
1.  Introduction
Low frequency internal climate modes in the Northern Hemisphere oceans operate on similar timescales to vari-
ous external forcing sources. This can make it difficult to determine their causes: are these modes completely 
internal, or are they also driven by external forcing? In either case, can a deeper understanding of the sources 
offer any predictability?

To help address these questions, we examine the time history of the dominant modes of variability in the North 
Atlantic and North Pacific to test whether some of the variability can be explained by interactions between the 
different ocean basins. These long-distance effects are referred to as teleconnections and are driven by atmos-
pheric Rossby wave propagation, also known as atmospheric bridges (Alexander et al., 2002; Liu & Alexan-
der, 2007). Sea-surface temperature (SST) variability associated with a particular climate mode is coupled to 
the atmosphere, allowing the ocean to change the overlying atmospheric circulation. This signal is transported 
through the atmosphere to other regions, where it can influence SSTs in a distant location, potentially imprinting 
on or exciting a different climate mode (e.g., Dommenget & Latif, 2008; Liu & Alexander, 2007). Teleconnec-
tions can also exhibit variability, such as changing magnitude over time (Raible et al., 2014). The possibility of 
climate mode interactions must be considered to fully understand the sources of climate variability. We focus our 
interest on a particular potential teleconnection that may link the North Atlantic (NA) and North Pacific (NP) 
ocean basins. Do the climate modes in these basins interact with each other? And if so, does this mean that an 
inter-basin connection exists?

In the NA, low-frequency variability is captured via the Atlantic Multidecadal Oscillation/Variability (AMO or 
AMV; Enfield et al., 2001). In the NP, two modes are used to capture the low-frequency variability. The Pacific 
Decadal Oscillation (Mantua et al., 1997) and the Victoria Mode (VM; Bond et al., 2003) or North Pacific Gyre 
Oscillation (NPGO; Di Lorenzo et  al.,  2008) are the leading modes of decadal and multidecadal variability 
respectively. Other methods of capturing variability in these basins exist (e.g., Årthun et  al.,  2021; Curry & 
McCartney, 2001; Eden & Jung, 2001; Gastineau & Frankignoul, 2015; Martin et al., 2019; Menary et al., 2015; 
Nigam et al., 2011; Nigam et al., 2020; Taylor & Stephens, 1998; Salinger et al., 2001; Sun et al., 2015), although 
convention maintains usage of the AMV and PDO.

Abstract  Previous studies documented possible connections between low frequency climate modes in 
the Northern Hemisphere ocean basins. We use observed sea surface temperatures and 270 large ensemble 
climate model simulations, which allows for improved methods of separating external and internal variability, 
such as removing the ensemble mean from each simulation. Detrending methods for observations have also 
improved since some of these previous studies were conducted. We also devise a modified statistical test using 
bootstrapping that is tuned specifically to this analysis. With these tools, we reexamine relationships among 
these modes. While previous studies have argued for the existence of an inter-basin link, our results suggest that 
any internal connections between these modes are indistinguishable from random noise. Further, we show that 
external forcing affects each region in similar ways. This suggests that anthropogenic warming can cause an 
indirect link between the two basins, confounding the interpretation of a potential relationship.

Plain Language Summary  We reexamine possible connections between climate patterns in the 
North Atlantic and North Pacific oceans. Improved climate model simulations and appropriate statistical 
methods allow us to build on previous research of these linkages. In contrast to previous studies, no natural 
connections are detected. However, global warming is shown to affect each region in similar ways, suggesting 
that climate change could cause an indirect link between the two basins.

FENSKE AND CLEMENT

© 2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

No Internal Connections Detected Between Low Frequency 
Climate Modes in North Atlantic and North Pacific Basins
T. Fenske1  and A. Clement1

1Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

Key Points:
•	 �A multi model large ensemble archive 

and modified statistical assumptions 
provide a framework for studying 
climatic relationships

•	 �An analysis of relationships between 
leading Northern Hemisphere climate 
modes does not show any internal 
connections

•	 �External forcing such as global 
warming is shown to be a possible 
confounding factor in climate 
relationships

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
T. Fenske,
tyler.fenske@rsmas.miami.edu

Citation:
Fenske, T., & Clement, A. (2022). 
No internal connections detected 
between low frequency climate modes 
in North Atlantic and North Pacific 
basins. Geophysical Research Letters, 
49, e2022GL097957. https://doi.
org/10.1029/2022GL097957

Received 18 JAN 2022
Accepted 17 FEB 2022

10.1029/2022GL097957
RESEARCH LETTER

1 of 10

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-1299-1107
https://doi.org/10.1029/2022GL097957
https://doi.org/10.1029/2022GL097957
https://doi.org/10.1029/2022GL097957
https://doi.org/10.1029/2022GL097957
https://doi.org/10.1029/2022GL097957


Geophysical Research Letters

FENSKE AND CLEMENT

10.1029/2022GL097957

2 of 10

Several previous studies have argued that there is a significant relationship between the NA and NP modes. This 
question was initially examined by dʼOrgeville and Peltier (2007) and R. Zhang and Delworth (2007). Both stud-
ies relate the first two Empirical Orthogonal Functions (EOFs) of the Hadley Center's observed NP SSTs (Rayner 
et al., 2003) to a metric for the AMV (first EOF of NA SSTs, NA area mean SSTs respectively), although they 
utilize those EOFs in different ways. d’Orgeville and Peltier combine them, then isolate the 20-year (decadal) 
and 60-year (multidecadal) period wavelets, cross correlate the time series from each basin, and conclude that 
the variability in both regions is connected. Zhang and Delworth also use a 10-member ensemble of one model 
(GFDL CM2.1, Delworth et  al.,  2006) where the NA is constrained to match observations to try and reveal 
teleconnections from the NA to other regions. They conclude that the Atlantic Meridional Overturning Current 
(AMOC) drives the AMV, which in turn drives the PDO/VM through atmospheric teleconnections. These stud-
ies are limited to a relatively short observational period, which makes accurate analysis of low frequency modes 
difficult. The role of low frequency external forcing may not be adequately removed, particularly in the NA (L. 
N. Murphy et al., 2017). Ten ensemble members is also near the minimum number needed to accurately estimate 
the forced response over the ocean (Milinski et al., 2020).

A number of subsequent studies supported the findings of the 2007 papers. Wu et al. (2011) come to a similar 
conclusion as the prior studies, using a modest but statistically significant cross correlation to argue that the AMV 
can be used to predict the PDO on annual timescales. Their detrending method is a third order polynomial, which 
at most grid points is nearly equivalent to quadratic detrending. Marini and Frankignoul (2014) use several meth-
ods to deconstruct the AMV origins, such as dynamical filtering and removing different trends. Their analysis 
includes a cross correlation of the AMV and PDO time series, again showing similar results to previous studies. 
Nigam et al. (2020) use the first 11 global rotated EOFs to represent major global modes. Their AMV and PDO 
cross correlation also matches previous results. An et al. (2021) use ensemble pacemaker experiments to suggest 
that multidecadal Pacific variability is generated by AMV forcing and local air-sea interactions. Most previous 
studies on the AMV-PDO link agree that a modest but significant correlation can be detected, with the AMV 
leading the PDO by 12–14 years. All these studies use the student's t-test (or a similar test) for significance. Wu 
et al. (2011) also use customized bootstrap methods.

Calculating significance thresholds for these relatively short timeseries can be challenging. Additionally, since 
these previous studies were conducted, improved detrending methods have been developed that more accurately 
separate the forced signal from the internal variability. Frankignoul et al. (2017) used two large ensembles to 
find more accurate detrending methods in the NA and NP basins, focusing on the PDO and AMV time series. 
They briefly mention that their AMV-PDO cross correlations show no statistical significance. To expand on this 
work, we reexamine potential NA-NP connections with observations and six large ensembles of climate model 
simulations that feature improved methods for separating external and internal variability, and a modified, more 
appropriate statistical test to reexamine relationships among these modes.

We begin by assessing the statistical tools necessary for our study, leading us to use non-parametric statistics and 
to modify an existing test so that it is more appropriately optimized for this analysis. Next, we focus on obser-
vations, and using our statistical tools we suggest little to no statistically significant relationship can be detected 
from 121  years of data. We also argue that external forcing may confound the relationship if not accurately 
removed. Finally, we support this argument by repeating our observational analysis on a set of large ensembles, 
where we can accurately and completely remove the externally forced response. These results further suggest that 
no inter-basin connections can be detected on decadal to multidecadal timescales and that external forcing can 
cause a spurious significant correlation to arise.

2.  Methods
For observations, we use the UK Met Office's Hadley Centre Sea Ice and SST data set (HADISST; Rayner 
et al., 2003). 121 years of annual data from 1900 to 2020 are included. Other SST datasets provide no qualitative 
differences.

We use six ensembles in the Multi-Model Large Ensemble Archive (MMLEA; CANESM2, CESM, CSIRO-MK36, 
GFDL-CM3, GFDL-ESM2M, and MPI; C. Deser et al., 2020). The MMLEA contains a total of 270 members 
(50, 40, 30, 20, 30, and 100 members respectively). All ensembles are from the CMIP5 era and use historical and 
RCP8.5 forcing. The time period for each model is matched to the observed time period. We use each model's 
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pre-industrial control run (PI), separate from the MMLEA. More metadata on the MMLEA are provided in Table 
S1 in Supporting Information S1 (C. Deser et al., 2020).

Our mode definitions generally follow those of the AMV, PDO, and VM (Enfield et al., 2001, Mantua et al., 1997, 
and Bond et al., 2003 respectively). However, instead of applying different methods (EOF for NP, area mean for 
NA) to each basin, we apply EOF analysis to each basin to capture individual modes more consistently. We 
compute the EOFs over the NP (20°N-65°N, 120°E−100°W) and the NA (0°N-65°N, 120°W-0°), and for clarity 
and brevity, we only show the first two EOFs from each basin in our observational analysis. Including further 
EOFs does not affect our conclusions (Figures 5–8 in Supporting Information S1).

All observed SST fields are detrended by regressing the global mean SST onto each grid point (hereafter GMR 
detrending), following Ting et al. (2009), Frankignoul et al. (2017, the REGR method), and C. lara. Deser and 
Phillips (2021). MMLEA data is detrended for each of the six models by removing the ensemble mean from every 
member. The advent of large ensembles has been a primary driver in improving detrending methods due to their 
ability to accurately estimate a particular model's true forced response by averaging out internal variability (C. 
Deser et al., 2020; Kay et al., 2015; Lehner et al., 2020). Frankignoul et al. (2017), using two large ensembles, 
provide a thorough analysis of four relatively simple detrending methods (three more complex detrending meth-
ods are also covered, however these are beyond the scope of our study). They show that quadratic detrending and 
a regression of the global mean temperature (C. Deser and Phillips, 2021; Ting et al., 2009) generally perform 
better than other simple methods, although their performance does vary spatially. They also show that linear 
detrending, the simplest and most common method, is largely ineffective at removing the externally forced signal.

We define “ensemble mean” as averaging across MMLEA members, then computing the EOF analysis. We 
define “composite mean” as EOF analysis performed on each ensemble member once the ensemble mean has 
been removed (i.e., each member has been detrended) and followed by averaging across MMLEA members. In 
this study, we use the ensemble mean EOF to represent the forced signal in each model. We use the composite 
mean EOF exclusively on detrended MMLEA data to represent the average internal variability in each model. 
Averaging across all ensemble members may mutually cancel out polarized clusters of members, so caution must 
be used when computing ensemble or composite means (Bellucci et al., 2017).

All SST data are normalized and smoothed at each grid point with a 10-year low-pass Lanczos filter to focus on 
decadal to multi-decadal variability. We compute spatial pattern correlations to match EOFs for each MMLEA 
member to their corresponding observed EOF. We then reorder and flip the sign of MMLEA EOFs where neces-
sary to make qualitative assessments clearer and easier.

We use a non-parametric bootstrapping method for significance testing. Figure 1 includes normality tests for our 
observed time series which show that they are not consistent with a normal distribution, requiring non-paramet-
ric statistics. This is further discussed in Results. To summarize, statistical tests used in previous studies rely 
on assumptions such as consistence with normality and estimated degrees of freedom. Our primary statistical 
tool is cross-correlation, so we build our method to evaluate the significance of a “real” cross-correlation with 
as few assumptions as possible. We create sets of phase randomized (Ebisuzaki, 1997) time series by shuffling 
each unfiltered time series 1000 times. Each shuffled time series is filtered, and each possible pair of modes is 
cross-correlated for the entire set. These 1000 cross-correlations are used to compute 0.1 significance levels for 
the “real” cross-correlation.

We also use sets of white noise, AR1 red noise (Katz, 1982), and quantile-mapped sets (Maraun, 2013). While 
these methods provide no qualitative differences, we do note that the bootstrapped-white-noise method produces 
the lowest thresholds of the four methods. Any model that is significant with phase randomization, AR1 or quan-
tile-mapped statistics would also be significant with white noise testing. We elect to use the phase randomized 
method here as it provides the most physically realistic random time series, although our conclusions would not 
change if we used any other methods.

We note that the phase randomized significance levels are dependent on the frequency spectra and length of the 
time series. The former dependency can be seen clearly in Figure 2, where the significance level for the upper 
left panel is higher than the rest. This is because the non-detrended NA1 and NP1 time series are dominated by a 
trend, so the frequency spectra is that of a time series with a clear, strong trend. This means that all phase rand-
omized time series will exhibit a similar trend. This common trend drives the correlation higher, resulting in a 
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higher significance level. The dependency on time series length would suggest that the significance level should 
be lower near 0 lag (where both time series are 121 years in length) and higher near the maximum lags (where 
shifted time series only overlap for 81 years). Testing reveals that this dependency is relatively small (not shown) 
and does not qualitatively affect our results.

This method is similar to the bootstrap used by Wu et  al.  (2011), although our method differs slightly. Wu 
et  al.  (2011) calculate the 0.05 significance level at each specific lag in their cross correlation (hereafter the 
“point test”). However, their interest is not on a particular lag, but on the peaks of the cross-correlation that are 
significant. The specific lag these peaks occur at is unimportant – whether it is at 0- or 30-year or any other lag, 
their conclusions would remain the same. Their statistical test is computed at each individual lag, so that the 
significance level at each lag is independent from the rest. Their statistics can be interpreted as meaning that the 
lag at which the peaks occur is important, contrary to their conclusions. This is an a priori test with an a posteriori 
conclusion, suggesting their significance thresholds may not be appropriate.

Alternatively, a “peak test” can be used. Instead of calculating the significance thresholds at each lag, we choose 
the maximum value of each random cross-correlation to compute the thresholds from. In essence, the minimum 
and maximum values from each of the 1000 cross correlations can be used to compute significance thresholds 
that test the observed cross correlation peaks appropriately. The effect of this difference is seen at the 0.05 
significance level, where 5% of random cross-correlations have any points that are significant when using the 
peak test, while our testing shows that ∼50% have significant points when using the point test (examples shown 

Figure 1.  Empirical Orthogonal Functions (EOF) modes and normality analysis of observed detrended (via global mean regression) HadISST North Atlantic and North 
Pacific SSTs. From left to right: NA-EOF1 (NA1), NA-EOF2 (NA2), NP-EOF1 (NP1), and NP-EOF2 (NP2). The percentage represents the variance explained by 
each EOF. Rows from top to bottom: 1) Spatial patterns of each EOF. Red (blue) corresponds to warming (cooling) when time series is positive (negative). 2) Filtered 
normalized time series of each EOF. 3) Probability distribution of time series are shown in shaded green; corresponding standard normal distributions are shown in 
black. 4) Quantile-quantile plots, data shown in blue. Standard normal distribution is shown in red. Three quantitative assessments of normality are applied: 1) The 
Shapiro-Wilk Test (SW). The p-value is listed, with p-values >0.05 implying consistence with normality. 2) D’Agostino's K-Squared Test (K^2). The p-value is listed, 
with p-values > 0.05 implying consistence with normality. 3) The Anderson-Darling Test (AD). First value is measure of consistence with normality; second value is 
95% critical value for the AD test. If the first value < critical value, consistence with normality is implied.
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in Supplemental Figure 1). Additionally, because the point test is computed at each lag, a number of points may 
be spuriously significant depending on the significance level (e.g., with 81 lags and 0.05 significance, 4 points 
can be significant without any meaning). The effect of filtering must also be considered (Cane et al., 2017). This 
is typically considered by estimating the degrees of freedom, although here we can simply filter the randomized 
time series the same way and automatically account for filtering.

In essence, the statistical tests from previous studies (the point test) are not incorrect, they simply require careful 
consideration of their context. The peak test accounts for most of this context automatically, allowing for a more 
objective conclusion. This shows that using an improper significance test can result in many spurious significant 
points on any given cross-correlation. All significance levels shown here are computed using the peak test. We 
note that we use the 0.1 significance level since we are trying to show that our cross correlations are not signifi-
cant. A lower significance level therefore strengthens our conclusions.

3.  Results
Figure 1 shows the spatial patterns (first row) and time series (second row) of these EOF modes. NA-EOF1 
(NA1, NA2 for NA-EOF2) represents the AMV, characterized by a tripole pattern and multi-decadal time series. 
NP-EOF1 (NP1) represents the PDO, characterized by a dipole pattern with warming (cooling) in the central NP 
and cooling (warming) in the east, with a decadal time series. NP-EOF2 (NP2) represents the VM, characterized 
by a dipole pattern offset to the west from the PDO's, and a decadal time series. Supplemental Figure 2 shows the 
observed spatial patterns and time series for the non-detrended, linear detrended, and GMR detrended observa-
tions. Supplemental Figure 3 shows the composite mean spatial patterns of each mode compared to observations. 
The similarities suggest that the models are simulating realistic modes.

To determine if standard parametric statistics can be used, the normality of our time series is assessed. While 
non-Gaussian parametric statistics exist, Gaussian assumptions are common with geophysical time series analy-
sis and are used by the previous studies on the NA-NP inter-basin relationships (d’Orgeville & Peltier, 2007, R. 
Zhang and Delworth, 2007, Wu et al., 2011, Marini & Frankignoul, 2014, and Nigam et al., 2020). We test the 

Figure 2.  Cross-correlation matrix of HADISST observed time series with various detrending methods. All possible cross-correlations between each of the two 
Empirical Orthogonal Functions modes in each basin are shown. From left to right: NA1-NP1, NA1-NP2, NA2-NP1, and NA2-NP2. Detrending methods are shown on 
the y-axis, from top to bottom: no detrending, linear detrending, and global mean regression detrending. Black horizontal lines are 0.1 statistical significance levels as 
calculated by the “peak” test. Vertical ticks show where cross-correlations are significant. For positive (negative) lags, the NA (NP) mode leads.
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four modes' filtered time series with five normality tests as recommended by Yap and Sim (2011) and Ghasemi 
and Zahediasl (2012). Two are qualitative assessments: a histogram with a standard normal curve fitted to the 
data (Figure 1, third row), and a quantile-quantile plot (Figure 1, fourth row). Three are quantitative: the Shap-
iro-Wilk test (SW), the D’Agostino skewness test (K^2), and the Anderson-Darling test (AD; shown as text in 
Figure 1, fourth row). Only NA2 passes more than a single quantitative test. The combination of tests suggests 
that only NA2 of the filtered time series can be described as consistent with normality, so Gaussian assumptions 
cannot be made. Non-parametric statistics are required for significance testing.

Figure 2 shows observed cross-correlations for the four possible relationships: NA1-NP1, NA1-NP2, NA2-NP1, 
and NA2-NP2. The top row shows the full, or non-detrended, observed data, the middle row shows the linearly 
detrended data, and the bottom row shows the GMR detrended data. Horizontal black lines represent 0.1 signif-
icance levels. NA1-NP1 with no detrending shows the only cross-correlation with any statistically significant 
points, with a nearly perfect correlation very near 0 lag. NA2-NP1 shows a roughly similar cross-correlation, 
but with a smaller maximum correlation that is not significant. NA1-NP2 and NA2-NP2 show no significant 
points. Our cross correlations match the results from previous studies (e.g., d’Orgeville & Peltier, 2007; R. Zhang 
and Delworth, 2007), although our results show no statistical significance because of our modified significance 
testing.

We also tested quadratic and global mean subtraction detrending methods and find that the observed results 
are not sensitive to the detrending method. Therefore, we show only the linear and GMR methods in Figure 1. 
Given that only the full NA1-NP1 relationship shows any significance, we choose to show only the NA1-NP1 
relationship for our MMLEA analysis. All other relationships in the MMLEA support similar conclusions as the 
observations (Figures 5–8 in Supporting Information S1) - that no statistically significant connections are present, 
either in observations or models.

It is difficult to make any robust conclusions on low-frequency modes using only the relatively short observational 
period. The true forced signal must be estimated as well, leaving room for errors to arise from imperfect detrend-
ing. MMLEA data helps to address these challenges by offering 270 simulations and each model's true forced 
response. Figure 3 focuses on the NA1-NP1 relationships for the MPI-LE, with full variability (non-detrended) 

Figure 3.  Cross-correlations of NA1-NP1 mode relationships for the MPI-LE. Left panels show relationships that contain full (non-detrended) forced variability. Right 
panels show only internal (ensemble mean detrended) variability. Top row: observations. Middle row: MPI-LE from the MMLEA. Bottom row: MPI-LE ensemble 
mean (left) and MPI pre-industrial control run (right). Black horizontal lines are,1 statistical significance levels as calculated by the “peak” test. Vertical ticks show 
where cross-correlations are significant. For positive (negative) lags, the NA (NP) mode leads.
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on the left and internal variability (detrended) on the right. We choose the MPI-LE as it contains 100 members, 
over one third of the MMLEA's total members, therefore providing the largest sample size for a single LE. 
In the first row are observations, the same as the top left and bottom left panels from Figure 2. The second 
row shows the MPI-LE cross-correlations. The full, non-detrended cross-correlations show agreement with the 
non-detrended observations, with a significant peak near 0 lag. Almost all members match each other and 93 
have significant peaks, showing a clear pattern. In contrast, the internal only variability has only four statistically 
significant peaks. Clearly, in the absence of external forcing, no significant connection between the two basins 
can be detected in the MPI-LE.

The third row shows NA1-NP1 of the ensemble mean for MPI-LE, which is the model's true forced signal. In 
every model, the first EOFs (NA1 and NP1) of the ensemble mean contains >95% of the variance explained, 
meaning that it is represents virtually all of the forced signal. Other methods (e.g., area mean, linear regressions) 
of representing the forced signal produce similar spatial patterns and time series. Again, we see a clear resem-
blance to the other full cross-correlations. This suggests that those relationships are dominated by external forc-
ing. In the same row is also the MPI pre-industrial control run, which, despite a much lower significance level due 
to its much longer period, has no significant points. We also compute the internal composite mean (not shown), 
or the average internal variability, in the MPI-LE, and again find no significance.

Finally, Figure 4 shows the internal only (ensemble mean detrended) NA1-NP1 relationships for all members of 
the MMLEA, organized by LE. Note that the middle right panel in Figure 3 and the bottom right panel in Figure 4 
are the same. Supplemental Figure 4 shows the same, but for full (non-detrended) variability to show the effect 
of including forcing. We do note that the full relationships show model dependence, with the CSIRO-LE and (to 
a lesser extent) the CESM-LE appearing less cohesive and noisier. This is due to the NP1 time series, as these 
two models show more NP1 variance from member to member than the other four models. The cause of this 
increased variance may be attributed to differences in model physics and forcing parameters, but this is beyond 
our scope. Across all 270 members, only 13 (4.8%) show an internal connection, while 189 (70%) members 
show a significant relationship in the non-detrended data. Thus, the only relationships that can be considered 
significant are those that contain external forcing. With more appropriate statistical analysis and separation of 
forced and internal variability (and even imperfect separation, in the case of observations), there are no significant 
internal connections between the NA and NP detected.

Figure 4.  Cross-correlations of MMLEA internal only (ensemble mean detrended) NA1-NP1 mode relationships for all LEs. Black horizontal lines are 0.1 significance 
levels as calculated by the “peak” test. Vertical ticks show where cross-correlations are significant. For positive (negative) lags, the NA (NP) mode leads.
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4.  Discussion
Our results suggest that, for the NA and NP basins, an internal connection between the two cannot be detected 
currently. These findings may also have broader implications regarding the roles of external forcing and internal 
variability as drivers of climate modes. Present theories on climate mode drivers focus on varying roles for the 
ocean, atmosphere, internal variability, and external forcing (e.g., Clement et al., 2015; Klavans et al., 2022; L. 
N. Murphy et al., 2021; Newman et al., 2016; O’Reilly et al., 2019; Wills et al., 2018; Y. Zhang et al., 2018; 
Zhang et al., 2019). External forcing is particularly challenging, due to the direct/linear and indirect/non-linear 
effects on climate variability (Frankignoul et al., 2017; Li et al., 2020). Additionally, there is debate about the 
role and importance of these internal modes in an increasingly forced global climate (Ting et al., 2009; DelSole 
et al., 2011; Haustein et al., 2019; Mann et al., 2020, etc.).

Our results suggest that traditional observed AMV and PDO definitions contain at least some external forcing. 
Care must be taken when using these mode definitions to properly remove the forced signal to isolate the inter-
nal variability. However, this remains a challenging task outside of the realm of large ensembles. Tools such as 
the MMLEA will be vital in making progress toward isolating the forced response in observations, as they can 
possibly average out various model differences and provide a closer analog to the observed forced signal. These 
modeling tools are especially useful due to the relatively short observed period, which may not be sufficient to 
adequately observe variability on multi-decadal timescales, such as those studied here.

Finally, our findings do not rule out other regions or modes driving variability in the NA and NP. Other mode 
relationships have been shown to exist, such as how ENSO helps drive the PDO (Newman et al., 2003). Further 
work can include a complex matrix of potential relationships between global modes as in Shin et al. (2010) or 
using global EOFs such as Nigam et al. (2020). Methods presented here can assist in a thorough decomposition 
of sources of variability in a particular region. This can lead to better understanding of variability drivers, which 
can ultimately result in improved climate models and more accurate climate forecasts.

Data Availability Statement
Data Access: MMLEA data were downloaded from https://www.cesm.ucar.edu/projects/community-projects/
MMLEA/(C. Deser et al., 2020). Hadley Center Observed SST data (HADISST) were downloaded from https://
www.metoffice.gov.uk/hadobs/hadisst/ (Rayner et al., 2003).
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