
1.  Introduction
The U.S. Environmental Protection Agency (EPA) is required to set National Ambient Air Quality Standards 
(NAAQS) under the Clean Air Act designed to protect the public health and welfare from pollutants from numer-
ous and diverse sources. The distribution of surface air quality monitoring implemented to determine pollutant 
levels and compliance with the NAAQS tend to be focused on the urban environments due to the legacy of high 
pollution in the areas when the standards and networks were first established. In 1997, EPA promulgated sig-
nificant changes to the particulate matter (PM) NAAQS, establishing a new standard for PM2.5 (fine particulate 
matter with aerodynamic diameter less than 2.5 μm) along with the establishment of multiple nationwide PM2.5 
monitoring networks. First, the vast majority of routine air quality monitoring stations known as State and Local 

Abstract  This work serves as the second of a two-part study to improve surface PM2.5 forecasts in the 
continental U.S. through the integrated use of multisatellite aerosol optical depth (AOD) products (MODIS 
Terra/Aqua and VIIRS DT/DB), multichemical transport model (CTM) (GEOS-Chem, WRF-Chem, and 
CMAQ) outputs, and ground observations. In Part I of the study, an ensemble Kalman filter (KF) technique 
using three CTM outputs and ground observations was developed to correct forecast bias and generate a single 
best forecast of PM2.5 for next day over nonrural areas that have surface PM2.5 measurements in the proximity 
of 125 km. Here, with AOD data, we extended the bias correction into rural areas where the closest air quality 
monitoring station is at least 125–300 km away. First, we ensembled all of satellite AOD products to yield 
the single best AOD. Second, we corrected daily PM2.5 in rural areas from multiple models through the AOD 
spatial pattern between these areas and nonrural areas, referred to as “extended ground truth” or EGT, for the 
present day. Lastly, we applied the KF technique to reduce the forecast bias for next day using the EGT. Our 
results find that the ensemble of bias-corrected daily PM2.5 from three CTMs for both today and next day show 
the best performance. Together, the two-part study develops a multimodel and multi-AOD bias-correction 
technique that has the potential to improve PM2.5 forecasts in both rural and nonrural areas in near real time, and 
be readily implemented at state levels.

Plain Language Summary  The U.S. Environmental Protection Agency's AirNow program 
reports current or forecasted air quality to the general public in the form of Air Quality Index (AQI). The 
forecasted AQI is made available by local and state air quality agencies across more than 500 cities across the 
U.S. However, since surface observations of particulate matter (PM) are primarily located in the urban areas, 
observation-based AQI in the rural areas is limited, and either the current or the forecasted AQI from AirNow 
has large uncertainties that are difficult to assess, especially during the fire season. Satellite observation with 
large spatial coverage provides a promising opportunity to fill in the gaps in areas where observations are spare. 
Building upon our previous work, here we develop a statistical technique to improve surface PM forecasts in 
the rural areas of continental U.S. through the use of satellite observations of aerosols, surface observations, 
and air quality forecasting models. Assessment with the data from Interagency Monitoring of Protected Visual 
Environments (IMPROVE) network shows the promise of our technique. The technique is designed with the 
consideration of the forecast in near real time, and is efficient with minimal requirement of computing.
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Air Monitoring Stations (SLAMS) are owned and operated by the state and local government and Tribal agencies, 
and designed to track ambient air quality for the main purpose of comparison to the NAAQS. SLAMS includes 
Federal Reference Method and Federal Equivalent Method monitors, but also include more specialized networks 
such as the Chemical Speciation Network (CSN) initialized in 2000 to measure the chemical composition of 
particulate matter in urban areas for identifying sources and supporting the implementation of NAAQS (Jayan-
ty et al., 2004; Solomon et al., 2014). Currently, there are about 900 operating sites to provide 24-hr averaged 
PM2.5 on a daily, every third, or every sixth day basis, which is reported to the Air Quality System (AQS). In 
addition, approximately 600 continuous PM2.5 mass monitors provide near real-time hourly PM2.5, which are 
primarily used for reporting Air Quality Index (AQI) in support of AirNow program (Dye et al., 2004). Second, 
in responding to the Clean Air Act and the 1999 Regional Haze Rule, the Interagency Monitoring of Protected 
Visual Environments (IMPROVE) expanded to about 150 operating sites primarily in Class I federal areas (Malm 
et al., 1994; Solomon et al., 2014), since it began collecting data in 1988 (Eldred et al., 1990). While U.S. has the 
most extensive monitoring networks, only 10% of the sites, primarily from IMPROVE, are in rural areas that have 
∼20% of the U.S. population and 98% of the U.S. land.

Zhang et al. (2020) showed that the autocorrelation of surface PM2.5 drops exponentially as a function of distance 
and is lower than 0.7 for the distance larger than 125 km. This means that in areas such as the Intermountain 
West and Great Plains regions (Figure 1), there is essentially no useful ground-based AQI information whatso-
ever. Therefore, we look to satellite data with a global spatial coverage to fill in those spatial gaps (Anderson 
et al., 2003). For example, the aerosol optical depth (AOD) retrieved from different satellite instruments such as 
the Moderate Resolution Imaging Spectrometer (MODIS) (Remer et al., 2005) and Multiangle Imaging Spectro 
Radiometer (MISR) (Diner et al., 1998) have been used to derive surface PM2.5 mass concentration. The earliest 
studies developed a simple empirical relationship between satellite-retrieved AOD and surface measured PM2.5 
concentration (Chu et al., 2003; Wang & Christopher, 2003). Following work have included the vertical profile 
of aerosols either inferred from chemical transport models (Liu et al., 2004; Van Donkelaar et al., 2010) or lidar 
data (Engel-Cox et al., 2006), and further considered the influence from meteorology (Gupta et al., 2006; Koe-
lemeijer et al., 2006). More recent work have developed geographically weighted regression (GWR) model (Hu 
et al., 2013; Lee et al., 2016; Liu et al., 2005, 2007; Sathe et al., 2019; Zheng et al., 2016) or applied machine 
learning methods (Gupta & Christopher, 2009; Hu et al., 2017). In addition, using the radiance data (Fu, Xia, 
Duan, et al., 2018; Wang et al., 2016) or top-of-atmosphere reflectance (Shen et al., 2018) has shown promising 
results. These aforementioned studies and so many more greatly expanded and enhanced our knowledge about the 
AOD-PM relationship and the application of satellite data in air quality and health studies (Al-Saadi et al., 2005; 
Anenberg et al., 2018; Cohen et al., 2017; Hoff & Christopher, 2009). More recently, techniques have been de-
veloped to merge multi-AOD products with surface measured AOD as ground truth for subsequent application in 
deriving surface PM2.5 mass concentration (Fu, Xia, Wang, et al., 2018; Fu et al., 2020; Ma et al., 2014; Puttas-
wamy et al., 2014). Most recently, the GWR model is used to estimate near real-time surface PM2.5 from Visible 
Infrared Imaging Radiometer Suite (VIIRS) and Geostationary Operational Environmental Satellites (GOES) 
Advanced Baseline Imager (ABI) AOD in a daily or hourly manner (Zhang & Kondragunta, 2021).

Attempts to use satellite AOD to improve aerosol forecasting in real time have been limited except for the global 
prediction models such as from the International Cooperative for Aerosol Prediction (ICAP) study, in which AOD 
is assimilated to improve aerosol transport forecasts in real time, but the fidelity of these models for surface PM2.5 
forecasts remains elusive (Buchard et al., 2017; Xian et al., 2019). Model Output Statistics (MOS) or diagnostic 
approach without involving data assimilation techniques can be effective in computational cost and time for 
improving surface PM2.5 forecasts. The efforts in this regard are few, however; one particular application, that is, 
the Infusing Satellite Data into Environmental Application (IDEA) has developed a prototype that demonstrates 
the operational use of satellite derived surface PM2.5 together with forward trajectory analysis to qualitatively 
predict surface PM2.5 at synoptic scales in support of the AirNow program (Al-Saadi et  al.,  2005; Szykman 
et al., 2004, 2012). Satellite aerosol related images including the surface PM2.5 derived from satellite AOD have 
been available through the NOAA National Environmental Satellite, Data, and Information Service (NESDIS).

This is the second part of a two-part study that aims to develop a bias-correction framework to improve surface 
PM2.5 forecasts in the continental U.S. through the integration of chemical transport models, ground observations 
and satellite remote sensing. The goal of this two-part study is to develop a model output diagnostic approach that 
has the potential to be used by regional air quality agencies for improving the forecast of surface PM2.5 in near 
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real time; the approach is designed to be economic in computing and fast for the operational use. It tackles the 
challenges that local air quality agencies have the access to multiple model forecasts of surface PM2.5, multiple 
satellite AOD products and their local surface PM2.5 data, but have to make a single best estimate of surface PM2.5 
for the next day. Specifically, in the first part of the study (Zhang et al., 2020), we developed and demonstrated 
a multimodel ensemble approach combining the Kalman filter (KF) technique and a successive correction tech-
nique to improve model forecasts in nonrural areas. In that work, we focused on urban areas that have rich surface 
observation. Building upon that work, we focus on developing techniques to apply multisatellite-derived AOD 
data to improve forecasts of surface PM2.5 in rural areas where no surface observation sites are available in the 
proximity of 125 km. This two-part series therefore provide a synergy to combine surface and satellite observa-
tions and multiple CTM outputs for improving PM2.5 forecasts in the U.S., and the approaches developed here can 
be used in a computationally efficient manner by regional or local air quality offices. The paper is organized as 
follows: Section 2 describes the model configuration, surface PM2.5 observations and AOD data as well as quality 
control methods. Section 3 introduces the bias-correction technique. We summarize the results in Section 4 and 
present the discussion in Section 5.

2.  Model and Observation Data
Detailed model configurations are documented in the companion paper (Zhang et al., 2020) and we, in below, 
describe how AOD is calculated in each model as well as the various observation data used in this study.

2.1.  Model Data

2.1.1.  GEOS-Chem

We use the global 3-D GEOS-Chem model (Bey et al., 2001) Version v11-01, which has a nested capability to run 
model simulations at high spatial resolution over a specific domain. Here, we run the nested simulation with 0.5° 
latitude × 0.667° longitude horizontal resolution over the North American domain (10°–70°N and 40°–140°W) 
(Chen et al., 2009; Wang et al., 2004). Both global and nested simulation are driven by NASA Goddard Earth Ob-
serving System (GEOS-5) assimilated meteorological fields and share the same vertical distribution of 47 levels. 
We first run the global model simulation with 2° latitude × 2.5° longitude horizontal spatial resolution from June 
1, 2011 to June 30, 2012 with the first 12 months as model spinning up time. Then, the output from the global 
simulation will provide time varying chemical boundary for the nested simulation, which ran from May 1, 2012 

Figure 1.  PM2.5 monitoring sites in the U.S. for June 2012. Blue circles represent the 508 hourly PM2.5 measurement sites 
from the U.S. Environmental Protection Agency (EPA) Air Quality System. The triangles (shown in red and orange) are 
the 158 daily PM2.5 measurement sites from the Interagency Monitoring of Protected Visual Environments (IMPROVE) 
network. The IMPROVE sites in red represent the sites which have EPA hourly PM2.5 site/sites within the distance range of 
125–300 km, and the data at those sites are used solely for evaluating the bias-correction method for PM2.5 forecasts in rural 
areas. Sites in orange triangles are only shown here for demonstrating the spatial distribution of the IMPROVE network and 
the data at these sites are not used in the current work because they have EPA PM2.5 hourly measurement site/sites in the 
radius of 125 km.
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to June 30, 2012 with the first month used as model initialization time. Both the global and nested simulation 
have the same setup as described below.

The GEOS-Chem model simulates inorganic aerosols (sulfate-nitrate-ammonium system) (Park et al., 2004; Pye 
et al., 2009), carbonaceous aerosols (Liao et al., 2007; Park et al., 2003), mineral dust (Fairlie et al., 2007), and 
sea salt in fine and coarse mode (Jaeglé et al., 2011). Secondary organic aerosols (SOA) were disabled in the 
current simulation. Dust particles in GEOS-Chem contains four size bins (radius 0.1–1.0, 1.0–1.8, 1.8–3.0, and 
3.0–6.0 μm) (Fairlie et al., 2007, 2010). Aerosol optical properties are calculated in GEOS-Chem with a standard 
Mie code for each aerosol type using a look-up table approach. In generating the look-up table, the aerosol mass 
concentration for each aerosol type is assumed to be in a log-normal size distribution. The aerosol hygroscopic 
growth as a function of the relative humidity (RH) is accounted for in the calculation of mass extinction coef-
ficient (Martin et al., 2003). The refractive indices come from the Global Aerosol Data Set (GADS) (Koepke 
et al., 1997). The aerosols are assumed to be externally mixed and the sum over all aerosol types are used to 
compute an optical depth at different wavelengths including 550 nm.

2.1.2.  WRF-Chem

For the present work, we rerun the WRF-Chem simulation to include our latest model development (Sha 
et al., 2021). In the new simulation, the Modern-Era Retrospective Analysis Research Application, Version 2 
(MERRA-2) data provide the meteorological boundary and initial condition as well as the chemical boundary 
and initial condition (Buchard et al., 2017; Gelaro et al., 2017; Randles et al., 2017). The MERRA-2 data have a 
horizontal spatial resolution of 0.5° latitude × 0.625° longitude with 72 vertical layers. The 0.25° latitude × 0.25° 
longitude Global Land Data Assimilation System (GLDAS) data provide the initial conditions of soil properties 
(e.g., soil moisture and temperature) (Rodell et al., 2004). The land cover type data are updated with the 2018 
MODIS land cover data. Dust emissions follow the Goddard Global Ozone Chemistry Aerosol Radiation and 
Transport (GOCART) with the Air Force Weather Agency (AFWA) modifications. The WRF-Chem model has 
one domain over the United States with a horizonal resolution of 12 km and 47 vertical levels. We ran the model 
from May 22 to June 30, 2012 with the first 10 days used as model initialization time. All other model configu-
rations are the same as used in Zhang et al. (2020).

WRF-Chem aerosols modules are the Modal Aerosol Dynamics Model for Europe (MADE) (Ackermann 
et al., 1998) and the Secondary Organic Aerosol Model (SORGAM) (Schell et al., 2001). In this MADE/SOR-
GAM scheme, sulfate, nitrate, ammonium, BC, organic matters (OM), sea salt, mineral dust, and water are 
simulated. Sea salt aerosol emissions were not included in the current simulation. Aerosol size distribution is 
represented by the modal approach (Whitby et al., 1991), which contains three modes: Aitken, accumulation, 
and coarse mode. Each mode assumes a log-normal distribution. The calculation of aerosol optical properties 
followed a sectional approach with 8 bins (Barnard et al., 2010). The mass and number concentrations of each 
aerosol species from the three modes will be matched to the 8 bins. Each bin assumed an internal mixing and 
the bulk properties such as refractive index for each bin is based on volume approximation. The aerosol optical 
properties are computed at four wavelengths (300, 400, 600, and 1,000 nm). AOD at 550 m are interpolated from 
optical properties at 400 and 600 nm.

2.1.3.  CMAQ

CMAQ outputs used for this study from June 1 to June 30, 2012 are directly downloaded from the Remote Sens-
ing Information Gateway (RSIG, https://www.epa.gov/hesc/remote-sensing-information-gateway). The CMAQ 
Version 5.0.2 was used, and the model was run with a horizontal simulation of 12 km and 35 vertical levels 
over the continental U.S. The results from WRF Version 3.4 simulation and global GEOS-Chem Version v8-03-
02 simulation provided the meteorological inputs and hourly chemical boundary to the CMAQ model system, 
respectively.

The CMAQ aerosol module AERO6 (Appel et al., 2013) simulates inorganic aerosols (sulfate, nitrate, and ammo-
nium), secondary organic aerosols (Carlton et al., 2010), elemental carbon, organic carbon, and water. Dust emis-
sions were not included in the simulations. Aerosol size distribution include three modes: Aitken, accumulation, 
and coarse (Binkowski & Roselle, 2003). AOD are calculated based on a regression relationship derived from 
IMPROVE monitoring data and collocated photometer readings (Pitchford et al., 2007). The dry mass extinction 
efficiency for each aerosol component is provided as constants. For sulfate, nitrate, and sea salt aerosols, the mass 
extinction efficiency also accounts for the effects of RH by multiplying a water growth factor as a function of RH.

https://www.epa.gov/hesc/remote-sensing-information-gateway
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2.2.  Satellite-Retrieved AOD and Quality Control

The MODIS instrument on board Terra and Aqua have a swath of 2,330 km which enables a global coverage every 
1 or 2 days. Terra and Aqua cross the equator at approximately 10:30 a.m. in the descending mode and 1:30 p.m. 
in the ascending mode, respectively. MODIS AOD values are retrieved from 0.47, 0.55, 0.66, and 2.13 μm over 
land surfaces. In the current work, we use level 2 AOD products from both Terra and Aqua, denoted as MOD04 
and MYD04, respectively. The MODIS level 2 Collection 6.1 (C6.1) AOD products over the land are generated 
using two algorithms: “Dark Target” (DT) over vegetated surfaces or dark land surfaces (Levy et al., 2013) and 
“Deep Blue” (DB) over land surfaces (Hsu et al., 2013, 2019; Sayer et al., 2019). Here we consider DT and DB 
AOD products over land surfaces at 0.55 μm wavelength with a 10 km spatial resolution. We also use MODIS 
Level 3 AOD data products, which are gridded monthly products.

The VIIRS sensor onboard the Suomi-NPP satellite has a swath of ∼3,000 km, which enables a global coverage 
every day. The Suomi-NPP satellite has an 824 km sun-synchronous ascending orbit with the local equator-cross-
ing time of 1:30 p.m. The VIIRS AOD retrieval includes three algorithms: DT over land (Sawyer et al., 2020), DB 
over land surface (Hsu et al., 2019; Sayer et al., 2019), and the environmental data record (EDR) algorithm over 
land and ocean (Jackson et al., 2013). Here we use the level 2 DT and DB AOD products at a spatial resolution 
of 6 km.

The MODIS level 2 aerosol products also include a number of auxiliary information related to the retrieval con-
ditions. In the current study, several of them are used: (1) the quality assurance (QA) flag associated with each 
AOD product ranges from 1 to 3 with 3 representing the highest quality, (2) cloud fraction, and (3) scattering 
angle. The same auxiliary information is also used for VIIRS DT AOD but only QA flag and cloud fraction are 
used for VIIRS DB AOD. Following previous work (Anderson et al., 2013; Hyer et al., 2011; Shi et al., 2013; 
Wang et al., 2018; Zhang & Reid, 2006), different quality control filters are used in extracting satellite AOD 
data, which include: using QA flag of 3, removing AOD retrieved at large scattering angle (>170°) and cloud 
fraction (>0.8), applying buddy check for spatial smoothness and excluding pixels with large local variations. 
Statistics used to evaluate the datasets include the Pearson correlation coefficient (R), Mean Bias (MB), and the 
Root-Mean-Square Error (RMSE).

2.3.  AERONET AOD

The ground-based Aerosol Robotic Network (AERONET) provides global observations of AOD, which are used 
to evaluate satellite and model-simulated AOD here. The sun photometers at each AERONET site measures the 
direct solar radiation in some or all of the following spectral band centered at 340, 380, 440, 500, 670, 940, and 
1,020 nm (Holben et al., 1998). These measured radiation data are further used to retrieve AOD according to 
the Beer-Lambert-Bouguer law (Holben et al., 1998). To compare with satellite and model-simulated AOD at 
550 nm, AERONET AOD at 440 and 670 nm were interpolated to AOD at 550 nm using the Angstrom Exponent 
provided by AERONET. We use Version 3 Level 2.0 AOD data from AERONET, which are cloud-screened and 
quality-insured. To ensure the statistical representatives at a monthly scale, we only keep those AERONET sites 
that have a minimum of 10 days of data in the month of June 2012. As a result, a total of 33 AERONET sites are 
remained (see Figure 4 for the spatial distribution).

2.4.  Ground-Based Measurements of PM2.5

Hourly surface measurement of PM2.5 data for June 2012 are taken from U.S. EPA's Air Quality System (AQS, 
https://www.epa.gov/aqs). More details about the data and quality control are described in the companion paper 
(Zhang et al., 2020). We also use daily total PM2.5 measurements from the IMPROVE network operated by the 
National Park Service and other federal agencies (Malm et al., 1994). At each IMPROVE site, four different 
models are used to collect samples for speciated PM2.5, gravimetric PM2.5, and PM10 analysis. Besides the gravi-
metric PM2.5 mass concentration, the IMPROVE network also reconstructed PM2.5 mass concentration using the 
speciated PM2.5 concentration (Hand et al., 2012; Malm et al., 2011; Malm & Hand, 2007). Both measured and 
reconstructed PM2.5 have biases, which has been investigated by Malm et al. (2011). It was found that the overall 
difference between gravimetrically determined and true ambient PM2.5 (estimates of true concentration) is about 
1 μg m−3 (6%) and this difference for reconstructed and true ambient PM2.5 mass sets about 0.2 μg m−3 (3.5%). In 

https://www.epa.gov/aqs
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the current work, we use the reconstructed PM2.5 concentration as the work of Hand et al. (2019) has suggested 
that gravimetric PM2.5 measurement biases increased due to the presence of particle-bound water after 2011.

3.  Methodology
In Part I of this work (Zhang et al., 2020), a two-step approach is developed to improve the forecast of surface 
PM2.5 in nonrural areas where surface observations are rich. For model grids collocated with EPA hourly surface 
measurements, the ensemble Kalman filter (KF) technique is used to correct model forecast bias, and subsequent-
ly generate the improved forecasts of surface PM2.5 for next day. The ensemble consists of surface PM2.5 outputs 
from GEOS-Chem, WRF-Chem, and CMAQ forecasts (and practically in a hindcast for the purpose of research). 
Then, a Successive Correction Method (SCM) was applied to spread model correction at the surface observation 
sites to nearby model grids in the radius of 125 km, that do not have ground observations. This radius of influence 
of 125 km is based on analysis of EPA surface measurements of hourly PM2.5 mass concentration.

In Part II of this work, here we develop a three-step approach of using satellite AOD to improve PM2.5 forecasts 
over the model grids that have no surface observation sites in their proximity of 125 km. These model grids often 
cover the rural areas beyond the distance of 125 km away from the urban. First, we ensemble satellite AOD to 
obtain the single best AOD at ground observation sites (as to be detailed in Section 3.1) and rural areas that are 
125 km or more away from these sites. Then, we correct model-simulated surface PM2.5 for present day (today) 
over these rural areas through AOD spatial pattern, thereby linking the correction needed in rural areas with the 
benefit coming from surface observations in nonrural areas. Once these satellite-enabled today's “ground truth” 
for rural areas are created, we can then use the KF technique (as already developed in Part I of this work, denoted 
as KF-ori) to update model forecasted bias and subsequently correct forecasted PM2.5 for next day for the rural 
areas.

3.1.  AOD Ensemble

Both MODIS and VIIRS AOD products have been evaluated against AERONET AOD in previous work (e.g., 
Sayer et al., 2019; Wei et al., 2019). Here, we mainly focus on the AOD ensemble evaluations. Since large spread 
exists between AOD products from different sensors and algorithms, AOD ensemble could help reduce random 
errors and increase data coverage. Previous work have used AOD ensemble average to study fire emissions (Wang 
et al., 2018), or fused multisatellite AOD products to estimate surface PM2.5 mass concentration (Ma et al., 2014). 
Wang et al. (2018) evaluated the monthly average of Terra and Aqua DT and DB AOD by sensor or algorithm 
against AERONET AOD in northern sub-Saharan African region. They found that the average of Terra and Aqua 
DB AOD has one of the highest correlations and lowest RMSE. In Ma et al. (2014), MODIS and MISR AOD 
were fused to improve the data spatial coverage. More recently, Sogacheva et al. (2020) used 12 major available 
satellite AOD products to create a merged AOD product over the period of 1995–2017 for climate studies. Less 
has been explored to deploy ensemble AOD for improving air quality forecasts.

In this work, AOD values are retrieved from three satellite sensors (Terra, Aqua, and VIIRS) and two AOD re-
trieving algorithms (DT and DB). Accordingly, we construct ensemble AOD by sensor, algorithm or both: DT 
(DB)-Ens (ensemble based on satellite-retrieval algorithm, e.g., by ensembling MODIS Terra, Aqua, and VIIRS 
DT or DB AOD), Terra (Aqua/VIIRS)-Ens (ensemble based on sensors), and All-Ens (ensemble of all AODs). 
Here, we assume that ensemble created with AOD overpass time at 10:30 a.m. or 1:30 p.m. would be equally 
representative of the daily mean. Also, by doing the ensemble with all three sensors, the overpass time of 1:30 
p.m. is weighted twice compared to the overpass time of 10:30 a.m. We acknowledge these limitations in our 
current work but using geostationary satellite AOD data with finer temporal resolution could help resolve these 
limitations in future work.

The spatial-temporal collocation of satellite and AERONET AOD follows the approach of Ichoku et al. (2002). 
Satellite AOD averaged within a radius of 25 km centered around an AERONET site is evaluated against the 
corresponding AERONET AOD measurements averaged within ±30  min of MODIS (Terra/Aqua) or VIIRS 
overpass time. Also, due to the surface land type difference in the eastern and western U.S., we further divide the 
AOD datasets into eastern U.S. (<100°W) and western U.S. (>100°W). The comparison of mean AOD in each of 
these ensembles with AERONET AOD is shown for eastern U.S. in Figure 2 (and for western U.S. in Figure S1). 
Here, ensemble mean is defined as the average (with equal weight) of AOD values from each ensemble member. 
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For the eastern U.S., different ensemble means show similar R, RMSE, and MB values. For the western U.S., the 
different ensembles lead to a wide range of correlation and RMSE. The DT-Ens and VIIRS-Ens result in higher 
correlation of 0.76 and 0.79 and larger RMSE of 0.13 and 0.14 while DB-Ens, Terra-Ens, and Aqua-Ens show 
lower correlation of 0.45, 0.53, and 0.59 and smaller RMSE of 0.05, 007, and 0.07. In contrast, the All-Ens show 
the best performance overall with R of 0.75, RMSE of 0.08 and MB of 0.04. Therefore, we will use the equally 
weighted ensemble of all available AODs for both eastern and western U.S. in this work unless noted otherwise.

3.2.  PM2.5 Forecast Bias Correction Through AOD

Currently, the U.S. EPA AirNow program (https://www.airnow.gov/) offers the NowCast and forecasted Air 
Quality Index (AQI) for ozone and particle pollution. The NowCast AQI is calculated based on multiple hours of 
past to current available air pollutant concentrations from real-time hourly surface measurements. These meas-
urements usually have one hour latency. Tomorrow's forecasts, issued by state and local air quality forecasters 
across the country, are made available in most areas by 4 p.m. local time. MODIS Terra and Aqua real-time 
AOD data are available 60–125 min after their respective overpass time. For VIIRS AOD data, they are available 
180 min after its overpass time. Based on these time references, we aim on providing corrected forecasts of sur-
face PM2.5 for next day no later than 5 p.m. local time in our bias-correction technique.

We divide the model grid boxes into three types based on their distance with ground observation sites. Type-1 
refers to those having collocated hourly EPA ground observation sites on the model grids; type-2 refers to those 
without any collocated ground observation sites on the model grids but are surrounded by EPA hourly ground 
sites in the radius of 125 km; type-3 refer to the rest of model grid boxes that have no surface observations within 
the proximity of 125 km but has N EPA hourly ground sites in the radius of 125–300 km. For type-1 model grid 

Figure 2.  Scatter plot of equally weighted ensemble satellite aerosol optical depth (AOD) and AERONET AOD for sites located in the eastern U.S. for June 2012. 
DT-Ens and DB-Ens represent ensembling AOD based on the different algorithm. For example, DT-Ens will average the AOD from Terra, Aqua, and VIIRS DT AOD 
products. Terra-Ens, Aqua-Ens, and VIIRS-Ens ensembles AOD by sensors. All-Ens are the average of all of the AODs. Please see Section 3.1 for more details. Also 
shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean ± standard deviation for AERONET AOD (x) and satellite 
AOD (y), the number of collocated data points (N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).

https://www.airnow.gov/
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boxes, Kalman filter (KF) technique will be used to correct model forecast biases. Then, the SCM will be used 
to spread the bias-correction information from type-1 model grid boxes to type-2 model grid boxes. These two 
steps have been documented in Part I of this work (Zhang et al., 2020) and we made some modifications for the 
KF technique here to take use of the surface hourly measurements for real-time forecasts. After correcting model 
forecasted bias for type-1 model grids and subsequently spreading the corrected bias in the radius of 125 km from 
type-1 grids, forecasts of surface PM2.5 in many nonrural areas will be corrected and model grids left uncorrected 
are mostly located in rural areas as shown in Figure S2a. In the last step, satellite AOD will be used to correct 
forecast biases for type-3 model grids, located mostly in rural areas. Altogether, forecasts of surface PM2.5 for the 
majority of continental United States will be corrected (Figure S2b).

Figure 3 shows the schedule chart of the bias-correction techniques implemented here. First, for type-1 model 
grids, the KF will be applied using the hourly observation and model-simulated PM2.5 data over a period of 24 hr 
(from noon yesterday to noon today, local time). This bias information will be used to correct model forecasted 
PM2.5 for the next day of 24 hr (from midnight to midnight, local time). It would be ideal to use the information 
from the same hour for today and next day, but in reality, this is not possible after consideration of data latency 
and time needed for data processing and analysis. Therefore, 5 hr (from today's noon to today's 5 p.m.) are re-
served to conduct procedures for bias-correction technique and issue the air quality forecasts for next day. We 
shift the hours here to take advantage of the available surface observations we can obtain before we start the 
postprocessing bias-correction process.

We correct model-simulated surface PM2.5 on any type-3 model grid for today with a day number index d, by (a) 
first computing the correction ratio (𝐴𝐴 𝐴𝐴𝑖𝑖 ) between observation-based and model-based AOD/PM2.5 scaling factor 
(Equation 1) at its nearby type-1 model grid, and (b) subsequently, by transferring this ratio to the type-3 model 
grid box as a constraint to update surface PM2.5 at that type-3 model grid box from the satellite and modeled AOD 
ratio (Equation 2):

�� =
���1�

Sate

���1�
model

/

((

��obs,1�
2.5, � + ��KF_model,1�

2.5, �

)

∕2
)

��Raw_model,1�
2.5, �

� (1)

Figure 3.  Scheduling chart of the bias-correction technique. Type-1 grid refers to the model grid that is collocated with Environmental Protection Agency (EPA) hourly 
ground observation site and type-3 grid refers to the model grid that has no collocated EPA hourly ground observation site but has EPA ground observation site/sites 
in the radius of 125–300 km. For type-1 model grids, the Kalman filter (KF) technique will be used to correct model forecasts of hourly PM2.5 concentration for next 
day (midnight to midnight), based on hourly observation from noon yesterday to noon today. For type-3 model grids, satellite aerosol optical depth (AOD) data will be 
used to improve model forecasted PM2.5 for next day. These postprocessing bias correction will be completed by 5 p.m. local time considering the latency of EPA hourly 
observation and satellite AOD data. More details are available in Section 3.2.
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where i = 1, … ,N, representing the index of each EPA ground site with hourly surface PM2.5 measurement, and 
N is the total number of EPA hourly ground sites collocated with type-1 model grid in the radius of 125–300 km 
away from the type-3 model grid. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖

Sate is the satellite-based AOD for ground site i, and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖
model is the mod-

el-predicted AOD averaged over (satellite overpass time ±2 hr). 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴3
Sate and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴3

model are same as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖
model but for the type-3 model grid. 𝐴𝐴 𝐴𝐴𝐴𝐴obs,1𝑖𝑖

2.5, 𝑑𝑑 and ��Raw_model,1�
2.5, �  are the measured and model-predicted daily 

PM2.5 at type-1 model grid. ��KF_model,1�
2.5, �  is the KF bias-corrected daily PM2.5 at type-1 model grid. ��Raw_model,3

2.5, �  
is the model-predicted daily PM2.5 at type-3 model grid. We also apply the inverse distance weighted interpolation 
between type-3 model grid and the ith EPA hourly site collocated with type-1 model grid in Equation 2, repre-
sented by the weight 𝐴𝐴 𝐴𝐴𝑖𝑖 . Here, both 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1𝑖𝑖

Sate and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴3
Sate have been adjusted using the prognostic approach as in 

the work of Shi et al. (2013). All the data in Equations 1 and 2 are for today. ��KF_model,3
2.5, �  is the final corrected 

daily PM2.5 mass concentration for type-3 model grid, served as “extended ground truth” or EGT. This process 
will be done for each model (GEOS-Chem, WRF-Chem and CMAQ) and subsequently, the daily ��KF_model,3

2.5, �  for 
today will be created for each model. Then, we will ensemble all three of them to create an ensemble averaged 
��KF_model,3

2.5, �  that can be used to update daily PM2.5 at type-3 model grid for next day.

To improve the daily PM2.5 forecasts for next day at type-3 model grid, we will use the KF technique developed 
in Part I of this work (Zhang et al., 2020). The KF technique was implemented to correct hourly surface PM2.5 
and here we adopt it to correct daily PM2.5. In the KF technique, the true bias 𝐴𝐴 𝐴𝐴𝑑𝑑 is defined as the difference 
between model predicated PM2.5 and the true (unobserved) PM2.5 concentrations. This true bias is related to the 
model forecasted error 𝐴𝐴 𝐴𝐴𝑑𝑑 , defined as the difference between model forecasted PM2.5 and surface measurements 
of PM2.5 concentrations. The ��KF_model,3

2.5, �  will be used as EGT substituting the measured surface PM2.5, because 
it is a result of benefiting from the locations that have the ground truth (e.g., type-1 grid box). Then, the recursive 
predictor 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑 will be estimated as follows:

𝑥̂𝑥𝑑𝑑+1 = 𝑥̂𝑥𝑑𝑑 + 𝛽𝛽𝑑𝑑(𝑦𝑦𝑑𝑑 − 𝑥̂𝑥𝑑𝑑)� (3)

where the hat (^) symbol represents estimates of the truth. 𝐴𝐴 𝐴𝐴𝑑𝑑 is the Kalman gain which weights the difference 
between today's forecast error 𝐴𝐴 𝐴𝐴𝑑𝑑 and today's bias 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑 that was estimated yesterday to provide the correction that 

Figure 4.  Monthly mean aerosol optical depth (AOD) simulated by (a) GEOS-Chem, (b) WRF-Chem, and (c) CMAQ, and retrieved by Moderate Resolution Imaging 
Spectrometer (MODIS) (Terra) level 3 DB AOD at 550 nm for June 2012. Overlaid on each panel is the AOD at 33 AERONET sites (denoted as filled circles).
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was learned from previous errors. This will be added to today's estimate of the bias 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑 to give today's estimate 
of tomorrow's bias 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑+1 . Once 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑+1 is produced, we can then correct model's forecasted daily PM2.5 for next day 
(

��KF_model,3
2.5, �+1

)

 as:

��KF_model,3
2.5, �+1 = ��Raw_model,3

2.5, �+1 − �̂�+1� (4)

where ��Raw_model,3
2.5, �+1  is the model forecasted raw daily PM2.5 for next day at the type-3 model grid.

When satellite AOD of type-1 model grid or type-3 model grid for today is not available, Equations 1 and 2 can-
not be executed. We will then use the past bias statistics information to continue the KF.

4.  Results
In this section, we first compare model-simulated AOD with satellite AOD and AERONET AOD. Then, we use 
1 month of model hindcast outputs to evaluate the bias-correction technique to forecast surface PM2.5 for next 
day, as described in Section 3.

4.1.  Model-Simulated AOD and Observed AOD

Figure 4 shows the surface map of monthly mean AOD from GEOS-Chem, WRF-Chem, CMAQ, and MODIS 
on board Terra compared with AERONET AOD for June 2012. Higher AOD in the eastern U.S. and lower in the 
western U.S. are found from both AERONET and MODIS observations. GEOS-Chem and CMAQ show sim-
ilar spatial patterns and magnitude but underestimate MODIS AOD. WRF-Chem simulated AOD matches the 
MODIS AOD better than the other two models. In the eastern U.S., high anthropogenic emissions of primary par-
ticles together with enhanced secondary particles contribute to higher aerosol loading. The current GEOS-Chem 
simulation did not include secondary organic aerosols (SOAs). All three models capture the higher AOD values 
in the Ohio River Valley region which reflects the impacts of anthropogenic aerosols. In addition, AERONET 
and satellite observations also show higher AOD values in the central Great Plains and southwestern U.S., which 
could be caused by wildfires. Higher AOD in these regions are found in WRF-Chem, largely due to the use of Fire 
Locating and Modeling of Burning Emissions Inventory (FLAMBE) (Reid et al., 2009) fire emissions.

Figure 5 shows the scatter plot of comparison of ensemble satellite AOD with model-simulated AOD for each 
model. All three models underestimate satellite AOD with MB of −0.06, −0.02, and −0.07 for GEOS-Chem, 
WRF-Chem, and CMAQ, respectively. WRF-Chem simulates the highest AOD while CMAQ shows the lowest 
AOD on average. Both GEOS-Chem and CMAQ show high correlations of 0.70 and 0.71 than WRF-Chem 
(0.54). These differences in model-simulated AOD also reflect the differences in the aerosol scheme and calcula-
tion of aerosol optical properties in different models (Section 2). For example, GEOS-Chem uses a bulk aerosol 

Figure 5.  Scatter plot of equally weighted ensemble satellite aerosol optical depth (AOD) and the AOD simulated by three models at the EPA hourly sites for June 
2012: (a) GEOS-Chem, (b) WRF-Chem, and (c) CMAQ. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean 
bias (MB), the mean ± standard deviation for model AOD (x) and satellite AOD (y), the number of collocated data points (N), the density of points (the color bar), the 
best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).
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approach while both WRF-Chem and CMAQ use a modal approach to represent aerosol size distribution. Both 
GEOS-Chem and WRF-Chem use a standard Mie code to calculate aerosol optical properties while CMAQ used 
here applies a regression relationship to calculate AOD. Detailed examination of the difference of the AOD from 
each model is beyond the scope of this work.

All three models in general underestimated surface measured PM2.5 mass concentration (Figure 7), which has 
also been briefly discussed in Part I of this work (Zhang et al., 2020). Underestimation of surface PM2.5 mass 
concentration in atmospheric chemical models in summer time are common (e.g., McKeen et al., 2007; Simon 
et al., 2012) due to a variety of reasons such as inaccurate anthropogenic emission inventories, errors in boundary/
initial conditions used for regional models and simplified chemistry/physical scheme. Specifically in this work, 
for example, not including dust emissions in CMAQ or SOA in GEOS-Chem could contribute to the underes-
timation of surface PM2.5 concentration, which could subsequently cause underestimation of AOD values. All 
three models also underestimate satellite AOD in general. The vertical profiles of aerosols and the scheme used 
to calculate the aerosol optical properties could play a role as well. It is beyond the scope of this work to reveal 
the underlying cause of the model performances for both surface PM2.5 and AOD. More model sensitivity tests 
and observational data are needed to further investigate the cause in future work.

4.2.  Model-Simulated AOD-PM2.5 Ratio

Even though we are not deriving surface PM2.5 mass concentration from satellite AOD, the model-simulated 
AOD-PM2.5 relationship plays a role in the bias-correction technique as described in Section 3.2 and also reveals 
the consistency of model-simulated surface mass concentration and column-integrated aerosol properties. Fig-
ure 6 shows the simulated AOD-PM2.5 relationship from each model. Overall, the WRF-Chem model simulates 
higher AOD than both GEOS-Chem and CMAQ but shows lower surface PM2.5. In addition, both GEOS-Chem 
and WRF-Chem models show high correlations of 0.60 and 0.55 than that of CMAQ (0.35). This reflects the 
various degrees of consistence between model-simulated surface PM2.5 and column properties. Previous work 
(Hogrefe et al., 2015; Saide et al., 2020) and references therein also discussed this perspective specifically for 
CMAQ and WRF-Chem models, respectively.

4.3.  Evaluation of the Bias-Correction Technique

In this section, we focus on the evaluation of the bias-correction technique discussed in Section 3.2. First, we will 
evaluate the performance of KF techniques (KF-ori as in Part I of this work and the updated KF in current work) 
for type-1 model grids collocated with EPA hourly measurements of surface PM2.5 mass concentration. Then, we 
will perform evaluation for the ensemble AOD bias-corrected daily PM2.5 for today, over areas that are 125 km 
away from the EPA hourly measurements sites, which serve as the “extended ground truth” or EGT. Lastly, we 

Figure 6.  Scatter plot of hourly model-simulated PM2.5 and aerosol optical depth (AOD) from: (a) GEOS-Chem, (b) WRF-Chem, (c) CMAQ for June 2012. Also 
shown on the scatter plot is the correlation coefficient (R), the mean ± standard deviation for model AOD (x) and model PM2.5 (y), the number of collocated data points 
(N), the density of points (the color bar), and the best fit linear regression (the solid black line).
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will apply the KF technique using the EGT from previous step to correct model-predicted daily PM2.5 for next day 
and evaluate the results with IMPROVE data.

4.3.1.  Evaluation for KF Techniques

Figure 7 shows the evaluation of raw model forecasted daily PM2.5 mass concentration and KF-corrected mod-
el-simulated PM2.5 with ground observations. Results from two different KF implementation methods are com-
pared. The first implementation uses the hourly observed and model-simulated PM2.5 from noon yesterday to 
noon today to correct model forecasted PM2.5 from midnight today to midnight next day, which is the approach 
adopted in the current work (Section 3.2). The second implementation (KF-ori) takes use of the hourly observed 

Figure 7.  Scatter plot of daily PM2.5 concentration between model (y axis) and ground observation (x axis) at 508 Environmental Protection Agency (EPA) sites for 
June 2012. (a–c) the evaluation for each raw model; (d–f) the evaluation for Kalman filter corrected model results. Here the Kalman filter implementation is described 
in Section 3.2. The hourly observed and model-simulated PM2.5 from noon yesterday to noon today will be used to correct model forecasted PM2.5 from midnight today 
to midnight next day; (g–i) the evaluation for Kalman filter (KF-ori) corrected model results. Here the Kalman filter is implemented as in Zhang et al. (2020). The 
hourly observed and model-simulated PM2.5 from midnight yesterday to midnight today will be used to correct model forecasted PM2.5 from midnight today to midnight 
next day. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean ± standard deviation for observed PM2.5 (x) and 
model-simulated PM2.5 (y), the number of collocated data points (N), the density of points (the color bar), the best fit linear regression (the solid black line) and the 1:1 
line (the dashed black line).
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and model-simulated daily PM2.5 from midnight yesterday to midnight today to correct model forecasted PM2.5 
for the next day of 24 hr, which is the original implementation we developed (Zhang et al., 2020) without practical 
consideration of data latency. We modified the original KF implementation to consider what is more realistic for 
making the correction of model bias in the operational mode. Again, the KF technique can improve each individu-
al performance by increasing R, decreasing RMSE and MB. The two KF implementation results in similar model 
performances, suggesting the 24-hr statistics is robust regardless of the starting hour.

4.3.2.  Evaluation of Bias-Corrected PM2.5 for Present Day (Today)

As mentioned in Section 3.2, we evaluate our results in rural areas by using the data at the IMPROVE sites be-
cause they are located in the rural areas and for some sites, the closest hourly EPA observation sites are in the 
distance of 125–300 km (Figure 9). Figure 8 shows the evaluation of raw model-simulated and ensemble AOD 
bias-corrected PM2.5 for the present day (today) against IMPROVE measured daily PM2.5 mass concentration. 
The raw model outputs underestimate IMPROVE measurements with MB of −4.2, −1.8, and −1.9 μg m−3 for 
GEOS-Chem, WRF-Chem, and CMAQ, respectively. Their corresponding ensemble AOD bias-corrected PM2.5 
causes the MB to decrease to −1.0, −0.3, and −0.6 μg m−3, respectively. RMSE also decreases from 6.0 to 5.4, 5.8 
to 4.9, and 8.4 to 5.5 μg m−3 for GEOS-Chem, WRF-Chem, and CMAQ, respectively. Correlation decreases for 
GEOS-Chem, stays the same for WRF-Chem and increases slightly for CMAQ. The equally weighted ensemble 
of the three ensemble AOD bias-corrected PM2.5 shows the best performance overall. We only have one satellite 
AOD data point a day to scale daily PM2.5 as described in Section 3.2, which would be challenging to improve 
correlation. But for air quality forecasts, the predicted PM2.5 mass and its bias are the parameters that are most 
relevant for air quality managers and public health officers to decide if an air quality advisory alert should be 
issued or not.

Figure 9 shows the spatial distribution of the ratio of raw model and ensemble AOD bias-corrected daily PM2.5 
compared with IMPROVE daily PM2.5 mass concentration. Majority of the sites are located in the Great Plains 
and Rocky Mountain areas, where access to surface PM2.5 measurements is limited. Again, all three models show 
underestimation of surface PM2.5 for most of the sites with median ratio of 0.54, 0.65, and 0.63 for GEOS-Chem, 
WRF-Chem, and CMAQ, respectively. After using ensemble satellite AOD to correct model bias, most sites show 

Figure 8.  Scatter plot of daily PM2.5 concentration between model and ground observations at IMPROVE sites (shown in Figure 9) for June 2012. (a–c) The raw 
model-simulated daily PM2.5. (e–g) The corresponding ensemble AOD bias-corrected daily PM2.5 for today. (d and h) The equally weighted ensemble of raw models (a–
c) and the corresponding ensemble AOD corrected daily PM2.5 (e–g), respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square 
error (RMSE), the mean bias (MB), the number of collocated data points (N), the best fit linear regression (the solid black line) and the 1:1 line (the dashed black line).
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positive bias with median ratio increased to 0.95, 1.21, and 1.08 for three models, respectively, indicating satellite 
AOD enabled bias correction overall improves the magnitude of surface PM2.5.

At the regional scale, however, overestimation occurred in the Rocky Mountain area, especially for GEOS-Chem 
and WRF-Chem. There are several possible contributors. First, the challenging terrain in the Rocky Mountain 
area could cause more uncertainties for both satellite and model calculated AOD, compared with the Great Plains 
area (Drury et al., 2008). Second, there are also some wildfire events over the Rocky Mountain area during June 
2012. Compared with other two models, WRF-Chem simulated higher AOD and surface PM2.5 can be due to 
the FLAMBE fire emission inventory that is known to be the at the high end of the biomass burning emission 
estimates (Zhang et al., 2014). Third, large uncertainties can also be related to satellite-retrieved AOD during 
wildfire events due to the large variation of smoke optical properties (Reid et al., 2005). Therefore, the effective-
ness of the bias correction does have regional dependence because the uncertainties in CTM and satellite AOD 
retrievals have the regional dependences.

4.3.3.  Evaluation of Bias-Corrected PM2.5 for Next Day

Due to the AOD availability over both EPA and IMPROVE sites for the month of June 2012, we are only ap-
plying the KF correction for IMPROVE sites (Figure S3) that have at least 10 days of corrected PM2.5 for today 
to forecast daily PM2.5 concentration for next day. Figure 10 shows the overall performance of KF in predicting 
next day's daily surface PM2.5 concentration in rural areas for each model and model equally weighted ensemble 
as well. KF improves each individual model performance by decreasing RMSE and MB. Specifically, MB de-
creases from −3.8 to −2.2, −2.9 to −1.6, and −2.8 to −1.1 μg m−3 for GEOS-Chem, WRF-Chem, and CMAQ, 
respectively. RMSE decreases from 5.6 to 5.1 and 6.7 to 6.0 μg m−3 for GEOS-Chem and CMAQ, respectively, 
and stays the same for WRF-Chem. Similar to the performance of ensemble AOD bias-corrected daily PM2.5 con-
centration for today, the KF does not improve the correlation, which is expected, because KF is best at removing 
the systematic bias in the model. Overall, the ensemble of these three KF-corrected model forecasts for next day 
shows the best performance. Figure 11 shows the time series of raw model and KF-corrected daily surface PM2.5 
concentration for next day for the month of June. Both GEOS-Chem and CMAQ underestimate surface PM2.5 
measurements throughout the month. WRF-Chem underestimates surface observation during the middle and lat-
ter part of the month and matches the surface observation at the beginning of the month relatively well. The KF 
can adjust model forecasted bias and improve surface PM2.5 performance, especially toward the end of the month, 
when there are more wildfire events.

5.  Conclusions and Discussion
This work is the second of a two-part study which aims to improve surface PM2.5 forecasts in the continental 
U.S. through the integrated use of satellite remote sensing AOD, chemical transport model outputs, and ground 
observations. We developed a multimodel and multi-AOD ensemble bias-correction framework including Kal-
man filter (KF) technique. We use GEOS-Chem, WRF-Chem, and CMAQ for the model ensemble members 

Figure 9.  Ratio between model-simulated and measured daily PM2.5 at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites for June 2012. 
(a–c) The ratio for the raw models; (d–f) the ratio for the ensemble aerosol optical depth (AOD) bias-corrected PM2.5 for today.
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and MODIS Terra, Aqua and VIIRS DT/DB AOD as the AOD ensemble members. In the first part (Zhang 
et al., 2020), we applied an ensemble KF technique to correct model forecast biases in nonrural areas by only 
using these three model outputs and hourly ground observations from EPA's Air Quality System (AQS). We also 
applied a successive correction method (SCM) to spread the model bias information to locations within the radius 
of about 125 km away from these ground observations. In the current work, we focus on improving surface PM2.5 
forecasts in rural areas that have about 20% of the population in about 98% of the U.S. land. These rural areas 
are also the areas that do not have ground monitors of air quality and therefore, observation-based analysis of air 

Figure 10.  Scatter plot of daily PM2.5 concentration between model forecast and ground observations at Interagency Monitoring of Protected Visual Environments 
(IMPROVE) sites during June 2012. (a–c) The raw model forecasted daily PM2.5. (e–g) The corresponding KF-corrected daily PM2.5 for next day. (d and h) The equally 
weighted ensemble of raw models (a–c) and the corresponding KF-corrected model daily PM2.5 for next day (e–g), respectively. Also shown on the scatter plot is the 
root-mean-square error (RMSE), the mean bias (MB), the number of collocated data points (N), the linear regression with fixed intercept (the solid black line) and the 
1:1 line (the dashed black line).

Figure 11.  Time series of daily PM2.5 concentration averaged over six Interagency Monitoring of Protected Visual Environments (IMPROVE) sites (shown as squares 
in Figure S3 in the supplement information) for June 2012. The dashed lines show the raw model-simulated daily PM2.5 and the solid lines show the corresponding KF-
corrected daily PM2.5 for next day. The triangles show the measured daily PM2.5 from IMPROVE network.
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quality has to rely on satellite data. Hence, in this paper, we develop the technique to use satellite data to improve 
the model-predicted PM2.5 concentration to rural areas where the closest EPA air quality monitoring station is at 
least 125–300 km away.

The technique for bias correction to improve surface PM2.5 forecasts for next day in rural areas through AOD 
ensembles involves three steps. First, we averaged AOD from three different sensors (MODIS Terra, Aqua, and 
VIIRS) and two retrieval algorithms (DT and DB) to form a single best AOD dataset via an equally weighted 
ensemble approach. Our results show ensemble AOD from different sensors and algorithms combined show the 
best performance compared with individual AOD member regarding R, RMSE, and MB. This has significant 
implications for future work considering more satellite will be launched to study aerosols.

In the second step, we correct the model-simulated surface PM2.5 concentration for the present day (today) 
through the AOD spatial pattern between nonrural areas with collocated EPA ground sites and rural areas without 
any ground observations available. The results are considered as the “extended ground truth,” or EGT for today 
in rural areas. We find that ensemble AOD corrected daily PM2.5 for today over these rural areas show improved 
performances with decreasing RMSE and MB compared with raw models. Overall, the ensemble of all three 
models with ensemble AOD corrected daily PM2.5 shows the best performance. Due to the temporal availability 
of satellite AOD (once a day for most places in cloud-free conditions), our ensemble AOD corrected daily PM2.5 
did not result in increased correlation. In the last step, these satellite-based EGT are used in the KF technique (as 
developed in Part I of this work) to update model forecasted bias for next day and then correct model forecasted 
PM2.5 for next day in the rural areas. Again, the KF could improve each individual model performance with 
decreased RMSE and MB and the ensemble of three KF-corrected model forecasts for next day shows the best 
performance. Similarly, the correlation is not improved but our work here opens the door for continuing the work 
to improve surface PM2.5 forecasts in rural areas using satellite data.

While the technique developed here used the hindcast data for the purpose of research, it is designed with a goal 
of operational applications. Specifically, regarding the scheduling, we assume model predictions for next day will 
be made available at latest at noon today, and the bias-correction technique can be applied from noon to 5 p.m. 
local time (5-hr correction window) before a public advisory of air quality can be issued. Because the surface 
PM2.5 data has a latency of 1 hr and satellite AOD has a latency of 2–3 hr, it is expected that by 3 p.m. local time, 
all the data needed for the bias correction will be available, and therefore, the 5-hr correction window is sufficient 
for the multiple AOD and multiple model ensemble approach to provide the single best PM2.5 air quality forecast 
at the regional scale. Admittedly, the work here has focused on the development of the method. In the future, 
the method can be and should be tested in the operational setting, especially considering that we have only used 
1 month of data from June 2012 to develop and evaluate the bias-correction framework. Future work should test 
the bias-correction method for a longer time period, with an emphasis to analyze how the satellite AOD and CTM 
uncertainties affect the effectiveness of the method at the regional scale.

Data Availability Statement
The U.S. EPA provided the measured hourly surface PM2.5 mass concentration data which are available at: https://
aqs.epa.gov/aqsweb/documents/data_mart_welcome.html (last accessed October 3, 2019). The IMPROVE net-
work provided the measured daily surface PM2.5 mass concentration data, which can be downloaded at: http://
views.cira.colostate.edu/fed/(last accessed December 15, 2019, users will now need to register an account to 
download the data). GEOS-Chem is an open-access model which can be downloaded at: https://geos-chem.seas.
harvard.edu/. WRF-Chem is also an open-access model which can be acquired at: https://ruc.noaa.gov/wrf/wrf-
chem/. CMAQ model outputs can be obtained at https://www.epa.gov/hesc/remote-sensing-information-gateway.
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