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Abstract The ocean mixed layer plays an important role in the coupling between the upper ocean and
atmosphere across a wide range of time scales. Estimation of the variability of the ocean mixed layer is
therefore important for atmosphere-ocean prediction and analysis. The increasing coverage of in situ Argo
profile data allows for an increasingly accurate analysis of the mixed layer depth (MLD) variability associated
with deviations from the seasonal climatology. However, sampling rates are not sufficient to fully resolve
subseasonal (< 90 day) MLD variability. Yet, many multivariate observations-based analyses include implicit
modeled subseasonal MLD variability. One analysis method is optimal interpolation of in situ data, but the
interior analysis can be improved by leveraging surface data with regression or variational approaches. Here, we
demonstrate how machine learning methods and satellite sea surface temperature, salinity, and height facilitate
MLD estimation in a pilot study of two regions: the mid-latitude southern Indian and the eastern equatorial
Pacific Oceans. We construct multiple machine learning architectures to produce weekly 1/2° gridded MLD
anomaly fields (relative to a monthly climatology) with uncertainty estimates. We test multiple traditional and
probabilistic machine learning techniques to compare both accuracy and probabilistic calibration. We validate
our methodology by applying it to ocean model simulations. We find that incorporating sea surface data
through a machine learning model improves the performance of spatiotemporal MLD variability estimation
compared to optimal interpolation of Argo observations alone. These preliminary results are a promising first
step for the application of machine learning to MLD prediction.

Plain Language Summary The top layer of the ocean, called the surface mixed layer, features
temperature and salinity that are relatively uniform throughout its depth. The depth of this layer can vary
depending on the exact location, time of year and is impacted by many physical processes. Although it is
typically only a few percent of the ocean depth, the mixed layer is important because it regulates heat exchange
between the deep ocean and the atmosphere, and it hosts virtually all photosynthesis that sustains ocean
ecosystems. Observations of the mixed layer depth are infrequent in time and space because of the size of the
ocean in comparison to the number of observing instruments. Satellite data is widely available and provides
information about the surface of the ocean, but unfortunately there is not an exact relationship between the
surface information and the mixed layer depth. In this study, we study machine learning models' abilities to
learn this relationship with the available data and to produce reasonable fine-scale estimates of the mixed layer
depth. In particular, we emphasize the ability of the machine learning model to estimate how uncertain it is
about its estimates.

1. Introduction

The ocean surface mixed layer depth (MLD) is an important factor in atmospheric and oceanic dynamics.
For example, the MLD modulates sea-surface temperature dynamics (Deser et al., 2010), air-sea interaction
(Frankignoul & Hasselmann, 1977; Kraus & Turner, 1967), ocean water mass formation and properties, as well
as ocean circulation (Hanawa & Talley, 2001; Stommel, 1979). While there have been several recent efforts to
observe and quantify the global climatological seasonal cycle of the MLD based on the in situ array of thousands
of vertically profiling Argo floats (Holte et al., 2017; Schmidtko et al., 2013; Whitt et al., 2019), little effort has
been devoted to quantifying the aseasonal (non-climatological) variability of the MLD because the Argo array is
not sufficiently large to fully resolve subseasonal (< 90 days) MLD variability. In this study, we take a prelimi-
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nary step toward improved observational estimates of aseasonal MLD variability by identifying and leveraging
relationships between the MLD and sea surface salinity (SSS), temperature (SST), and height anomalies (SSH)
in a machine learning framework.

Our approach is predicated on the hypothesis that there are significant relationships to be learned between the
MLD and the ocean surface variables, including SST, SSS, and SSH. This hypothesis is motivated by previous
studies that have identified and leveraged ocean surface-to-interior relationships (Gaube et al., 2019; Guinehut
et al., 2012; Helber et al., 2013; Isern-Fontanet et al., 2008), including for MLD estimation (Buongiorno Nar-
delli et al., 2017). There are many physical reasons why the MLD might be related to surface variables. For
example, depression or shoaling of the thermocline that manifests in sea level anomalies may also facilitate
changes in MLD by reducing or increasing the density near the mixed layer base and hence changing the MLD.
Likewise, an increase in the surface density (due to changes in SST or SSS associated with air-sea fluxes, for
example) can decrease the near-surface stratification and hence increase the MLD. Or, horizontal circulation
anomalies may introduce relationships among anomalies in MLD, SST, SSS, and SSH due to horizontal ad-
vection of the whole upper-ocean water column. However, the ocean surface variables are also thought to vary
for reasons unrelated to MLD variability (and vice versa), and the physics of the relationships between the
ocean surface variables and the MLD are complex and vary both spatially and temporally. Based on prior work,
we expect that atmospheric variables, such as wind, may provide information about the ocean MLD that is
independent of the ocean surface variables. For example, the wind speed can sometimes explain the transient
mixed-layer deepening during a storm (Pollard et al., 1973; Price et al., 1978). More generally, atmospheric
variability can explain some of the temporal variability in the MLD on a wide range of timescales in many
ocean regions (Alexander et al., 2000; Carranza & Gille, 2015; Large et al., 1986; Martin, 1985; Waniek, 2003;
Whitt et al., 2019; Zhou et al., 2018). But, some fraction of the atmospherically driven MLD variability also
manifests in the ocean surface variables. For example, wind-driven entrainment can change the SST and SSS
(Large et al., 1986; Price et al., 1978), and the response timescale of the SST and SSS to atmospherically driv-
en surface flux anomalies is sensitive to the MLD (Frankignoul & Hasselmann, 1977). Ultimately, it remains
an open question whether, to what degree, and on what space and timescales surface salinity, temperature
and height provide predictive information about the MLD, particularly on subseasonal and shorter timescales
(< 90 days) and mesoscale and smaller spatial scales (< 500 km). Hence, work is required to fully understand
the physical basis and create predictive models and historical analyses of MLD variability that optimally lev-
erage all available observations. This study takes a step toward the latter end by using machine learning in an
attempt to identify and leverage relationships between ocean surface variables and MLD for prediction and
analysis.

Due largely to the increasing coverage of the Argo array (Holte et al., 2017), the MLD is increasingly well-ob-
served globally. Despite this improvement, however, the data is insufficient to recover MLD variability on the
spatial or temporal scale of state-of-the-art global ocean models. For example, the CESM POP2 ocean model
(whose data we use in one of our experiments, see Section 4.1) uses a 1/10° resolution grid, runs with a time
step of about 3 min, and outputs data averaged over 5-day intervals. The coarsest gridded satellite product
(salinity) used in this study is available every 7 days on a 1/2° resolution global grid; the satellite samples
at least once every (roughly) 20,000 square kilometers every 7 days (Le Vine et al., 2007). Meanwhile, for
the Argo data set used in this manuscript, there is, on average for a given 7-day period, 1 Argo profile per
(roughly) 150,000 square kilometers. Furthermore, the Argo profiles are not equidistant and are often spa-
tially clustered.

Modern attempts to recover variables using a hybrid data collection of in situ and satellite data typically use
optimal interpolation (Cabanes et al., 2013; Guinehut et al., 2012; Roemmich & Gilson, 2009), or a data as-
similation reanalysis using ocean models (Balmaseda et al., 2015; Buongiorno Nardelli et al., 2017; Cummings
& Smedstad, 2013; Helber et al., 2013; Masina et al., 2017). While the use of optimal interpolation and data
assimilation can create accurate, fine resolution gridded MLD products, the methodology can introduce biases
and artifacts derived from the assimilation of the ocean models that are not inherent in the data. Our aim in this
study is to demonstrate the utility of informing MLD estimation using satellite surface data through a purely
observation-based machine learning framework. Therefore, we test the possibility of constructing a data-driven
relationship between sea surface variables and the MLD. The results of this study serve as a preliminary step that
justifies further extension of the methodology and framework to eventually include a machine learning-based

FOSTER ET AL.

2 of 33



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2021MS002474

global reanalysis of the MLD that can be evaluated against state-of-the-art data assimilation products and, poten-
tially, be included in data assimilation reanalysis schemes.

The application of machine learning to the geosciences is a rapidly growing field (Irrgang et al., 2020; Lary
et al., 2016; Monteleoni et al., 2013; Reichstein et al., 2019; Weyn et al., 2019). The machine learning approach
offers a flexible, data-driven route to regression and classification tasks that has been used for parameteriza-
tions (Bolton & Zanna, 2019; Brenowitz & Bretherton, 2018; Gagne et al., 2020; Gentine et al., 2018; Jiang
et al., 2018; O'Gorman & Dwyer, 2018; Rasp et al., 2018), forecasting (Hsieh & Tang, 1998; Irrgang et al., 2020;
McGovern et al., 2017; Pathak et al., 2018; Ukkonen & Mikeld, 2019; Weyn et al., 2019), data assimilation
(R. Cintra et al., 2016; R. S. Cintra & de Campos Velho, 2018; Wahle et al., 2015), and remote sensing (Lary
et al., 2016; Ouali et al., 2017). Unfortunately, many successes in machine learning research are also in over-de-
termined regimes, in which the amount of data is large in comparison to the number of independent parameters.
Extrapolation regimes, where data are sparse in one or more dimensions, are known to be problematic because
the prediction depends more heavily on the underlying assumptions of the model. This is particularly problem-
atic in oceanography, where many unknown quantities are two or three dimensional, and data availability is still
relatively sparse.

While the study of machine learning can trace its history to Rosenblatt's perceptron (Rosenblatt, 1958), the
implementation of early machine learning methods and architectures in a data-driven way was considered
computationally infeasible for moderate to large applications until the late 1980s with the development of
the back-propagation algorithm (Rumelhart et al., 1986), which enabled training of multi-layered neural net-
works. Despite advances through the nineties and early twenty-first century, the deep learning revolution did
not occur until 2006 (Goodfellow et al., 2016) when an explosion of reliable training data, computing power,
neural network layers, and regularization techniques have dramatically increased neural network accuracy. As
demonstrated in Guo et al. (2017), this improvement in accuracy has also hindered the capacity of neural net-
works to be well-calibrated, that is, when forecast probabilities match the system's true probabilities, and hence
offer accurate representations of the underlying probability distributions. The ability for a neural network to
be well-calibrated is of critical importance. Data assimilation research has repeatedly shown that proper esti-
mation of the background error covariance can improve reconstruction estimates (Valler et al., 2019). In the
estimation of sea surface temperature or sea level anomaly, mis-quantification of atmospheric uncertainties
has also been shown to cause significant and non-local errors in reanalysis estimates (Chaudhuri et al., 2016).
Parallel developments have led to the field of probabilistic neural networks to address this calibration problem
in machine learning.

The ultimate goal of probabilistic neural networks is to be able to accurately and precisely define the posterior
probability distribution conditioned on the data. Using a Bayesian framework allows us to easily account for
sources of error and randomness in the data, weights, or model. The gold standard for this task is often sampling
from the posterior distribution using a Markov Chain Monte Carlo (MCMC) scheme (Brooks, 2011; Gelman
et al., 2013), but this approach is still computationally infeasible for modern neural networks. There have been
several approximations and techniques developed for producing estimates of the posterior probability includ-
ing the development of Bayesian Neural Networks, with weight uncertainty (Blundell et al., 2015; Neal, 1996),
Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011), Variational Inference (Hoffman & Blei, 2015;
Kingma et al., 2015; Paisley et al., 2012), Probabilistic Backpropagation (Hernandez-Lobato & Adams, 2015;
Rezende et al., 2014), Dropout (Ba & Frey, 2013; Gal & Ghahramani, 2016; Gal et al., 2017; Hinton et al., 2012;
Maeda, 2014), Variational Autoencoders (Kingma & Welling, 2014), and Deep Ensembles (Lakshminarayanan
et al., 2017).

Despite the numerous techniques to inject uncertainty estimates into machine learning, the performance of any
approach is still underwhelming. Recent arguments have been made that ensembles of techniques outperform
any one approach (Dormann, 2020; Guo et al., 2017; Kuleshov et al., 2018; Lakshminarayanan et al., 2017;
Nixon et al., 2019). Due to the complex nature of the analytical posterior distributions, lack of complete
data, prohibitive cost of training, and sensitivity to the nature of the application, an understanding of which
methodology is appropriate is still in its infancy. Recently there has been some research comparing popular
uncertainty quantification techniques in Deep Learning (Ashukha et al., 2020; Caldeira & Nord, 2020; Labach
et al., 2019; Lakshminarayanan et al., 2017). Unfortunately, it still remains an open question as to how these
methods perform in the geosciences (where probabilities are often non-Gaussian, non-trivial, non-stationary,
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and high-dimensional) and what the best practices might be. This study serves as a step into answering this
question by testing various probabilistic machine learning methods used for high-dimensional data with both
Gaussian and non-Gaussian distributions on MLD estimation, which serves as an example problem in this
respect.

Our goals for this manuscript are two-fold. For our first goal, we investigate to what extent the aseasonal varia-
bility in SSS, SST, and SSH are related to, and thus useful for estimating, the aseasonal variability of the MLD.
In particular, we study two geographic regions, (a) the eastern equatorial Pacific Ocean from 10°S—-10°N to
150°-120°W and (b) the southern Indian Ocean from 45°-35°S to 55°—115°E, over the 2011-2015 time period.
As detailed in Section 2, these regions are useful test cases because both are characterized by at least modest
subseasonal MLD variability (> 10 m subseasonal standard deviations), but the magnitudes of subseasonal var-
iability, the climatological annual cycle, and interannual variability all differ substantially (Whitt et al., 2019).
Thus, the two regions reflect useful and distinct test cases for evaluating machine learning model performance.
Our analysis takes two stages. We first train a series of neural network architectures on the CESM POP2 ocean
model data interpolated to the same grid as the satellite observation data. This allows us to pre-train machine
learning models using complete MLD maps and provides a proof of concept for our scientific approach. From
these machine learning models we can also understand the extent to which each of the input variables impacts the
MLD predictions. In the second stage we perform transfer learning by reusing these pre-trained model weights
as a starting point for the training of neural network architectures to produce gridded MLD estimates using the
satellite observational surface variables as inputs and evaluate model performance at the Argo MLD observation
locations. We compare the machine learning approaches, which only use surface values as inputs, to the tradition-
al optimal-interpolation technique that estimates using the actual MLD values from the in situ Argo profiles. The
differences in performance between the machine learning methods and optimal-interpolation schemes will reveal
the extent to which the sea surface variables are useful in predicting spatiotemporal variability in the MLD. If suc-
cessful, this methodology can produce MLD maps derived from satellite SST, SSS, and SSH data to supplement
and assimilate with the sparse in situ data.

For our second goal, we focus on understanding the probability distribution of the MLD that is learned by the
neural network. As a first step, we evaluate how well calibrated the neural network estimates are and what
spatial and temporal patterns are revealed through sampling these distributions. We choose three probabilis-
tic machine learning methods that cover two distinct types of uncertainty quantification: parameterization- and
sampling-based methods. By evaluating these methods, we aim to understand the appropriateness of a Gaussian
distribution to the data and the ability for sampling machine learning methods in exploring the posterior distri-
bution. Finally, we compare the machine learning uncertainty quantification against uncertainty estimates from
the optimal-interpolation approach. As before, this last comparison will reveal the extent to which the sea surface
variables inform us about the uncertainty in the MLD.

These methods are certainly not exhaustive and so this study is a first step to a better understanding of the pre-
dictability of the aseasonal MLD variability given the dynamics of some sea surface fields, and how machine
learning can be used as a tool in this investigation. The outline of the body of the study is as follows: first, in
Section 2 we detail the data and describe the data processing and methodology; second, in Section 3 we describe
the mathematical framework and relevant machine learning architectures that we implement; lastly, in Section 4
we explain and detail the experiments and results.

2. Data
2.1. CESM POP2 Ocean Model Data

For the ocean model set of experiments we utilize data from the CESM POP2 model in a hindcast forced by
JRA55-do (Tsujino et al., 2018) atmospheric reanalysis from 1958 to 2006 and initialized with an oceanic cli-
matology as in, for example, Deppenmeier et al. (2021). The model outputs include the ocean MLD, SSS, SST,
and SSH time averaged every 5-days and an approximate latitude and longitude resolution of 0.1° from 1983
to 2006.

There is significant seasonal variability in SSS, SST, SSH, and MLD that must be carefully removed in order to
better analyze the aseasonal variability and relationships between these variables. In particular, we extract data
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from one decade 1989-1998 and divide this period based on the Multivariate ENSO Index v2 values (Zhang
et al., 2019) to ensure even division of phases and magnitudes of ENSO activity across the climatology and
anomaly data sets. Among the anomaly subset, we further split the data into training/testing and validation sub-
sets roughly according to the ENSO index. We use the years of 1989, 1991, 1992, 1993, and 1994 to compute a
climatology for each of these variables by computing a binned monthly mean and standard deviation on 4 weeks
boxcar moving averages of the data over this time period. These operations sufficiently smooth out aseasonal
variability to create the monthly climatologies. These climatologies are then used to compute regular and stand-
ardized anomalies for data from the years 1995-1998.

Taking the anomalies (1995-1998), for each of the regions of interest, we down-sample by linearly interpolat-
ing (without any spatial smoothing) onto a grid with 0.5° spacing in order to match the satellite observation
grid used in the Argo experiments. In addition, we carefully split the data in an effort to avoid contamination
of the validation results of the machine learning models because of the autocorrelation and non-stationarity
inherent in the data. By ensuring the training, testing, and validation data are sufficiently different we can
also implement methods to minimize overfitting. Data starting from January 21, 1998 through the rest of
1998, which features strong positive and negative ENSO index values, is taken as validation data—a total of
70 5-day periods (data is temporally averaged over the 5-day period) - for which the machine learning model
results will be presented. The training data and test data is taken randomly from 1995, 1996, 1997, up to and
including January 16, 1998 for which 200 5-day periods are reserved for training data and 30 5-day periods are
used for internal testing. To retain separation of the validation data from the training data, half of the test data
comes from the last 15 5-day periods of the train/test split timeline while the other 15 are randomly sampled
from the remaining distribution. This split design creates a buffer of 70 days between the last training period
and the first validation period. The results of the machine learning models on this data set are presented in
Section 4.1.

2.2. Satellite Optimal Interpolation and Argo Data

In this study we consider the use of optimally interpolated satellite products of SSS, SST, and SSH. While the
processing of these products from raw satellite data may introduce bias or uncertainty, the processing in these
standard products includes important error corrections and calibrations in addition to interpolation and has been
thoroughly vetted and validated. Validation of the gridded products suggest they accurately resolve wavelengths
down to about 300 km on a weekly basis over most of the globe (Lambin et al., 2010; Le Vine et al., 2007; Mel-
nichenko et al., 2016; Systems, 2017; Zlotnicki et al., 2019). That is, the representation of variability on the grid
starts to degrade (for various reasons and to different degrees for different variables) at wavelengths of about
300 km, which is about 3-times longer than the smallest resolvable wavelength on the grid. While the use of
optimally interpolated satellite data should be considered as a source of additional uncertainty in the evaluation
of our results, we believe that the use of these products presents a realistic use case for possible practitioners or
users of this methodology.

2.2.1. Sea Surface Salinity

SSS data is the analysis of Melnichenko et al. (2016), which is an optimal interpolation of observations from the
Aquarius satellite sensor (Le Vine et al., 2007) and uses corrections to minimize bias relative to in situ data. The
data exists on a 0.5° grid, temporally averaged over 7-day weeks, spanning roughly 2011-2015 (200 weeks). As
this SSS product is the most time-limited of the surface data, it defines the time period of our study. A random
150 weeks sample constitutes the training data, with the remaining being used for testing and validation. This grid
is the coarsest of all the variables and thus will form the basis from which we interpolate and re-sample the other
data onto. To calculate an estimate of the climatology, we calculate monthly means using only the training data,
taking a 4 weeks boxcar moving average, binning data into months and averaging over the bins.

Training and testing data are randomly sampled from 2011 through to the end of 2014, with 150 weeks reserved
for training, 25 reserved for testing. The validation and testing data sets need to be sufficiently separated from
the training data set in order to ensure the effect of temporal autocorrelation in the data does not leak into the
validation results. As a consequence, the validation data comprise the last 25 weeks of the Aquarius data in the
first half of 2015.
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2.2.2. Sea Surface Temperature

SST data comes from the GHRSST Level 4 Global Foundation Sea Surface Temperature analysis data set (Sys-
tems, 2017). This data set uses Optimal Interpolation from several microwave sensors. The data exists on ai
degree, daily grid spanning roughly 2001-2018. To calculate an estimate of the climatology, we set aside the
years 2011-2015 and calculate a 4 weeks boxcar moving average on the remaining data. From the smoothed
data, we take bins according to each month and average over the bins, resulting in an approximate monthly cli-
matology to which we interpolate to a weekly resolution. To calculate anomalies, we bin the 2011-2015 data into
months and subtract the (interpolated) monthly climatology. Then, to be able to compare to the salinity data set,
we down-sample from the daily values to weekly data and optimally interpolate onto a % degree grid. The SST
anomalies from 2011 to 2015 are split into training, testing and validation subsets in exactly the same way as the
SSS anomalies for consistency.

2.2.3. Sea Height Anomaly

SSH data comes from the MEaSUREs Gridded Sea Surface Height Anomalies data set (Zlotnicki et al., 2019).
The data exists on aé degree grid nominally as 5-day averages spanning roughly 1992-2019. We do not calculate
and remove climatologies from this data set. To be able to compare to the salinity data set, we down-sample from
5- to 7-day weekly averages and optimally interpolate onto a % degree grid. Finally, the SSH anomalies from
2011 to 2015 are split into training, testing and validation subsets in exactly the same way as the SSS and SST
for consistency.

Figure 1 shows the time series for each of the aforementioned satellite input data, along with the corresponding
calculated climatologies and anomalies, spatially averaged over the regions of interest in this manuscript—the
equatorial Pacific Ocean (EPO) and southern Indian Ocean (SIO) regions.

2.3. Argo Mixed Layer Depth

Argo data is available through Cabanes et al. (2013). The MLD is defined for about 1.5 million profiles of tem-
perature and salinity that pass quality controls in the time span from 2000 to 2017 (Whitt et al., 2019, 2020).
We adopt the definition used in Whitt et al. (2019) and Large et al. (1997) and use it throughout this study (in
both models and observations). In a given profile, the MLD is defined to be the first depth at which the local
vertical buoyancy gradient exceeds the maximum average vertical buoyancy gradient from the surface to depth
(see Whitt et al. [2019] for details). But, there are multiple definitions of the mixed layer depth in common
use (some comparisons between our chosen definition and other common definitions are presented in Whitt
et al. [2019]). Our choice of MLD definition thus represents an additional source of model error that we do
not account for, but could be studied by analyzing the impact of various definitions through the methodology
considered here.

To calculate an estimate of the climatology from the individual MLD measurements, we take the years 2002—
2010, and 2016-2017, bin the data into 2° latitude and 4° longitude bins, re-sample onto a daily grid and take
4 week moving averages in each bin. This smoothed data is then grouped into months. Both an average and
standard deviation are calculated for the monthly climatologies (in each bin). The choice of bin size is ad-hoc but
determined from the smallest bin size to ensure that there is sufficient data available, that is, at least 4 profiles per
month, to calculate monthly statistics and climatologies for the areas of interest (There are small or isolated re-
gions that do not have sufficient data, but this does not impact our analysis). Anomalies are created by taking each
profile from the withheld 2011-2015 Argo data and subtracting the climatology according to the profile's bin
and date. In addition, for each profile, we divide by the bin's corresponding monthly standard deviations to create
standardized anomalies. Figure 2 shows the time series of the raw MLD data, including the ensemble average of
the individual profiles in each region, the ensemble average of the standardized anomalies at each profile, and the
area-average of the gridded climatology, in two spatial regions under study (120°W, 10°S)—(150°W, 10°N) and
(45°S, 55°E)—(35°S, 115°E). The character of the anomalies and standardized anomalies are not dissimilar, but
the standardized anomalies have a more appropriate scale for machine learning purposes (see the Acknowledg-
ments for data availability).
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Figure 1. Several time series of the spatially averaged SSS, SST, and SSH in each region at weekly resolution in the (left) equatorial Pacific (120°W, 10°S)—(150°W,
10°N) and (right) southern Indian Ocean (45°S, 55°E)—(35°S, 115°E) regions. The time series include the spatially averaged (red) satellite data, (blue) estimated
climatology, and (green) resulting anomaly.

2.4. Evaluation Regions

We are interested in understanding how the performance of the machine learning models are dependent upon the
variability of the MLD. In order to evaluate this dependence, we explore two oceanic regions that exhibit different
subseasonal and interannual MLD variability. First, we choose the equatorial Pacific Ocean (EPO) (10°S—10°N
and 150°-120°W), which has modest subseasonal MLD standard deviations (~ 15 m), a small climatological
annual cycle (~ 20 m), and substantial interannual variability (see Figure 2 and Whitt et al. [2019]). Second, we
choose to study the southern Indian Ocean (SIO) (45°-35°S and 55°-115°E), which features larger subseasonal
standard deviations (~ 50 m), a much larger climatological annual cycle (~ 300 m), but relatively weak interan-
nual variability. Both regions contain substantial subseasonal MLD variability to learn, but the absolute magni-
tudes of the subseasonal variability as well as the relative magnitudes of subseasonal, seasonal, and interannual
variability differ dramatically.

In order to test our observations-based framework for estimating MLD using sea surface information we per-
form the following experiment on each region of interest. On the 150 (out of 200 total) weeks of training data,
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Figure 2. Several time series of the average mixed layer depth (MLD) in each region at weekly resolution in the (top) equatorial Pacific and (bottom) southern Indian
Ocean, including the ensemble average of the MLD profiles over the domain (red), the ensemble average of the corresponding standardized MLD anomalies (green),
and the area-average of the gridded monthly MLD climatology (blue). The blue shading represents the area-average of the gridded monthly standard deviations, and the
green shading represents the ensemble standard deviation of the profile-wise standard anomalies.

which are separated as described in Section 2.2.1, we apply the training procedure summarized in Figure 3 and
described in more detail in Section 3 (see Acknowledgments for a link to the software).

On the remaining 50 weeks of testing and validation data the model predicts a dense grid of MLD estimates
based solely on the sea surface information as input. From this dense grid, we interpolate the estimates onto the
locations where in situ Argo profile observations of the MLD exist and compute error statistics between the in-
terpolated estimates and the observations. The interpolation is done using a Gaussian process (see Appendix C)
regardless of the machine learning method. We denote this testing procedure as measuring the out-of-sample

performance of the method.
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Figure 3. A schematic of the Argo data set experiment modeling procedure. Satellite sea surface data is fed into the machine
learning model to produce a gridded mixed layer depth (MLD) estimate (with some form of an uncertainty estimate if the
machine learning model is probabilistic). To compare with the observations and optimize parameters, these gridded estimates
are fed into a Gaussian process regression model (with its own hyper-parameters that are optimized) to produce MLD
estimates interpolated to the locations where the Argo observations exist. These interpolated estimates are automatically
associated with uncertainty estimates that are derived from either just the Gaussian process interpolation uncertainty (if the
model is deterministic) or a combination of the Gaussian process uncertainty with ML model uncertainty (if the ML model
has uncertainty estimates). The interpolated estimates are then compared with the observations to estimate various errors. The
CESM POP2 ocean model data set experiments have the same modeling design but do not require interpolation, since ocean
model MLD is on the same grid as the inputs.

3. Methods

We consider a simple but general model for the relationship between the surface variables, salinity (SSS), tem-
perature (SST), and height (SSH), and mixed layer depth model output (d),

d=f(SSS,SST,SSH;0)+0, o~N(©OXI). (1

where 6 refers to the collection of function parameters (we apologize for any confusion with the notation for
potential temperature, which we do not consider in this text). The surface variables exist on a pre-specified grid,
x, of total size M and the function f may generally couple surface variables from across this grid to produce d
at a particular grid point. The difference between the mixed layer and the output of f, o, is assumed to be a nor-
mally distributed random variable according to the covariance X that expresses the spatial uncertainties in this
functional relationship. The exact structures and parameterizations of f that we use in this study are described in
Section 3.1 while the methods we use to specify X are presented in section Appendix A.

Both the functional relationship f and the covariance matrix X are data-driven (i.e., agnostic to the underlying
physics) and informed via observations d . For the CESM POP2 ocean model experiments we have access to
these “observations” at each grid point where we produce MLD estimates. For the Argo data set experiments, the
observations d_ exist at arbitrary (ungridded) locations, x| where freely drifting Argo floats collect a profile. In
order to couple the gridded surface variables with the ungridded in situ MLD observations, we define the rela-
tionship between our model and the observations to be a Gaussian process,

d,=Ld+v, v~N(@OV), )

which is defined and detailed in Appendix C. Importantly, L and V, the spatial projection and covariance matri-
ces, are independent of the observation values and only depend on the observation locations, model grid loca-
tions, and model uncertainties. The Gaussian process relationship, in our study, is entirely a spatial relationship
that accounts for spatial covariance between observations of the MLD. This implicitly means, however, that L and
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V change depending on the particular week the data is from, but only because the particular locations x  where
estimation and validation occurs vary from week to week.

A further consequence of the chosen relations between the observations and model (Equations 1 and 2) (i.e., the
definitions of v and o) is the objective function, that is, the conditional likelihood probability distribution, that
will be maximized to fit the parameters of the nonlinear function f:

Inp(d,|d) = —%(do - Ld)'V'Wd, - Ld) - %ln|V| - %ann’. A3)

where V1 is the matrix determinant of V and m_ is the number of individual observations, or entries of d . For
the CESM POP2 ocean model data set, there is no need for a Gaussian process regression interpolation model to
translate between model and observation space and the corresponding likelihood is simply

Inp(d,|d) = —%(da - &> N(d, — d) — %lanl - %ann. )

and M is the number of grid points.

Details of this optimization procedure are given in Section 3.1. Here, it is implicitly understood that d, and hence
p(d |d), is a function of the input variables SSS, SST, SSH, the architecture of the function f, and the parameters
of f, 6.

The Gaussian assumptions made in Equation 1 is primarily for notational convenience. The model definition
(Equation 1) can easily be modified to include non-Gaussian noise by including a stochastic component in f,
f(SSS, SST, SSH; 0, o). This type of noise component is important if we expect the noise to be a nonlinear func-
tion of the surface variables. To account for this possibility, two of the probabilistic machine learning methods
that we test in this study, Dropout and Variational Auto-Encoders (see Appendix A) are formally of this type and
require sampling to determine the covariance for use in the Gaussian process. The Gaussian assumption made
in Equation 2 is a reflection of the belief that the interpolating operator between the gridded locations and Argo
locations is appropriately approximated by a linear function. We believe that this is not overly restrictive since
most optimal interpolation techniques make similar assumptions.

3.1. Machine Learning

The main objective of this study is to learn a relationship between the sea surface variables (SSS, SST, SSH)
and MLD. Without an a priori physics-based model, one must choose a reasonably parameterized model to
approximate this relationship. Traditionally this relationship is represented via some linear or simple nonlinear
parameterization where one hopes that the true relationship lies in, or is not too far from, the output space of the
model. For example, a basic linear model that we test in this study is of the form,

c(x)| [SSS
de =|cx)|-|SST[+b+0, o~ N(@OZ) 5)
c3(x)| |SSH

Such models, however, are typically not expressive enough to represent arbitrary relationships. The revolution of
machine learning, and, in particular, deep learning, has been borne out of the need to express arbitrary functional
relationships amid a dearth of observational data. One of the quintessential deep learning models is the feedfor-
ward neural network (FNN), or artificial neural network (ANN) (Goodfellow et al., 2016). ANNS are represented
by composing together many different functions in series to form a chain,

FG) = fOUSDC fOR) ), 6

fOx) = a(x" Wi + by), @)
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where W, is a matrix of weights, b, is a bias term, and a(-) is what is referred to as an “activation function,” that
applies a simple non-linearity element-wise to the affine transformation of the input, x. Common examples of
activation functions include the sigmoid, softplus, and families of rectified linear functions. Based on the exper-
iments in Gal (2016), we implement the (leaky) rectified linear unit as the activation function in all of our neural
network layers, although it is possible that, among all of the available activation functions, another function
would result in superior performance.

FNNs represent dense interactions between inputs, which requires an increasingly large number of resources for
large input dimensions. For 2D and 3D data sets that have a notion of locality, such as images, there are more
efficient neural networks that take advantage of spatial structures inherent in the data. Convolutional Neural
Networks (CNNs) are a specialized type of architectures that utilizes a convolution operator in some layers.
This convolution operator introduces kernel matrices that perform a sliding weighted sum over the input image
to produce corresponding filters. See Goodfellow et al. (2016) for a complete guide. Note that the same type of
activation functions are also commonly used in CNN architectures. For a review of the specific architectures used
in this work, see the appendix. Because of our use of 2D input data, we primarily make use of this (CNN) style of
neural network architecture in this work. We will denote the collection of neural network parameters as 0 = {W/,
o W,b,...,b}.

3.2. Training

The training of a neural network entails obtaining an estimate of the parameters, §, and hence the model outputs
d, by approximately solving the optimization problem,

6 = arg maxIn p(d,|d)
0

Mirain (8)
= argsmin {g(@) - Z lnpj(dold)}

i=l

where g(60) is a regularization function that is applied to both constrain the possible parameter values and
stabilize the optimization procedure. As written, pj(duld) refers to the joint probability distribution between
the jth input and output data. The optimization procedure includes all training data but, in practice, subsetting
is common (as in batch gradient descent [Ruder, 2016]). We only seek an approximate solution to Equation 8
for two reasons: first, the optimization problem is highly non trivial, non-convex, and high-dimensional with
many local minima and obtaining a global minimum is infeasible; second, the ultimate goal is for the pa-
rameters to lead to a function f that generalizes well to data not in the training set and over-training might
ultimately hinder this goal (Caruana et al., 2001). The problem of over-fitting and poor generalization is one
of the largest obstacles to good machine learning performance, particularly in applications where prediction
involves extrapolation beyond whatever data was in the training set. All of the neural networks implemented
for this study are done using the TensorFlow and TensorFlow Probability frameworks (Abadi et al., 2016;
Dillon et al., 2017).

For the Argo data set experiments, because our study is limited to only 150 training weeks, we implement a
non-standard training strategy to help reduce overfitting. For each epoch (a single run through the entire training
data) we divide the 150 training weeks randomly into 6 batches of 25 weeks. The first batch is held out and the
current loss on that batch is saved. For each subsequent batch, the loss for that batch is used to update the model
parameters. To update the parameters, we use the Adam optimizer with initial learning parameter set to 0.001
(Kingma & Ba, 2015). With the updated model parameters, we calculate a new loss on the first, held-out batch.
If that new loss is less than the saved loss, then the updated parameters are accepted and the new loss is saved. If
the new loss is larger than the saved loss then the parameters are only accepted with

probability of acceptance = exp(savedloss — finalloss).

This training strategy reduces the amount of overfitting because it forces updates to be generalizable to the held
out batch, which acts as a “testing batch.”
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FNNs with enough hidden layers have been proven to serve as a universal

Table 1
Summary of Implemented Models approximator (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993).
Model ~ # of params. per grid point _ Variance est. method This means tha.t, at least .theor.etlcauy, there exists a FNN that canA represent
whatever functional relationship exists between the sea surface variables and
Linzzn & B MLD. Unfortunately, there is no guaranteed way to find this optimal relation-
VLinear 8 Linear parameterization  ship. While the optimization problem (Equation 8) has a natural inherited
ANN 2,178 N/A probabilistic framework, even an exact solution has no guarantee of agreeing
CNN 69 Ensemble sampling® with the “true” relationship. The construction of these optimization frame-
VLCNN 73 R e works. and the regularization functlon.s is o‘ften done by tgal and err(.)r since
o there is, as of yet, no clear causal relationship between tuning the architecture
VCNN 69 CNN parameterization . . . . .
settings and the resulting uncertainty estimate—even if the model can be
Dropout 69 Direct sampling viewed through a (Bayesian) probabilistic framework.
CVAE 334 Direct sampling
. Finally, since the (approximate) solution to Equation 8 is not accompanied
ResNet 102 Ensemble sampling® K i R X o
with natural uncertainty estimates for the parameters, it can be difficult to
Deep (V)CNN 7,020 CNN parameterization

obtain calibrated probabilistic estimates of d. To truly obtain samples from

Note. See Appendix A for a summary of each variance estimation method the posterior P(dlda’ SSS, SST, SSH, 6), we would need to incorporate any

and Appendix B for a more information about the structure of each machine

learning architecture.

and all uncertainties that exist in the inputs, observations, model parameters,
and model framework and be able to sample from them effectively. Due to the

2For ensemble-based estimation of variance, the total number of parameters

is multiplied by the number of ensemble members.

high-dimensionality of the problem, this is computationally infeasible and
therefore we must rely on adequate approximations. Appendix A details the
multiple probabilistic machine learning techniques considered in our exper-
iments: dropout, covariance parameterization, sampling-based models, and
deep ensembles.

4. Experimental Results

Table 1 provides a summary of 10 different methods that we tested on each experiment (for brevity, not all re-
sults are presented), along with an approximate number of parameters necessary for each model, divided by the
number of output grid points, and the corresponding method of MLD variance estimation. The “Linear” and
“VLinear” methods are implementations of Equation 5, but in the “VLinear” model the variance is also estimat-
ed by a “Linear” model. The majority of algorithms are based on the convolutional neural network architecture
(CNN). For a schematic of the models implemented in this text, see the appendix. The CNN is widely used in
image processing problems because it couples inputs spatially by use of kernels, instead of matrix multiplication
used in dense neural networks. The three generic variation estimation methods tested are: (a) Parameterization,
either in the form of a linear parameterization, where the variance is an affine function of SSS, SST, and SSH, or
a CNN parameterization, where the variance is produced as an additional filter of the CNN output along with the
MLD estimate; (b) Direct Sampling, where a single model must be run multiple times to produce a sample-based
estimate of the variance; and (c) Ensemble sampling, where multiple models are trained, as in the Deep Ensem-
ble technique (Lakshminarayanan et al., 2017), and the variance is estimated from a random sampling of outputs
from the collection of models. We tested many more permutations and combinations of these models and vari-
ance estimation methods but only present the highest performing models for publication. The ResNet and Deep
CNN models are specific structures of CNN's that couple data throughout different layers of the network, so as to
avoid the problem of vanishing gradients (He et al., 2016).

In the CESM POP2 Ocean Model experiments, the machine learning model estimates are compared directly
against ocean model MLD (taken as “truth”) at each grid cell. In the Argo data set experiments, the machine
learning models are compared in observation space, at the Argo profile locations (using interpolation, Gaussian
process regression). In the Argo experiments we also compare the machine learning approaches to kriging, in
order to compare the results to a method that only utilizes the Argo profiles themselves. Specifically, we imple-
ment an Ordinary Kriging scheme, which we call “OI” for optimal interpolation, with a (spatial) spherical kernel
chosen via cross-validation and parameters optimized via maximum likelihood. The OI approach only uses the in
situ MLD standard anomaly observations, with no sea surface information, to make gridded estimates. Therefore,
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even during the out-of-sample prediction experiments, the OI's error statistics for a given week are calculated
using only that week's data. The OI is trained only on half of the available data for a particular week and then is
asked to estimate the MLD at the withheld locations.

We use a variety of metrics in our testing, categorized into deterministic and probabilistic metrics. For determin-
istic metrics, we use the (relative) mean absolute error (MAE) and Pearson correlation coefficient. We use the
typical definition of mean absolute error,

|(do)i — L(d)i]
Z :

Relative MAE =
|(do)i

&)

where we average over n, the number of observation available at a given week. A lower MAE is more accurate.

MAE is a convenient metric in that it captures the mean prediction error, but it does not describe the relation-
ship between the predictions and observations and it fails to capture information about the uncertainty of the
predictions. To compensate for the first deficiency, we rely on the Pearson correlation coefficient (correlation)
to provide insight into the existence of (linear) relationships between predictions and the data. For reference,
correlation is defined as

(L) = Ld)((do): = dy)
Correlation = =l (10)

S(L(d) = L)) T(do) — do)

i=1 i=1

where the overline symbol represents the sample mean operation. A correlation coefficient closer to 1 is consid-
ered more skillful.

In addition to the deterministic metrics, we use the (relative) Continuous Ranked Probability Score (CRPS), to
provide a probabilistic error metric analogous to MAE, and we analyze the error distributions using the Kull-
back-Leibler divergence (KL Divergence or D, ) and Kolmogorov—Smirnov (KS) statistic. These metrics are
useful in determining the distance between the predicted and observed probability distributions and measuring
the calibration of each model.

For forecast distributions with a finite second moment, the relative CRPS can be defined as

. _1 I(do)i = L()]| & |L(d)] - L(d)}]
Relative CRPS-;Z(Z XTEAY —ZZ 2] ) (11

i=1 \ j=I j=1 k=l

where n, represents the number of forecast estimates available per observation. The CRPS collapses to the MAE
when the measurement is deterministic (n, = 1), but accounts for ensemble spread in probabilistic forecasts when
n,> 1. The CRPS is the probabilistic equivalent of the Relative MAE.

We estimate the discrepancy between the forecast and observed distributions using the KL Divergence and KS
statistic. Both metrics make use of the error distribution, p(x), defined as

—p | L@ _
mn—P[ - —4! (12)

where s, is the estimate of the standard deviation for L(d), and P[1] is the probability of the event r. We estimate
p(x) through the use of a histogram. Theoretically, a “well-calibrated” model produces an error distribution that
is approximately normal, that is, p(x) should be approximately equal to g(x) = /2 /\/ 2xz. We calculate the KL
Divergence and KS statistic to measure the discrepancy between the forecast error distribution and the theoretical
error distribution. The KL Divergence is defined as

Dumw=/zmm¥%d (13)
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The KL Divergence heavily weights errors in the tail of the theoretical distribution g, that is, outliers. We also
consider the KS goodness of fit statistic because it is more sensitive to errors near the mode of g, rather than in
the tails of g. The KS statistic is a norm on the cumulative distribution functions of p and g,

KS = sup,

/ p(x) — g(x)dx| . (14)

0

We calculate these statistics by estimating a histogram of p(x) and g(x) and performing discrete integrals and
maxima. A lower value of these error distribution metrics indicates a better calibrated forecast distribution.

4.1. CESM POP2 Ocean Model Data Results

Conclusions from the Argo experimental results are problematic on their own because of observational un-
certainties and the limited availability of data to provide verification (50 out of 200 weeks are afforded for
testing and verification). The CESM POP2 Ocean Model experiments are an idealized test environment to
provide answers to three questions in a relatively data rich environment (when compared to the Argo data
set) without observational uncertainty. First, to what extent is there a relationship between the sea surface
input data (SSS, SST, SST) and MLD in the two regions being studied (and how does it depend on the re-
gion)? Second, what is the relative performance between machine learning models and, furthermore, which
models perform “best”? Third, how do each of the input variables affect our machine learning model MLD
predictions? The following ocean model results are calculated from the validation data set, see Section 2
for details. We hypothesize that the answers to these questions derived from the ocean model experiments
are approximately transferable to the Argo experiments. Training the machine learning models on the ocean
model data set also allows us to use transfer learning by reusing the parameters as starting points for learning
in the Argo experiments.

4.1.1. Deterministic Metrics

Our findings indicate that there is a moderately predictive relationship between the sea surface variables and
MLD in the ocean model data in the equatorial Pacific (EPO) and, to a lesser extent, the southern Indian (SIO)
ocean as tested on the validation data set (roughly all 5-day weeks in 1998). The deterministic results in Figure 4
provide the (top) Relative MAE (as a %) and (bottom) correlation coefficient for a variety of the models tested
in both the (left) EPO and (right) SIO. From a broad perspective, a correlation coefficient of 0.6, on average, be-
tween the CNN outputs and validation data in the EPO indicates that there exists a moderate relationship between
sea surface variables and MLD (all values presented in the plots are statistically significant). On the other hand,
relative absolute errors for the CNN outputs in the EPO are, on average, 80%. These two facts together would
indicate that while the CNN can reasonably learn spatial patterns and relative magnitudes of grid points from the
data, there exists significant error. By both metrics, most of the models are worse in the SIO, where correlations
top out at about 0.4 and the MAEs range between about 0.9 and 1.0. We hypothesize that the stronger interannual
variability in the EPO induces a stronger intrinsic physical relationship between the the sea surface and the mixed
layer anomalies, which explains the relatively better performance in the EPO than in the SIO across every model.
It remains unclear, however, whether this effect is truly causal. Finally, these deterministic results also indicate
that more expressive machine learning models, such as the ANN, ResNet, and Deep CNN, do not necessarily
have better predictive power. However, this last finding may be an artifact of the still relatively small data set used
for training (in comparison to large computer-vision data sets that these models are typically trained on) and the
impact on overfitting.

It is seemingly significant that the Linear model provides results seemingly competitive with the other machine
learning models (possibly indicating that the majority of the relationship between input data and MLD is linear),
but these statistics can also be somewhat misleading. A visual comparison of the model outputs sheds additional
light on the quality of MLD predictions. Figures 5 and 6 show maps of MLD and predictions from the Linear
and CNN models for the best performing weeks (for CNN) from the EPO and SIO, respectively. In the top row
of each figure we show the MLD standard anomalies (which are the direct output from each model) and in the
bottom row we show the corresponding MLD (in meters, with climatologies). While Figure 4 suggests that the
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Figure 4. Deterministic results of various machine learning methodologies as applied to the CESM POP2 Ocean Model data experiment. Boxes capture 25%-75%

of the weekly errors with the middle line representing the median error. Dots are considered outliers—values which are 1.5 X lower/upper quantile. In the top row, a
comparison of the relative mean absolute errors (MAEs) for each method in the (left) equatorial Pacific Ocean (EPO) and (right) southern Indian Ocean (SIO). In the
bottom row, a comparison of the correlation coefficients between predictions and truth in the (left) EPO and (right) SIO. Each metric is unit-less and a lower MAE
and higher correlation are equated with better performance. For each pair of graphs, notice the different scales for the EPO and SIO results as performance is generally

better in the EPO compared to the SIO.

Linear model provides reasonably predictive outputs, the visual maps indicate that its outputs actually have very
small amplitudes and cannot replicate spatial variations on the same scale as the true MLD standard anomalies.
The CNN outputs, however, provide spatial variations that look closer to reality but still miss small-scale details.
These qualitative results are reflected to some degree in higher correlations between MLD and CNN predictions
than between MLD and Linear predictions: » = 0.83 and 0.65 for CNN, and r = 0.37 and 0.25 for Linear in the
EPO and SIO, respectively. However, least squares linear regression (with intercept) of MLLD on the CNN or Lin-
ear model predictions reveal steeper slopes in the Linear model than the CNN: 2.5 compared to 1.2 in the EPO
and 1.5 compared to 0.7 in the SIO. That is, the Linear model is not even fitting the data as well as the correlation
coefficient indicates in these examples. In combination with the deterministic results, these figures indicate that
relative error and correlation coefficient do not necessarily capture all of the behavior we might want from a MLD
model or the relative strengths of the CNN-based machine learning models, which represent spatial structures
well but do not always capture their location and extent.

4.1.2. Probabilistic Metrics

Our results also indicate that parametric variance methods outperform other sampling-based techniques for
estimating MLD uncertainty in the CESM experiments. The probabilistic results in Figure 7 show the relative
CRPS and KL Divergence metrics for the various probabilistic machine learning models we tested. The par-
ametric variance models, for example, “VLinear,” “VLCNN,” “VCNN,” and “Deep VCNN,” outperform the
sampling-based strategies, for example, “CNN” (deep ensemble), “Dropout,” and “CVAE,” especially in terms
of the KL Divergence (calculated on the error distribution). The KL Divergence is particularly sensitive to out-
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Figure 5. Filled contour plots showing (left) mixed layer depth, (middle) Linear, and (right) Convolutional Neural Networks
(CNN) model predicted outputs for the equatorial Pacific Ocean (EPO) for the 5-day week starting on June 10, 1998. The
top row shows MLD standard anomalies while the bottom row shows the corresponding MLD (in meters) with climatologies
reintroduced. As the images suggest, the pattern correlation with the true MLD is much higher for the CNN (Pearson's

r = 0.83) than the Linear model (r = 0.37).

liers, indicating that the sampling-based techniques underestimate uncertainty in MLD standard anomaly more
often than the parametric techniques. This should not be surprising since the parametric techniques can include
variance inflating terms (via a Bayesian prior probability distribution placed on the variance parameters) in the
optimization process while the sampling techniques (especially the deep ensemble techniques) rely on variation
in the input data alone.

The probabilistic results indicate that some of the probabilistic machine learning algorithms are reasonably
well-calibrated. Figure 8 shows the (left) error distributions for the top four best-performing machine learning
algorithms from Figure 7 and the reference standard normal distribution as well as (right) quantile-quantile (QQ)
plots demonstrating the deviation from normality for each distribution along with KL Divergence and KS good-
ness of fit metrics. From the QQ plots we find that the error distributions are well-calibrated for the data within
two standard deviations of the mean (on the interval [ — 2, 2]). Outside of that interval, the deviation between
error and reference distribution indicates that the models' error distributions have fatter tails than expected—the

MLD: 1998-02-15 Linear CNN
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Figure 6. Details as in Figure 5 but for the southern Indian Ocean (SIO) for the 5-day week starting on February 15, 1998.
As in Figure 5, the pattern correlation with the true MLD is much higher for the CNN (r = 0.65) than the Linear model
(r=0.25).
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Figure 7. Probabilistic results of various probabilistic machine learning techniques and architectures as applied to the CESM POP2 Ocean Model data experiment. In
the top row, a comparison of the relative continuous ranked probabilistic score (CRPS) for each method in the (left) equatorial Pacific Ocean (EPO) and (right) southern
Indian Ocean (SIO). In the bottom row, a comparison of the KL Divergence between the normalized errors and a standard normal distribution in the (left) EPO and
(right) SIO. Each metric is unit-less and lower scores equate to better performance. For each pair of graphs, notice the different scales for the EPO and SIO results as
performance is generally better (with less extreme outliers) in the EPO compared to the SIO.

models significantly underestimate uncertainty slightly more often than expected. We measure the discrepancy
between each error distribution and the reference distribution through two metrics: the KL Divergence and KS
statistic. The KL Divergence places more weight on errors incurred at the tail of the reference distribution while
the KS statistic places more weight near the mean of the reference distribution. From these metrics, we find that
the the linearly parameterized models (“VLinear” and “VLCNN”) fit the mean of the distribution well but have
poorer performance in the tails. In total, the “Deep VCNN” model has the best overall model calibration of all
models tested on the CESM POP2 Ocean Model data and visual inspection of the error distribution indicates
good predictability, although at an increased computational cost (see Table 1).

4.1.3. Model Sensitivities

As a means to understand the behavior of the machine learning models, we explore the sensitivity of the MLD
outputs with respect to the input sea surface variables via a technique known as “Integrated Gradients” (Sunda-
rarajan et al., 2017). This technique computes a line integral of model derivatives to compute a total sensitivity.
Specifically, we calculated this quantity, which we refer to as “Input Sensitivity,”

1
InputSensitivity(x, xo) = (x — xo)/ Z—f(xo + a(x — xp); 0)da, (15)
0o aXi

where fis the MLD model, x = (S'S'S, SST, SS H), and x, is some baseline initial condition for the line integral.
This technique is sensitive to initial baseline and many choices are available depending on the context (a common
baseline for images is the zero initial condition). For our study, we compute the integrated gradient corresponding
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Figure 8. A study of the distribution of normalized errors for four of the top performing probabilistic methodologies and architectures from Figure 7 assessed by grid-
point. Each model assumes that the difference between model predictions and reality, normalized by the model standard deviation, should be approximately normal with
mean zero and unit variance. For (top) EPO and (bottom) SIO, we present (left) a visual comparison of the error distribution probabilistic density functions and (right)

a quantile-quantile comparison of the given error distribution and a standard normal distribution (dotted black line, optimal) with a table showing the KL Divergences
and relative L, norm between sample and theoretical distributions (see text for definitions). Notice the semi-log scale on the bottom-right plot. For an interpretation of
the right plots, see the accompanying discussion in the text.

to 50 random draws from a Gaussian distribution with 6> = 2 and take an ensemble average. The results from this
computation are shown in Figure 9, where we compare the sensitivities of the CNN and Linear models.

From our sensitivity studies we find that the CNN model is much more sensitive to the input variations than the
Linear model, which may explain the disparate differences in output maps (Figures 5 and 6), while the relative
ordering in sensitivities between the three input variables is the same for each model. In the EPO, the models are
more sensitive to changes in SSH, followed by SSS and SST. In the SIO this relationship is somewhat flipped,
with models being more sensitive to changes in SSS and SST than SSH (and more sensitive in general). This
difference in relative orders might suggest qualities about the dynamic processes giving rise to MLD in these
respective regions, for example, vertical advection and thermocline displacement, horizontal advection, or sur-
face processes. The orderings may also reflect differences in the relative magnitude of subseasonal variability
compared to the seasonal cycle (which is small in the EPO and large in the SIO). It is particularly intriguing and
somewhat surprising that salinity has a higher input sensitivity than temperature in both regions, and it is tempt-
ing to speculate on the physical basis of these results. Perhaps the sharp background meridional salinity gradient
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Figure 9. Model sensitivities to each of the three input variables SSS, SST, and SSH as measured by the method of Integrated Gradients (see the text for definition) and
correlation of model outputs with truth in the (top half) EPO and (bottom half) SIO. Solid lines correspond to sensitivities and metrics with respect to the CNN model
while dashed lines represent sensitivities and metrics with respect to the linear model. The units of the sensitivities share the unit and scale of the model outputs, which
are the (unit-less) MLD standard anomalies. The shaded region signifies the validation data.

highlights horizontally advective MLD anomalies better than the temperature structure, which is more strongly
coupled to the atmosphere. Conversely, perhaps the impacts of vertically variable (i.e., sheared) horizontal ad-
vection of salinity more directly influences aseasonal MLD variability than temperature via the upper-ocean
stratification budget (there is evidence for this effect during winter in the Southern Ocean [DuVivier et al., 2018;
Small et al., 2020]). However, we find it difficult to draw conclusions about the underlying physics from the input
sensitivities without a more detailed investigation, which is left for future work. In addition, more tests will be
needed since the difference in results could also be an artifact of the model's ability to actually learn a physical
relationship (which was less significant in the SIO). There is only a mild (0.2 in the EPO) to no (0.05 in the SIO)
correlation between the error metrics and these sensitivities, however.

Finally, it should be noted that the behavior of the sensitivities and correlation statistics (shown in Figure 9) as
well as error statistics (not shown) do not seem to have a visual dependence on time (across the training, test and
validation data sets). Furthermore, the temporal behavior of the machine learning model performance and linear
model performance track closely. These facts suggest that there is minimal overfitting from the machine learning
models.

However, there are a few subtle patterns in the correlation time series of possible scientific interest (but without
obvious analog patterns in the input sensitivities). First, correlations between CNN predictions and MLD are
higher in Boreal Summer/Austral winter and lower in Boreal winter/Austral summer at both sites. This seasonal
pattern in predictability is clearest in the SIO, where correlations between both model predictions and the MLD
reach a consistent minimum in the Austral summer/Boreal winter, dropping below 0.25 near the new year in all
5 years when the climatological MLD is shallow but was recently deep (Figure 2). The Austral wintertime peaks
in predictability in the SIO are less clear, but still qualitatively apparent. In the EPO, the CNN model correlations

FOSTER ET AL.

19 of 33



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2021MS002474

with MLD notably exceed 0.75 in all 4 years during the early Boreal summer/Austral winter, when the MLD sea-
sonal climatology is relatively shallow. However, it is not clear that correlations in the EPO exhibit such a pattern
in the Linear model. In any case, the physical basis of these seasonal variations in predictability of MLD from
surface variables are unclear but of interest for future work.

4.2. Argo Float Data Results

The results from the CESM POP2 Ocean Model data suggest that there exists a moderately strong relationship
between sea surface variables and the MLD in the EPO (r ~ 0.6), and to a lesser extent in the SIO (r ~ 0.4).
Using the parameters learned in the previous experiment as initial conditions, we take the leading machine
learning models—the linear model, “VLinear,” and three CNN models, “VLCNN,” “VCNN,” and “Deep
CNN”—and retrain to fit the optimally interpolated satellite sea surface data and Argo MLD profile data set.
As opposed to the ocean model data, there are additional sources of model and reconstruction error that influ-
ence and complicate the ability for the machine learning models to learn a corresponding MLD relationship.
Each of the inputs is subject to different reconstruction errors and biases while the calculation of the grid-
ded climatology for the Argo data sets introduces further biases. Furthermore, the sparsity of the Argo data
adds an additional difficulty when training data-driven models, especially deep learning models with many
parameters.

Ultimately, the machine learning models that we train will be compared against the results of applying optimal
interpolation (kriging) to the Argo data alone to produce smooth MLD spatial maps (we label these results as
OI). While OI is known to be a sub-optimal process for obtaining gridded estimates of the MLD, as data assimi-
lation methods that combine multiple data sources and ocean models are usually more accurate, the use of Ol in
our study is to compare strictly data-driven methodologies and to have a direct comparison with a method that
only has access to the Argo observations themselves to learn spatial variability and uncertainty. To estimate the
corresponding error metrics for this methodology we randomly sample half of the available Argo profiles for a
given week, 10 separate times, fit the OI and produce the corresponding map, and calculate a variety of metrics
using the left out data (averaged over the 10 samples). It is important to remember that, in contrast to the machine
learning models, the OI methodology has direct access to the MLD values and the errors represent spatial out-of-
sample errors. These errors are not necessarily equivalent to the errors for the machine learning model, but serve
as an important benchmark for potential practitioners.

4.2.1. Deterministic Metrics

Deterministic results for the Argo data experiment suggest that the machine learning models can produce MLD
maps competitive with OI, as measured by relative MAE and correlation, especially in the EPO. Figure 10 shows
the (top) Relative MAE and (bottom) correlation coefficient for each model that we tested in the (left) EPO and
(right) SIO. In the EPO for example, OI and machine learning algorithms have comparable error metrics with the
“VLCNN” and “VCNN” algorithms generally having highest median correlation coefficients and lowest median
relative MAEs. Conversely, the “Deep CNN” algorithm has worse metrics than OI or the other algorithms. With
that caveat that the performance of the machine learning models is worse absolutely and relative to Ol in the SIO,
the information that the machine learning models appear to have learned to extract from the surface variables in
the EPO is as informative, per these metrics, as nearby MLD Argo observations themselves in estimating MLD
spatiotemporal variability (for maps of typical Argo profile distributions, see Figures 12 and 13 that are discussed
further in a following paragraph). The relatively poor performance of OI by these metrics is a reflection of the
weak spatial correlation over the large distances between sparse neighboring Argo profiles, as well as a reflection
of the value of dense surface data.

The comparison between the EPO and SIO reiterates the important result derived from the ocean model that
the relationships between MLD and surface variables differ regionally. The performance metrics are worse on
all algorithms in the SIO compared to the EPO. Although the ordering of the machine learning algorithms by
MAE and correlation is similar between the SIO and EPO, the OI has a clear performance advantage, vis-a-vis
the machine learning algorithms, in the SIO, having smaller median relative MAE and higher median correlation
(Figure 10). It appears, then, that the ability for the machine learning algorithms to extract a relationship between
the surface and subsurface is weaker in the SIO than in the EPO. At a minimum, this difference in the EPO and
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Figure 10. Deterministic results of various machine learning methodologies and OI as applied to the Argo profile data experiment. Boxes capture 25%—75% of

the weekly errors with the middle line representing the median error. Dots are considered outliers - values which are 1.5 X lower/upper quantile. In the top row, a
comparison of the relative mean absolute errors (MAEs) for each method in the (left) equatorial Pacific Ocean (EPO) and (right) southern Indian Ocean (SIO). In the
bottom row, a comparison of the correlation coefficients between predictions and truth in the (left) EPO and (right) SIO. Each metric is unit-less and a lower MAE
and higher correlation are equated with better performance. For each pair of graphs, notice the different scales for the EPO and SIO results as performance is generally

better in the EPO compared to the SIO.

SIO performances suggests a fundamental difference in the relationship between surface and MLD variability
that is due to the aseasonal dynamics of the region of interest.

Finally, the deterministic results of the Argo data set appear to be analogous to CESM POP2 data set errors in
the EPO but noticeably worse in the SIO. While comparisons between Figures 4 and 10 should be taken lightly
because of methodological and modeling differences, we find that the relative MAEs and correlations in the
EPO are similar, with small statistical differences between “CNN” CESM POP2 performance and “VLCNN”
or “VCNN” Argo performance. A comparison among correlations in the SIO, however, reveal noticeably worse
performance across machine learning models, particularly from the “Deep CNN” model. This relative perfor-
mance may indicate that the relationship among SSS, SST, and SSH in the SIO is weaker or harder to identify
via machine learning. That is, the degradation of model performance in the SIO may indicate that the machine
learning algorithms require additional data to estimate a relationship comparable in strength to the SIO results
from CESM POP2 in Figure 4. It may also be the case that a relationship between the surface and subsurface
aseasonal variability in the SIO of the same strength as in the CESM POP2 ocean model does not exist in the real
ocean or cannot be learned by this machine learning methodology.

4.2.2. Probabilistic Metrics

Calibration results for these models and the Argo data set show reasonably good predictability, even in the SIO.
Error distribution histograms and quantile-quantile (QQ) plots for this experiment are shown in Figure 11 with
(top) EPO and (bottom) SIO. In the EPO, all distributions, except the “VCNN” distribution, show a reasona-
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Figure 11. Probabilistic calibration for temporal out-of-sample prediction as in Figure 10. Statistics are calculated on each datapoint for the 50 withheld validation
weeks. For (top) EPO and (bottom) SIO, we present (left) a visual comparison of the error distribution probabilistic density functions and (right) a quantile-quantile
comparison of the given error distribution and a standard normal distribution (dotted black line, optimal) with a table showing the KL Divergences and relative L, norm
between sample and theoretical distributions (see text for definitions). Notice the semi-log scale on the right plots.

ble resemblance to a standard normal. More of the machine learning model distributions exhibit qualitatively
significant deviations from a standard normal in the SIO than the EPO, but the OI distribution looks more like
the normal distribution in the SIO than in the EPO. The QQ plots highlight that the tails of the distribution are
quite like a standard normal distribution in the ML models of the EPO (including “VCNN”), but the tails of the
distribution are too-heavy in the OI. Likewise, the OI has too-heavy tails in the QQ plot from the SIO, and the
ML-modeled tails differs more strongly from the standard normal in the SIO than the EPO. The heavy-tail be-
havior is summarized in the KL Divergence, which is heavily influenced by deviation from normality in the tails
of the distribution and takes highest values for the OI. Conversely, the KS statistic is less impacted by outliers
and takes lowest values for the Ol. The performance of the ML models are more consistent between the two
metrics and regions in that “VLCNN” takes the lowest values of both the KL divergence and the KS statistic in
both regions. It should be noted, however, that the variance in the OI model and the variance from the machine
learning models are different. The uncertainty in OI predictions are due, mostly, to spatial effects, that is, the
model is more uncertain in locations that are far away from observations, whereas the machine learning models
have learned dynamic variance from the sea surface data. Still, the out-of-sample relationships that the machine
learning models (specifically, the “VLCNN”) have learned from the Argo data is competitive with Ol
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Figure 12. A visual comparison of Argo profiles and estimated contour maps. From left to right, scatter plot of Argo profile
locations with filled mixed layer depth (MLD) values overlayed on gray SSH contours with 0.05 m contour spacings, filled
contour plots of OI estimated MLD, VLCNN estimated MLD, and reanalysis estimated MLD (see text for definition) for the
equatorial Pacific Ocean (EPO) for the 7-day week starting on April 24, 2015. The top row shows MLD standard anomalies
while the bottom row shows the corresponding MLD (in meters) with climatologies reintroduced.

The visual, qualitative features of the machine learning MLD maps appear promising as they capture features
smaller in scale than in typical OI maps and many of the features that appear in the inputs. Figures 12 and 13 show
Argo profile locations and MLD values overlaid on SSH contours, along with OI, VLCNN, and Reanalysis MLD
estimated maps for April 24, 2015 in the EPO and January 16, 2015 in the SIO, respectively. These dates are arbi-
trarily taken from the validation data set with the correlation coefficient of the machine learning maps in each plot
being approximately 0.6. The OI maps are estimated directly from the Argo profile locations and MLD values,
while the VLCNN maps are estimated from sea surface inputs. Because the VLCNN maps do not have access to
the Argo MLD data, we can define a reanalysis that updates the machine learning maps from the available data,
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Figure 13. A visual comparison of Argo profiles and estimated contour maps. Counterclock-wise from upper-left, scatter
plot of Argo profile locations with filled mixed layer depth (MLD) values overlaid H contours with 0.15 contours lines, filled
contour plots of OI estimated MLD, VLCNN estimated MLD, and reanalysis estimated MLD (see text for definition) for the
southern Indian Ocean (EPO) for the 7-day week starting on April 24, 2015. The top row shows MLD standard anomalies
while the bottom row shows the corresponding MLD (in meters) with climatologies reintroduced.
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d = arg min — Inp(d|d,, dw),
d
(16)
= arg min(d — dn) Z7(d — dw) + (Ld — d,)" V~'(Ld — d,),
d

where d, is the machine learning MLD estimate, d, is the Argo observations, X is the machine learning covari-
ance estimate, and L, V are the Gaussian Process mapping and covariance matrices.

In both the EPO and SIO, each map provides an estimated map that roughly agrees with the Argo samples. The
spatial effect of the SSH contours is evident in the machine learning outputs, and the fact that many of these fea-
tures correlate with details in the Argo MLDs means that the machine learning models were able to learn these
smaller scale relationships that hold out-of-sample from the training data. The OI, in comparison, does not vis-
ually capture small-scale features apparent in the input data and presumed to exist in the MLD (at least from maps
in Figures 5 and 6). In the SIO, in particular, the fact that the OI has a slightly higher correlation coefficient than
the VLCNN map reminds readers that the error statistics do not provide a complete encapsulation of the quality
of MLD reconstruction from each method. Clearly there is some qualitative benefits from the machine learning
maps that are not entirely captured by the deterministic or probabilistic errors.

5. Conclusion and Discussion

The ocean mixed layer interacts with the atmosphere and deep ocean on a multitude of spatial and temporal
scales. Heat exchange between these bodies has significant impacts on the dynamics of subseasonal and interan-
nual (aseasonal) variability and can influence the behavior of dominant modes of variability (i.e., ENSO, MJO,
and tropical cyclones). The proliferation of Argo floats has dramatically increased the number of observations of
the ocean over the last two decades but Argo profiles are still too sparse to resolve fine spatiotemporal features of
the MLD that are apparent in state-of-the-art global ocean models. Satellite data, however, is able to provide fine
resolution gridded maps of sea surface variables, but cannot observe subsurface.

The first goal of this work was to analyze the extent to which satellite observations of sea surface variables can
provide information useful for estimating the MLD. We built several machine learning models to learn such a
relationship based on available data. In order to test this methodology on a self-consistent system, while mini-
mizing reconstruction and interpolation errors, we first trained machine learning models on CESM POP2 ocean
model output. On this ocean model output we found that the relationships learned by the data-driven models had
a moderate (in the SIO, r =~ 0.4) to strong (in the EPO, r = 0.6) correlation with MLD on the temporally out-
of-sample data. Furthermore, we found that several of the machine learning models exhibit good predictability
and calibration (Figure 8). The correlations and error distributions do not exhibit much temporal dependence,
indicating that there is minimal overfitting (Figure 9).

Following this experiment, we tested our methodology on the Argo data set. The number of weeks available for
testing and validation data is not wholly sufficient to form conclusions on the source of MLD variability in this
data set. However, we found that in terms of both deterministic (Figure 10) probabilistic metrics (Figure 11), and
visual qualitative behavior (Figures 12 and 13), the machine learning model results suggest that the satellite data
is equally if not more useful in estimating spatiotemporal variability in MLD values and uncertainties than MLD
observations alone, given that sufficient MLD observations are available for out of sample training. The relative
performance between these methods can depend on the location of interest and the characteristics of the varia-
bility (e.g., between the Southern Indian Ocean and Equatorial Pacific Ocean), but we believe that the machine
learning methodology can be widely applicable and competitive with optimal interpolation approaches globally
in the future. Therefore, including surface information together with in situ MLD estimates may be useful for gen-
erating improved reanalyses of the upper ocean under these circumstances. The comparison with OI is meant as
a comparison with an observation-based methodology that only has access to Argo profile observations that can
yield a comparison of the relative value of surface information. The comparison is not meant as a statement on of
the value of OI or a statement that OI is state-of-the-art, which it is not (especially in comparison to multivariate
reanalyses and data assimilation products).
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The second goal of this work was to use sophisticated probabilistic learning approaches to better understand
the probability distribution of the MLD. The primary modeling assumption in our machine learning meth-
odology was the normality of the distribution of the errors between the model estimates and observations
(Equation 1). Calibration results in both Figures 8 and 11 suggest that this modeling assumption is reasonable
and that the machine learning algorithms produce reasonably well-calibrated MLD estimates. There is, how-
ever, a not-insignificant number of outliers across error distributions that might be improved given additional
data. We also found that parameterized distributions outperform sampling- and ensemble-based uncertainty
quantification techniques. This suggests that Gaussian parameterizations of the conditional uncertainty in
MLD spatiotemporal variability is sufficient, but sampling techniques might also be improved in the future
with additional data.

This work is an initial step into machine learning modeling of the MLD and there are several avenues for
continued methodological and oceanographic research. First, the results in this study are regional test cases
chosen to reveal how the variability of the MLD impacts the ability of the machine learning methods to learn a
functional relationship between the surface variables and the MLD. The machine learning models trained here,
specific to each region, cannot immediately be applied to a different region, since the dynamics learned change
from region to region. Future work will expand this regional approach to a global scale, but will necessitate
additional computational resources. Second, further research and data is needed to derive better estimates of
the conditional posterior probability distribution of the MLD. This research could include weight uncertain-
ty, more sophisticated sampling strategies, covariance regularization, or other neural network architectures.
Third, we do not account for model error in the input data. Incorporation of model error into machine learning
models is not trivial but future work will attempt to account for these errors as well as dynamical uncertainty
and lagged uncertainty. Fourth, the machine learning models presented in this study did not explicitly consider
temporal relationships. We believe that incorporation of the temporal dynamics in the machine learning could
help regularize the estimation procedure by coupling observations across time while simultaneously providing
useful scientific information about the temporal dynamics of the MLD in relation to the surface variables.
Fifth, future work can explore the sensitivity of the predictive models to other input observations. Perhaps the
most promising variable to consider would be the near-surface wind speed, which can be obtained from satel-
lite scatterometer observations. Finally, given further advances in the previous action items, we hope that this
methodology can be used in conjunction with, or compete with, ocean data assimilation reanalyses. In addition
to the continued methodological research that follows from this study, we believe that, given additional data in
the future, this methodology can be used to answer more detailed questions about the variability of the MLD
and scientific oceanographic research questions that require fine resolution gridded MLD estimates. This fu-
ture work should include efforts to fully explain and understand the physical basis for the relationships between
SST, SSS, SSH, and MLD that are quantified and leveraged for MLD prediction but not fully explained in this
study.

Appendix A: Probabilistic Machine Learning Models
Al. Dropout

The simplest technique to introduce uncertainty estimates into a neural network is to implement Dropout (Hinton
et al., 2012; Srivastava et al., 2014). Acting as a layer of the network, Dropout randomly sets inputs to zero at a
particular rate and scales the rest of the inputs by 1/(1 — rate). Mathematically,

FO%0x) = %M @ a(x"W; + b)), M; ~ Bernoulli(p), (A1)
—-p

where © means element-wise multiplication. Each run of the model then has a different combination of weights
that are set to zero. While originally this technique was used to reduce overfitting, it can also be viewed through
a Bayesian probabilistic lens (Maeda, 2014). Running the model multiple times creates an ensemble that can
be used to calculate moments of the output distribution, and, in particular, £ and p. It has been shown that the
expected distribution from a neural network utilizing Dropout forms a Gaussian mixture distribution (Gal &
Ghahramani, 2016). Therefore, there is some reason to believe that the regularity of the data distribution dictates
how useful Dropout can be in uncertainty quantification.
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A2. Variational Networks

The next simplest probabilistic technique, what we call the Variational Artificial Neural Network (VANN), also
known as a heteroscedastic network, is to parameterize the output of the neural network according to some dis-
tribution. For a Gaussian distribution, for example, the output of fis a stacked vector of the mean and covariance
estimates,

f(SSS,SST,SSH;0) = [u; vec(T)], (A2)

where vec(Z) is the flattened covariance matrix, such that d ~ N(u, X). This technique is relatively easy to
implement with care needed to ensure that constraints on the parameters are enforced. Typically, a Bayesian
framework would then impose prior probability distributions onto x and X. In particular, in addition to the
Gaussian likelihood, it is common to impose a Gamma or LKJ - uniform over the space of covariance matrices
- prior on the covariance to prevent unnecessary shrinkage. In a feedforward neural network, this parameteri-
zation increases the number of outputs and hence the overall total number of parameters. If the number of grid
points of d(x) is M then a full covariance matrix would require M(M + 1)/2 parameters and the corresponding
number of parameters required in the neural network makes it computationally prohibitive as k grows large.
To limit the computational cost, we make a diagonal assumption about the covariance to reduce the number
of parameters at the expense of losing covariance information between MLD values at different grid points.
Parameterization of the data distribution is not always possible if a good approximation or transformation to
an appropriate probability distribution is not known and the effectiveness of this technique is reflection of the
quality of that assumption.

A3. Variational Auto-Encoders

Another method that we test is the variational auto-encoder (VAE) (Kingma & Welling, 2014). A typical VAE
consists of two neural networks: an encoder that projects the inputs into a lower-dimensional latent space, param-
eterized by a probability distribution, and a decoder that inverts this projection and produces the original input.
The loss between the decoder's output and the original system drives the learning process. A VAE supposes a
prior distribution over the latent variable z, p(z), that, along with the decoder network that induces a conditional
likelihood distribution p(SSS, SST, SSHIz; ), forms a posterior distribution,

p(z|SSS,SST,SSH;0) « p(z)p(SSS, SST, SSH|z0).

This posterior distribution is typically intractable and thus replaced by a variational approximation ¢(zISSS,
SST, SSH; 6). This approximation includes a parameterization of the prior and likelihood distributions, typical-
ly Gaussian distributions with parameters that are learned in the encoder network. In our design we also use a
Gaussian distribution in the latent space, and, as demonstrated in Figure A1, we couple this network with a third
dense network, which we call the estimator, that transforms the latent space into an estimate of the MLD associ-
ated with the surface salinity, temperature, and sea height anomaly encoder inputs.

While the prior and likelihood distributions in a VAE are specified as Gaussian, the distribution of the output of
the estimator network, that is, the MLD outputs, is not parameterized. While the difference between the MLD
estimates and the MLD observations is modeled as a Gaussian process regardless of neural network architecture,
the possible benefit of our chosen VAE approach is that it can produce theoretically arbitrary probability distribu-
tion p(dISSS, SST, SSH; ). Another theoretical benefit to this approach is that, since the neural network can learn
an efficient lower-dimensional representation of the inputs that capture dominant patterns, the estimator might be
better able to generalize and to be less sensitive to small perturbations and noise in the inputs.

A4. Deep Ensembles

The final method for uncertainty quantification that we consider in this study is called “Deep Ensembles” in the
literature (see Lakshminarayanan et al., 2017). In short, we create an ensemble of neural networks by initializing
each with different weights and training them individually (the order of the training data set is shuffled for each
ensemble member). During testing, a random ensemble member is drawn and queried to produce a result. Sam-
ple based techniques can then be computed from the resulting ensemble of predictions. This technique naturally
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Figure Al. A schematic of the modified variational auto-encoder (VAE). On the left hand side, the SSS, SST, and SSH
inputs are fed into a neural network, called the Encoder network, that produces an output of smaller dimension—the latent
space. On the right hand side, a second neural network, called the Decoder network, takes the latent variables as inputs and
attempts to reproduce the original SSS, SST, and SSH inputs. In our implementation of the VAE, there is a third neural
network that takes the latent space as inputs and outputs an estimate of the mixed layer depth. Training is informed by the
decoder and estimator networks losses. For a full description of the training procedure for a typical VAE, see Kingma and
Welling (2014).
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increases the computational cost of a traditional neural network architecture by the number of ensemble members
and may be impractical for large systems. Note that uncertainty is not a learned trait in this approach, but inherited
from the ability of the neural network architecture to transfer input uncertainty into output uncertainty. Therefore,
the utility of this method depends heavily on the application details. Recent work by Weyn et al. (2019) and Weyn
et al. (2021) suggest that this technique may be useful in weather modeling.

Appendix B: Machine Learning Model Architectures

During this project we tested numerous machine learning models, architectures, and hyperparameter sets for
each model type, many of which are not presented in this manuscript. During the course of evaluating each of
the models on the test data set, we narrowed in on a handful of good performing models of a varying degree
of parameterization and size. Because of the near-infinite set of possible configurations, our search is not, and
perhaps cannot be, exhaustive. Furthermore, in the future when “sufficient” data becomes available, the relative
performance of machine learning models is subject to change and “deeper” machine learning models may be-
come more competitive.

In combination with Table 1, which details the nomenclature and size of the models that we present, Figure B1
shows the architecture design of the three main types of machine learning models presented in the main text:
the “CNN” architecture, which is also the basic design for the “Dropout” (the difference is in Monte Carlo
dropout applied during testing and validation instead of only during training), “VLCNN,” and “VCNN” mod-
els; the “ResNet” architecture; and the “Deep CNN” architecture, which is also used for the “Deep VCNN”
models.

The “CNN” architecture has four sets of a pattern of layers that consists of a 2D convolutional layer, whose
kernel size—(2,3) for the EPO, (2,4) for the SIO—is shown in the figure (each convolution is implemented
with padding to keep input and output sizes consistent), followed by the “Leaky ReLU” activation function, a
“Batch Normalization™ layer, and “Dropout” layer with dropout probability of 0.1. Each convolution layer has
an associated number of layers that it produces, called filters (representing separate convolution kernels, sets of
parameters, that should manifest into visualization of different features sets in the input data). The number of
features, or filters, produced by each convolution layer is written in the figure directly northwest of the convolu-
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Figure B1. Architecture map of the three leading types of machine learning models used in this manuscript: “CNN,”
“ResNet,” and “Deep CNN.” See the text for details.

tion layer. The final output convolution layer produces one filter for a deterministic output (referred to as “CNN”
in the text), or, two outputs for a mean and variance map (this configuration is referred to as “VCNN™). The
“VLCNN” model has the same “CNN” architecture with one filter output and a variance produced separately by
a linear affine map of the inputs. Technically, the softplus function is applied to the outputs of these models to
ensure positive-definiteness of the variance. See the TensorFlow documentation for further details about the layer
mechanics (Abadi et al., 2016).

The “ResNet” architecture is typical of other Residual Neural Networks (see He et al., 2016), with series of blocks
whose outputs are summed with the input of the block to produce the input into the next block. The output of each
ResNet block must have the same number of filters as in the input data, three (SSS, SST, and SSH), in order for
the additive function to be well-defined. This additive nature is known to help avoid gradient propagation issues
in deep machine learning models. The structure of each block is similar to the “CNN” architecture, but with ac-
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tivation preceding the convolution layer. We found this ordering of activation functions to be slightly superior to
other combination of layer order.

Finally, the “Deep CNN” architecture is inspired from a combination of ResNet and U-Net (see Ronneberger
et al., 2015) architecture designs, where intermediate layers that are theorized to capture features of varying
spatial scales and physical properties are concatenated (denoted by the simple @ in the figure) in series. The
“Deep CNN” is designed to promote the sharing of information between scales and to avoid vanishing gradient
problems during training. Through the course of the series of CNN blocks, the effective size of the Receptive
Field, the size of the region in the original image that produces a data-point in the output filter, grows and in-
creasingly represents progressively larger spatial features. Concatenating earlier and later layers ensures that the
final convolutional layer has direct access to small and large scale features for predicting MLD. The architecture
uses combinations of CNN blocks, shown in the bottom of the figure, that act similar to the ResNet block, a
series of convolutional layers preceded by activation functions, but are not constrained in output filter size. In
the “Deep CNN,” we concatenate CNN blocks of progressively larger output filter size (parameterized by “d”
in the figure).

Appendix C: Gaussian Process Regression

Gaussian Process Regression is closely related to the somewhat more general Optimal Interpolation and Kriging
frameworks. For a more detailed history and exposition, see Cressie (1993). A Gaussian process is any collection
of random variables for which any finite number have a joint Gaussian distribution and, as a result, is completely
determined by a mean and covariance function (Rasmussen & Williams, 2006). Given a set of (two-dimensional)
observation locations x = (x1, ..., xu)" , we define the mean function m(x) and the covariance function k(x, x)
of the process d(x) as

m(x) = E[d(x)] CH
k(x,x") = E[(m(x) — d(x))(m(x") — d(x"))] (823

where x’ is another (or possibly identical) set of input locations.

Typically the mean function is set to zero and covariance function is parameterized according to some kernel
function. Various kernel functions impart different types of regularity (differentiability): the exponential kernel
leads to non-differentiable outputs, the Matern Class of kernels have a regularity parameter, and the squared ex-
ponential kernel leads to smooth outputs. In our study, the squared exponential kernel,

k(x,x') = ote_ﬁu"_"’”2 +p (C3)

where a and £ are hyperparameters that control the amplitude and length-scale of the corresponding covariance
structure, was chosen because of its marginally better performance and efficiency compared to Matern class
kernels. We train our Gaussian process hyperparameters by optimizing according to the Gaussian process prior
probability distribution over the training observation points X,

Inp(a, 2, fld) = —%dTK(x, x)'d - %lan(x,x)| - %anm c4

where the covariance matrix has entries KiJ(x, x) = k(x,, xj). To regularize the optimization process and ensure
positivity of a, £, and S, priors are occasionally placed on the hyperparameters in a Bayesian fashion. In our
study, this type of implementation had minimal impact on the optimized values. In circumstances where ei-
ther computational considerations are not a concern or available training data is limited, it is also possible to
optimize the hyperparameters by cross-validating and minimizing the conditional likelihood distribution, for
details see Rasmussen and Williams (2006). The variance hyperparameter  can, in general, be made aniso-
tropic at the expense of increasing the total number of hyperparameters, but we do not consider such options
in this study.

During the training of the neural network, that is, while optimizing the parameters in f via Equation 3 using
backpropagation on training data from a given week, the Gaussian process hyperparameters must be re-optimized
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according to Equation C4 because the Gaussian process parameterization depends on the Argo profile locations
(and model covariance X, if available) which generally vary from one training week to the next.

Once the Gaussian process has been optimized using function values (x, d), we can perform inference at the Argo
spatial locations x_ to obtain estimates of d . The inference procedure follows Equation 2 with L and V given by
the equations

L = k(x,, X)(k(x,%x) + 2)™! (C5)
V = k(X,,X,) — k(X,, X)(k(X,X) + Z)_lk(x, X,). (Co6)

Thus, the trained kernel function is independent of time and depends only on distance ||x — x’|| not location x or
time, but L and V depend on location and time because X depends on location x and the particular points chosen
for estimation X, (e.g., the Argo profiles locations) vary with time.

Data Availability Statement

Code and examples for this project can be found at https://github.com/NCAR/ml-ocean-bl and https://doi.
org/10.5281/zenodo.4441098. Argo-based mixed layer depth data (Whitt et al., 2020) can be accessed at
https://doi.org/10.5281/zenod0.4291175. Preprocessed surface and mixed layer data and model outputs (Foster
et al., 2020) can be accessed at https://www.doi.org/10.5281/zenodo.4421752.
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