
1.  Introduction
The global climate has been affected by rising greenhouse gas concentrations, which are driving a rapid warming 
of the Arctic region (Hartmann et al., 2013). And the warming rate in the Arctic is expected to experience more 
than twice the global average warming (AMAP, 2017). Arctic warming has led to physical manifestations such as 
increased sea ice melt (AMAP, 2017; Ardyna & Arrigo, 2020; Kwok, 2018), enhanced vertical stability (Polyakov 
et  al.,  2018; Toole et  al.,  2010), increased river runoff (Ahmed et  al.,  2020; Lammers et  al.,  2001; Peterson 
et al., 2002), and strengthened upper ocean currents (Polyakov et al., 2020; Timmermans & Marshall, 2020). 
These  environmental changes have also affected the phytoplankton dynamics by decreasing nutrient supplies 
(Tremblay et  al.,  2015) and increasing the amount of light transmitted through the water column (Jönsson 
et  al., 2020). Recent studies have reported that these environmental changes have affected the phytoplankton 
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significant relationship between background nitrate and projected chlorophyll (r = 0.86) is demonstrated using 
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to reduce the uncertainty of future chlorophyll projections. Declines in chlorophyll concentration based on 
emergent constraint are estimated to be further decreased in the future (44.9% 𝐴𝐴 ± 29.1 % to 50.9% 𝐴𝐴 ± 27.6 %) 
than at present, which is about three-fold larger than the multi-model mean projection (−13.5% 𝐴𝐴 ± 48.7 %). 
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Plain Language Summary  The Arctic Ocean environment has undergone changes in response 
to human-induced greenhouse gases, such as dramatic warming and sea-ice retreat. Recently, the chlorophyll 
concentration, the proxy of the phytoplankton biomass, has increased leading to an increase in marine 
productivity in the Arctic Ocean. However, there is a large uncertainty in the current earth system models 
(ESMs) regarding future changes in phytoplankton biomass. In this study, we analyze the 26 ESMs and 
estimate the future changes in phytoplankton biomass based on the relationship between current climate 
and future changes, which is known as the “emergent constraint.” We find a strong relationship between the 
level of current nitrate levels and future chlorophyll changes in the Arctic Ocean. Based on this relationship, 
we estimate the uncertainty of the Arctic chlorophyll decline, which is about three times larger than the 
multi-model mean projection. Our results suggest that reducing the uncertainty of present-climate nitrate in the 
ESMs is important for projecting Arctic productivity.
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phenology, including the phytoplankton community and size (Fujiwara et  al.,  2016; Lee et  al.,  2019; Neeley 
et  al.,  2018), the timing of phytoplankton blooms (Kahru et  al.,  2011; Tremblay et  al.,  2006; Yamaguchi 
et al., 2022), and phytoplankton biomass (Lewis et al., 2020). These changing Arctic phytoplankton dynamics 
have altered the marine Arctic ecosystems shifting species distributions and altering trophic levels (Ardyna & 
Arrigo, 2020).

According to satellite observations, marine productivity in the Arctic Ocean has increased by 57% over the past 
20 years (Arrigo & van Dijken, 2011, 2015; Lewis et al., 2020). Sea ice retreat and an increase in the number 
of blue ocean days enhance the light availability over the Arctic Ocean and thus the increase in net primary 
production (NPP). However, an increase in chlorophyll concentration has been a major contributor to the increase 
in NPP over the past decades, due to the increased nutrient supply from subsurface waters rather than sea-ice 
retreat (Lewis et al., 2020). Similarly, the current generation of Earth system models (ESMs) simulated increased 
NPP in the Arctic Ocean in response to greenhouse gas emission scenarios (Bopp et al., 2013; Kwiatkowski 
et al., 2020). Although nearly all ESMs simulated the same direction of NPP changes, the intensity of increased 
NPP in the Arctic Ocean still shows large uncertainty (Tagliabue et al., 2021). Since Arctic phytoplankton growth 
is dominated by the nitrate availability and sea-ice concentrations (Long et al., 2021; Simpson et al., 2008; Stock 
et al., 2020; Tremblay et al., 2015; Tremblay & Gagnon, 2009), the extent of nitrate depletion in the upper ocean 
plays an important role in determining the future NPP changes (Vancoppenolle et al., 2013).

Depth-integrated NPP is typically estimated as a product of phytoplankton carbon or biomass and an empirical 
formula describing its physiological dependence on temperature, light, and nutrients (Behrenfeld et al., 2005; 
Behrenfeld & Falkowski, 1997). All ESMs show the decreases in sea ice and the resulting increase in light avail-
ability over the Arctic Ocean (Davy & Outten, 2021; Notz & SIMIP Community, 2020). Therefore, the impor-
tance of the estimating chlorophyll concentration, usually considered a proxy for the phytoplankton biomass, has 
received more attention to quantify future changes in Arctic marine productivity (Lewis et al., 2020). In addition, 
phytoplankton play an important role in the physics of the upper ocean by modifying the light penetration, lead-
ing to bio-optical feedbacks (Manizza et al., 2005). Enhanced attenuation of shortwaves by changes in the Arctic 
chlorophyll may amplify Arctic warming (Lengaigne et al., 2009; Lim et al., 2019a, 2019b; Park et al., 2015). 
Therefore, the fidelity of a future projection of chlorophyll concentration is essential for estimating changes in the 
Arctic climate and marine ecosystem resilience.

However, strong uncertainties in simulated chlorophyll concentrations exist and have not improved or even 
worsened in CMIP6 compared to CMIP5 (Séférian et al., 2020). To reduce this uncertainty in future chloro-
phyll changes, we applied the emergent constraint method, which is a useful approach based on the relationship 
between the current climate state and future climate changes (Hall et al., 2019). Emergent constraints have been 
widely applied to various components of the Earth system such as climate sensitivity (Brient et al., 2016; Zhai 
et  al.,  2015), the hydrological cycle (Li et  al.,  2017; O’Gorman,  2012), and the Arctic climate change (Boe 
et al., 2009; Bracegirdle & Stephenson, 2013). In particular, the future projections in marine biogeochemistry 
have been estimated by emergent constraints, such as, the primary production in tropical oceans (Kwiatkowski 
et al., 2017), the acidification in the Arctic Ocean (Terhaar et al., 2020), and the anthropogenic carbon sink in 
the Southern Ocean (Terhaar, Frölicher, & Joos, 2021). Despite various studies on Arctic phytoplankton, realistic 
estimations in Arctic chlorophyll changes have not been performed based on the relationship between the present 
climate and ESM simulated projections.

Here, we analyzed the future changes in Arctic chlorophyll concentration under different climate change scenar-
ios and suggested the importance of current level of nitrate concentration using ESM archives participating in 
CMIP5 and CMIP6. We applied the emergent constraint method (Hall et al., 2019) by considering nitrate uncer-
tainties with observed values and their intermodal diversities to estimate the corrected future Arctic chlorophyll 
changes. Detailed descriptions of the ESMs and methods are provided in Section 2. Results of the high uncer-
tainties in Arctic nitrate and chlorophyll and future chlorophyll estimation based on the emergent constraint are 
presented in Section 3. A summary and discussion of the implications of the present results are given in Section 4.

2.  Data and Methods
We employ the two different generations of ESM outputs simulated by the CMIP5 (Taylor et al., 2012) and CMIP6 
ESMs (Eyring et al., 2016). Twenty-six ESMs with embedded marine biogeochemical models have prognostically 
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simulated nitrate and chlorophyll concentrations interacting with the climate system. Further information on the 
individual models and institutions used in this study is provided in Tables S1 and S2 in Supporting Informa-
tion S1, respectively. We use historical simulations covering the periods 1900–2005 (CMIP5) and 1900–2014 
(CMIP6). And different the Intergovernmental Panel on Climate Change scenarios, covering the periods up to the 
end of the twenty-first century, are compared with the present Arctic climate. The scenarios are called Represent-
ative Concentration Pathways (RCPs) in CMIP5 (Moss et al., 2010) and Shared Socio-economic Pathways (SSPs) 
in CMIP6 (O'Neill et al., 2016). To estimate the responses to future pathways of greenhouse gas emissions, we 
use three different emission scenarios, namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5, and compare the results. In the 
business-as-usual scenario (SSP5-8.5), the peak of radiative forcing is not reached until the end of the twenty-first 
century. Corresponding to the SSP scenarios, RCP 2.6, RCP4.5, and RCP8.5 are used in CMIP5.

Model outputs are re-gridded using distance-weighted average remapping (climate data operators; remapdis) to 
the one-degree horizontal resolutions for the intercomparison within ESMs (Schulzweida, 2019). Chlorophyll 
and nitrate concentrations are averaged for the Arctic Circle, latitudes above 66.5°N (Arrigo & van Dijken, 2011). 
The changes in chlorophyll and nitrate are defined as the difference in the variables between the period 1981–
2000 and the period 2080–2099. To calculate the rate of change of the chlorophyll concentration, the changes are 
normalized by dividing the difference by the Arctic mean value for the period 1981–2000.

Two different nitrate concentration datasets based on in situ reanalysis, the World Ocean Atlas 18 (WOA18) 
(Garcia et al., 2018) and the Global Ocean Data Analysis Project version 2 (GLODAPv2) (Lauvset et al., 2016) 
datasets, are used to apply the emergent constraint method. Both WOA18 and GLODAPv2 datasets provide 
present-day values in the Arctic nitrate climatology interpolated to 1° × 1° latitude–longitude grids. And their 
total uncertainty is derived from the standard deviations of nitrate concentration for each grid cell and each 
month in both WOA18 and GLODAPv2 datasets. We defined the background nitrate concentration as the current 
climate level of nitrate concentration, which is averaged over the last 20 years of the twentieth century (historical 
scenario). Background nitrate from reanalysis datasets is used as a standard level of baseline nitrate concentration 
to check model fidelity and to estimate corrected values in chlorophyll projections using the emergent constraint 
based on the relationship between background nitrate and chlorophyll changes in CMIP5 and CMIP6.

The emergent constraints are based on strong statistical relationships between current states and future projec-
tions. Constraining the diverse future chlorophyll changes with present-day nitrate observations can reduce the 
uncertainty of their projections. Least-squares linear regressions are calculated from the simulated chlorophyll 
changes and background nitrate. And the probability density functions (PDFs) of the chlorophyll projections 
are calculated following the previously established framework (Cox et al., 2013; Kwiatkowski et al., 2017). The 
constrained PDFs of the Arctic chlorophyll changes are calculated with the unconstrained (prior) CMIP5 and 
CMIP6 ESM projections and present-climate in-situ based observations (GLODAPv2 and WOA18). The prior 
PDF is assumed to be uniformly distributed across ESM ensembles and follows a Gaussian distribution. To avoid 
an extreme model dependence on emergent relationships (Hall et al., 2019), we perform the emergent constraint 
after excluding single model in total 26 CMIP5 and CMIP6 models and average these constrained estimations 
(hereafter out-of-sample testing).

3.  Results
3.1.  Higher Uncertainty in CMIP6 Chlorophyll Projections

The multi-model ensemble (MME) in chlorophyll concentration in the Arctic Ocean is projected to decrease by 
30%, with a range of 7%–55%, under the RCP85 scenario in CMIP5 (Figure 1a). In higher emission scenarios, 
chlorophyll and nitrate concentrations are projected to decrease greater (Table S3 in Supporting Information S1). 
The nitrate decrease may explain the chlorophyll decrease (Figure 1b), which is projected to decrease by 46%—
with a range of 25%–66%—due to the enhanced stratification resulting from upper ocean warming and freshening 
(Figure S1 in Supporting Information S1). The ensemble mean of CMIP6 models projects a small increase in 
chlorophyll (an average of 4.1% for the SSP5-85 scenario), but there is a remarkably wide range of projections 
from a decrease of 56% to an increase of 64% (Figure 1c). Some models project an increase in chlorophyll despite 
the projected decrease in nitrate concentration in the Arctic Ocean of 49%—ranging from 31% to 68%—for 
the CMIP6 models (Figure 1d). The other models also show decreases in both the chlorophyll and nitrate in 
response to the increased radiative forcing (Figures S2 and S3 in Supporting Information S1). Possibly due to the 
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wide  range of chlorophyll projections, the amplitudes of the MME in chlorophyll changes get smaller in response 
to the stronger radiative forcing scenario become smaller from a decrease of 4% (SSP1-2.6) to an increase of 4% 
(SSP5-8.5) in CMIP6 (Table S3 in Supporting Information S1). The results are consistent with previous studies 
suggesting that CMIP6 models have not only a greater climate sensitivity (Zelinka et al., 2020) but also a higher 
uncertainty in future chlorophyll concentrations than CMIP5 models (Kwiatkowski et al., 2020).

The projected changes in the chlorophyll concentration for the business-as-usual scenario with the greatest radi-
ative forcing (RCP85 and SSP5-85) are arranged in the order of chlorophyll changes (Figure 1e). Seven CMIP6 
models project an increase in the chlorophyll concentration, while the remaining CMIP5 and CMIP6 models 
project a decrease. To understand the cause of the inter-model diversity within the ESM projections in chloro-
phyll, we also examined the corresponding projected changes in the nitrate concentration and arranged the results 
in the same order as the chlorophyll changes (Figure 1f). Although nitrate availability is a critical component 
driving differences in the Arctic ecosystem simulations (Cabré et al., 2014; Vancoppenolle et al., 2013), the rela-
tionship between the changes in the nitrate and the chlorophyll concentration is not clear (r = 0.31) as shown in 
Figures 1e and 1f. This weak relationship implies that the large inter-model diversity in chlorophyll projections 
cannot be fully explained by projected changes in nitrate concentration. To understand the inter-model diversity 
in projected chlorophyll concentration, a detailed analysis of the seasonality and mean state of nitrate concentra-
tion is required.

3.2.  Emergent Relationship Between Arctic Chlorophyll Changes and Background Nitrate

To identify the main reason for the inter-model diversity in chlorophyll changes, we classified the CMIP 
models into three groups—CMIP5, CMIP6-negative, and CMIP6-positive—based on the projected changes 
in the chlorophyll concentration (see Figures 2a–2c). To compare the different CMIP6 groups, the five most 
increased and decreased models are classified into CMIP6-negative and CMIP6-positive groups. In general, 
CMIP5 and CMIP6-negative models show a decrease in the chlorophyll concentration. In contrast, although 

Figure 1.  Projections of chlorophyll and nitrate concentration in the Arctic Ocean. Time series of the annual mean chlorophyll (a and c) and nitrate (b and d) 
concentrations projected by Coupled Model Intercomparison Projects 5 and 6 (CMIP5 and CMIP6) models were averaged for the Arctic Ocean (the region above 
66.5°N) and normalized using the average values for the Arctic region obtained from historical data for 1981–2000. Colors indicate different scenarios: historical 
(black), RCP26 and SSP1-26 (blue), RCP45 and SSP2-45 (green), and RCP85 and SSP5-85 (red). Shadings indicate a range of 𝐴𝐴 ± 1 inter-model standard deviations in 
chlorophyll and nitrate changes for each scenario, and the thick lines represent the ensemble means for CMIP models. Bar graphs illustrate a range of ±1 inter-model 
standard deviations of changes averaged in the last 20 years (2080–2099) with multi-model ensemble (MME) (scatter). Time series of the chlorophyll and nitrate 
projections for the individual model are provided (Figures S2 and S3 in Supporting Information S1). (e) Projected changes in chlorophyll concentration under RCP85 
and SSP5-85 (for the period 2080–2099 relative to historical simulations for 1981–2000) averaged over the Arctic Ocean area (>66.5°N) are arranged according to the 
size of the projected change in chlorophyll concentration. (f) Projected changes in nitrate concentration relative to historical simulations (for 1981–2000) arranged by 
the model in the same order as in (e). The model names are colored according to the group they belong to CMIP5 (gray), CMIP6-negative (blue), CMIP6-positive (red), 
and remained CMIP6 (black).
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the increase in the North Atlantic Ocean and the Barents Sea is relatively small, CMIP6-positive models show 
increases in chlorophyll over almost the whole Arctic Ocean. The results suggest that the differences between 
the model chlorophyll projections are not limited to the specific region but occur in almost the entire Arctic 
Ocean.

Due to the strong seasonal variability of the sea ice, surface temperature, and stratification in the Arctic Ocean 
(Wassmann & Reigstad, 2011), we further analyzed the seasonality in the projected chlorophyll changes for three 
groups and the different emission scenarios (Figures 2d–2f). All groups project the same increases in chlorophyll 
during the boreal spring (March to May; MAM). However, the chlorophyll changes in the boreal summer are 
simulated very differently (June to August; JJA). The increased chlorophyll in the boreal spring is related to the 
limited amount of light due to sea ice cover. The more pronounced bloom in the spring is projected in response 
to the higher emission scenarios (i.e., SSP5-85 and RCP85) than the lower emission scenarios (i.e., SSP1-26, 
RCP26). As the sea-ice melts more and earlier in response to greenhouse warming, the light may become more 
available with abundant nutrients that have accumulated over the winter (December to February; DJF). In the 
nutrient-rich environment, the increased light leads to an earlier bloom of the phytoplankton and the increase 
in the amount of chlorophyll (Assmy et al., 2017; Kahru et al., 2011; Park et al., 2015; Tremblay et al., 2006). 
However, in the boreal summer, two factors—light and nutrients—are affected by warming in opposite ways. 
On the one hand, the amount of available light may increase in response to the decrease in sea ice, which tends 
to increase the chlorophyll concentration. On the other hand, the enhanced static stability contributes to nutrient 
reduction (Kwiatkowski et al., 2020) due to the increased surface warming, and the ocean freshening caused by 
the sea ice melting (see Figure S4 in Supporting Information S1). The enhanced nutrient limitation leads to the 
reduction in chlorophyll concentration. Therefore, in the presence of two opposing limiting factors, the chloro-
phyll response will be determined by the relative strength of the two limiting factors.

To show the different patterns of seasonality in the three groups, we compared the changes in chlorophyll concen-
tration between the business-as-usual scenario and the historical scenario, as well as mean states in nutrient 
limitation in the historical scenario in the three groups (Figure 3). To estimate the nitrate limitation in different 

Figure 2.  Projections of the spatial distribution and seasonal changes in chlorophyll concentration. (a–c) The composite maps show the projected changes in annual 
mean chlorophyll concentration for the period 2080–2099 compared to 1981–2000 under RCP85 and SSP5-85 for the different groups of models: (a) CMIP5, (b) 
CMIP6-negative, and (c) CMIP6-positive. The dotted lines represent the Arctic Circle (>66.5°N). Contours maps of the chlorophyll concentration changes for the 
individual model are provided in Figure S5 in Supporting Information S1. (d–f) The seasonal changes in chlorophyll concentration are shown for the (d) CMIP5, (e) 
CMIP6-negative, and (f) CMIP6-positive models. The different colors indicate different scenarios: RCP26 and SSP1-26 (blue), RCP45 and SSP2-45 (green), and 
RCP85 and SSP5-85 (red). Shadings indicate a range of 𝐴𝐴 ± 1 inter-model standard deviations in chlorophyll changes for different scenarios, and the thick lines represent 
the ensemble means for three groups and three scenarios.
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model parameterizations (Laufkotter et  al.,  2015), we defined the general 
nitrate limitation (𝐴𝐴 limNO3

) as the half-saturation coefficient (Michaelis & 
Menten, 1913) used in Vancoppenolle et al. (2013):

limNO3
=

NO3

𝐾𝐾NO3
+ NO3

�

where 𝐴𝐴 𝐴𝐴NO3
= 1.6 mmol/m 3 is the half-saturation concentration for the nitrate 

uptake as the value of the nitrate uptake by diatoms (Sarthou et al., 2005). 
The value of the nutrient limitation is determined by Liebig's law of the mini-
mum of different nutrient limitations, such as nitrate, phosphate, silicate, and 
trace metals. As the Arctic Ocean is typically nitrate-depleted (Tremblay 
et al., 2015; Yamamoto-Kawai et al., 2006), the dominant limiting nutrient 
for phytoplankton growth is known as nitrate in the following analysis (Long 
et al., 2021; Stock et al., 2020; Vancoppenolle et al., 2013).

In the boreal winter and spring seasons, the enhanced light availability result-
ing from a reduction in sea ice (Figure S4 in Supporting Information S1) 
leads to an increase in chlorophyll concentration in the projections simulated 
by most CMIP5 and CMIP 6 models (DJF and MAM columns in Figure 3a). 
Note that the CMIP6-positive models project a larger increase in chlorophyll, 
implying that the CMIP6-positive models are more sensitive to light availa-
bility. In summer, the CMIP5 and CMIP6-negative models project a decrease 
in chlorophyll, while the CMIP6-positive models project an increase. The 
different seasonality in the chlorophyll projections results from the different 
seasonality of nutrient limitation in the three groups. In winter and spring, 
nutrients are relatively abundant, which is consistent with the weak nutri-
ent limitation (DJF and MAM columns in Figure 3b) resulting from deep 
convection in the cold seasons. In the weak nitrate limitation, the additional 
light availability may provide a favorable environment for the growth of 
phytoplankton.

However, in the boreal summer, the nutrient decrease is caused by the 
increased uptake by phytoplankton in spring and the reduced entrainment 
from deep water, which leads to more severe nutrient limitation (JJA column 
in Figure  3b). In contrast, the CMIP6-positive models, however, show a 
similar weak nutrient limitation in summer as in winter and spring. The 
CMIP6-positive models also project a decrease in nitrate concentration like 

the other groups, but the amount of nitrate is still large enough to supply nitrate to phytoplankton. And the 
contrast of nutrient limitation between the CMIP6-positive models and the others becomes larger in a warming 
climate (Figure S7 in Supporting Information S1). Although all ESMs project an increase in light availability due 
to the sea ice melting, the CMIP5 and CMIP6 ESMs project a large spread in the future chlorophyll changes due 
to the different seasonality of nutrient limitation in the Arctic Ocean.

3.3.  Emergent Constraints on Phytoplankton Biomass in Earth System Models

In contrast to the weak relationship between future chlorophyll changes and the changes in sea surface temper-
ature, sea ice, and nitrate concentrations (Figure S10a in Supporting Information S1), the clear difference in the 
background nitrate concentration among the three groups (Figure S8 in Supporting Information S1) suggests that 
the background nitrate is critical for determining future changes in the chlorophyll concentration in the Arctic. 
To further illustrate the importance of background nitrate more clearly, the relationship between the background 
nitrate concentration and the change in chlorophyll concentration is shown for three different emission scenarios 
(Figures 4a–4c). In the high emissions scenario, the relationship between the background nitrate concentration 
and the projected change in chlorophyll exhibits a strikingly high positive correlation (r = 0.86, P < 0.001) in the 
total 26 CMIP5 and CMIP6 ESMs, which is also significant across other scenarios such as SSP1-2.6 (r = 0.66) 
and SSP2-4.5 (r = 0.80).

Figure 3.  Range of seasonality in (a) chlorophyll changes and (b) nutrient 
limitations. The boxes denote the interquartile range between the 25th and 75th 
percentiles, and the median value for each group is marked by a horizontal 
orange line. The value projected by the individual model is plotted as a 
colored dot according to the group to which the model belongs: CMIP5 (gray), 
CMIP6-negative (blue), and CMIP6-positive (red). Detailed information on 
the seasonal changes in the chlorophyll concentration and nutrient limitation of 
the individual model are provided in Figure S6 in Supporting Information S1.
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The CMIP6 models have diverse background nitrate concentrations, and the inter-model diversity leads to greater 
uncertainty in the chlorophyll projections than in the CMIP5 models. In CMIP6-positive models, although the 
enhanced stratification decreases the nitrate by 3.8 mmol/m 3, the background nitrate is still too high to limit the 
phytoplankton growth. Under the weak nitrate limitation in CMIP6-positive models, the chlorophyll concentra-
tion increases in response to the weakened light limitation. However, the same weakened light limitation does 

Figure 4.
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not lead to an increase in chlorophyll concentration in CMIP6-negative and 
CMIP5 models because the nitrate is depleted in the chlorophyll decreasing 
groups. While the Arctic background nitrate in the reanalysis ranges from 
about 2.0  mmol/m 3 (from GLODAPv2) to 2.7  mmol/m 3 (from WOA18), 
the simulated Arctic background nitrate in the CMIP5 and CMIP6 models 
is about 6.1 mmol/m 3 with a range from 0.3 to 19.8 mmol/m 3. This indicates 
that current models tend to overestimate the background nitrate concentra-
tion. In particular, the CMIP6-positive models have a strong positive bias 
(10.6–11.2  mmol/m 3) in the background nitrate concentration, which may 
contribute to projecting excessive increases in the chlorophyll concentration.

Despite the systematic biases in background nitrate in the ESMs, the high 
correlation between the background nitrate concentration and future changes 
in the chlorophyll concentration provides an opportunity to make credible 
projections of Arctic chlorophyll. Applying the emergent constraints based 
on the linear relationship between the projected changes in the chloro-

phyll concentration and the background nitrate concentrations used in climate models, the estimated chloro-
phyll concentration is decreased by 44.9 𝐴𝐴 ± 29.1 % (based on WOA18) to 50.9 𝐴𝐴 ± 27.6 % (based on GLODAPv2) 
compared to the current level in response to the business-as-usual scenario. The observation-based estimation is 
larger than  the decrease in projection corresponding to MME (𝐴𝐴 13.5 ± 48.7 %) under CMIP5 and CMIP6 ESMs, 
and the more decreased estimations in MME in other scenarios support the robustness of the emergent constraint 
(Table  1). In addition, we applied the out-of-sample testing in both CMIP5 and CMIP6 respectively, which 
exhibits similar ranges of chlorophyll changes (Table S4 in Supporting Information S1). This result suggests 
that current ESMs tend to underestimate the reduction in Arctic chlorophyll due to overestimated background 
nutrients.

Cumulative density functions (CDF) in chlorophyll changes from before and after the constraints are compared 
across scenarios (Figures 4d–4f). The CDFs provide information about the reduced uncertainty in the direc-
tion of the chlorophyll projections. Before the emergent constraint, the probability of the decreased chlorophyll 
projections in business-as-usual scenarios is about 60%, which implies that there is still a 40% possibility of the 
increased chlorophyll projections (Figure 4f). After the emergent constraint, the probability of the decreased chlo-
rophyll increases to 93%–96%. In other words, the uncertainty of the estimated chlorophyll changes is reduced by 
about 33% (based on WOA18) to 36% (based on GLODAPv2). The reduced uncertainties are similar for the other 
scenarios (Figures 4d and 4e). Therefore, we can strongly suggest that chlorophyll is projected to decrease under 
the current level of background nitrate concentration with more than 90% probability.

Future changes in NPP are strongly associated with future changes in chlorophyll with a high correlation 
(r = 0.85, P < 0.001) (Figure S10b in Supporting Information S1) because chlorophyll can affect photosyn-
thetic rates (Behrenfeld & Falkowski, 1997). Although the parameterization of NPP in the ESMs differs, NPP 
was generally calculated by vertical integration of the product between phytoplankton biomass and its growth 
rate in phytoplankton species. The link between chlorophyll and NPP implies the importance of simulating the 
fidelity in background nitrate concentration for estimating the future changes in Arctic marine productivity, as 
the nitrate fluxes are important to Arctic primary production (Randelhoff et al., 2020). The NPP changes are a 
matter of chlorophyll rather than other physical environments such as sea ice and surface temperature in CMIP5 

Figure 4.  Constrained projections of chlorophyll concentration. (a–c) Scatter plots showing the changes in chlorophyll concentration compared to historical simulations 
plotted against the background nitrate concentration under different scenarios: RCP26 and SSP1-26 (a), RCP45 and SSP2-45 (b), and RCP85 and SSP5-85 (c). The 
annual mean values of the background nitrate concentration and the change in chlorophyll concentration averaged over the Arctic Ocean are plotted for individual 
model; the open and filled markers represent Coupled Model Intercomparison Project 5 (CMIP5) models and CMIP6 models, respectively. The thick black solid line is 
the linear regression line between the background nitrate concentration and the change in chlorophyll concentration for all CMIP5 and CMIP6 models. The vertical blue 
and orange dashed lines mark the average background nitrate concentration in the Arctic Ocean according to the GLODAPv2 and WOA18 observations with associated 
uncertainty (shaded area). Constrained estimation using standard error is given in Table S5 in Supporting Information S1. (d–f) Cumulative density functions (CDFs) 
of chlorophyll changes in CMIP5 and CMIP6, and constrained changes based on observations under different scenarios: RCP26 and SSP1-26 (d), RCP45 and SSP2-45 
(e), and RCP85 and SSP5-85 (f). The blue solid line shows the “prior” CDF for CMIP5 and CMIP6. The other solid lines represent CDF constrained with background 
nitrate in WOA18 (orange) and GLODAPv2 (red). All three distributions represented by solid lines are assumed to be a Gaussian distribution. The hatched histogram 
represents CDF for the chlorophyll changes directly calculated among 26 CMIP5 and CMIP6 ESMs. Scatters illustrate the cumulative probability where future 
chlorophyll changes are projected to decrease. Mean and standard deviation of chlorophyll changes without and with EC are provided in Table 1. Out-of-sample testing 
is applied across different ESM ensembles.

Table 1 
The Arctic Mean Changes in Chlorophyll Obtained for Different Scenarios 
Before and After Emergent Constraint

Scenario CMIP5,6 prior [%]
After WOA18 
constraint [%]

After GLODAPv2 
constraint [%]

SSP1-2.6 −5.9 (𝐴𝐴 ± 22.7) −19.1 (𝐴𝐴 ± 18.8) −21.3 (𝐴𝐴 ± 18.6)

SSP2-4.5 −11.5 (𝐴𝐴 ± 29.7) −29.2 (𝐴𝐴 ± 20.2) −32.7 (𝐴𝐴 ± 19.5)

SSP5-8.5 −13.5 (𝐴𝐴 ± 48.7) −44.9 (𝐴𝐴 ± 29.1) −50.9 (𝐴𝐴 ± 27.6)

Note. The error ranges given are the standard deviation of chlorophyll 
projections, and standard errors of probability density functions, which are 
constrained by WOA18 and GLDOAPv2 background nitrate concentration, 
respectively. Out-of-sample testing is applied across different ESM 
ensembles.
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and CMIP6 ESMs (Figure S10a in Supporting Information S1). Similarly, changes in Arctic marine productivity 
can be estimated by applying the emergent constraint to the background nitrate concentration.

4.  Conclusion and Discussion
In recent decades, the Arctic Ocean has experienced major changes in environmental conditions such as increased 
surface temperatures, reduced sea ice extent, and intensified stratification. These physical changes have affected 
ocean productivity and the phytoplankton biomass (Ardyna & Arrigo,  2020). We investigated the projected 
changes in the chlorophyll concentration in the Arctic Ocean. The present result exhibits that the large spread of 
inter-model diversity exists among the projections based on CMIP5 and CMIP6 ESMs, which is consistent with 
the high degree of uncertainty in the projections of Arctic phytoplankton biomass in CMIP5 (Cabré et al., 2014) 
and CMIP6 (Kwiatkowski et al., 2020). The range of values for the background nitrate concentration used in 
the CMIP5 models was large (Vancoppenolle et al., 2013), and this range has become even wider in the CMIP6 
models. The remarkably strong correlation (0.86, P < 0.001) between the background nitrate concentration and the 
change in the chlorophyll concentration suggests that the background nitrate concentration is key to determining 
future chlorophyll levels in the Arctic Ocean. Constraining the observed nitrate to the linear relationship between 
the background nitrate concentration and the chlorophyll projections, the chlorophyll concentration is estimated 
to decrease by 45%–51% relative to current levels, which is about three-fold than the reduction projected by the 
multi-model mean (14%). Based on the estimation using emergent constraint, the uncertainty in the direction of 
chlorophyll changes is reduced and we can assure the future chlorophyll decline with over 90% probability.

Although the biogeochemical fields in the ESMs are all initialized using similar observational datasets that are 
based on WOA and GLODAP data (Séférian, Delire, et al., 2016), the simulations of the nitrate concentration 
in the Arctic Ocean produce a large inter-model spread. In addition, some of the newly developed ESMs have a 
serious systematic bias in the nutrient distribution. The amount of nitrate in the Arctic Ocean is controlled by both 
physical and biological processes. Physical processes that can affect the nutrient concentrations include winter 
vertical mixing (Randelhoff et al., 2020; Wiedmann et al., 2017), which supplies nutrient-rich deep water to the 
ocean surface; and horizontal transport from the Pacific and Atlantic sectors (Henley et al., 2020; Randelhoff 
et al., 2018), which contain higher concentrations of nitrate than the central Arctic basin; riverine nutrient inputs 
(Carmack et al., 2016; Terhaar et al., 2019); coastal erosion (Fritz et al., 2017; Terhaar, Lauerwald, et al., 2021); 
and atmospheric nitrogen deposition (Krishnamurthy et al., 2009; Somes et al., 2016). Additionally, nitrate concen-
trations are controlled by biological sources and sinks, such as nitrogen fixation and assimilation, denitrification, 
and anammox by microorganisms (Wang et al., 2019; Wrightson & Tagliabue, 2020; Zakem et al., 2018). In the 
nitrogen cycle, the interactions between the above physical and biological properties are not fully accounted for in 
the current generation of ESMs. In particular, large amounts of nutrient recycling by microorganisms and overesti-
mated nutrient fluxes may be the reason for the overestimated nitrate concentrations in CMIP6 (Wang et al., 2019).

The increase in Arctic NPP has been observed over the last 20 years (Arrigo & van Dijken, 2011, 2015; Lewis 
et al., 2020) and the positive trend in chlorophyll concentration are recently reported (Lewis et al., 2020), which is 
opposite to the CMIP5 and CMIP6 chlorophyll projections. The observed positive trend is mainly due to increase in 
the summer chlorophyll, while the majority of CMIP5 and CMIP6 models simulate a significant negative trend in the 
summer chlorophyll until the end of the 21st century. This increase in productivity has been attributed to the increased 
light availability due to the retreat of the sea-ice extent (Arrigo & van Dijken, 2015) as sea-ice was covered in the 
substantial Arctic Ocean even during the boreal summer. As the sea-ice extent is rapidly reduced, the chlorophyll 
increase due to increased light availability will be limited to a narrow area around the permanent sea-ice in the boreal 
summer. Instead, the time at which the effect of the light availability will be seasonally earlier than present climate, 
eventually in boreal spring, which is consistent with the model projection. The current positive chlorophyll trends, 
sustained by the nutrient supplies (Lewis et al., 2020) might not be persisted as the nutrient limitation gets severe in 
the response to the global warming, implying that the Arctic phytoplankton dynamics may slowly change from the 
light limitation to the nutrient limitation. This shift will play an important role chlorophyll changes in the Arctic.

Data Availability Statement
The nitrate in WOA18 and GLODAPv2 are provided freely at https://www.ncei.noaa.gov/access/world-ocean-at-
las-2018/bin/woa18oxnu.pl?parameter=n and https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0162565/, 
respectively. The CMIP5 and CMIP6 archives are freely available from https://esgf-node.llnl.gov/. All figures 

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18oxnu.pl?parameter=n
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18oxnu.pl?parameter=n
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0162565/
https://esgf-node.llnl.gov/
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were generated by using software package Python with the matplotlib and basemap modules (https://matplotlib.
org/, https://matplotlib.org/basemap/). The map coastlines are derived by the Global Self-consistent, Hierarchi-
cal, High-resolution Geography (GSHHG) Database (www.soest.hawaii.edu/pwessel/gshhg/), which has been 
distributed under the GNU Lesser General Public License and is provided with the basemap Python module.
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