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A Baseline for the Predictability of U.S.
Cloud-to-Ground Lightning
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Abstract The product of convective available potential energy and precipitation rate is used as a

proxy for U.S. cloud-to-ground (CG) lightning. The proxy is computed from numerical weather prediction
model outputs and thus provides a simple method for producing CG lightning threat forecasts. Here three
types of forecasts are considered: number of CG flashes, spatial extent of CG lightning occurrence, and
lightning/no lightning maps at 1° x 1° resolution. Forecasts have statistically significant skill for lead times
up to 15 days depending on the type of forecast. Verification of the forecasts over the United States provides
a predictability baseline against which other approaches can be compared.

Plain Language Summary Many studies of weather predictability have examined variables
related to atmospheric circulation. Here we examine the predictability of cloud-to-ground (CG) lightning,
which is the defining feature of thunderstorms. Forecasts for numbers of CG flashes and their spatial extent
over the United States are constructed from the output of a state-of-the-art numerical weather prediction
model and compared with observed CG lightning. The skill of the lightning forecasts is statistically
significant for lead times up to 15 days, depending on the type of forecast, time of year, and region. The
proxy-based forecasts provide a baseline for the predictability of thunderstorms against which other
approaches can be compared.

1. Introduction

The question of how far in advance that weather can be predicted has been addressed using conceptual
models for error growth as well as the observed skill of operational forecast systems (Lorenz, 1982; Simmons
& Hollingsworth, 2002). With forecast system improvements, the limit of weather predictability has been
shown to extend beyond 2 weeks although the precise limits depend on the physical quantity being pre-
dicted, its temporal and spatial resolution, and geographic location (Buizza & Leutbecher, 2015). Weather
forecast predictability studies have often examined the predictability of quantities closely related to atmo-
spheric circulation such as sea-level pressure or 500-hPa height. There have been relatively few studies of the
predictability of other quantities such as precipitation or convection (Stern & Davidson, 2015; Zhu et al., 2013).
The skill of monthly and seasonal forecasts of convective available potential energy (CAPE) has been exam-
ined in the context of severe thunderstorms (Jung & Kirtman, 2016; Lepore et al., 2018). The goal of this work
is to establish a baseline for the predictability of lightning.

Lightning is the defining feature of thunderstorms, a weather phenomenon that occurs around the world. The
most severe thunderstorms are associated with tornadoes, hail, and damaging winds, and they are respon-
sible for property damage and loss of life. The frequency of severe thunderstorms in the United States is
modulated on seasonal and subseasonal time scales by predictable signals that include the Madden-Julian
Oscillation (MJO; Thompson & Roundy, 2013) and the El Nifilo-Southern Oscillation (ENSO; Allen et al., 2015).
U.S. lightning activity has also been related to the MJO (Abatzoglou & Brown, 2009). However, most opera-
tional lightning-threat forecast products have lead times of at most a few days, and how the predictability of
lightning compares to that of other quantities is unclear.

Lightning discharges can be classified as cloud-to-ground (CG) and intracloud. Lightning (intracloud, CG, or
their sum) is represented in numerical weather prediction models with varying levels of detail. Current rep-
resentations include explicit lightning physics (Fierro et al., 2013), dynamic evolution of lightning potential
as measured by microphysical and dynamical processes (Lynn, 2017; Lynn et al., 2012), and diagnostics that
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are computed from ice-phase hydrometeor fields in convection-allowing models (McCaul et al., 2009) and
that are computed from other convective parameterization outputs in models with parameterized convec-
tion (Lopez, 2016). For the most part, the implementations of such formulations have been limited to forecast
systems with fairly short lead times since nowcasts of lightning threat, especially ones with high spatial reso-
lution, can be useful with lead times of an hour or less. For instance, the McCaul et al. (2009) diagnostic is used
in the operational 3-km High-Resolution Rapid Refresh (Benjamin et al., 2016), which makes forecasts out to
36 hr, and the Lynn et al. (2012) scheme is used in the 4-km Weather Research and Forecast Model run by the
National Severe Storms Laboratory (NSSL-WRF) for forecasts out to 36 hr.

Seasonal forecasts of lightning activity have been proposed (Dowdy, 2016; Mufioz et al., 2016), as well as pro-
jections of changes in lightning activity in future climates (Romps et al., 2014). These long-range forecasts
and projections have either used purely statistical relations of climate modes such as ENSO with lightning, or
statistical relations between lightning and predicted quantities such as CAPE. Romps et al. (2014) proposed
the product of CAPE and precipitation as a proxy for the number of CG flashes and, based on its good per-
formance during 2011, used it to interpret climate change projections. Tippett et al. (2018) found that the
performance of a similar proxy over the United States was fairly good but varied by region, time of the year,
and temporal averaging window. Proxy performance was better on shorter time scales and during the cool
season, with some spatially varying biases. A similar proxy also performed well over Bangladesh (Dewan et al.,
2018). While previous studies have computed this proxy using observations or reanalysis, here we compute
the proxy from numerical weather prediction model outputs in the context of subseasonal forecasts whose
lead times extend beyond those of short-range forecasts. The proxy-based forecasts are then verified against
CG lightning observations to obtain an estimate for the predictability of lightning.

2. Data and Methods

2.1. Data

CAPE and precipitation forecasts are produced by the NCEP Global Ensemble Forecast System (GEFS). The cur-
rent GEFS version (v11) uses semi-Lagrangian dynamics with 64 sigma-pressure hybrid vertical levels (Zhou
etal,, 2017). Horizontal resolution is T574 (34 km) for the first eight forecast days and then decreases to T382
(70 km) for forecast days 9-35. Forecast day 1 of an integration with start time 0000 1 Jan is 1 January, and
so on, to forecast day 35, which is 4 February. The GEFS retrospective forecasts used here were assembled in
support of NOAA’s Subseasonal Experiment (SubX), a Climate Testbed project focused on subseasonal pre-
dictability and predictions. Forecasts consist of integrations that start at 0000 UTC on Wednesday of each
week 1999-2016. Here we use starts from 0000 UTC 1 Jan 2003 to 0000 UTC 28 Dec 2016, for a total of 731
forecasts. This period matches the availability of the lightning data used here (see below). Daily (UTC) aver-
ages of forecast CAPE and accumulated precipitation are provided for the SubX project at 1° x 1° horizontal
resolution. Each start has 11 ensemble members (1 control and 10 perturbed members generated using an
ensemble Kalman filter). There are 21 members in the real-time SubX forecasts (not examined here), which
began on 30 June 2017. Only ensemble means are considered here.

CG lightning flash data come from the National Lightning Detection Network (NLDN; Cummins & Murphy,
2009) and are the same that were used in Tippett et al. (2018). CG counts are summed on a 1° x 1° grid at
daily (UTC) resolution to match the GEFS SubX model data. We only use CG flash counts over contiguous
U.S. (CONUS) land points. The NLDN data here cover the period 2003-2016 (5,114 days) during which the
NLDN network is complete and fairly stable (Koshak et al., 2015). There are 9 days with missing NLDN data: 31
December 2003, 8 February 2004, 08 February 2006, 16 January 2007, 06 February 2007, 18 December 2007,
05 December 2008, 17 January 2009, and 16 January 2013, and those days are excluded from calculations.
Forecasts of weekly and 2-week target periods are calculated using the forecast data that matches the avail-
able NLDN data. An increase noted in the number of positive CG flashes reported during 2016 may be due to
a change in the NLDN Total Lightning Processor on 18 September 2015 (Nag et al., 2016). Negative and posi-
tive (>15 kiloampere; kA) polarity CG lightning flash counts are analyzed together. The threshold of 15 kA for
positive polarity flashes accounts for the tendency of the NLDN to misclassify cloud pulses as low-amplitude,
positive CG strokes (Biagi et al., 2007; Cummins & Murphy, 2009). Although the new NLDN Total Lightning Pro-
cessor removes the 15-kA peak current limit for positive CG flashes, we apply a 15-kA filter to the positive CG
flashes in 2015 and 2016 for consistency.
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2.2. Methods

The forecast lightning proxy (CP) at each 1° x 1° grid point is defined to be proportional to the product of
collocated daily values of CAPE and precipitation (Tippett et al., 2018). This definition differs from that of
Romps et al. (2014) who formed the product of CONUS-averaged CAPE and precipitation, which precludes
resolution of regional features. The constant of proportionality varies with lead time and is chosen so that
the area-weighted CONUS average of forecast CP for each lead time matches the CONUS number of NLDN
CG flashes over the period 2003-2016. The constant of proportionality varies with lead time but is the same
for all forecasts and has no spatial or seasonal dependence. Forecasts of the daily number of CG flashes are
simply the daily CONUS sums of forecast CP.

Forecasts of the daily number of CONUS 1°x 1° grids with one or more CG flashes (number of grids with CG > 1;
NGCG > 1) are constructed by counting the number of grids where forecast CP exceeds a specified threshold.
The threshold varies with lead time and is chosen so that the forecasts of the daily number of CONUS 1° x 1°
grids with one or more CG flashes are unbiased for each lead time over the entire forecast period. Like the
constant of proportionality, the CP threshold used for predicting NGCG > 1 depends on the lead but has no
spatial or seasonal dependence. Regional thresholds are used for forecasts of the regional number of grids
with CP greater than one because regional biases in CP vary substantially (Tippett et al., 2018). No regionally
varying constant of proportionality is used for the forecasts of the number of regionally aggregated CG flash
number since forecast quality is measured using correlation, which is insensitive to scaling.

Skill of forecasts of numbers of CG flashes and NGCG > 1 are assessed using rank (Spearman) correlation, which
is insensitive to outliers. Outliers are a concern since CG flash numbers vary over a large range. Except where
noted, daily anomalies of forecasts and observations are used. For each lead time, a forecast climatology FC(T)
is computed using two annual harmonics and has the form

FC(T) = exp (a, + a, cos vT + b, sinvT + a, cos 2vT + b, sin2vT) M

where T is the target time in days, and v = 27 /365.25 days. The resulting climatology is annually periodic.
Use of the exponential in the formulation guarantees that the climatology is positive. The five coefficients
d,, a,, by, a,, and b, are found by Poisson quasi-maximum likelihood estimation from the 731 forecasts. The
observational climatology that are used to produce observed anomalies are computed in the same way and
are fit to the data from the days that are forecast.

We assess regional skill at the level of NOAA climate regions (see supporting information Figure S1 and
Karl & Koss, 1984) for forecasts of daily numbers of CG flashes and for forecasts of daily NGCG>1. Statistical
association of GEFS forecasts of regional daily numbers of CG and daily NGCG > 1 are assessed using Pear-
son correlation because removal of the annual cycle can produce spurious rank correlations (not shown) for
regions where lightning is rare.

Standard significance tests are used to determine the statistical significance at the 0.05 level of rank and Pear-
son correlations for daily and weekly forecasts. Standard significance tests are not suitable for weeks 3-4
forecasts because these forecasts are not independent. Forecast starts are weekly, and each weeks 3-4 fore-
cast overlaps by 1 week with the previous and subsequent forecasts. This overlap has the effect of reducing
the effective number of degrees of freedom and increases the correlation level required for statistical signif-
icance. Statistical significance of weeks 3-4 forecasts at the 0.05 level is determined by comparing forecast
correlations to the 95th percentile of the correlation of no-skill forecasts. The no-skill forecasts are forecasts
that are verified against 1,000 realizations of randomly permuted weeks 3-4 observations. The skill of weeks
3-4 forecasts is evaluated separately by start date month, and the randomly permuted observations come
from the same month.

The skill of 1°x1° CG lightning/no CG lightning forecasts is measured using metrics based on 2x2 contingency
tables. Here we use the standard forecast quality measures: Threat Score (TS), Probability of Detection (POD),
False Alarm Rate (FAR), and the Heidke Skill Score (HSS; Wilks, 2011). To assess their significance, we compare
them to the 95% intervals of the scores of no-skill forecasts. The no-skill forecasts are forecasts that are veri-
fied against 1,000 randomly permuted observations. Permutations are constructed so that only the years are
permuted and not the day of the year. This sampling strategy accounts for the seasonality of lightning activity.
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Figure 1. Average daily number of (a) CG flashes and (b) CP on forecast days 2003-2016. Number of (c) CG flashes and (d) grids with one or more CG flashes
during 2011 (NGCG > 1; gray lines). Corresponding 7-day GEFS forecasts are shown as blue line segments with day 1 at the dot and day 7 at the x; 25 May is
marked for reference. CG = cloud-to-ground; NGCG = number of grids with CG; GEFS = Global Ensemble Forecast System; NLDN = National Lightning Detection
Network.

3. Results

The spatial pattern of the annual climatology of the daily CG flash rate matches fairly well that of forecast
CP (all leads and starts) with an uncentered pattern correlation of 0.95, and a centered pattern correlation of
0.89 (Figures 1a and 1b). East of the Rockies, climatological values of CP tend to be too large to the north.
Climatological values of CP are too low in west Texas, New Mexico, Arizona, Utah, and Colorado. The limited
westward extension of CP compared to CG flash rate is also present when CP is computed using reanalysis
(Tippett et al., 2018). One source of bias in CP is that it does not take into consideration differing rainfall pro-
cesses and relations with lightning rate. For instances, the ratio of convective rainfall to lightning (rainfall yield)
is relatively low in the arid southwestern United States where ice-based precipitation processes are dominant
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(a) Forecast rank correlation number of CG flashes (b) Forecast rank correlation NGCG>1
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Figure 2. Rank correlation of total, anomalies with respect to a monthly climatology, and anomalies with respect to a daily climatology for all starts as a function
of target day for forecasts of (a) the number of CG flashes and (b) the number of grids with one or more CG flashes (NGCG>1). Rank correlation of forecast daily
anomalies as a function of start month and forecast day for (c) number of CG flashes and (d) number of grids with one or more CG flashes (NGCG > 1). Pearson
correlation for forecasts of (e) the regional numbers of CG flashes and (f) the regional number of grids with one or more CG flashes (NGCG>1). CG =
cloud-to-ground; NGCG = number of grids with CG.
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(Petersen &Rutledge, 1998). Fuchs et al. (2015) hypothesized that storms with high cloud-base heights or shal-
low warm-cloud depths, which are less common east of the Rockies, have less warm-phase precipitation, more
mixed-phase precipitation, and higher total lightning flash rates. Since CP uses a spatially uniform constant
of proportionality, areas with lower rainfall yields have CP values that are too low compared to observations.

Visual inspection indicates that forecast values of CP track CONUS numbers of CG flashes (Figure 1c)
and NGCG > 1 (Figure 1d) fairly well for forecast days 1-7 during 2011, the year that was analyzed in
Romps et al. (2014), with the CP-based forecasts often capturing both the observed timing and amplitude.
Romps et al. (2014) found using sounding and radar data that the product of CONUS-averaged CAPE and pre-
cipitation explained 77% of the variance (including annual and diurnal variation) in the 2011 time series of
CONUS CG flashes. The number of CG flashes and NGCG > 1 show strong seasonality in 2011 with a clearly
delineated active season from May through September. Other years show similar seasonality and correspon-
dence between forecasts and CG data (not shown). Large daily variations are superimposed on the seasonal
cycle in the observations and in the forecasts. The weekly frequency of forecasts starts has the consequence
that forecasts sample lightning events at a limited number of discrete lead times. For instance, forecasts of
25 May 2011 are only available for forecast days 1, 8, and 15, which means that skill in predicting 25 May
2011 CG lightning cannot be assessed at intermediate leads. The fact that forecasts of a particular event are
only available with leads time with intervals of 7 days presumably introduces sampling variability into skill
verifications.

The forecast rank correlation of numbers of CG flashes and NGCG > 1 is greater than 0.8 at all leads when the
annual cycleis not removed (blue curves in Figures 2a and 2b). This high level of correlation is in large part due
to the forecasts matching well the observed annual cycle. The forecast rank correlation at the shortest leads
is reduced to about 0.6 for forecasts of the number of CONUS flashes and to about 0.7 for forecasts of NGCG >
1 when the annual cycle is removed at either monthly or daily resolution (yellow and red curves in Figures 2a
and 2b). This differing level of skill at the shortest leads suggests that the spatial extent of CG lightning occur-
rence is more predictable using the CP proxy than is the number of CG flashes. There is a small increase in the
anomaly correlation over the first one or two forecast days that is perhaps due to model spinup. In addition to
lowering the forecast correlation at the shortest leads, removal of the annual cycle results in forecast correla-
tions that drop off steadily until about forecast day 15. When daily anomalies are computed with respect to a
monthly climatology, forecast correlations are quite small but statistically significant for targets beyond fore-
cast day 15. The likely reason for this behavior is that removal of a monthly climatology does not completely
remove the impact of seasonality because some months experience a large seasonal cycle within the month.
For instance, daily numbers of CG flashes are higher on average during the first half of August than during
the second half. Correlations of forecast anomalies with respect to a daily climatology are slightly smaller and
become statistically insignificant at about forecast day 15 for CONUS flash count forecasts and slightly longer
for forecasts of NGCG > 1.

Forecast skill is not uniformly distributed throughout the year. Forecast correlations at short leads are notice-
ably lower for forecasts with starts during June—October, slightly more so for forecasts of flash counts than
for forecasts of NGCG > 1 (Figures 2c and 2d). The lower level of skill for starts during the warm season likely
reflects lower skill in predicting precipitation and CAPE then, as well as the poorer performance of the proxy
itself during these months. The skill of U.S. precipitation forecasts tends to be lower during warm months when
precipitation is dominated by small-scale convective events (Fritsch et al., 1986; Olson et al., 1995; Sukovich
et al., 2014). The differing spatial scale may also be a reason for the correlation between daily CONUS num-
bers of CG flashes and corresponding CP values computed from reanalysis being lower during the months of
June-October than in other months (Tippett et al., 2018). Forecast correlations are significant up to forecast
day 10 for starts in most months. The threshold for statistical significance is higher when the forecasts are
stratified by start month because the sample size is smaller by about a factor of 12.

There are notable regional variations in forecast skill as well (Figures 2e and 2f). Forecast anomaly correlations
for CG flash numbers are initially highest in the northwest and south regions and lowest for the southeast,
southwest, and west regions. The regional differences in correlation at the shortest lead are suggestive of
problems with the proxy rather than lack of forecast skill. Monthly averages of CP computed using reanalysis
do not match southeast observations well during the warm season and do not capture the annual cycle range
in the southwest, and west regions (Tippett et al., 2018). Forecast anomaly correlations for CG flash numbers
for the northeast drop fastest with increasing lead. There is less regional dependence in the forecast anomaly
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Rank correlation

(a) Forecast rank correlation number of CG flashes (b) Forecast rank correlation NGCG>1
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Figure 3. Forecast correlation for weeks 1, 2, and 3-4 (a) number of CG flashes and (b) number of grids with one or more CG flashes (NGCG > 1). Black dashed
lines show the threshold for statistical significance of weeks 1 and 2 forecasts. The green dashed lines show the threshold for statistical significance of weeks 3-4
forecasts. CG = cloud-to-ground; NGCG = number of grids with CG.

correlation of NGCG > 1. Only the west region stands out as initially having lower skill than other regions, and
again correlations drop fastest with increasing lead for the northeast region.

Averaging over target periods has the potential to increase forecast skill. The skill of week-1 forecasts of num-
bers of CG flashes and NGCG > 1 are statistically significant in all months but vary considerably by start month
(Figure 3). The forecast correlations for NGCG > 1 tend to be higher than those for numbers of CG flashes. The
lowest forecast correlations for week-1 forecasts of the number of CG flashes are in July and August, which is
when the daily forecast performance is also poor. Week-1 forecasts of NGCG > 1 also have lower skillin July and
August, but not to the same extent as forecasts of CG flash numbers, again indicating that the proxy-based
predictability of lightning extent is greater than that of the number of flashes. Week-2 forecast correlations
are highest for starts in January, February, and April, and there is less, if any, advantage of forecasts of NGCG >
1 over forecasts of the number of CG flashes. Weeks 3-4 forecast skill is only statistically significant for starts
in January for forecasts of the number of flashes, and for starts in January, March, and December for fore-
casts of NGCG > 1. Weeks 3-4 forecast correlations are negative for starts in June and July. The higher skill of
weeks 3-4 forecasts during the cool season could be due to the larger spatial scales, as well as the presence of
stronger tropical forcings. DelSole et al. (2017) found that U.S. weeks 3-4 precipitation forecasts with January
starts had higher skill than ones with July starts and that the predictable components of winter precipitation
were related to ENSO and the MJO.

The skill of regional weeks 1, 2, and 3-4 forecasts has many similar features to that of the CONUS-level fore-
casts. The correlation of regional forecasts of week-1 numbers of CG flashes are statistically significant in all
months and regions except in the northeast (October starts), northwest (March starts), and west (Novem-
ber starts); the correlations are barely significant in the southeast (July starts), and the west (March starts).
The correlations of weeks 3-4 forecasts of regional numbers of CG flashes are statistically significant in the
south (January, February, and April starts), central (November starts), upper midwest (February and Septem-
ber starts), southwest (March and May starts), northwest (April starts), and west (February, May, and December
starts) regions. The skill of forecasts of regional NGCG > 1 is similar in structure, but week-1 correlations show
less decline during warm month, especially in the south and southeast (Figure S3).

We use contingency table skill measures to compare how well forecasts are able to match the locations where
one or more CG flashes are observed (Figure 4a). Probability of detection (POD) starts at over 65% and soon
after forecast day 10is at the level of a no-skill forecast that includes seasonality. The 95% interval of the no-skill
forecast is greater at shorter leads because forecasts are spatially sharper at short leads and more diffuse at
longer leads. The false alarm rate (FAR) starts at around 35% and rises to the no-skill rate of nearly 60% around
forecast day 10. The threat score (TS) and Heidke skill score (HSS) show the same behavior with increasing
lead time. Since these are forecasts of CG lightning occurrence rather than number of flashes, there is little
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Figure 4. (a) POD, FAR, TS, and HSS as a function of forecast day for 1° x 1° forecasts of one or more CG flashes. Shading indicates the 95% interval of a no-skill
forecast. (b) HSS as a function of start month and forecast day. Dots indicate HSS values that are greater than the 95th percentile of the HSS of a no-skill forecast;
25 May 2011 (c) NLDN CG lightning, and days (d) 1, (e) 8, and (f) 15 forecasts. Only CG values above 1, and CP values above the corresponding forecast thresholds
are shaded. POD = Probability of Detection; FAR = False Alarm Rate; TS = Threat Score; HSS = Heidke Skill Score; CG = cloud-to-ground; NLDN = National

Lightning Detection Network.

dependence of HSS values on start month (Figure 4b). HSS tends to be statistically insignificant after forecast
day 10 in most months. We illustrate the character of the CP forecasts for 25 May 2011, when large numbers
of CG flashes were observed over a wide area of the United States. The day-1 forecast for CG numbers is very
similar in amplitude and spatial extent to the CG flashes recorded. The next forecast available for that target
is the day-8 forecast which delineates less well the area with 1 or more CG flashes and has a higher FAR. At
forecast day 15, the forecast amplitude is muted, and the area where lightning is forecast to occur is too large.

4. Summary and Conclusions

Studies of weather predictability have found that large-scale variables such as sea-level pressure and
500 hPa heights are predictable beyond the traditional 2-week predictability limit (Buizza & Leutbecher,
2015; Simmons & Hollingsworth, 2002). Fewer studies have examined the predictability of precipitation or
quantities related to convection. Here we have examined the predictability of CG lightning, an aspect of
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thunderstorm activity with important societal impacts. While predictability is not the same as forecast skill, the
forecast skill of a particular forecast system provides a lower limit for predictability. Forecast skill is a lower limit
because forecast system improvements have the potential to reveal higher levels of predictability. Here we
have assessed forecasts of U.S. CG lightning using a lightning proxy constructed from the output of the GEFS.
The lightning proxy used here is the product of CAPE and precipitation, and previous studies have shown
that this proxy is proportional to observed numbers of U.S. CG flashes well when the proxy is computed using
observations (Romps et al., 2014) and reanalysis (Tippett et al., 2018).

We examined three types of forecasts. The first type are forecasts of the number of CG flashes aggregated over
the CONUS, and over NOAA climate regions which consist of several states. Aggregating all starts, forecasts
of the daily numbers of CG flashes have skill that is statistically significant until about forecast day 15, both at
the CONUS and regional levels, except for the northeast and southeast regions where skill drops below the
level for statistical significance at about forecast day 10. The relatively poor performance in these two regions
is notable because substantial CG lightning activity occurs in these regions. Forecasts of the daily number of
CONUS CG flashes have lower skill for starts during the warm period June—October, when skill drops below
the level of statistical significance around forecast day 10. Forecasts of week-1 CONUS CG numbers have sta-
tistically significant skill for starts in all months, but week-2 forecast correlations are quite low for starts during
July—November. Forecasts of weeks 3—4 CONUS CG numbers only have statistically significant skill for starts
in January and have negative skill for starts in June and July.

The second type of forecast is that of the number of 1° x 1° grids with one or more CG flashes recorded,
denoted NGCG > 1, and again aggregated over the CONUS, and over NOAA climate regions. Overall, forecast
skill at the shortest leads is higher for forecasts of NGCG > 1 than for forecasts of the number of CG flashes,
but both lose statistical significance at about the same lead time. The reduced forecast skill during the warm
period June-October is less pronounced for forecasts of NGCG > 1 than for forecasts of the numbers of CG
flashes. This difference suggests that the spatial extent of CG lighting is more predictable by this proxy than
is the CG lighting rate, which is also consistent with the skill of week-1 forecasts. The third type of forecast
are daily maps at 1° x 1° spatial resolution showing where one or CG flashes are forecast to occur. Forecast
skill values saturate at the level of a no-skill forecast around forecast day 10 and do not show indications of
seasonal dependence.

The success of these simple proxy-based forecasts means that higher levels of forecast skill would be expected
from more realistic and sophisticated models that include explicit lightning physics and permit convection
(Fierro et al,, 2013) or that diagnose lightning flash densities from the output of convective parameterization
schemes (Lopez, 2016). Nevertheless, the analysis here provides an initial baseline for the predictability of
U.S. CG lightning. We have assessed average forecast skill, and an outstanding question is if situations with
above-average skill or below-average skill can be identified in advance. A related question is whether pre-
dictability limits can be extended using either probabilistic or multimodel approaches. Whether these results
have any implication for the long-range prediction of severe thunderstorms is unclear since the favorability
of conditions for severe thunderstorm occurrence depends on additional factors such as vertical wind shear
that are not part of the lightning proxy.
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Erratum

In the originally published version of this article, the reference Ashraf, D., Ongee, E. T, Rafiuddin, M.,
Rahman, Md. M., & Rezaul, M.(2017). Lightning activity associated with precipitation and CAPE over
Bangladesh. International Journal of Climatology, 38, 1649-1660. https://doi.org/10.1002/joc.5286, should
have been published as Dewan, A, Ongee, E. T, Rafiuddin, M., Rahman, M. M., & Mahmood, R. (2018).
Lightning activity associated with precipitation and CAPE over Bangladesh. International Journal of
Climatology, 38, 1649-1660. https://doi.org/10.1002/joc.5286. This reference and its citation in the article
text have since been corrected, and the present version may be considered the authoritative version
of record.
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