
1.  Introduction
Bright low clouds cover substantial areas of dark tropical oceans and play a critical role in regulating the Earth's 
radiative energy budget (Bony & Dufresne, 2005; Cesana & Del Genio, 2021; Schneider et  al.,  2017). They 
reflect a substantial portion of the incoming sunlight back to space and thus exert a profound cooling effect on 
the Earth's climate. Climate models, however, have a longstanding problem simulating these clouds, which limits 
our ability to accurately predict the amount of global warming caused by rising greenhouse gas emissions (Bony 
& Dufresne, 2005; Sherwood et al., 2020).

A major issue, which persisted in previous generations of climate models of the World Climate Research 
Programme's Coupled Model Intercomparison Project (CMIP), is known as the “too few, too bright” tropical 
low-cloud problem (Nam et al., 2012). In brief, climate models commonly underestimated the amount of tropi-
cal and subtropical low-level clouds (e.g., Cesana & Chepfer, 2012; Cesana & Waliser, 2016; Cesana, Waliser, 
et al., 2019; Teixeira et al., 2011) and simultaneously overestimated their reflectance (e.g., Karlsson et al., 2008; 
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Plain Language Summary  Similar as white snow and ice caps, bright low clouds have a high 
shortwave albedo, reflecting a huge amount of sunlight back to space and thereby helping us counteract global 
warming. The shadowing effect of bright low clouds is especially pronounced over tropical oceans, since 
equatorial regions of our planet receive most sunshine, which is in clear skies otherwise practically entirely 
absorbed within the contrastingly dark ocean. Climate models had traditionally struggled simulating these 
clouds by underestimating their areal extent and simultaneously overestimating their reflectivity. In other 
words, simulated clouds were commonly found to be “too few” and “too bright” compared to observations, 
which introduced a substantial uncertainty to climate projections. Herein, we proposed a novel approach to 
proficiently decompose tropical low cloudiness into stratocumulus and shallow cumulus regime, which is 
essential to provide a proper guidance for climate model development. We subsequently showed that the newest 
generation of climate models still suffers from the “too few, too bright” tropical low-cloud problem within both 
stratocumulus and shallow cumulus regimes, which thus needs to be further tackled with the greatest possible 
endeavor.
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Nam et al., 2012; Weare, 2004). In the present study, we revisit the “too few, too bright” tropical low-cloud prob-
lem in latest climate models participating in Phase 6 of CMIP (CMIP6; Eyring et al., 2016b), which are currently 
being evaluated as a community effort (Schuddeboom & McDonald, 2021; Tselioudis et al., 2021).

Satellite observations have been regularly exploited to assess the fidelity of climate models (e.g., Cesana & 
Chepfer, 2012; Cesana, Waliser, et al., 2019; Dolinar et al., 2015; Jiang et al., 2012; Pincus et al., 2008), being 
especially valuable due to their extensive coverage. Evaluating clouds (and other fields) simulated by global 
climate models (GCMs) using satellite observations, however, is challenging, because satellite-borne instruments 
do not directly measure meteorological quantities of interest as simulated by GCMs. In order to facilitate the 
comparison between observed and model-simulated fields, the Cloud Feedback Model Intercomparison Project 
(CFMIP) community introduced the CFMIP Observation Simulator Package (COSP; Bodas-Salcedo et al., 2011; 
Swales et al., 2018). Given the atmospheric data provided by a GCM, the COSP software reproduces observa-
tions of multiple instruments on board of various satellite missions such as CloudSat (Stephens et al., 2002) and 
Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; Winker et al., 2010) within the 
A-train constellation (Stephens et al., 2002, 2018).

To summarize, the objective of the present study is to employ satellite observations to evaluate tropical low 
clouds together with their radiative effect at the top of the atmosphere (TOA) in a subset of CMIP6 models. In 
particular, we strive to assess model representation of individual low-cloud regimes commonly found in tropical 
areas of large-scale subsidence—namely the eastern ocean stratocumulus (Sc) and trade wind shallow cumu-
lus (Cu). These essentially contrasting cloud types are driven by a distinct interplay of small-scale processes 
within the moist marine boundary layer—convection, turbulence, radiation, and cloud microphysics (Ackerman 
& Toon, 1996; Ackerman et al., 1993, 2000, 2009; Stevens et al., 2001), which are often poorly and inconsist-
ently parameterized across climate models (Bony et al., 2015; Klein et al., 2017; Randall et al., 2003; Stevens & 
Bony, 2013). A cloud regime-oriented model evaluation would help identify shortcomings of physical param-
eterization schemes, which govern the formation and evolution of Sc and Cu clouds, and is thus a crucial first 
step toward more reliable climate change projections. Furthermore, Sc and Cu clouds exhibit a fundamentally 
contrasting response to the change in their controlling meteorological factors such as rising sea surface temper-
ature and low-level inversion strength and are associated with different feedbacks (Cesana & Del Genio, 2021), 
which highlights the importance of a regime-based investigation. Accurate representation of geographical distri-
butions of Sc and Cu clouds is thereby essential for realistic low-cloud feedbacks (Cesana & Del Genio, 2021).

To carry out such a cloud regime-oriented evaluation of climate models, however, one has to find a qualitative 
way to separate Sc from Cu, because CMIP diagnostics do not distinguish between stratiform and convective 
cloud covers. A classic way to separate Sc from Cu clouds in tropical and subtropical areas of large-scale subsid-
ence is by means of the estimated inversion strength (EIS), which is known to be a good predictor of stratocu-
mulus (Wood & Bretherton, 2006). Even though this approach generally works well in the real world, it has 
limitations when applied to climate models which misrepresent EIS. An important aim of the present work is to 
introduce a novel Sc-Cu categorization, which can be utilized to reliably separate contributions from Sc and Cu 
clouds in both observations and climate models.

The remainder of this paper is structured as follows. Section 2 presents observational, reanalysis, and CMIP6 
data as well as various approaches to discriminate Sc from Cu. The evaluation of climate models using the Sc-Cu 
categorization introduced in this study is carried out in Section 3. A brief summary and concluding remarks are 
given in Section 4.

2.  Data and Methods
2.1.  Satellite Observations and Reanalysis Data

We utilize low-cloud cover (LCC) observations from the GCM-Oriented CALIPSO Cloud Product version 2.9 
(CALIPSO-GOCCP; Cesana et al., 2016; Chepfer et al., 2010a), which was specifically designed to evaluate 
cloudiness simulated by GCMs using a lidar simulator. It is based on measurements taken by the CALIPSO 
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et  al., 2010). We restrict our analysis 
to subsidence regimes over tropical and subtropical oceans (between 35°S and 35°N), where the pressure 
vertical velocity at 500 hPa exceeds 10 hPa day −1. In these regions, the amount of high cloud is small and 
hence generates less attenuation of the lidar signal, thereby reducing the high-cloud shielding effect. Although 
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CALIPSO-GOCCP global and tropical LCCs are very similar to other satellite observations both quantitatively 
and qualitatively (Cesana et al., 2019a; Chepfer et al., 2010a; Stubenrauch et al., 2013), CALIPSO-GOCCP 
detects more broken low clouds (typically shallow Cu; Cesana et  al.,  2019a). Some misdiagnosing of fully 
attenuated pixels as being clear sky might cause underestimation of the cloud fraction in the lowermost levels 
of CALIPSO-GOCCP (up to 25% of the Arctic boundary-layer cloud cases). However, this potential misdi-
agnosing does not affect 2D LCCs used here, because the uppermost cloud level is always detected (Cesana 
et al., 2016).

To discriminate Sc from Cu, we use the recently created Cumulus And Stratocumulus CloudSat-CALIPSO Data-
set (CASCCAD) described in detail by Cesana et al. (2019a). This unique algorithm considers cloud morphology 
to classify low cloudiness into several categories including Sc, Cu, and various transitioning regimes (broken Sc, 
Cu under Sc, and Cu with stratiform outflow) at the orbital level. CASCCAD reports monthly values of cloud 
fraction over a 10-year period (2007–2017) and has a spatial resolution of 2.5° in both latitudinal and longitudinal 
directions.

The observed cloud-radiative effect (CRE) estimates at TOA are obtained from the Clouds and the Earth's Radi-
ant Energy System (CERES) Energy Balanced and Filled (EBAF) satellite product Ed. 4.1 (Loeb et al., 2018a). 
Specifically, the CERES-EBAF clear-sky and all-sky radiative fluxes are employed to compute the CRE (the 
uncertainties are discussed in Section 4 of Loeb et  al.  (2018a)). In the present study, we consider solely the 
shortwave (SW) CRE component, since low clouds contribute minorly to the longwave TOA radiation budget.

The middle-tropospheric pressure vertical velocity at 500 hPa, which is used to define the subsidence regimes, is 
derived from averaging three reanalysis data sets including Modern-Era Retrospective Analysis for Research and 
Applications Version 2 (MERRA-2; Gelaro et al., 2017a), the fifth generation of ECMWF reanalysis (ERA-5; 
Hersbach et al., 2020) and the NCEP Department of Energy Atmospheric Model Intercomparison Project reanal-
ysis (NCEP-DOE R-2; Kanamitsu et al., 2002). The same three reanalysis data sets are employed to compute EIS. 
All data were regridded to the CASCCAD spatial grid.

2.2.  Climate Models

We analyze monthly mean output of CMIP6 climate model simulations, which relate to the Atmospheric Model 
Intercomparison Project (AMIP). The AMIP experiments use a prescribed sea surface temperature (and sea ice 
concentrations), which enables us to evaluate the atmospheric component of the fully coupled atmosphere-ocean 
models which are employed for climate change prediction. The LCC and CRE errors thereby originate from 
incomplete parameterizations of atmospheric processes (e.g., convection, cloud microphysics, boundary-layer 
turbulence, radiation) and not from sea surface temperature fields.

The CALIPSO lidar simulator (Chepfer et al., 2008) integrated in COSP is employed to consistently compare low 
cloudiness in observations and climate models. We investigate the realism of 12 model configurations stemming 
from different modeling centers given in Table 1, which provided the output of CALIPSO lidar simulator. To 
address the atmospheric variability within a vast GCM grid column, the COSP instrument simulator operates on 
a multitude of homogeneous subcolumns to reproduce satellite pixel variability. These subcolumns are normally 
produced within COSP in accordance with GCM's assumptions for subgrid cloud structure utilizing the Subgrid 
Cloud Overlap Profile Sampler (Webb et al., 2001). A few GCMs from the analyzed set employ COSP2 (Swales 
et al., 2018), whereby subcolumns can be adopted directly from a GCM, since they are often stochastically gener-
ated (Raisanen et al., 2004) within model's radiation scheme such as the commonly employed McICA algorithm 
(Pincus et al., 2003).

We employ 8 years of CMIP6 simulations (2007–2014), which overlap with the CASCCAD temporal range and 
regrid them to the observational spatial grid.

2.3.  Approaches to Discriminate Sc From Cu

As pointed out in Section 1, it is challenging to evaluate the representation of Sc and Cu in climate model output, 
since only a single LCC variable is archived in the CMIP database. In the following, we first summarize the 
traditional approach to separate Sc from Cu based on environmental characteristics and subsequently present an 
alternative, new categorization.
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2.3.1.  Categorization Based on EIS

A traditional approach to differentiate between individual low-cloud regimes in tropical and subtropical areas 
governed by large-scale subsidence is by means of some measure of lower-tropospheric stability (e.g., Myers 
et al., 2021; Nam et al., 2012), since regions of the main stratocumulus decks off the west coast of the continents are 
associated with stronger atmospheric stability than shallow cumulus areas in the trade winds. A convenient parame-
ter to describe low-level atmospheric stability is the EIS (Wood & Bretherton, 2006) and an EIS threshold of 1 K—
despite being imperfect (Cesana & Del Genio, 2021)—was commonly employed in previous work to determine 
whether (model) grid box is classified as being either Sc-dominated or Cu-dominated (e.g., Myers et al., 2021).

This categorization has additional shortcomings when applied to climate models. Figure 1 (left) shows probabil-
ity density of EIS in averaged reanalysis (combining MERRA-2, ERA-5, NCEP data) and CMIP6 models. All 
analyzed models systematically underestimate EIS implied by reanalyses, although they relatively well capture 
the shape of the EIS distribution. This large underestimation of EIS in CMIP6 models implies that the traditional 
Sc-Cu categorization utilizing a fixed EIS threshold of 1 K tends to allocate an insufficient amount of LCC to the 
Sc component, while attributing an excessive amount of LCC to the Cu component in models.

Figure 1.  (left) Probability density functions of estimated inversion strength in subsidence regimes of tropical oceans derived from reanalyses and CMIP6 models. 
(right) Relationship between LCC and EIS in observations/reanalyses and CMIP6 models. The vertical dashed line at EIS of 1 K marks the common threshold used to 
discriminate Sc from Cu.

Model acronym Modeling center References

NorESM2-LM Norwegian Climate Center, Norway Seland et al. (2020)

MIROC6 Center for Climate System Research, Japan Tatebe et al. (2019)

GISS-E2-1-G NASA Goddard Institute for Space Studies, USA Kelley et al. (2020)

BCC-CSM2-MR Beijing Climate Center, China Wu et al. (2019)

MRI-ESM2-0 Meteorological Research Institute, Japan Yukimoto et al. (2019)

GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory, USA Held et al. (2019)

IPSL-CM6A-LR Institute Pierre Simon Laplace, France Boucher et al. (2020)

CNRM-CM6-1 National Centre for Meteorological Research, France Voldoire et al. (2019)

CESM2 National Center for Atmospheric Research, USA Danabasoglu et al. (2020)

E3SM-1-0 US Department of Energy, USA Golaz et al. (2019)

HadGEM3-GC31-LL Met Office Hadley Centre, UK Andrews et al. (2020)

CanESM5 Centre for Climate Modeling and Analysis, Canada Swart et al. (2019)

Table 1 
List of Analyzed CMIP6 Models
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Figure 1 (right) additionally visualizes LCC as a function of EIS derived from observations/reanalyses and 
CMIP6 models. Observed LCC increases with an approximately constant rate of about 5% per K of EIS 
rise. Models have a differing ability to reproduce the rate of this increase, whereby multiple models strongly 
misrepresent the LCC-EIS relationship, making EIS not the ideal choice for discriminating among cloud 
types.

2.3.2.  Categorization Based on LCC

Herein, we propose a new approach to discriminate Sc from Cu, which is based on cloud properties and thus 
alleviates the aforementioned problem. This categorization originates from the idea that overcast Sc scenar-
ios typically have larger cloud cover than broken Cu cloud fields (Figure 2). In particular, we utilize the aver-
aged LCC in analyzed tropical subsidence oceanic regions in each monthly time step (LCCthres) to determine 
whether a grid box is dominated by Sc or Cu. The observed probability density functions (PDFs) of Sc-cloud 
and Cu-cloud cover derived from CALIPSO-GOCCP/CASCCAD namely exhibit a crossover approximately at 
this threshold. The observed (benchmark) Sc-cloud and Cu-cloud cover components (Figure 2, middle row) were 
thereby obtained from CALIPSO-GOCCP LCC data utilizing the relative frequency of occurrence (RFO) of a 
given cloud type derived from CASCCAD variables (e.g., RFOSc = FOSc/(FOSc + FOCu); where FO denotes the 
frequency of occurrence, and RFOCu = 1 − RFOSc) to determine whether grid box is classified as being either 
Sc-dominated (RFOSc > 0.5) or Cu-dominated (RFOSc ≤ 0.5). It should be noted that we thereby incorporated 
CASCCAD transitioning regimes into the Sc component, whereby their contribution to Sc-cloud cover is small 
(Cesana et al., 2019a). This action is further justified by the fact that Sc-Cu transitioning categories (“broken 
Sc,” “Cu under Sc,” “Cu with stratiform outflow”) overall show a greater resemblance to the pure Sc-than to the 
pure Cu-category when comparing their morphological characteristics (Cesana et al., 2019a) as well as optical 
properties (Pincus et al., 1999).

Figure 2.  Reconstructed cloud-type distributions obtained with novel Sc-Cu categorization utilizing low-cloud cover (LCC) threshold being applied to 
CALIPSO-GOCCP observations of LCC (shown in bottom row). Benchmark Sc-cloud and Cu-cloud cover components (shown in middle row) are derived from 
CALIPSO-GOCCP LCC based on geographical locations of CASCCAD Sc and Cu (CASCCAD variables are shown in top row). The correlation coefficient between 
the cloud cover reconstructed using the LCC categorization and its benchmark counterpart is 0.93 for Sc and 0.66 for Cu. Note that only subsidence regimes of tropical 
and subtropical oceans are analyzed (data voids near Indonesia correspond to regions of persistent deep convection).



Journal of Geophysical Research: Atmospheres

ČRNIVEC ET AL.

10.1029/2022JD038437

6 of 14

Hence, a (model) grid box is classified as being Sc-dominated if its LCC exceeds LCCthres and as Cu-dominated 
otherwise. The Sc-cloud and Cu-cloud cover components are thus constructed from an arbitrary LCC data set 
(i.e., GCM output and CALIPSO-GOCCP observations of LCC) as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙) =

⎧
⎪
⎨
⎪
⎩

𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙), if𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙) > 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)

0, otherwise

� (1)

𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙) =

⎧
⎪
⎨
⎪
⎩

𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙), if𝐿𝐿𝐿𝐿𝐿𝐿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙) ≤ 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)

0, otherwise

� (2)

where lat and lon denote the latitude and longitude of a grid box and t is the monthly time step. It should thereby 
be emphasized that we utilize a model-dependent LCC threshold when employing a new categorization in GCMs. 
This implies that we utilize LCC in analyzed tropical subsidence oceanic regions in each monthly time step 
from each particular GCM to compute its averaged value, which is used as threshold in Equations 1 and 2. It 
should also be noted that the corresponding Sc and Cu components of the SW CRE are obtained in an analogous 
manner (from the CRE field following Equations 1 and 2 using the same LCCthres to separate Sc from Cu). These 
definitions of Sc and Cu components of LCC and SW CRE are employed throughout this work when analyzing 
geographical distributions, whereas we utilize only within-regime values (i.e., excluding zeros in regions domi-
nated by Cu and Sc, respectively) in the subsequent analysis.

Figure 2 evaluates geographical distributions of Sc-cloud and Cu-cloud cover created with the novel Sc-Cu catego-
rization using LCC threshold being applied to CALIPSO-GOCCP observations of LCC. The benchmark Sc-cloud 
and Cu-cloud cover components are obtained from the same observational LCC data set (CALIPSO-GOCCP) 
utilizing RFO of a given cloud type derived from CASCCAD variables to determine whether grid box is 
Sc-dominated (RFOSc > 0.5) or Cu-dominated (RFOSc ≤ 0.5) as explained above. Geographical distributions of 
both cloud types reconstructed with the LCC categorization show a good match with their benchmark counter-
parts derived from CALIPSO-GOCCP/CASCCAD.

Furthermore, the two categorizations employing LCC and EIS threshold to discriminate Sc from Cu perform simi-
larly well when applied to observational LCC data set (Text S1 in Supporting Information S1). There is indeed some 
ambiguity about the outcome of the two categorizations when employed in climate models. It should finally be noted 
that the categorization based on LCC threshold has been designed to distinguish Sc-dominated and Cu-dominated 
regimes in climate models that produce stratiform and cumuliform clouds. However, in the extreme case where a 
climate model would severely lack a particular cloud type this should be instantly apparent simply from inspecting 
geographical distribution of LCC because in regions over tropical and subtropical oceans Sc and Cu clouds are 
normally quite well geographically separated (Sc decks are typically found off the west coast of the continents, while 
Cu clouds are located further west over the open ocean). In such situation the exact evaluation of a missing cloud-
type component is not of interest at all (model should be flagged as “highly erroneous…”), neither does one need a 
methodology to distinguish Sc and Cu (since the entire LCC can be attributed to the other, nonmissing cloud type).

We next proceed with a regime-oriented validation of CMIP6 models using the new Sc-Cu categorization 
(Section 3). Finally, Text S3 in Supporting Information S1 briefly compares the two categorizations in models.

3.  Results and Discussion
3.1.  Geographical Distributions of LCC and SW CRE

Figure 3 compares geographical distributions of low-cloud type climatology in subsidence areas of tropical oceans 
as simulated by the CMIP6 multimodel mean with CALIPSO-GOCCP observations. It is clear that latest climate 
models still struggle representing low cloudiness: on average, LCC in both Sc-regions and Cu-regions is strongly 
underestimated. The absolute bias reaches up to 30% in Sc-regions and up to 15% in Cu-regions. The CMIP6 
models, on average, approximately capture geographical locations of the two regimes; namely stratocumulus decks 
off the west coast of the continents and shallow cumuli scattered further west over the open ocean. Nevertheless, 
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the inspection of the RFO of a given cloud type (e.g., RFOSc, Figure 3; bottom row) reveals areas where models 
simulate inadequate amount of a particular cloud type relative to low clouds compared to observations.

Figure  4 compares the corresponding SW CRE at TOA as simulated by the CMIP6 multimodel mean with 
CERES observations. The negative CRE field implies a cooling effect of low clouds on climate throughout trop-
ical oceans, although the pattern is by far not uniform. Instead, it markedly reflects the presence of individual 
cloud regimes: it stems predominantly from Sc-regions, whereas it is smaller in Cu-regions. The CMIP6 models, 
on average, overestimate the magnitude of the observed negative CRE throughout the majority of tropical oceans. 
Figures S3 and S4 in Supporting Information S1 additionally show geographical distributions of LCC and CRE 
decomposed into Sc and Cu components as simulated by individual CMIP6 models.

Figure 5 evaluates spatial patterns of simulated LCC and SW CRE against observations with the aid of Taylor 
diagrams (Taylor,  2001). They concurrently display multiple metrics including normalized standard devia-
tion and spatial correlation coefficient, whereby the anomalies are computed relative to the total mean (8-year 
period). It is apparent that CMIP6 models struggle capturing geographical distributions of LCC and CRE in both 
Sc-regions and Cu-regions of tropical oceans. Nevertheless, the correlation coefficient between the modeled 
and observed field is mostly higher in Sc-regions than in Cu-regions, which is evident for both LCC and CRE. 
Noteworthy, all models underestimate the observed variability of LCC in both Sc-regions and Cu-regions, with 
the exception of IPSL-CM6A-LR, which is in closest agreement with observations. The variability of simulated 
CRE generally shows a better match with observations, whereby normalized standard deviations commonly lie 
in the range between 0.8 and 1.2. The most noticeable outlier is MIROC6, which significantly overestimates 

Figure 3.  Geographical distributions of low-cloud cover (LCC) and individual cloud-type components constructed with the new categorization based on LCC threshold 
(“LCC cat.”) in CALIPSO-GOCCP observations and CMIP6 multimodel mean. Bottom left and middle panels visualize RFOSc: regions shaded red are dominated by 
Sc, while regions shaded blue are dominated by Cu. The right column shows the corresponding difference between the CMIP6 multimodel mean and observations.

Figure 4.  Geographical distributions of shortwave (SW) cloud-radiative effect (CRE) associated with each low-cloud regime in CERES observations and CMIP6 
multimodel mean as well as the corresponding difference.



Journal of Geophysical Research: Atmospheres

ČRNIVEC ET AL.

10.1029/2022JD038437

8 of 14

the variability in both Sc-regions and Cu-regions. We identify further contrasting findings for Sc-regimes and 
Cu-regimes, whereby models mostly underestimate the observed variability of CRE in Cu-regions, whereas they 
tend to overestimate it in Sc-regions. These results exemplify there are other factors than LCC which profoundly 
affect the CRE bias.

3.2.  Relationship Between LCC and SW CRE

Figure 6 (top) additionally displays PDFs of LCC in subsidence regimes of tropical oceans. The division of the 
latter into Sc and Cu components reveals that models simulate strongly biased LCC distribution within each of 
the two regimes. Specifically, the observed PDF peaks at ∼55% and 35% within Sc-regions and Cu-regions, 
respectively. Contrarily, model PDFs generally peak in the range between 20% and 40% in Sc-regions, whereas 
they predominantly peak between 5% and 30% in Cu-regions. We further note that the shape of simulated distri-
butions is highly variable across the CMIP6 ensemble. The best-performing model is CanESM5, which fairly 
well captures the observed distributional peak and shape in Sc-regions and Cu-regions. Figure S5 in Supporting 
Information S1 offers an alternative visualization of these results.

We next investigate the relationship between LCC and SW CRE shown in Figure 6 (bottom). As expected the 
observed amount of reflected sunlight and hence the magnitude of negative SW CRE increases with increasing 
LCC. Noteworthy, the observed rate of increase is larger in Sc-regions than in Cu-regions. The observed nonlin-
ear relationship between LCC and CRE is generally attributed to the increasing liquid water path with increasing 
LCC. Črnivec and Mayer (2019), as an illustration, investigated a shallow cumulus cloud field rising into strato-
cumulus and showed that both cloud cover and liquid water path concurrently increase with the simulation time.

Remarkably, all climate models overestimate the magnitude of negative SW CRE at a given LCC (by up to a 
factor of 2–3), which is evident throughout the entire range of LCC. This is consistent with findings of Nam 
et al.  (2012) and implies that tropical low cloudiness in CMIP6 models remains too bright. The latter bias 
might be attributed to the inappropriate amount of averaged liquid water content, which is thus likely over-
estimated in models, as well as to other factors such as the parameterization of subgrid cloud variability and 
optical properties within the radiation scheme. CanESM5, which best captures the observed PDF of LCC, 
also exhibits the smallest bias in reflectance within both Sc-regions and Cu-regions. This is again in line with 
Nam et  al.  (2012), who pointed out that previous version of the Canadian GCM (CanAM4) incorporating 

Figure 5.  Taylor diagrams evaluating simulated low-cloud cover (LCC, left) and shortwave (SW) cloud-radiative effect (CRE, right) in Sc-regions and Cu-regions of 
tropical oceans.
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proficient parameterizations of subgrid cloud structure, was the model that minimized the overestimation 
of negative CRE among their set of analyzed CMIP5 members. BCC-CSM2-MR exhibits the largest CRE 
bias in Sc-regions, while in Cu-regions MIROC6 shows the largest discrepancy from observations. Studies 
exploiting a rich combination of measurements (Pincus et al., 1999) and large-eddy simulations (Črnivec & 
Mayer, 2020, 2021) reveal that Sc and Cu own distinct internal inhomogeneity characteristics. The contrasting 
heterogeneity of stratiform and convective clouds is not yet properly addressed within radiation schemes of 
current GCMs.

3.3.  LCC Error Decomposition

Following the methodology of Schuddeboom and McDonald  (2021), LCC associated with a particular cloud 
regime (r) can be expressed as

𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟� (3)

where the relative frequency of occurrence RFOr is the rate at which given cloud regime occurs; and 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟 
represents the averaged cloud cover in regime r. This value is an average over the analyzed time period (8 years) 
and geographical regions (subsidence regimes over tropical oceans)—considering only grid boxes with a given 
cloud regime (either Sc or Cu in our case). To gain further insight into cloud biases, it is therefore convenient to 
decompose the total (overall) LCC model error of a specific cloud regime into various components as follows:

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿
𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟 Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜
𝑟𝑟 Δ𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟 + Δ𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟,� (4)

where 𝐴𝐴 Δ𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅mod
𝑟𝑟 −𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟  and 𝐴𝐴 Δ𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿
mod

𝑟𝑟 − 𝐿𝐿𝐿𝐿𝐿𝐿
𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟  capture the difference between model 
and observations. The three summands on the right-hand side of Equation 4 thus represent the error due to RFO, 
the error due to 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  and finally the error covariance term for a given cloud regime.

Figure 6.  (top) Probability density functions of low-cloud cover (LCC) derived from observations and CMIP6 models in subsidence regimes of tropical oceans as well 
as separately in regions dominated by Sc and Cu. (bottom) The corresponding mean 2D histograms of LCC and shortwave (SW) cloud-radiative effect (CRE).
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Figure 7 shows results of the overall LCC error decomposition according to Equation 4 within each of the two 
regimes (Sc, Cu), highlighting the complex nature of cloud biases among individual CMIP6 ensemble members. As 
anticipated the error covariance is generally small, therefore solely RFO and 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿 errors are discussed in the follow-
ing (see also Figure S6 in Supporting Information S1 for an alternative visualization of these two terms). Despite 
the fact that each model is subjected to its unique problematics, it is possible to draw several interesting conclusions.

The majority of models underestimate RFO of Sc, whereas they overestimate RFO of Cu (MRI-ESM2-0, 
GISS-E2-1-G, BCC-CSM2-MR, HadGEM3-GC31-LL, CESM2, GFDL-CM4, NorESM2-LM). The apparent 
outlier in this regard is MIROC6, which is in line with Williams and Tselioudis (2007), who showed that two 
previous versions of MIROC6 also considerably overestimated RFO of tropical stratocumulus and simultaneously 

Figure 7.  The low-cloud cover (LCC) error in subsidence areas of tropical oceans within Sc-regimes and Cu-regimes decomposed into errors stemming from RFO, 
𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  and covariance.
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lacked shallow cumulus regime. There are a few models where the RFO error of both Sc and Cu is essentially zero 
(particularly CanESM5, IPSL-CM6A-LR, CNRM-CM6-1).

Remarkably, all models underestimate 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  within Sc-regions and Cu-regions (except IPSL-CM6A-LR, which 
however exhibits a negligible bias in Sc-region). Climate models that most strongly underestimate the mean 
Sc-cloud and Cu-cloud cover are BCC-CSM2-MR, CNRM-CM6-1, CESM2, GFDL-CM4, GISS-E2-1-G, and 
NorESM2-LM. In this subset of models, the 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  error exceeds 10% within either of the two regimes.

In the following discussion, we strive to provide some physical explanations for the aforementioned erroneous 
model behavior. Climate models frequently lack the inclusion of realistic moist processes within their plane-
tary boundary layer (PBL) parameterizations (e.g., Cesana, Del Genio, Ackerman, et al., 2019), which affects 
their ability to sustain low clouds. As an illustration, the problem with the lack of Sc in GISS-E2-1-G was 
largely resolved in the next iteration of the GISS model, whereby the moist turbulence scheme of Bretherton 
and Park (2009) was newly implemented. One should also keep in mind that the underestimation of low cloud-
iness can partially stem from the shielding effect of high clouds, which might be overestimated in some models 
compared to observations, although we filter subsidence regimes to minimize this problem.

The best-performing model overall is CanESM5, which exhibits a zero bias in RFO and only a minor bias in 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  
within both Sc-regions and Cu-regions. Recall that CanESM5 remarkably well matches the observed relationship 
between LCC and EIS (Figure 1). The IPSL-CM6A-LR model, moreover, has a negligible error in RFO and 𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿  
within the Sc-regime. This is in agreement with Madeleine et al. (2020) who showed that the representation of 
low-level clouds (and their reflectance) in the IPSL-CM6 model has considerably improved compared to the 
previous model version participating in CMIP5. However, it is important to bear in mind that this apparent model 
improvement could be a consequence of model tuning, whereby the same observational data sets of LCC and 
CRE employed for the present model validation were used at IPSL to adjust free model parameters in an attempt 
to match the observed fields of clouds and radiation (Hourdin et al., 2019). Figure 1 indeed reveals that in the 
IPSL-CM6A-LR model LCC grows too strongly with EIS, which acts to offset the great lack of EIS in this model, 
so that the LCC error is eventually small.

As previously noted, contemporary climate models frequently employ the McICA radiation scheme of Pincus 
et al. (2003). The McICA stands for the Monte Carlo Independent Column Approximation, whereby simultane-
ous sampling of subgrid cloud state and spectral interval is exploited to speed up the computationally expensive 
calculation of full one-dimensional (ICA) radiative transfer. Whereas McICA is indeed a flexible and computa-
tionally efficient radiation scheme, it thus comes with a potentially detrimental side effect, which is commonly 
referred to as the McICA noise. We revisited a question, whether the McICA noise could lead to notable LCC 
biases in analyzed CMIP6 models containing the McICA algorithm (NorESM2-LM, GFDL-CM4, CESM2, 
E3SM-1-0, HadGEM3-GC31-LL, CanESM5). We found no evidence that the random noise generated by McICA 
is responsible for a notable underestimation of LCC (Figure S10 in Supporting Information S1), which is consist-
ent with previous work examining older generation of GCMs (e.g., Barker et al., 2008). We also found no rela-
tionship between low-cloud biases in the present-day climate and equilibrium climate sensitivity (Figure S11 in 
Supporting Information S1).

4.  Summary and Conclusions
Low clouds are ubiquitous in the tropics and intensely cool the Earth's climate, thus it is of tremendous impor-
tance to properly capture this effect in climate models. The overall objective of this study was to employ satel-
lite observations to evaluate the representation of marine tropical stratocumulus and shallow cumulus and their 
impact on the Earth's radiation budget in a subset of latest climate models in the present-day climate. To that end, 
we first introduced a new approach to discriminate Sc from Cu based on a dynamic LCC threshold. The new 
Sc-Cu categorization proved to work well when applied to CALIPSO-GOCCP observations of LCC, validated 
against proper Sc and Cu components derived from the CASCCAD. Compared to the traditional approach for 
establishing low-cloud regimes utilizing a fixed threshold of EIS, the new Sc-Cu categorization is more reliable 
when analyzing climate models, since the latter systematically underestimate EIS implied by multiple reanalysis 
data sets and generally misrepresent the relationship between EIS and LCC.

Utilizing the newly proposed Sc-Cu categorization we then assessed models' fidelity to represent Sc and Cu 
together with their radiative effect at the TOA in the present-day climate. We thereby analyzed a suite of 12 
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state-of-the-art climate models stemming from various modeling centers participating in Phase 6 of CMIP. We 
restricted our analysis on subsidence regimes over tropical oceans, where low clouds are not obscured by midlevel 
and high-level clouds. We found that CMIP6 models underestimate the cloud cover in both Sc-dominated and 
Cu-dominated regions of tropical oceans. A more detailed inspection of cloud biases revealed that most climate 
models underestimate RFO of Sc and overestimate RFO of Cu. We further showed that tropical low cloudiness 
in CMIP6 models remains too bright.

The results of the present study are in line with a recent work by Konsta et al. (2022), who demonstrated that 
low-level marine tropical clouds in six CMIP6 models are too few and too bright, but also too compact and too 
homogeneous. The present study extends the results of Konsta et al. (2022) by evaluating 12 CMIP6 models and 
by discriminating stratocumulus and shallow cumulus regimes. All in all, these findings imply that contemporary 
climate models are still subjected to notable biases in clouds and radiation, which should fuel further climate 
model development.

Data Availability Statement
The CALIPSO-GOCCP data set (Chepfer et al., 2010b) was downloaded from the CFMIP-Obs website (http://
climserv.ipsl.polytechnique.fr/cfmip-obs/Calipso_goccp.html). The CASCCAD data set (Cesana et al., 2019b) 
is available at NASA GISS website (https://data.giss.nasa.gov/clouds/casccad/). CERES-EBAF 4.0 data 
(Loeb et al., 2018b) were downloaded from the CERES website (https://ceres.larc.nasa.gov/data/#energy-bal-
anced-and-filled-ebaf). ERA5 data (Hersbach et al., 2019) were downloaded from the Copernicus Climate Data 
Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=-
form). NCEP-DOE R2 data (Kanamitsu et al., 2014) were downloaded from the NOAA ESRL Physical Sciences 
Division website (https://www.cpc.ncep.noaa.gov/products/wesley/reanalysis2/). MERRA-2 data (Gelaro 
et al., 2017b) were downloaded from the NASA Goddard Earth Sciences Data and Information Services Center 
(https://disc.gsfc.nasa.gov/datasets/M2IMNPASM_5.12.4/summary). The CMIP6 simulation output (Eyring 
et al., 2016a) was downloaded from ESGF (https://esgf-node.llnl.gov/search/cmip6/).
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