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Abstract The response of annual runoff volume to sub‐annual climate warming is highly uncertain, and
the governing mechanisms remain poorly understood, challenging adaptive water management. A typical
exemplar is the Western United States, where climate models project substantially stronger warming in
the warm season (April to September) than in the cool season (October to March). We investigate the
asymmetrical responses of annual and seasonal streamflow changes to warm season and cool season
warming for four regionally important basins in the Western United States using an ensemble of four land
surface (hydrological) models. Our results show that (i) the general features of seasonal and annual
streamflow responses to asymmetrical warming are consistent across models, although themagnitudes vary.
The multi‐model mean shows annual runoff declining from 2.0% up to 7.5% under 3°C warm season
warming, and from 2.2% up to 4.7% under 3°C cool season warming across the four basins. (ii) The
asymmetry of the seasonal evapotranspiration sensitivity to temperature constrains the asymmetry of
annual streamflow responses to seasonal warming; and (iii) basins with characteristics such as high ratios of
warm to cool season gross incoming water, cooler summers, and colder winters have the strongest relative
annual streamflow decreases for warm season warming relative to cool season warming. The pattern in
(iii) is explained by the variation of evapotranspiration‐temperature sensitivity in response to a compound
set of processes, including the enhanced rate of water holding capacity increase with warmer temperatures,
temperature‐related snowmelt‐albedo feedback, and enhanced surface resistance with warmer
temperatures.

1. Introduction

The Western United States, one of the most rapidly growing parts of the country, is also its driest region.
Much of the water consumed in the region comes from snowmelt (Li et al., 2017), a source experiencing
significant volume and timing fluctuations as the climate of the region warms (Mote et al., 2005, 2018).
These fluctuations in the snowpack are usually accompanied by changes in the region's annual streamflow,
motivating efforts to understand the mechanisms dominating the region's streamflow volumetric response
to climate warming.

Many previous studies have examined both historical changes and future projections of the region's stream-
flow (e.g., Gergel et al., 2017; Hayhoe et al., 2004; Kim & Jain, 2010; Stewart et al., 2005). These studies have
generally found that warmer temperatures will lead to reduced winter snowfall and increased rainfall,
earlier snowmelt, and hence earlier seasonal peak runoff in the year. These phenomena are primarily a con-
sequence of cool season (October to March) warming (Hamlet et al., 2005; Knowles et al., 2006; Mote
et al., 2005). However, evaporative demands are larger in the warm season (April to September) than in
the cool season, and climate models mostly project more warming in the warm season than in the cool
season over much of the Western United States (Hayhoe et al., 2004). These facts raise questions about
how the changes in the warm season will affect the region's hydrology, especially annual streamflow volume
changes.

Das et al. (2011) investigated the annual streamflow sensitivity to cool and warm season warming using a
single model simulation (variable infiltration capacity model [VIC], Liang et al., 1994) across four regionally
important river basins in the Western United States. They showed that warm season warming generally
leads to more significant decreases in annual streamflow than cool season warming across the four
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basins, highlighting the importance of both seasons' warming effects on the sensitivity of Western United
States streamflow to climate warming. Two other recent papers (Vano et al., 2015; Vano &
Lettenmaier, 2014) investigated the sensitivity of Western United States streamflow to temperature change
on a seasonal scale and found substantial negative streamflow changes in response to warming. Like Das
et al. (2011), they performed simulations with a single model (also VIC) to study how streamflow responds
to warm and cool season warming. Furthermore, they focused more on quantifying the change than on
understanding the changes in the hydrological processes. Based on these studies, we find two main motivat-
ing questions that remain unanswered: first, are the predictions of “how” the region's streamflow will
change in a warming climate model‐dependent, and second, “why” the streamflow responses to seasonal
warming show the seasonally dependent sensitivities documented in Das et al. (2011).

To address the two questions, we first investigate the streamflow response patterns to seasonal warming over
the four river basins using VIC and three other hydrology models (described in sections 2, 3.1, and 3.2). Then
we identify the dominant factors controlling annual streamflow responses to seasonal warming using a
water balance framework (described in sections 3.3–3.5). The method to investigate mechanisms controlling
those dominant factors of streamflow response is in section 3.6. Results are in section 4, with discussion and
conclusions in sections 5 and 6, respectively.

2. Study Area

Our study domain consists of the same four regionally important Western United States river basins as in
Das et al. (2011): the Columbia Basin; the Upper Colorado Basin (hereafter Colorado); California's
Northern Sierra Nevada (N. Sierra); and California's Southern Sierra Nevada (S. Sierra). For the Columbia
Basin, we consider the naturalized flows above the Dalles, OR, obtained from the Bonneville Power
Administration (2019); for the Colorado basin, we consider the naturalized flows of the Colorado River
above Lees Ferry, AZ, obtained from The U.S. Bureau of Reclamation (USBR, 2018); for the N. Sierra, we
use the sum of flows from gauges designated SBB, FTO, and YRS; for the S. Sierra, we use the sum of flows
from gauges named MRC, SJF, SNS, and TLG. We obtained both N. Sierra and S. Sierra's unimpaired flow
data (Bay‐Delta Office, California Department of Water Resources, 2007) from the California Data
Exchange Center (2018, http://cdec.water.ca.gov/dynamicapp/QueryWY). Details of the gauges' full names
and data sources are in Table 1.

Based on the locations of stations providing naturalized flows, we delineated the four basin masks using a
data set of river channel network (Wu et al., 2012), as applied in Xiao et al. (2018). Comparisons between
model‐simulated monthly hydrographs and observations are in supporting information Text S1 and
Figure S1.

3. Data and Approach
3.1. Forcing and Models

We used the Livneh (L13) meteorological forcings (Livneh et al., 2013) to drive VIC version 4.1.2 (Liang
et al., 1994), the community Noah LSM with multi‐parameterization options (hereafter Noah‐MP) (Niu
et al., 2011; Yang et al., 2011), the Sacramento Soil Moisture Accounting model (SAC‐SMA) (Burnash
et al., 1973), and the Catchment model (Koster et al., 2000). The L13 forcing was extended through 2018
(available to be downloaded from ftp://livnehpublicstorage.colorado.edu/public/sulu) so that the data set
covers 1915 through 2018 at a daily time‐step over the entire conterminous United States (CONUS)
domain (at 1/16 lat‐long degree spatial resolution). The L13 data contain four primary time‐varying
forcing fields: daily precipitation, maximum daily temperature (Tmax), minimum daily temperature
(Tmin), and surface wind speed. The first three are interpolated from daily weather station observations,
while surface wind speed is interpolated from atmospheric reanalysis data (Kalnay et al., 1996; Livneh
et al., 2013).

We applied all four models over the four basins for the period 1916 to 2018, using the water year 1915 as
spin‐up (10 times). Similar to Das et al. (2011), we ran VIC in the water balance mode, which means that
surface temperature is set to the surface air temperature for purposes of computing surface energy fluxes.
We used VIC parameters from L13 to ensure consistency between model parameters and forcings
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(calibrated byMaurer et al., 2002, and subsequently by Livneh et al., 2013), and therefore we did not perform
additional parameter estimation/calibration for VIC. We disaggregated the daily forcings (to hourly and
3‐hourly) using the Mountain Microclimate Simulation Model (MTCLIM) algorithms (Bohn et al., 2013)
incorporated in VIC to estimate downward shortwave and longwave radiation, relative humidity, specific
humidity, and surface atmospheric pressure. We also used the hourly disaggregated forcings as inputs to
the Noah‐MP model, and 3‐hourly disaggregated forcings as inputs to the Catchment and SAC‐SMA
models. For the partitioning of precipitation between rain and snow, we used the Jordan 91 option in
Noah‐MP and default settings in the other three models. We computed potential evapotranspiration (PET,
a required input to SAC‐SMA) from 3‐hourly VIC disaggregated forcing variables using the
Penman‐Monteith algorithm (to produce reference ET, or ET0, which was used as a surrogate for PET) based
on the UMD vegetation classification scheme (2020, description and data: https://ldas.gsfc.nasa.gov/nldas/
vegetation‐parameters). We then calibrated the PET adjustment parameter (PEADJ) in SAC‐SMA, to make
the output long‐term climatological hydrographs approach the observed ones (Figure S1). Additionally,
because the models cannot represent the horizontal movement of glaciers, in VIC, we reset SWE to zero
on 1 September at every grid cell to avoid the continuous accumulation of SWE in some cold grid cells
(mostly in the North Cascades), which are usually covered by glaciers in the real world. We only reset
SWE for VIC because VIC tends to causemore pixels to have abnormally high SWE accumulation than other
models, while other models' over‐year accumulated SWE only happens at very few pixels and has a
negligible effect on our basin‐scale discussion.

3.2. Temperature Warming Scenarios

We isolated the effect of asymmetrical warming on runoff by conducting precipitation‐fixed warming experi-
ments as in Das et al. (2011). Das et al. (2011) found that by the end of this century, the Coupled Model
Intercomparison Project Phase 3 (CMIP3, Maurer et al., 2007)‐projected annual average warming across
the four basins is about 3°C and hence applied 3°C warming in their experiments. We rechecked the
projected warming magnitude with Coupled Model Intercomparison Project Phase 5 (CMIP5,
Reclamation, 2014) (Figure S2), model selection (see Text S2 and Table S1) ensemble average (averaged over
10 best global models for the regions as suggested by Rupp et al., 2013, and California Department of Water
Resources, Climate Change Technical Advisory Group, 2015), and found that the mid‐century projected
warming (2035–2065 as compared with 1976–2005 as defined in Pierce et al., 2018, which is a presumably
more important time period for water management than end of century) across the four basins for RCPs
4.5 and 8.5 are mostly under or around 3°C. Therefore, we adopted the same seasonal warming scenario
as in Das et al. (2011), adding 3°C to the entire year, the warm season, and the cool season separately.
Since our focus is on the runoff‐temperature sensitivity rather than forecasting the actual runoff response,
we opted for constant warming magnitudes.

Addition of 3°C warming (or any other constant) to both the daily maximum and minimum temperatures
assures that the downward solar radiation produced by the MTCLIM model, which is based on the daily

Table 1
Stream Gauge (or Location) Names and Data Sources

Basin Gauge location(s) or tributaries Data source

Columbia The Dalles Bonneville Power Administration (BPA): https://www.bpa.gov/p/
Power‐Products/Historical‐Streamflow‐
Data/Pages/No‐Regulation‐No‐Irrigation‐Data.aspx)

Colorado Lees Ferry U.S. Bureau of Reclamation (USBR): https://www.usbr.gov/
lc/region/g4000/NaturalFlow/current.html

N. Sierra The sum of the Sacramento River above Bend Bridge (SBB),
The Feather River at Oroville (FTO), and The Yuba River
near Smartville (YRS)

California Data Exchange Center (CDEC): http://cdec.
water.ca.gov/dynamicapp/QueryWY

S. Sierra The sum of the Stanislaus River at Goodwin (SNS),
The Merced River near Merced Falls (MRC), The Tuolumne
River at LA Grange Dam (TLG), and the San Joaquin River
Below Friant Dam (SJF)
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temperature range, is unchanged. Downward and emitted longwave radiation do change (slightly) as they
are related to daily average temperatures (see Bohn et al., 2013, for details).

3.3. Measure of Annual Streamflow Response Asymmetry to Seasonal Warming

Here we use the symbols (see also Table S2) ET for evapotranspiration, Q for streamflow, P for precipitation,
T for temperature, SM for soil moisture, and SWE for snow water equivalent. For terms of the form Xa,w3d,
the first subscript indicates the period (a: annual, w: warm season, c: cool season) and the second subscript is
the warming scenario (w3d: warm season warming 3°C, c3d: cool season warming 3°C or b: baseline). ∂X,
dX, andΔX all represent the value of variable X under warming scenarios minus the baseline value. Xrepre-
sents the long‐term climatology of variable X averaged across the historical period (1916–2018).

According to the water balance equation (Equation 1),

P − ET − Q ¼ ΔSMþ ΔSWE (1)

when P is fixed (as in our experiments), and when the change of long‐term SM and SWE is negligible over
the multi‐decade period of analysis, the change of annual ET equals the change of annual Q (Equation 2).

ΔET ¼ −ΔQ (2)

Therefore, the differential annual Q response to seasonal warming can be explained by the reasons that
cause differential annual ET response to seasonal warming. It is easier to understand the annual Q
response from the perspective of ET rather than from the complicated precipitation‐snowmelt‐infiltra-
tion‐saturation process of Q generation, since ET is a more “instant” and “local” process with no
time‐lag and no spatial movement, and has a cleaner seasonal partition than Q. Here, we quantify the rela-
tive strength of annual ET response to warm versus cool season warming using a term PrefET. PrefET
(Equation 3) is defined as annual ET change under warm season warming ( ETa; w3d − ETa; b ), divided

by the annual ET change under cool season warming (ETa; c3d − ETa; b ).

PrefET ¼ ETa; w3d − ETa; b

ETa; c3d − ETa; b
(3)

PrefET > 1 indicates that a basin has a larger annual ET change under warm season warming than under
cool season warming, and 0 < PrefET < 1 indicates the opposite. In short, when PrefET is positive, the
larger PrefET is, the stronger “preference” for a basin to have stronger annual ET increase (streamflow
decrease) under warm versus cool season warming. PrefET can also be negative, which means that annual
ET decreases under cool season warming but increases under warm season warming, indicating a larger
annual ET increase (streamflow decrease) under warm season warming than under cool season warming.

Similarly, we can define a basin's “preferred” seasonal tendency for annual streamflow change under warm
versus cool season warming, PrefQ (Equation 4).

PrefQ ¼ Qa; w3d − Qa; b

Qa; c3d − Qa; b
(4)

PrefET should (approximately) equal PrefQ since we expect the sum of annual ET and annual Q to be
constant (annual precipitation) under different warming scenarios, and this is confirmed in section 4.2.

3.4. Estimation of Pref Rank Across Basins

We use the ratio of ET change in the warmed season under warm versus cool season warming to estimate the
relative rank of PrefET across basins.

rank PrefETð Þ ¼ rank
ETw; w3d − ETw; b

ETc; c3d − ETc; b

� �
(5)

One assumption embedded in Equation 5 is that ET changes within the warmed season dominate the
annual ET change. We later confirm (in section 4.4) that the ET changes in the warmed season are

10.1029/2020WR027158Water Resources Research

BAN ET AL. 4 of 19



mostly caused by increasing evaporative demand associated with warming temperature, rather than water
availability changes. Therefore, the ET change ratio in Equation 5 also represents the ratio of ET‐T
sensitivity.

3.5. Identification of the ET‐T Sensitivity Variation

On a multi‐model mean basis, we identified the basin characteristics that best constrain the variation of
ET‐T sensitivity by (i) calculating the Pearson correlations (p = 5%) between normalized yearly data of five
selected basin characteristics and ET‐T sensitivity within each of the four basins, (ii) comparing the rank of
the basin characteristics and corresponding seasonal ET‐T sensitivities across basins, and (iii) visualizing the
pattern on a pixel‐by‐pixel basis.

3.6. Attribution of ET‐T Sensitivity Variation

We quantified the attribution of ET‐T sensitivity based on the original Penman‐Monteithmodel (Equation 6)
(Allen et al., 1998; Monteith, 1965).

λET ¼ δR* þ ρaCp es − eað Þ=ra
δþ γ 1þ rs=rað Þ (6)

In Equation 6, λ is the latent heat of vaporization (J/kg), ET is the evapotranspiration flux (kg/(m2/s)), δ is
the slope of the saturation vapor pressure–temperature relationship (Pa/K), R* is net radiation minus the
soil heat flux (W/m2), ρa is the air density (kg/m3), Cp is the specific heat of air (J/(kg/K)), es − ea is the
vapor pressure deficit of the air (Pa), γ is the psychrometric constant (Pa/K), and rs and ra are the bulk
surface resistance and aerodynamic resistance (s/m).

From Equation 6, the changes of ET (by unit temperature or derivative temperature change, the ET‐T
sensitivity) can be approximated (to the first order) by the sum of ET changes attributed to five variables:
R*, es − ea, ra, rs, and δ in Equations 7–12 (Yang et al., 2019, with some errors fixed).

ΔET ≈
∂ET
∂R* ΔR

* þ ∂ET
∂ es − eað ÞΔ es − eað Þ þ ∂ET

∂rs
Δrs þ ∂ET

∂ra
Δra þ ∂ET

∂δ
Δδ (7)

Where the five derivatives in the right‐hand side of Equation 7 are respectively:

∂ET
∂R* ¼ δ

λ δþ γ 1þ rs
ra

� �� � (8)

∂ET
∂ es − eað Þ ¼

ρaCp

λra δþ γ 1þ rs
ra

� �� � (9)

∂ET
∂rs

¼
−γ δR* þ ρaCp es − eað Þ

ra

� �

λra δþ γ 1þ rs
ra

� �h i2 (10)

∂ET
∂ra

¼
γrs δR* þ ρaCp es − eað Þ

ra

� �

λra2 δþ γ 1þ rs
ra

� �h i2 −
ρaCp es − eað Þ

λra2 δþ γ 1þ rs
ra

� �� � (11)

∂ET
∂δ

¼ R*

λ δþ γ 1þ rs
ra

� �� � −
δR* þ ρaCp es − eað Þ

ra

λ δþ γ 1þ rs
ra

� �h i2 (12)

The variables δ, λ, γ, rs, ra, R
*, es − ea, ρa are approximated as the averages between baseline and warming

scenarios. A relatively small warming step is preferred to provide good approximations to the partial
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derivatives. Therefore, we focus on 0.1°C warming when applying this method in the results section (how-
ever, we show results for 1°C and 3°C warming results in the supporting information as well). In our deri-
vations, we used a 0.625 degree lat‐long grid mesh to subsample the 1/16 degree lat‐long study domain
into 268 grid cells across the four basins. The subsampled mesh consisted of one 1/16‐degree grid cell
every 10 grid cell in each dimension (hence reducing the computational requirements for estimation of
the partial derivatives in Equations 8–12 by a factor of 100). This subsampling is intended to capture
the first‐order variations of the hydroclimate factors reflected in Equations 8–12 across our study area.
The rs value is inverted from the Penman‐Monteith equation along with other explicit model output vari-
ables. We used the VIC model in this analysis because (i) the VIC model should be representative of the
other models in part because it generates the forcings (via the Bohn et al., 2013, algorithms) for the other
models, and (ii) the VIC model has the variables required by Equations 8–12 above explicitly available as
outputs.

4. Results
4.1. Multi‐Model Streamflow Response to Seasonal Warming

Multi‐model simulations of streamflow responses to seasonal warming using the four models are shown in
Figure 1. In response to year‐around warming, three out of four models (Catchment being the exception)
show a reduction in annual streamflow in all four basins (Figure 1a), with reductions ranging from about
3% to about 19%. For the Catchment model, the annual runoff response to year‐around warming is quite
small, ranging from about a 3% reduction in the Colorado basin to about a 3% increase in the N. Sierra.
Multi‐model mean results show annual runoff declines of 7.5%, 5.6%, 2.0%, and 2.2% under 3°C warm season
warming and 4.7%, 2.2%, 2.5%, and 3.2% under 3°C cool season warming, across the Colorado, Columbia,
N. Sierra, and S. Sierra, respectively (Figures 1b and 1c, gray bars). The annual flow response to
year‐around warming is the net result of usually more substantial reductions in warm season streamflow
and weaker increases in cool season streamflow.

Interestingly, warm season‐only warming produces reductions in streamflow in the warm season and, to
some extent, in the cool season for all four models and four basins. In contrast, cool season‐only warming
produces increased streamflow in the cool season and diminished streamflow in the warm season.

Figure 1 shows that for the Columbia Basin and Colorado basin, the annual streamflow decreases are mostly
associated with warming in the warm season, but for the California basins, the decreases are more associated
with cool season warming in VIC and SAC‐SMA. Noah‐MP shows slightly higher decreases under warm sea-
son warming than under cool season warming. The patterns in N. Sierra and S. Sierra from VIC are different
from those in Das et al. (2011), which shows comparable decreases of streamflow under warm versus cool
season warming. This difference arises frommultiple sources: we used a higher resolution forcing and para-
meter (1/16 vs. 1/8 degrees lat‐long), a newer version of VIC, and L13 forcings instead of Hamlet and
Lettenmaier (hereafter H&L) forcing (Hamlet & Lettenmaier, 2005) for better consistency between forcing
and parameters. We confirmed these sources of variation by setting up another experiment with estimated
model version and parameters (the details of Das et al., 2011, model setup have been lost to time) with the
same H&L 1/8 degree forcing in the same time range as Das et al. (2011). We then changed the 1/8 degree
forcing to 1/16 degree to repeat the experiment. The 1/8 degree results in the N. Sierra and the S. Sierra show
muchmore similar runoff response patterns as compared with Das et al. (2011), while the 1/16 degree results
show a stronger response to cool season warming (Figure S3), suggesting a substantial resolution impact on
the results. Nevertheless, we choose to present our results with the newer VIC version and higher spatial
resolutions here for consistency with other models and potentially better representations of reality.

SAC‐SMA performs differently than other models in the Colorado and Columbia basins, with a somewhat
smaller annual streamflow decrease under warm season warming than under cool season warming. This
different behavior is because SAC‐SMA has a much smaller warm season ET increase compared with
Noah‐MP and VIC under warm season warming (Figures 2a, 2b, and 2d). As we will discuss later, warm sea-
son ET change dominates annual ET change under warm season warming. As a consequence, this smaller
warm season ET yields a smaller annual ET increase, and thus a much smaller annual streamflow reduction
under warm season warming than under cool season warming. We confirmed that the insensitivity of warm
season ET to warm season warming in SAC‐SMA is due to the constraining effect of the small increase of
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PET (a forcing for SAC‐SMA) under warm season warming. Unlike the other models, PET is not computed
internally by the model and thus may not be well coupled with the variation of hydrological variables within
SAC‐SMA.

Figure 1 also shows that Catchment differs from the other models in its positive annual streamflow
responses to cool season warming, which are negative for all the other models. This different behavior of
Catchment arises from the model's abnormally quick snowmelt under cool season warming, especially in
forested areas. We confirmed this argument by setting the vegetation parameter for forest pixels to short

Figure 1. Multi‐model streamflow changes in the annual, warm season (April to September) and cool season (October to March) averages, in response to
(a) annual warming, (b) warm season warming, and (c) cool season warming scenarios. All values are percent changes relative to the average annual flow for the
historical baseline run (1916–2018 water year), so the annual response equals the sum of warm and cool season responses. The gray bars show the multi‐model
mean responses, and the colored bars are each model's results.

Figure 2. Multi‐model 1916–2018 warm season average ET change under warm season warming, compared to the baseline run, using the Upper Colorado River
basin as an example.
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canopy, and the resulting annual streamflow responses under cool season warming change from positive to
negative (Figure S4c), similar to the other models. This difference between higher and shorter canopies indi-
cates an internal energy partitioning deficiency, including the lack of radiation attenuation and abnormally
high ratio of sensible heat absorption during snowmelt, especially for tall canopies. We also confirmed the
reason for the small warm season ET increase in Catchment (Figure 2c): under warm season warming, snow
in the spring transitionmonths (e.g., April) melts faster than in the baseline, leaving less soil moisture for the
following warmmonths. This lack of soil moisture increases the fraction of not‐saturated areas (less efficient
in evapotranspiration). Also, it decreases the fraction of saturated areas (highly efficient in evapotranspira-
tion) (Koster et al., 2000). These changes in area fraction largely offset the increase of evaporative demand
within each of the area types under a warmer temperature and accumulate to a small warm season ET
increase.

In the S. Sierra results, Catchment and Noah‐MP show approximately neutral runoff responses under seaso-
nal warming. In contrast, the SAC‐SMA and VIC results show a significantly stronger annual runoff
response under cool season warming. They are opposite to Das et al. (2011), in which S. Sierra's annual
streamflow experienced similar decreases under both warm (3.6%) and cool (3.1%) season warming. This
difference is not surprising given the large variation of the magnitude of asymmetry across models. As we
cannot believe in any model more than the other ones, even the one used in Das et al. (2011), we focus on
the multi‐model mean (larger runoff response to cool season warming in the S. Sierra). In the other three
basins, most of the models and multi‐model mean show similar streamflow response patterns to Das
et al. (2011), in which N. Sierra had slightly stronger decreases under cool season warming, and the
Colorado and Columbia basins had larger annual streamflow decreases under warm season than under cool
season warming. This spatially and temporally heterogeneous pattern across basins motivates questions as
to the mechanisms that are responsible for the differences.

4.2. Comparison Between PrefET and PrefQ

Figure 3 confirms that PrefET and PrefQ are nearly the same across basins with small differences between the
two. The small differences are attributable to multiple causes that lead to the difference between Pa and
ETa + Qa in different warming scenarios: closure error of all four models within error limits; and SM and
SWE differences between the beginning year and ending year. Nonetheless, such discrepancies between
PrefET and PrefQ are acceptable in the following discussions since they do not affect the relative order of
the basins' response to seasonal warming (Figure 3). Therefore, in the interest of brevity, hereafter, we refer
to PrefET, and everything is the same for PrefQ.

Figure 3a shows that PrefET is always positive except for in Catchment. For the other three models,
Columbia and Colorado are always the basins with first and second largest PrefET, while the relative orders
between the two basins with lower PrefET (N. Sierra and S. Sierra) differ, which is probably within the uncer-
tainty of model behaviors. Catchment's negative Pref values occur because its annual Q increases under cool
season warming (see section 4.1). For example, for the Colorado basin, Catchment has PrefQ of around −6,
meaning warm season warming causes annual Q to have six times larger response (decreasing) in the oppo-
site direction to the response to cool season warming (increasing). This means that the annual Q decrease or
ET loss in Catchment is only caused by warm season warming.

Across the models with positive PrefET, the relative order of the basins' PrefET values is similar, while the
magnitudes differ (Figure 3a). Although Catchment shows abnormally high runoff increases under cool sea-
son warming relative to the other three models, it is still a plausible outcome of cool season warming when
more precipitation is partitioned into rainfall and less energy is available for evapotranspiration in winter,
leading to higher runoff than in the baseline. To treat each model with equal weight and focus on the hydro-
logical characteristics of the basins rather than model particulars, in the following sections, we focus on
multi‐model mean results across all four models.

4.3. Seasonal Factors Dominating the Annual ET Responses Under Seasonal Warming

Above, we have discussed the features of annual ET responses to seasonal warming. Here, we discuss the
factors that contribute most to those features. We plot the seasonal and annual ET response to seasonal
warming in Figure 4, to see whether one season dominates the annual ET change under the two seasonal
warming scenarios.
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Figure 4 indicates the season contributing most to annual ET change for cool season and warm season
warming. Our interpretation is as follows:

1. Under warm season warming, most of the ET increase occurs in the warm season, while the cool season
ET increase is negligible (Figure 4a), which is also confirmed by monthly ET changes under warm season
warming (Figures S5–S8, red lines). The negligible cool season ET (ETc) change under warm season
warming does not conflict with the simultaneous reduction in cool season streamflow (Figure 1b),
because a greater portion of winter precipitation is used to satisfy a greater SM deficit at the end of the
warm season, which significantly reduces runoff but not ET (Figures S5–S8, red lines). Therefore, the
warm season ET change (ΔETw) dominates the annual ET change.

Figure 3. (a) PrefET and (b) PrefQ across four basins estimated from outputs from the four models.

Figure 4. Multi‐model ET changes in the annual, warm season (April to September) and cool season (October to March) averaged across 1916–2018 water year, in
response to (a) warm season warming and (b) cool season warming. The layout is the same as in Figure 1, but for ET.
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2. Under cool season warming, snowfall decreases as rainfall increases. Snowpack accumulation decreases
while both runoff and snowmelt are accelerated. As a result, when the warm season comes, there is less
accumulated snow than if there were no cool season warming. In this case, the annual ET is the result of
two often opposing changes: ETc change (usually increases) in warmer winters (Figure 4b, lowest bars),
and ETw decreases due to the increased evaporative resistance (a consequence of drier soils with less
snowmelt supply in the summer) (Figure 4b, middle bars). Nevertheless, the increase in ETc is usually
much more substantial compared with the ETw decrease (Figure 4b). Therefore, the cool season ET
change (ΔETc) dominates the annual ET change.

Considering both (a) and (b), we expect to see that the annual ET response to warm versus cool season warm-
ing is dominated by the ET changes within the warmed season. Therefore, the relative orders of PrefET and
PrefQ across basins should mostly follow the order of the ratio of ETw change under warm season warming
to ETc change under cool season warming (Equation 5 in section 3.4). To check this, we plotted the PrefET,
PrefQ, and the ET change ratios across basins and models, as well as the multi‐model mean in Figure 5.

The bar plots in Figure 5 confirm that the relative orders of PrefET and PrefQ are highly consistent with the

ET change ratio (
ΔETw

ΔETc
) on a multi‐model mean basis, although the magnitudes differ (Figure 5, fifth col-

umn). We also further confirmed the consistency between the spatial pattern of PrefET, PrefQ, and
ΔETw

ΔETc

by plotting long‐term climatological maps across four basins and four models (Figure S13).

4.4. Dominant Factors Controlling ET‐Temperature Sensitivity in Warm and Cool Season

We confirmed in section 4.3 that
ΔETw

ΔETc
dominates the Pref values. Now we attempt to determine whether

changing water supply or evaporative demand is the main factor controlling
ΔETw

ΔETc
. Under only warm sea-

son warming with cool season temperature remaining unchanged, the moisture provided by the cool season

Figure 5. Bar plots of (a) PrefET, (b) PrefQ, and (c) ET change ratio (
ΔETw

ΔETc
, also named as

ETw; w3d − ETw; b
ETc; c3d − ETc; b

in Equation 5) across four basins for four models and
the multi‐model mean.
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to the warm season (i.e., SM and SWE on 1 April) is nearly unchanged (Figures S9–S12, subplot a & b).
Under only cool season warming with warm season temperature remaining unchanged, the moisture pro-
vided by the warm season to the cool season (i.e., mainly the SM on 1 October) is also nearly unchanged
(Figures S9–S12, subplot e). Together with the fixed Pw and Pc, the ΔETw and ΔETc are mainly caused by
the increasing evaporative demand associated with warmer temperatures in the warmed season, rather than
water availability changes.

Given the two considerations discussed above, we investigate the pattern of ET‐temperature (ET‐T) sen-
sitivity in this section, with a focus on the key factors that cause ET‐T sensitivities to vary across basins.
We start from four forcing variables that might strongly affect ET: vapor pressure deficit (es − ea), air tem-
perature (Tair), net radiation (Rnet), and wind speed (u). Because snowmelt is also a dominant source of
water for evapotranspiration in the warm season, we add a fifth term: gross incoming water (GIW). GIW
for the cool season (GIWc) is defined as the sum of soil moisture (SM) and snow water storage (SWE) at
the beginning of the cool season (defined as 1 October) plus the cool season precipitation. GIW for the
warm season (GIWw) is defined as the sum of soil moisture (SM) and snow water storage (SWE) at the
beginning of the warm season (defined as 1 April) plus the warm season precipitation. In Figure 6, we
show the relationship between multi‐model mean ET‐T sensitivity and each of the five variables on a
basin‐averaged, annual basis. Each dot denotes the outputs of a single year out of 1916 to 2018. The
red dots in Figure 6 represent the warm season ET‐T sensitivity together with each of the five variables
under warm season warming, and the blue dots are for cool season warming. We evaluate correlations
based on normalized values of the variables using the Pearson correlation method, and linear regressions
are fit to the points. The correlation and the p‐value of the correlations are in the legends (Figures 6a–6e),
where p = 5% is the significance level.

For es − ea (Figure 6a), the correlation values in the warm season are all negative and significant. The cor-
relation values in the cool season are all negative, and only two of them are significant. The warm season has
larger correlations, and the slopes of dET/dT versus es − ea linear regression lines are generally higher as
compared with that of the cool season. These patterns indicate that decreasing es − ea is associated with
increasing ET‐T sensitivity in the warm season, while the cool season es− ea does not have a strong relation-
ship with the ET‐T sensitivity.

For Tair (Figure 6b), the correlation values in the warm season are all negative and significant. The correla-
tion values in the cool season are mostly significant, and the significant ones are all positive. The slopes of
dET/dT versus Tair linear regression lines are higher for the warm season than for the cool season. These pat-
terns indicate that strong ET‐T sensitivities are associated with decreases in the warm season Tair and
increases in the cool season Tair.

For Rnet (Figure 6c), the correlations in the warm season are all negative and significant, which may well be
reflecting the relationship between the decreasing ET‐T sensitivity and stronger warm season Tair (usually
with higher Rnet). In the cool season, the significant correlations (for dET/dT vs. Rnet) shift from negative
(Colorado) to positive (Columbia and N. Sierra), not consistent across basins, suggesting that the other vari-
ables' yearly change may influence the relationship between Rnet and ET‐T sensitivity.

For GIW (Figure 6d), correlation values in both seasons are positive. In the warm season, all basins' correla-
tions are significant; in the cool season, the correlation in the Colorado and Columbia basins are significant.
Therefore, despite GIW insubstantially differs between warmed season and baseline, thus is not the main
cause of ET change, it still regulates ET‐T sensitivity. For wind speed (Figure 6e), few of the correlations
are significant. Therefore, we ignore the effect of wind speed on ET‐T sensitivity in our subsequent
discussion.

Considering all the above, we summarize as follows: ET‐T sensitivity generally increases with GIW, and this
tendency is stronger when Tair is high (slopes are higher for the warm season than for the cool season;
Figure 6d). When Tair is low (in the cool season), ET‐T sensitivities increase with Tair. When Tair is high
(in the warm season), ET‐T sensitivity decreases with Tair, es − ea, and Rnet. Since es − ea and Tair are highly
correlated (Figure S14), and Tair usually increases with Rnet in the warm season, the relationship can be sim-
plified to be that ET‐T sensitivity decreases with Tair in the warm season.Wind speed has no substantial rela-
tionship with ET‐T sensitivity in either season. These patterns identified from yearly data within each basin
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Figure 6. Scatterplots of the relationship between ET‐T sensitivity and (a) es − ea, (b) Tair, (c) Rnet, (d) GIW, and (e) wind speed. dET/dT, GIW, and Rnet are from
the multi‐model mean. The other variables are from forcings shared by the four models.
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are confirmed across different basins (Figure S15) and are also supported by pixel‐by‐pixel scatterplots across
all four basins (Figure S16).

4.5. Understanding the Relationship Between Tair and ET‐T Sensitivity

In the previous section, we confirmed that Tair and water availability (GIW) are dominating ET‐T sensitivity.
It is easy to understand that in general, when energy does not limit evapotranspiration, higher water avail-
ability favors higher seasonal ET‐T sensitivity. What remains to understand is, what causes the shift from
positive dET/dT versus T relationships to negative when Tair increases from cool to warm? With
Equations 7–12, we illustrate the contribution of the five variable's associated ET change to the total ET
change at different temperatures across the cool and the warm season (Figure 7a) and contribution cumu-
lated across‐temperature at monthly (Figure 7c), seasonal and annual scale (Figure 7b) based on a set of sub-
sampled pixels (0.625 lat‐long deg resolution grid mesh over 1/16 lat‐long deg) using the VIC model.

Figure 7a shows that ET change caused by es− ea is the largest positive contributor to the ΔET pattern across
different temperatures, followed by R* and δ, and ra is the least influential. Unlike the other four factors, the

Figure 7. Attribution of R*, es − ea, ra, rs, and δ to warming‐induced ET change. (a) LOWESS‐smoothed contribution of the five factors to ET change at different
temperatures under 0.1°C seasonal warming (cool season and warm season data merged). (b) Seasonal and annual contributions of the factors to ET change
(relative to baseline annual ET) under 0.1°C annual warming. (c) Monthly contributions of the factors to ET change (relative to baseline annual ET) under 0.1°C
annual warming. The smooth span parameter in (a) is 0.5, and the shadows in (a) indicate the confidence interval (level = 0.95).
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effect of rs is mostly negative and has a comparable canceling effect on the contribution from es − ea.
Nonetheless, all five factors support the observed positive‐to‐negative shift of the dET/dT versus Tair
relationship.

The variations of the five contributors with Tair arise from different reasons. The variation of
∂ET

∂ es − eað ÞΔ
es − eað Þ with Tair is an effect of both the enhanced rate of increasing atmospheric water vapor holding
capacity (thus larger Δ(es − ea) and Δδ, Figures S17e and S17n) and the larger rs driven by elevated es − ea

(thus smaller
∂ET

∂ es − eað Þ, Equation 9, Figure S17d) under a warmer temperature. The variation of
∂ET
∂R* ΔR*

with Tair is due to the higher rs and smaller ra at a higher temperature (thus decreasing
∂ET
∂R* , Equation 8,

Figure S17a), together with the snowmelt‐albedo feedback (Milly & Dunne, 2020) that max out ΔR* when

snowpack shrinks most rapidly (Figure S17b). The variation of
∂ET
∂δ

Δδ with Tair is mainly due to the com-

peting effect of increasing R* (and rs/ra) that could increase (or decrease) the first right‐hand term (dominant

term) of Equation 12 as temperature increases. The variation of
∂ET
∂ra

Δra with Tair is an effect of both stron-

ger ET to ra sensitivity (Equation 11, Figure S17j) and weaker ra to temperature sensitivity at warmer tem-
peratures (Figure S17k). The opposite contribution from rs and es − ea to ΔET is closely related to the rs
increase in response to the elevated (es − ea) as temperature increases.

The rank of the five factors' contribution in Figure 7a mostly persists in Figure 7b at annual scale (es − ea:
0.423%, R*: 0.086%, δ: 0.082%, rs: −0.257%, and ra: 0.014%) and seasonal scale. In the warm season, R* shows
less contribution (0.046%) than δ (0.099%) to the warm season ET change, which follows the lower curve of
R* than δ when Tair is above around 7°C in Figure 7a. In the cool season, both R* (0.040%) and ra (0.040%)
play a more significant role than δ (−0.017%) in their contribution to cool season ET change (Figure 7b).

The monthly scale contribution in Figure 7c shows a larger R* contribution from March to April, which is
supported by the larger changes of Rnet during snowmelt season due to the albedo contrast between snow
cover and snow‐free surfaces under warming (Milly & Dunne, 2020). es − ea and δ show larger contributions
in the warm season, especially the early summer, which is supported by their variation patterns in Figure 7a.
rs continue to cancel out effects of es − ea.

Combining Figures 7a–7c, the increasing trend of dET/dT versus T relationship is primarily driven by the
enhanced rate of water holding capacity (thus the larger Δ(es − ea) and Δδ), and the snowmelt‐albedo feed-
back (thus the larger ΔR*). The decreasing trend of dET/dT versus T relationship is primarily driven by the
decreasing snowmelt‐albedo feedback (thus the smaller ΔR*), larger rs, and smaller ra over warmer (less

stable) surfaces (thus the smaller
∂ET

∂ es − eað Þ,
∂ET
∂R* , and

∂ET
∂δ

). We repeated the analysis with 1°C and 3°C

warming, and the patterns are similar to 0.1°C warming (Figures S18a–S18c and S19a–S19c), indicating that
our findings are robust under different warming magnitudes at least within 3°C.

Above, we explained the variation patterns of dET/dT with temperature. This variation explains the differ-
ences in ΔETw/ΔETc, thus differences in Pref values across basins with different temperatures. Because
ET‐T sensitivity increases with temperature in cool environments, ΔETc is higher in basins with relatively
warm cool seasons. Similarly, the ET‐T sensitivity decreases with temperature in warm environments, so
ΔETw is lower in basins with relatively warm warm seasons. In other words, warmer basins have smaller
ΔETw and largerΔETc, thus smallerΔETw/ΔETc, and thus have smaller PrefET and PrefQ values than other
basins. Similarly, the positive relationship between GIW and dET/dT indicates that basins with a larger
warm versus cool season GIW ratio will have larger ΔETw/ΔETc and larger Pref values, other factors being
equal.

5. Discussion

We recognize that real‐world warming is not just adding a constant and usually involves changes in mean,
variance, and even distribution. However, this uncertainty of warming pattern emphasizes the importance
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of sensitivity analysis since it captures the unchanged out of change. One challenge water managers face is
that every 5 years or so, a new set of IPCC predictions comes out. Inevitably they are not entirely consistent.
One typical example is the Das et al. (2011) warm/cool season warming projections for CMIP3 as contrasted
with the ones we show for CMIP5 (Figure S2). The multi‐model work we performed here generated sensitiv-
ity estimates that are neither dependent on a specific set of warming predictions nor a specific model,
provided a detailed explanation of the basins' seasonally dependent sensitivities, and unrevealed the key
sub‐annual processes that govern annual runoff reduction. Our work is beneficial to adaptive water manage-
ment under an asymmetrical warming future.

We discovered that the variation of ET‐T sensitivity is mainly a function of air temperature. The basins with
warmer Tair generally have higher (lower) ET‐T sensitivity in the cool (warm) season, thus smaller Pref
values than the other basins. However, the ΔR* is less directly related to Tair than the other four variables
(es − ea, rs, ra, and δ). The snowmelt‐radiation effect used to explain ΔR* variation with Tair has only been
documented in the Colorado basin in Milly and Dunne (2020). Here we added an investigation of the pro-
cesses connecting ΔR* and Tair in the snowmelt‐albedo feedback across the four basins using the VIC model.
We found that the ΔR* change is mainly due to upward shortwave change that mostly occurs from late fall
through spring (Figures S20c and S20d), which is consistent with the decrease of effective albedo due to the
transition from snow cover to snow‐free conditions in a warmer climate. We further derived the relation-
ships among the factors affecting the change of albedo and upward shortwave between the baseline and
warming scenarios:

Δαttl ¼ Δf s αs − αnon − sð Þ þ f ′sΔαs þ 1 − f ′s
� 	

Δαnon − s (13)

ΔSWup ¼ SWdown*Δαttl (14)

where Δ is the baseline value minus the warmer climate value; αttl is the basin‐average albedo, consider-
ing both snow‐covered and snow‐free regions; αs is snow albedo, αnon − s is non‐snow region albedo; fs is

baseline snow cover fraction (as a ratio of basin area); and f ′s is snow cover fraction under warmed scenar-
ios (derivation of Equation 13 is shown in Text S3). Based on Equations 13 and 14, our interpretations are
as follows.

In the cool season, the variation of snow cover fraction (Δfs) depends on several main factors. First, basins
with thinner snow and warmer temperatures would generally have a larger fractional Δfs (i.e., Δfs/fs)
(Figure S21a); for basins with similar Δfs/fs, a larger baseline snow cover fraction (fs) would yield a larger
Δfs (e.g., Colorado and Columbia vs. S. Sierra, Figure S21a). Second, for basins with similar Δfs, smaller
αnon − s (usually means less grass and more trees) generally leads to larger albedo changes (Δαttl)
(Figure S22a), and a smaller fs′ between basins with similar αnon − s would yield a larger Δαttl (e.g., the S.
Sierra and Columbia, Figure S22a). Third, for basins with similar albedo changes, a stronger downward
shortwave would yield a stronger upward shortwave change (Equation 14), thus larger ΔR*. All of these fea-
tures that lead to a stronger cool season ΔR* (largerΔfs, smaller αnon − s, and stronger downward shortwave)
are more prone to occur in basins with warmer temperatures, explaining the smaller ΔR* at lower Tair in the
cool environment/season (Figure S17b).

In the warm season, similar factors are functioning but Δfs becomes the most influential factor of ΔR*.
Initially, a larger fraction of snow cover remains in basins of a cooler temperature, which allows greater
snow cover reductions per temperature increment across the warm season (Figure S21b), leading to more
SW absorption under similar downward shortwave, and consequently larger ΔR*. These processes explain
the larger ΔR* at lower Tair in the warm environment/season (Figure S17b). The factors considered above
presumably have a dominant contribution to the variation of ΔR* because residual factors (Δαs and
Δαnon − s) have relatively minor variations (e.g., αs is constantly at 0.85 in VIC results). The influence of these
residual factors is beyond the scope of this study, but studies that consider the albedo change of snowpack
and land cover are needed in the future.

Our findings relative to the five variables' contribution to annual ET change generally agree with Yang
et al. (2019), with the slight difference that our results show a larger contribution from δ. Yang et al. (2019)
argued that elevated [CO2] is the primary reason for the rs increase and the canceling effect between vapor
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pressure deficit‐driven and rs‐driven ET change. They base this statement on comparison of CMIP5 projec-
tions with models that do not consider either the [CO2] impact or vapor pressure deficit impact on rs and
attribute the difference primarily to the lack of representation of [CO2] impact. However, the canceling pat-
tern persists in our offline model (VIC) that only considers the vapor pressure deficit impact on rs, suggesting
a less dominant contribution from [CO2] to rs increase and dET/dT than predicted by Yang et al. (2019). It
should be noted that the feedback of elevated humidity from enhanced ET on es− ea is not considered in our
land surface modeling, so the increase of es − ea resulting from warming is likely overestimated, which
might explain our larger es − ea contribution to dET/dT as compared to Milly and Dunne (2020).

We note that there are some limitations on our approximations of Pref using ΔETw/ΔETc (Equation 5).
Under cool season warming, ETw decrease compensates ETc increase and causes annual ET increase to be
smaller than ETc increase. This compensation effect causes Pref to be larger than ΔETw/ΔETc. Therefore,
our conclusion is conservative as to the relative importance of warm season warming on annual runoff
response, especially in arid/semi‐arid basins like the Colorado basin, where low runoff efficiency causes
snowmelt reduction to primarily show in ETw reduction.

We follow the definition of warm and cool season division in Das et al. (2011) because one of the main points
of this paper is to explain why the observed runoff response in that paper occurred. However, we note that
the snowmelt season may be more sensitive to temperature and can cross our season division. Hence we test
the robustness of our conclusion by revising the definition of the warm season and cool season to ensure that
the snowmelt season is reliably spanned by the warm season. We did an analysis and found the dates of
basin‐average peak SWE are mostly in March (Colorado: 12 March; Columbia: 25 March; N. Sierra:
27 February; S. Sierra: 20 March), so we shifted the warm season to be March to September, and the cool
season to be October to February. For the most part, the differences between the results from shifted seasons
and original season division are insubstantial (Figure S23 vs. S24). We also tested the influence of warming
magnitude by conducting an additional test with 1°C warming. The results show similar Pref values
(Table S3) and a similar pattern of runoff response to temperature warming (around one third in response
magnitude than 3°C warming, Figure S23 vs. S25), suggesting that different levels of warming asymmetry
(at least within 3°C) would not alter our analysis and conclusions. We also verified the robustness of runoff
response patterns against precipitation change by perturbing the precipitation forcing with CMIP5 projected
precipitation changes (Figure S23 vs. S26). These three experiments suggest that our conclusion holds under
potentially changing conditions.

Das et al. (2011) suggest that extra liquid water input (LWI: the sum of rainfall and snowmelt) during
winter offsets the water reduction in the warm season and decreases the annual runoff reduction under
year‐round warming. The roles of extra rainfall, extra snowmelt, and extra warm season evaporative
demand are intertwined together in their discussion. Here we did an investigation to separate the impact
of the fraction of rainfall on runoff by modifying the four models' precipitation partition scheme to
increase the fraction of rainfall and leave temperature unperturbed. We found that the warmer basins
do not necessarily have a larger annual rainfall ratio increase, and the rainfall ratio increase does not
make much difference (decrease) of annual Q in the four basins (Tables S4–S7). This limited impact of
rainfall ratio on annual streamflow change is because either warming or the model option that changes
precipitation partition is only affecting the rainfall‐snowfall transition zone (arguably a small part of
a basin).

The four models captured the observed runoff seasonality across the four basins (Figure S1). More important
than the models' calibration to historical observations is their ability to reproduce inferred sensitivities from
the historical record. Consistent with the argument for sensitivity evaluations, we checked the model perfor-
mance in reproducing PET‐elasticity (εPET) and P‐elasticity (εP) using a nonparametric estimator and
Dooge's complementary relationship (Dooge, 1992; Sankarasubramanian et al., 2001). Models generally
yield more positive εP and more negative εPET than the observations (Tables S8 and S9), consistent with
the findings in Vano et al. (2012). The difference across modeled and observed ε values are not surprising,
possibly because the climate variables are less controllable in observations and a Budyko‐like relationship
is not embedded in the nonparametric estimator (Xiao et al., 2020). Given the large variations of ε values
in literature (Vano et al., 2012; Xiao et al., 2020), our modeled and observation‐based εP shows a reasonable
degree of similarity (Tables S8 and S9).
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6. Conclusions

We conducted a multi‐model simulation of streamflow response to warm and cool season warming across
four regionally important basins in the Western United States, evaluated the consistency among models
in their streamflow response predictions, and explored the key processes governing the basins' seasonally
dependent runoff sensitivities. We conclude that

1. The response patterns of (e.g., annual) runoff to cold versus warm season warming is generally consistent
across models. Moreover, our multi‐model averages are overall consistent with the results of Das
et al. (2011) for the single model (VIC) used in that study. Compared with the impact of cool season
warming, warm season warming always has the largest relative impact on annual streamflow change
in the Columbia Basin. This signature becomes progressively less for the Colorado basin and is smaller
still for the N. Sierra and S. Sierra basins.

2. The ratio of ET‐T sensitivity in warm versus cool season warming constrains the relative rank (across
basins) of streamflow response asymmetry to warm versus cool season warming. The ET‐T sensitivity
is closely associated with the basins' water availability (GIW) and Tair. The ET‐T sensitivity generally
increases with water availability, and this tendency is strongest when Tair is high. When Tair is low,
the ET‐T sensitivity mainly increases with Tair, whereas when Tair is high, the ET‐T sensitivity decreases
with Tair.

3. The increasing trend of dET/dT versus Tair in the cool months is primarily driven by the enhanced rate of
water holding capacity and a stronger snowmelt‐albedo feedback. The decreasing trend of dET/dT versus
Tair is primarily driven by increased rs and decreased ra, and a weaker snowmelt‐albedo feedback due to
less remaining snowpack in warmer basins. The positive annual ET‐T sensitivity is contributed mostly by
the vapor pressure deficit, followed by available radiation, and slope of the saturated vapor pressure
curve, with ra the smallest (positive) contributor and rs contributing negatively.

4. The pattern of ET‐T sensitivity indicates that basins with colder winters and cooler summers, and higher
warm season versus cool season GIW ratios (e.g., the Columbia Basin and the Colorado basin), have a
stronger response to warm season warming than to cool season warming. Cool basins tend to have a
larger annual runoff response to warm season relative to cool season warming.

Data Availability Statement

Data and codes used in our paper are publicly accessible at the following URLs: L13 forcings 1915–2011
(ftp://livnehpublicstorage.colorado.edu/public/Livneh.2013.CONUS.Dataset/Meteorology.asc.
v.1.2.1915.2011.bz2/), and 2012–2018, extended by Lu Su at UCLA's Land Surface Hydrology Research
Group (ftp://livnehpublicstorage.colorado.edu/public/sulu). VIC‐4.1.2g (https://github.com/UW‐Hydro/
VIC/releases/tag/VIC.4.1.2.g), Noah‐MP hrldas version 3.9 (https://github.com/NCAR/hrldas‐release/
tree/master/HRLDAS), Catchment are available as a part of the GEOS source code under the NASA
Open‐Source agreement (http://opensource.gsfc.nasa.gov/projects/GEOS‐5). SAC‐SMA can be obtained by
emailing dist_hydro_mod@infolist.nws.noaa.gov or nws.nwc.ops@noaa.gov, and the code will be available
through FTP to the requestor. Other representative data related to our results are available online (https://
doi.org/10.6084/m9.figshare.11605818.v3).
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