the last 10 days, of (a) total cloud condensate (liquid water and ice) (¢,), (b)
vertical velocity variance (w?), (c) vertical liquid water potential temperature flux (w_9,>, and respective deviations (Aq,, Aw?,

Aw_H,) from Reference forall radiative-convective equilibrium simulations with reduced k-distributions for
both shortwave and longwave. The shaded area shows the 5-95th percentile range of the temporal variability, based only on
the Reference simulation.

shortwave k-distributions (cf1-1w082-sw074, cfl-1w056-sw049, cf2-1wl07-sw083,
cf2-1w056-sw049), and additionally two sets of k-distributions from cost function 3 (surface irradiance and
tropospheric heating rates), because in both experiments the whole dynamical domain is within the troposphere
(>100 hPa),

In the RICO simulations with reduced k-distributions, simulated cloud properties, rain rates, and vertical velocity
variances generally follow the same trend as in the Reference simulation. Also, temporal fluctuations within
each simulation are almost an order of magnitude larger than mean differences between the simulations. For
example, the largest deviation in mean rain rate from Reference is 4.8 g m=2 hr™! (cf3-1w076-sw066),
while temporal fluctuations are over 50 g m~2 hr~. In Section 5, we further discuss the interpretation of differ-
ences in cloud and rain properties between simulations. Mean surface irradiances in the RICO simulations differ
up to 3.5 W m~2 for shortwave and between 7.0 W m~2 for longwave radiation, but note these surface irradiance
errors do not directly impact cloud evolution in these simulations due to the fixed SST.

Interestingly, most simulations have peaks in the precipitation rate over 25 g m~2 hr~! higher than the highest
precipitation rate in Reference and half have peaks more than twice as high as the highest precipitation rate
in Reference (=50 g m~2 hr~'). Whether this is an effect of the reduced accuracy in radiative heating rates,
or an artifact of potentially having a too small domain size or too short simulation period, is not clear. Using
comparable simulations of RICO, but with a slightly larger domain of 51.2 x 51.2 X 5 km?, a resolution of
25 X 25 x 25 m? and varying cloud droplet densities, Seifert et al. (2015) already showed that with interactive
radiation their simulations may take over 30 hr to reach a quasi-equilibrium and continue to have temporal fluc-
tuations up to about 50 g m~2 hr~!. The 30 hr simulation period together with the 48 x 48 km? horizontal domain
used in our RICO simulations may therefore be insufficient to have fully reached statistical convergence.

We find similar results for the Cabauw experiment: despite mean shortwave and longwave irradiance errors of up
to —5.5 and 4.8 W m~2, respectively, deviations in cloud properties and surface heat fluxes between simulations
with reduced k-distributions and the Reference simulations are generally small compared to temporal fluc-
tuations (Figure 7). Again, these short-term fluctuations are presumably the result of not yet reaching statistical
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convergence with the 24 x 24 km? horizontal domain used in the Cabauw simulations. Nevertheless, there is a
small bias as simulations with larger irradiance errors tend to produce fewer and smaller clouds: averaged between
9:30 and 13:30 UTC, the difference in cloud cover and LWP between Reference and c£3-1w056-sw049
are about 1.2% and 1 g m™2, respectively, which is approximately of the same order as the largest short term
fluctuations in the simulations.

Overall, all six combinations of reduced longwave and shortwave k-distributions produce simulations with rela-
tively small mean deviations in cloud properties, precipitation amounts and surface heat fluxes compared to tempo-
ral variability. If highly accurate surface irradiance predictions are required explicitly, the three smallest longwave
and shortwave k-distributions tested here would be less suitable. However, the accuracy of the radiative fluxes in
the RICO and Cabauw simulations may even be further improved by prescribing more accurate incoming fluxes
at the top of the domain (6 and 8.5 km, respectively) to reduce errors originating above the dynamical domain.

5. Radiation Errors in Context

In this study, we reduced the spectral discretization of clear-sky radiative transfer calculations to explore how the
spectral detail of radiative transfer computations affects cloud-resolving LES. Starting from the k-distributions
of Pincus et al. (2019), we first used an optimization algorithm that repeatedly combines adjacent g-points
while minimizing errors in radiative fluxes and heating rates. For three LES experiments with different cloud—
radiation coupling pathways, we then performed LES with a couple of reduced k-distributions to study how radi-
ative accuracy propagates to simulation accuracy: deep (RCE) and shallow (RICO) convection over the tropical
ocean, and shallow convection over land (Cabauw) in the mid-latitude summer. The majority of the evaluated
k-distributions did not cause major biases in the simulations, which suggests that even relatively large systematic
errors in spectral integration do not have a significant error on cloud-resolving simulations, especially on short
time scales. In RCE, where spectral integration errors can accumulate over longer time-scales, we do find a rela-
tively small degradation in the accuracy of simulated cloud properties as the accuracy of radiative heating rates
decreases. However, the impact of the reduced spectral accuracy on the RCE simulations may be dampened by
the use of a prescribed SST following the specifications of Wing et al. (2018) because it does not allow surface
irradiance errors to accumulate.

Whereas evaluating radiative accuracy is relatively straightforward using line-by-line computations of radiative
fluxes and heating rates, evaluating the simulations with reduced k-distributions requires choosing appropriate
metrics for simulation accuracy. Our focus is predominantly on the simulated cloud field properties, but we addi-
tionally compare precipitation statistics (RICO) and surface heat fluxes (Cabauw). The main difficulty is then
to establish what deviations from a reference simulation are within acceptable limits. This is the case especially
when no observations are available for validation (e.g., RCE, RICO) or when the reference simulations already
deviates quite strongly from observation, which is not uncommon for realistic LES (e.g., Brown et al., 2002;
Duynkerke et al., 2004; Gustafson et al., 2020; Tijhuis et al., 2022). In this study, we have used the temporal
variability within the Re ference simulations to put the mean differences between simulations into context. In
simulations with 3—4 times smaller k-distributions, mean deviations in cloud properties remain relatively small
compared to the temporal variability. However, the large temporal variability in our simulations (e.g., Figure 6),
presumably a consequence of the relative small horizontal domains, also limits the interpretability of our results.
In future work, our reduced k-distributions should therefore be evaluated in simulations with significantly larger
horizontal domain sizes to improve statistical convergence. Given that the magnitude of the temporal variability
can largely depend on the chosen domain size, however, comparing mean biases and temporal fluctuations in
cloud properties may then still not be the most optimal metric for evaluating k-distributions.

Multiple model intercomparison studies (Siebesma et al., 2003; van Zanten et al., 2011; Wing et al., 2018, 2020)
have shown that different LES models, which have varying numerical implementations of for example, advection,
diffusion and microphysics, may produce a large spread in the predicted evolution of the atmosphere, often with
no clear indication of what model is most accurate. Even with the smallest k-distributions (-sw034, -1w036),
deviations in the vertical profiles of T and g, with respect to Reference are mostly within the uncertainty
range of the RCEMIP ensemble (Wing et al., 2020), indicating that the sensitivity to the spectral discretization
may be rather low compared to the sensitivity of simulations to other parametrizations. Differences in mean
cloud properties between our RCE simulations are also smaller than the ensemble spread reported by Wing
et al. (2020). Furthermore, in comparable simulations of RICO, but without interactive radiative transfer, Seifert
et al. (2015) noted that just changing the random seed may significantly delay the onset of precipitation and the
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Figure 6. Time series of (a) liquid water path (LWP), (b) rain rate (rr), (c) Shortwave surface irradiance (SW |), (d) liquid
water cloud cover (ccliqmd), (e) vertical velocity variance (w?) and (f) longwave surface irradiance (LW |) for the reference
RICO simulation and the six RICO simulations with reduced longwave and shortwave k-distributions. w? is taken at

z =200 m, which is the height with the highest w? within the subcloud layer. The first 6 hr are considered spin-up time to
allow the turbulence to stabilize sufficiently (see e.g., van Zanten et al., 2011).

transition to a quasi-stationary precipitation regime by several hours. We performed a small sensitivity test (not
shown) by repeating the reference simulation of each experiment with fifth order interpolation in the advection
scheme, instead of 3rd (RCE) or fourth (RICO, Cabauw) order interpolation, and found that changing the
advection scheme can have a substantially larger impact on simulated cloud properties than using the smallest
k-distributions tested in this study. Variations in cloud and rain properties due to reduced k-distributions may thus
be significantly smaller than variations due to other numerical choices. However, this does not imply that the
sensitivity to any other numerical implementations provides an upper bound for what errors in the simulations
should be tolerated.

Based on three numerical experiments with either deep or shallow convection, our results show potential for a
strong reduction in the number of g-points in cloud-resolving LES, which reduces computational costs or allows
more frequent radiative transfer computations. However, to further investigate the robustness of our results, the
impact of the reduced k-distributions on simulated cloud properties should be evaluated on a more diverse ensem-
ble of numerical experiments, for example, spanning a wider range of cloud types such as stratocumulus, fogs,
and cirrus. Moreover, the dominant physical mechanisms that propagate errors in radiative fluxes and heating
rates to errors in simulated cloud properties should be better understood.

Appendix A: Optimization Method
Al. Combining g-Points

Two g-points within the same band are combined by computing the weighted averaged absorption (k

abs
rayleigh scattering (k) coefficients

) and
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Figure 7. Time series from 9:30 UTC to 13:30 UTC of (a) liquid water path, (b) latent heat flux (LE), (c) shortwave surface
irradiance (SW |), (d) liquid water cloud cover (ccliquid), (e) sensible heat flux (H) and (f) longwave surface irradiance (LW |)
the reference Cabauw simulation and the six Cabauw simulations with reduced longwave and shortwave k-distributions.

kiw; + kjw;
kij = I e [Kpapts ]
w; + w;

and adding the Planck fractions (f), solar source terms (S) and g-point weights w added:
fis = fi+ fi,
Sii =S+,
wij = w; + w;.

Here, subscripts 7 and j indicate the ith and jth g-points within a spectral band and in our optimization method
Jj =i+ 1 because we only combine adjacent g-points. w which is the fraction of the cumulative probability func-
tion g(k , ) represented by each g-point. The Planck fraction is the fraction of the band's Planck source function
at each g-point.

abs

A2. Cost Function

The accuracy of each k-distribution is assessed by computing a predefined cost function C,
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where N oty N,

fluxes) in the cost function, the number of vertical levels for each radiative quantity and the number of atmos-

N, are the number of radiative quantities (e.g., heating rates, surface fluxes, top of atmosphere

ev?

pheric profiles or columns used for the evaluation. F and F are the fluxes or heating rates computed with the
k-distribution and with the line-by-line radiative transfer model (Clough et al., 2005), respectively.

The root mean square errors of radiative heating rates are computed and normalized for each vertical layer sepa-
rately. While this approach may break in narrow spectral intervals, where heating rates are zero in some vertical
layers, we only consider broadband fluxes and heating rates.
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