

1 **Barriers and enablers of climate adaptation in fisheries: Insights from Northeast US**
2 **fishing communities**

3

4 Katherine. M. Maltby^{1,*}, Sabrina Kerin¹, Katherine. E. Mills¹

5

6 ¹ Gulf of Maine Research Institute, 350 Commercial St., Portland, Maine 04101, United States

7

8 *Corresponding author: kmaltby@gmri.org. Current address as above

9

1 **Barriers and enablers of climate adaptation in fisheries: Insights from Northeast US**
2 **fishering communities**

3
4 1. Introduction

5
6 Climate change is increasingly impacting commercial fisheries globally, altering fish
7 distributions and affecting stock productivity, as well as increasing storminess which can
8 hinder fishers' abilities to go fishing and damage shoreside infrastructure (Barange et al.,
9 2018; Sainsbury et al., 2018). Given these diverse impacts, successful adaptation is
10 essential to enable fishing communities to minimise risks and benefit from potential
11 opportunities (Barange et al., 2018; Ojea et al., 2020). Interest in climate adaptation in
12 marine fisheries has grown in recent years, with assessments of adaptive capacity—the
13 ability of people to prepare for, adjust and respond to change—gaining particular traction
14 (Marshall et al., 2007; Marshall, 2010; Whitney et al., 2017; Cinner et al., 2018). While these
15 assessments provide critical insights for climate adaptation planning, such approaches often
16 posit having high adaptive capacity as a pre-requisite for 'successful' adaptation. However,
17 many have questioned the extent to which higher adaptive capacity leads to correspondingly
18 high levels of adaptation, cautioning that 'adaptive capacity will not necessarily translate into
19 action' (O'Brien et al., 2006; Adger and Barnett, 2009; Mortreux, O'Neill and Barnett, 2020).
20 Research increasingly indicates that circumstances and contexts can influence the extent to
21 which adaptive capacity can be mobilised, and adaptation strategies and processes
22 themselves can be interrupted, constrained and undermined by a multitude of factors (Moser
23 and Ekstrom, 2010; Biesbroek et al., 2013; Eisenack et al., 2014; Islam et al., 2014; Islam et
24 al., 2020). Influences that impede or facilitate adaptation can emerge across multiple levels
25 of society—including individuals, groups and governments—as well as across spatial and
26 temporal scales (Adger, Arnell and Tompkins, 2005; Moser and Ekstrom, 2010). Focusing
27 on adaptive capacity alone may limit understanding of adaptation processes in fisheries
28 systems, and therefore greater emphasis is needed on exploring how adaptation may be
29 constrained or enhanced (Galappaththi et al., 2021).

30
31 In the broader climate adaptation literature, examining barriers and enablers of adaptation
32 has formed an important component of improving understanding of why adaptation may (or
33 may not) be successful and informing subsequent policy decisions (Moser and Ekstrom,
34 2010; Eisenack et al., 2014; Klein et al., 2014; Azhoni et al., 2018). Barriers and enablers
35 can arise from physical, biological, social, economic, financial, governance and institutional
36 realms (Biesbroek et al., 2013; Eisenack et al., 2014; Klein et al., 2014). Here, we define
37 barriers as '*factors that make it harder to plan and implement adaptation actions*' (Klein et

38 al., 2014), and which are viewed as being surmountable or mutable, in contrast to limits,
39 which are unsurpassable and absolute (Eisenack et al., 2014; Klein et al., 2014). Barriers
40 can constrain the implementation of adaptation actions, make adaptation less effective or
41 efficient, and result in missed opportunities or increased costs (Eisenack et al., 2014; Moser
42 and Ekstrom, 2010). Opposite to barriers, there are also factors that enable or facilitate
43 adaptation, which we term 'enablers' (termed 'opportunities' by the Intergovernmental Panel
44 on Climate Change, Klein et al., 2014). These can '*make it easier to plan and implement
45 adaptation actions, expand adaptation options, or provide ancillary co-benefits*' (Klein et al.,
46 2014). In this sense, enablers provide conditions and opportunity for adaptive actions to
47 occur (Klein et al. 2014; Azhoni et al., 2018). Identifying barriers and enablers has recently
48 been outlined as a key research priority for future fisheries adaptation research
49 (Galappaththi et al., 2021).

50

51 Evidence is emerging that highlights several barriers and enablers of adaptation in fisheries
52 systems. Frequently discussed barriers include the projected rapid rate of change and the
53 uncertainty associated with future impacts (Holbrook and Johnson, 2014), inflexible and/or
54 insufficient management systems (Holsman et al., 2019), resource and capacity constraints
55 (Leith et al., 2014), and compromised resilience of overexploited fish stocks (Holbrook and
56 Johnson, 2014, Pershing et al., 2015). Wider literature highlights the diversity of barriers that
57 can exist and that may be unique to particular fisheries and localities, including outmigration
58 and ageing populations of fishing communities (West and Hovelsrud, 2010), loss of
59 infrastructure and facilities (West and Hovelsrud, 2010), impeded access to credit schemes
60 (Islam et al., 2014; Alam et al., 2021), lack of technological equipment (Islam et al., 2014;
61 Alam et al., 2021), constraints on access to shifting stocks (Dubik et al., 2019; Baudron et
62 al., 2020), as well as psycho-social barriers such as low risk perceptions and low willingness
63 to adapt (Nursey-Bray et al., 2012; McClenachan et al., 2020). Arguably, more research has
64 focused on identifying barriers to adaptation compared to enabling conditions (Klein et al.,
65 2014). However, examining enablers is equally important, as these conditions allow actors to
66 successfully plan and implement adaptation actions, and may provide insights that studies of
67 adaptation barriers alone may not fully capture (Klein et al., 2014). Enablers in fisheries
68 contexts can include tools such as risk and vulnerability assessments (Klein et al., 2014;
69 Gregg et al., 2016), information and knowledge exchange on adaptation options and
70 experiences (Gregg et al., 2016; Shaffril et al., 2019), capacity building initiatives (Cinner et
71 al., 2018; Shaffril et al., 2019), innovations in technology and infrastructure (Alam et al.,
72 2021), and climate informed policy and management options (Holsman et al., 2019; Bell et
73 al., 2020). Identifying both barriers and enablers together can therefore provide a more

74 holistic understanding into influences on adaptation and potentially greater insight for
75 informing future decision making on adaptation in fisheries systems.

76

77 In addition to identifying adaptation barriers and enablers, examining where they arise within
78 fisheries systems can provide further value for adaptation planning (Islam et al., 2014; Leith
79 et al., 2014; Islam et al., 2020). Fisheries by their nature are complex socio-ecological
80 systems, with social and ecological dimensions that continuously interact at individual,
81 collective and governance scales (Ojea et al., 2020). Adaptation is also scale dependent,
82 with adaptive processes, actions and outcomes occurring and being influenced by actors
83 and interactions across multiple organisational, spatial and temporal scales (Adger et al.,
84 2005; Klein et al., 2014; Ojea et al., 2020). Such complexity can impede adaptation planning
85 and decision making because it often requires transdisciplinary and cross-scale solutions
86 that may challenge traditional modes of fisheries management and governance (Leith et al.,
87 2014). Adopting a socio-ecological lens to examine barriers and enablers of climate
88 adaptation in fisheries is helpful for understanding future adaptation pathways and wider
89 system resilience. Utilising frameworks that reduce the complexity of fisheries into more
90 tractable key elements can aid adaptation planning by highlighting variables, processes and
91 points of tension that can be critical to exploring, prioritising and pursuing adaptation options
92 (Ostrom, 2009; Leith et al., 2014).

93

94 To contribute further to adaptation research in fisheries systems, this study adopts a socio-
95 ecological lens applied to the New England region of the Northeast United States, a region
96 whose commercial fisheries are facing a range of climate impacts. Using interviews
97 conducted at four fishing communities, we ask 1) what barriers and enablers to climate
98 change adaptation are people experiencing or perceiving? and 2) where do these emerge
99 within the fishery socio-ecological system? We highlight the contextual nature of our findings
100 to New England fishing communities and how adaptation relies on processes and actors at
101 multiple scales. Additionally, we synthesize insights for climate adaptation planning that are
102 broadly relevant to marine fisheries.

103

104 2. Methods

105

106 2.1 Case study: New England fisheries

107

108 The Northeast U.S. shelf is rapidly warming and home to a diverse range of fisheries that
109 have significant economic, social and cultural value for New England fishing communities
110 along its coastline (Pershing et al., 2015; Colburn et al., 2016). Climate impacts include sea

111 level rise and distribution and abundance shifts in target species, and many fishing
112 communities are vulnerable due to their dependence on climate sensitive species (Colburn
113 et al., 2016; Pinsky et al., 2020). Climate impacts on fishing communities can include
114 changes in target species' abundance and productivity, and spatial distributional shifts away
115 from traditional fishing grounds (Barange et al., 2018; Le Bris et al., 2018; Pinsky et al.,
116 2020). Sea level rise can flood waterfront infrastructure important to fisheries, while changing
117 sea conditions and extreme events can reduce opportunities to fish, damage fishing gear
118 and infrastructure as well as pose direct risks to fishers' safety (Colburn et al., 2016;
119 Sainsbury et al., 2018). Fishers are starting to adapt, including targeting new species,
120 altering catch compositions, shifting to non-fishing livelihoods and, less commonly, travelling
121 further to fish and switching to new ports (Young et al., 2018; Dubik et al., 2019; Pinsky et
122 al., 2020; Papaioannou et al., 2021). However, for some stocks such as Gulf of Maine cod,
123 failure of management systems to adapt to changing ecosystem conditions has reduced
124 fishing opportunities (Pershing et al., 2015). While research has grown on examining the
125 vulnerability and resilience of these fishing communities to climate change, knowledge gaps
126 remain regarding future adaptation options and pathways.

127
128 Four fishing communities formed the focus of this research: New Bedford (Massachusetts),
129 Point Judith (Rhode Island), Portland (Maine) and Stonington (Maine) (Fig. 1). Here, we view
130 fishing communities as place-based, and use the Magnuson-Stevens Fishery Conservation
131 and Management Act's definition of fishing community: '*a community which is substantially*
132 *dependent on or substantially engaged in the harvest or processing of fishery resources to*
133 *meet social and economic needs*'. These communities are home to important fishing ports,
134 which in 2019 collectively accounted for \$593.5 million and 193.7 million pounds of fisheries
135 landings (NOAA, 2020)—representing more than one-third of the value and volume of
136 landings in all of New England. The four communities represent a range of fishing activities,
137 and have undergone significant historical changes (e.g., regulatory, socio-economic,
138 environmental), in addition to facing important climate-driven changes.

139
140 New Bedford is the U.S.'s most valuable fishing port and has a wide range of shoreside
141 infrastructure and facilities, which not only benefit the commercial fleet operating from New
142 Bedford but also those from further along the U.S. east coast. Vessels from New Bedford
143 participate in a variety of fisheries, but approximately 85% of the port's landed value is
144 derived from sea scallops. Point Judith is home to the largest fishing fleet in Rhode Island,
145 including commercial and recreational fishing vessels. Commercial vessels participate in
146 diverse fisheries, with longfin squid, summer flounder and sea scallop representing some of
147 the main species landed in recent years. Located on the southwest Maine coastline in Casco

148 Bay, Portland is one of Maine's highest volume fishing ports, with landings of multiple
149 species, including lobster, groundfish, and herring. Over the years fishers operating from
150 Portland have struggled with access to and transformation of the working waterfront and a
151 decline in shoreside facilities—issues not unique to this port (Donahue, 2014). Stonington—
152 an island community in Penobscot Bay that is accessible by a single road bridge—is Maine's
153 highest-value fishing port. Historically, landings to the port were diverse, but since the mid-
154 2000s lobster has become the main fishery, representing 98% of the landed value and
155 leading it to become known as Maine's lobster 'Capital' (Johnson et al., 2015).

156

157 <Insert Figure> Figure 1. New England (US) fishing communities examined. Boxes contain
158 information on landed value, landed weight, key landed species to each community, and
159 method of data collection. In Point Judith, one workshop was undertaken with nine
160 participants.

161

162 *2.2 Data collection*

163

164 One workshop and 21 interviews were conducted with active fishers, fishing industry
165 participants, and community members across the four communities (Fig.1, 31 participants
166 total (one interview in New Bedford involved two participants)). 'Community members' are
167 those living and/or working in the community and knowledgeable about fisheries, but not
168 necessarily actively working within the fishing industry itself. Participants included fishers,
169 seafood dealers and processors, municipal leaders, port authority staff and other key figures
170 within the community. We examined perceptions beyond just active fishers to provide a more
171 holistic view of adaptation processes affecting fisheries at a community scale and the
172 different types of barriers and enablers that may be important to the fisheries system.

173

174 Interviews were conducted between February 2018 and October 2020. In Stonington,
175 Portland and New Bedford, participants were selected using a snowball sampling approach
176 that began with known industry and community contacts in each location, from whom input
177 on potential interviewees was elicited. The process was repeated several times to identify
178 potential interviewees that were recognised by multiple previous contacts, and who
179 represented a diverse range of fishing community backgrounds and interests. Interviews
180 were semi-structured, with questions focusing on several key themes but allowing further
181 conversation where new topics arose. Key themes included changes people had
182 experienced and/or expected to face (i.e., regulatory, market, environmental changes),
183 perceived barriers and enablers to adaptation, and potential adaptation options. Interviews

184 lasted between 30 minutes to 1.5 hours and were undertaken at times and locations
185 convenient for participants.

186

187 In Point Judith in January 2018, a workshop with 9 participants was conducted. Many fishers
188 in Point Judith had participated in a series of interviews and workshops on similar topics (i.e.
189 <http://resilientfisheriesri.org/>) during the months prior to our data collection effort. To
190 minimise participant fatigue and build upon the prior workshop discussions and format, we
191 designed a joint workshop to elicit input on the same themes that were addressed in our
192 interviews. Modifications to interview questions were made to suit the workshop and group
193 setting, but remained fixed on the same themes of research interest. Participants were
194 identified based on their prior workshop participation and were selected to represent diverse
195 fishing types and shoreside interests in Point Judith.

196

197 Conducting this workshop instead of interviews may have limited the depth of information
198 provided by individuals, but given the recent large research efforts in the community prior to
199 our project, we felt a workshop was the most suitable and efficient method to reduce further
200 participant fatigue. Issues discussed at the workshop were broadly similar to those
201 conducted during interviews, affirming that the different methodologies did not obscure the
202 types and range of issues considered. Data collection across workshops and interviews
203 stopped once we reached a point of hearing the same or similar themes across participants
204 and communities, and novel themes did not frequently arise. Participants reflect a diversity
205 of roles within fishing communities, and represent a range of fisheries and fleet segments
206 (e.g. from small day-trip lobster boats and nearshore gillnetters to offshore groundfish
207 trawlers and multi-day scalloping vessels), helping to capture a range of issues despite the
208 small sample size from individual communities. For this reason, we emphasise the broader
209 issues identified across communities within our results rather than disentangling specific
210 community differences. Additionally, results were 'sense checked' and discussed through
211 further workshops held with other members of the four communities as part of the wider
212 project through which this research was conducted.

213

214 All participants provided verbal informed consent, and ethical approval was granted by
215 University of Maine Institutional Review Board for the Protection of Human Subjects.

216

217 *2.3 Analysis*

218

219 Thematic analysis was undertaken on interview and workshop transcripts to identify barriers
220 and enablers within and across the four communities. A semi-inductive approach was used,

221 coding and re-coding data before grouping into broader themes of barriers or enablers
222 (Braun and Clarke, 2006). Such an approach allowed themes to emerge that were context-
223 specific to the communities, as well as informed by relevant literature that has explored
224 barriers and enablers to climate adaptation (e.g. Klein et al., 2014; Leith et al., 2014; Islam et
225 al., 2014). All themes were discussed among authors to aid interpretation.

226

227 We also examined *where* barriers and enablers emerged within the fisheries socio-
228 ecological system. We organised identified barriers and enablers in a socio-ecological
229 systems framework outlined by Ostrom (2009), which was further developed into a fisheries
230 climate adaptation context by Leith et al. (2014). This framework splits socio-ecological
231 systems into five distinct 'sub-systems': 1) Resource Units, characteristics of fisheries
232 resources that influence their adaptive capacity; 2) Users, including their traits, interactions
233 and use of technology, information and knowledge; 3) Resource System, including physical
234 (including infrastructure) and biological aspects and/or processes; 4) Governance System,
235 including formal and informal organisations, institutions, relationships, networks and rules
236 that govern action and affect adaptation; and 5) Social, Economic and Political Setting,
237 encompassing external variables that influence adaptation within the fishery but are difficult
238 to change from within the system itself (Leith et al., 2014). Further 'second-order' variables
239 are included within the framework, which aided decisions of where to place barriers and
240 enablers within the socio-ecological system (Leith et al., 2014).

241

242 3. Results

243

244 <Insert Figure> Figure 2. Barriers (a) and enablers (b) identified within the fishery socio-
245 ecological system across all four communities. While barriers and enablers are likely to
246 influence adaptation processes at multiple levels of the socio-ecological system, we show
247 where they emerge in the system most prominently.

248

249 3.1 Barriers

250

251 A total of 13 barriers were identified, of which most were highlighted across all four
252 communities (Table 1). These were mapped against four of the five sub-systems: Users,
253 Resource System, Governance System and Social, Economic and Political Setting (Fig. 2).
254 No barriers or enablers were identified for the 'Resource Units' subsystem.

255

256 <Insert Table> Table 1. Barriers identified from thematic analysis across the four
257 communities (NB=New Bedford, PJ=Point Judith, PT=Portland, ST=Stonington).

258

259 *3.1.1 'Users' subsystem*

260

261 Four barriers centred on issues related to the 'Users' sub-system of the fishery: (1) business
262 consolidation, (2) fisheries specialisation and dependency, (3) overcapitalisation and (4)
263 shifting culture. Business consolidation was perceived to constrain flexibility and
264 diversification by (1) limiting opportunities and access for independent fishers to acquire
265 fishing permits, leading to uneven allocation of permits or quota across the wider fleet, and
266 (2) reducing the amount and/or variety of shoreside services due to increasing vertical
267 integration of businesses. Some respondents discussed how consolidation may also
268 influence the power dynamics among fishers, with those landing high volumes or with more
269 fishing permits perceived to hold greater power in decision-making than smaller independent
270 operators. Fishing rights were also perceived to become expensive to lease or purchase,
271 and independently owned shoreside services can be pushed out due to these increasing
272 costs and their reduced competitiveness compared to larger businesses.

273

274 For most communities excluding New Bedford, the increasing specialisation in harvesting a
275 limited set of species was seen as a barrier. Often perceived to result from historical
276 changes in stocks and management regulations, specialisation can increase fishers'
277 vulnerability to future shocks that affect their target species and reduce their ability to
278 diversify due to specialised gear, vessels, techniques, and limited knowledge about
279 operating in other fisheries. Linked to this barrier, and only discussed at Stonington, was the
280 issue of overcapitalisation, whereby an individual or company has more debts than its assets
281 are worth. In Stonington, new entrants to the lobster fishery have invested heavily in vessels
282 and equipment due to motivations from the current lobster 'boom'. These investments may
283 constrain future adaptation due to the high dependence they encourage, with high financial
284 risk increasing fishers' vulnerability to future changes and making it harder to diversify if
285 stocks decline and the high vessel prices limit potential buyers.

286

287 The final barrier identified was a perceived shifting culture among some Maine lobster
288 fishers. Participants discussed a shift from viewing fishing as a lifestyle and centred on long-
289 term planning, to more short-term mindsets with less of a conservation ethic to protect
290 lobster stocks (e.g., V-notching tails of egg-bearing females and returning them to the
291 ocean). This could be influenced by the recent lobster 'boom' in Maine, where many new
292 fishers have not experienced historical stock variability and need to make money to offset
293 their large investments; these fishers may place less value or focus on measures to protect
294 lobster stocks for the future. Such shifting perceptions may impede adaptation because

295 people may be less inclined to 'prepare for' climate change and instead 'react to' impacts,
296 while a reduced conservation ethic may compromise the lobster stock's longer-term
297 ecological resilience.

298

299 3.1.2 '*Resource System*' subsystem

300

301 Two barriers emerged in the Resource System: (1) issues at the working waterfront and (2)
302 marketing and promotion of species. Working waterfront issues encapsulated a range of
303 problems that together were thought to affect access, impede opportunity and limit future
304 development of fisheries. These included a decline in amount and diversity of shoreside
305 infrastructure, which reduced the ability of fishers to catch different species and diversify into
306 alternative fisheries due to, for example, difficulties in finding processors for alternative
307 catches and sourcing new or specialised gear and supplies. Lack of parking was cited as an
308 issue due to growing demands on waterfront space, for example from tourism, that limited
309 places to park and unload near the dock as well as limiting further development of new
310 facilities or infrastructure to support the working waterfront. Through these multiple
311 influences, declines in shoreside infrastructure can affect long-term continuity of access for
312 fishing activities. In addition, a lack of processing facilities and ability to handle large
313 volumes of catch, such as lobster, meant that it was processed elsewhere (e.g. in Canada),
314 which limited local economic opportunities.

315

316 Successfully marketing and promoting species to enable fishers to take advantage of new or
317 emerging fishing opportunities was perceived as a challenge. Constraints included
318 limitations on market access due to geographic location or lack of a local market, which can
319 affect the logistical ability to distribute and supply markets with increased volumes of
320 species. The time and resources needed to establish new markets and/or supply chains, and
321 a lack of consumer demand for different fish species, further limited incentives to harvest
322 new or underutilised species. In Point Judith a particular issue was discussed whereby the
323 ability of fishers to sell products directly to consumers was hindered by State regulations (but
324 as of 2020, direct-to-consumer sales have been allowed as a result of regulatory changes in
325 response to the COVID-19 pandemic.)

326

327 3.1.3 '*Governance system*' subsystem

328

329 Four barriers arose in the Governance System. The first centred on access to alternative
330 and/or emerging fisheries. Discussions centred on the high costs of permits and quota,
331 which affect who can gain access to species and makes diversification into new fisheries

332 financially challenging. Allocation of permits and quota across states, different sections of
333 the fleet and between commercial and recreational fishers was also perceived to be
334 problematic, with shifting abundances and distributions of stocks affecting the perceived
335 'fairness' of allocation arrangements. This issue mainly stems from the fact that such
336 allocations are based on historical catches, with quota shares that are proportioned to states
337 or individuals remaining fixed despite climate-driven changes in where species are found.
338 Reallocation as species shift across traditional management boundaries (e.g., between
339 states) is constrained by political and economic interests associated with the current
340 arrangements. Linked to this topic was the issue that permits and quota to harvest
341 commercial-scale volumes are often not available for species that are emerging in new
342 areas, meaning that targeting these species is not economically worthwhile for fishers in
343 areas where these species have not traditionally been present and harvested.

344

345 Another barrier related to perceptions that the science and information used in decision-
346 making often led to inappropriate management decisions that affected people's ability to
347 adapt. Issues centred on (1) the methods and models used to collect and interpret data; (2)
348 lack of fishers' knowledge and information in scientific assessments; and (3) limited
349 consideration of environmental, social and economic factors that may influence the fishery.
350 These issues created perceptions that scientific advice was often 'wrong' and eroded trust in
351 fishery management decisions and processes, particularly due to the feeling that what
352 fishers experienced 'on the water' was different from what the science 'says'. The limited
353 responsiveness of the management system was also perceived to be a problematic barrier.
354 Fishers described decisions as lagging behind their current experiences and not keeping
355 pace with the dynamic variability of the ecosystem. Others mentioned that the general
356 decision-making process was slow, resulting in 'dragging out' decisions and making it
357 difficult to plan ahead due to uncertainty over the final decisions. In other instances, the
358 management system was criticised for being overly responsive and punitive, particularly
359 when stocks were perceived by managers to be in decline and by fishers as undergoing a
360 natural 'boom and bust' cycle.

361

362 A final governance barrier was associated with stakeholder input and power imbalances.
363 Some participants felt that they had no voice in the decision-making process and that they
364 were not listened to. Others felt that certain stakeholders or actors had greater influence in
365 decisions, which led to decisions being made in their benefit rather than the benefit of all.
366 These issues led to a general sense of distrust in the decision-making process, and meant
367 decisions were not viewed as legitimate or fair due to perceived inequities in who could
368 provide input into the process.

369

370 *3.1.4 'Social, Economic and Political Setting' subsystem*

371

372 Barriers to adaptation also arose from the Social, Economic and Political Setting.
373 Changing composition and reliability of the industry's own and wider workforce was identified
374 as one barrier. Issues centred on greying of the fleet, with current fishers aging and fewer
375 new entrants than those retiring. Others discussed difficulties in finding dependable and
376 qualified workers or crew due to changing community demographics and issues such as
377 drug use. Drug use problems, particularly among younger adults, affected both the sourcing
378 of crew and their reliability. Some ports, such as New Bedford, highlighted the value of
379 immigrants to help fill gaps in the workforce when local labour availability was not sufficient,
380 particularly for shoreside businesses and processing plants.

381

382 Another barrier related to views of non-fishing residents on development in the port and
383 wider coast. For example, some interviewees felt people had 'Not In My Back Yard'
384 (NIMBYism) views, which restricted the development of new fisheries infrastructure on the
385 waterfront and the placement of aquaculture sites in coastal areas, both of which limit
386 diversification options within and outside of fisheries. Another respondent discussed
387 NIMBYism views in relation to the current push for development of wind farms offshore, with
388 certain residents preferring these to be out at sea where they are less visible but may exert
389 greater constraints on fishing grounds and fisheries.

390

391 The final barrier discussed by participants focused on financial feasibility of adaptation.
392 While we placed this in the Social, Economic and Political Setting sub-system, this issue is
393 cross-cutting across all sub-systems. Fishing is a financially challenging occupation,
394 incurring high start-up costs, ongoing operating costs (e.g., fuel, vessel maintenance),
395 variable incomes, and large financial risks. Shoreside investments in processing facilities or
396 technologies to set up and improve marketability of species are also expensive. These costs
397 mean that the ability to adapt is tightly dependent on an individual's or company's wealth, as
398 well as the levels of financial risk they are prepared to take in investing in future plans.

399

400 *3.2 Enablers*

401

402 Seven enablers to adaptation were identified (Table 2), which were mapped to three of the
403 subsystems: Users, Resource System, Governance System (Figure 2).

404

405 <Insert Table> Table 2. Enablers identified from thematic analysis across the four
406 communities (NB=New Bedford, PJ=Point Judith, PT=Portland, ST=Stonington).

407

408 *3.2.1 'Users' subsystem*

409

410 The adaptability and entrepreneurship of the industry was discussed as an enabler among
411 participants. Used to operating in a dynamic ecosystem, responding to fluctuating economic
412 markets and adjusting to regulatory change, fishing industry members have coped with
413 change in many forms and have some level of experience, skills and ability to equip them to
414 face future climate changes. However, some did note that this individual adaptability could
415 only take people so far, and other parts of the system—particularly regulations and costs
416 associated with access to different fisheries—also need to adapt.

417

418 Another enabler related to diversification options outside of the fishery. Some participants
419 discussed that they had additional incomes, education, skill sets and experiences that would
420 allow them (or people they knew) to diversify out of fishing if stocks decline or it became too
421 challenging, economically unviable or undesirable. Some described potential future options
422 for them or other fishery participants to diversify into other parts of the fisheries sector, such
423 as management or a fishing association, or to pursue jobs in aquaculture or other marine
424 sectors.

425

426 A final enabler centred on knowledge and learning. The role of knowledge of the fishery,
427 awareness of changes that are occurring, and the ability to learn new information and skills
428 were discussed by participants as being important to enable them to plan future business or
429 operational decisions, diversify across fisheries or adapt more broadly. Additionally, learning
430 from past experiences or observations allowed people to be more informed in their decision
431 making and equipped them with an ability to adapt to ongoing or anticipated changes.
432 Knowledge also was discussed as enabling people to advocate for change with decision
433 makers in management and governance contexts.

434

435 *3.2.2 'Resource system' subsystem*

436

437 Two enablers highlighted within the 'Resource System' subsystem were interlinked and
438 discussed in direct opposition to the 'issues at the working waterfront' barrier. The first
439 focused on the importance of communities recognising the value of the working waterfront
440 and having protections in place to prevent it from decline or non-fishery related
441 developments (such as condos and restaurants), which would allow continuity of access and

442 provide long-range planning horizons and security for the industry. Such protection was
443 discussed in terms of historical (e.g. 'grandfathering') and current regulations protecting
444 infrastructure, as well as having key stakeholders with 'foresight' to advocate and ensure
445 such protections are in place. Tightly linked to this was another enabler: 'presence of
446 shoreside services', which includes (but is not limited to) processors, netmakers and vessel
447 maintenance services. The presence and range of shoreside services was perceived as vital
448 to enable efficient on-the-water fishing operations; ease landing, processing, and marketing
449 of catch; and facilitate diversification into other fisheries. New Bedford was described as
450 particularly benefitting from the range of shoreside services it offered, which had helped it to
451 become a fishing 'hub'. One participant discussed how future investment in shoreside
452 services would also enable greater processing capacity to retain greater value-added
453 benefits in their community, such as by processing American lobster locally rather than
454 exporting it to Canada.

455

456 3.2.3 'Governance System' subsystem

457

458 The final two enablers discussed among participants arose in the 'Governance System'.
459 Discussed in Maine only, participants highlighted the importance of fisher-led conservation
460 efforts as a tool to enable future adaptation through increasing stock resilience. Measures
461 advanced by harvesters in Maine's lobster fishery, including harvest size limitations and V-
462 notching of egg-bearing females, were seen as critical to its historical and continued
463 success. Some described such measures as acting as an 'insurance policy' to help them
464 weather bad years.

465

466 Participants highlighted social networks as being important to assist them in times of change
467 and enable sharing of knowledge, information and skills. Networks not only within social
468 groups, such as fisher-fisher, but also among different groups and actors were discussed
469 (e.g., fisher-consumer, fisher-decision maker). For example, some noted the value of sharing
470 experiences of different fishing practices with other fishers. Others discussed the importance
471 of having a community leader who was close to the fishery and helped advocate for the
472 industry in community decisions. Leadership such as this can help to spur collective actions,
473 set visions, build support and develop knowledge for longer-term adaptation planning, as
474 well as enable quicker responses and recovery from environmental changes (Mason et al.,
475 2021).

476

477 4. Discussion

478

479 We provide important new findings regarding some of the key barriers to and enablers of
480 climate adaptation and highlight where they emerge within the fishery socio-ecological
481 system. These insights are valuable for those working within the Northeast US, and provide
482 considerations relevant to climate adaptation planning for fisheries in other countries and
483 contexts. Concurrent with wider literature, we show a diversity of barriers and enablers,
484 including but not limited to social, economic, financial, governance and institutional themes
485 (Galappaththi et al., 2021; Islam et al., 2014; Klein et al., 2014; Leith et al., 2014). Such
486 diversity highlights the complexities for adaptation within fisheries systems, both for those
487 navigating the decisions of 'what' to do (e.g., fishers) and for those developing and
488 implementing adaptation plans (e.g., municipal leaders). Some barriers are more commonly
489 discussed within fisheries climate adaptation narratives, particularly those related to
490 governance, such as responsiveness of management and access to emerging fisheries as
491 species distributions shift (e.g., Hodgkinson, Hobday and Pinkard, 2014; Dubik et al., 2019;
492 Holsman et al., 2019; Baudron et al., 2020; Ojea et al., 2020). Others have seen arguably
493 less attention in the fisheries climate adaptation literature: access to the working waterfront,
494 business consolidation issues and marketing or promotion of species. Many barriers and
495 enablers were shared among the four communities, while others were community specific.
496 Given that adaptation is a cross-scale issue, identifying commonalities can provide
497 generalisable insights to guide adaptation planning at scales larger than individual
498 communities, while in-depth explorations of communities is needed to inform localised
499 approaches that address specific challenges or opportunities (West and Hovelsrud, 2010).
500 As our results are based on a limited set of interviews across a small number of
501 communities, we encourage further research to examine barriers and enablers within other
502 fishing communities and fisheries contexts.

503
504 Results also indicate that potential interlinkages between barriers and enablers may
505 influence adaptation processes and outcomes. Barriers could interact to further impede and
506 constrain adaptation, introducing interdependencies that make them harder to overcome
507 (Biesbroek et al., 2013; Eisenack et al., 2014; Islam et al., 2014; 2020). For example, in
508 Stonington continued specialisation among lobster fishers has led many to become
509 overcapitalised, which in turn encourages increased specialisation in this high-value fishery
510 to ensure profitability to meet debt payments. Some have argued this, among other factors
511 including changing demographics and rising home prices, has led to the Maine lobster
512 fishery being a 'gilded trap', facing increasing precarity and vulnerability to future climate
513 change (Steneck et al., 2011). The 'shifting cultures' barrier among some Maine lobster
514 fishers may directly counteract the enabler 'fisher-led conservation efforts'. Decreases in
515 compliance to 'v-notch' female lobsters because of conflicting views among some fishers

516 have been documented, raising potential issues over the continued use and benefit of this
517 practice and threatening future sustainability of the fishery (Le Bris et al., 2018; Mazur and
518 Johnson, 2020). However, interlinkages may also be reinforcing or complementary, such as
519 between the enablers ‘social networks’ and ‘knowledge and learning,’ whereby formal and
520 informal relationships can promote knowledge exchange and skill sharing between
521 individuals and/or groups (Cinner et al., 2018). Adaptation planning therefore must also
522 consider the dependencies and trade-offs between barriers and enablers that may arise
523 through existing or potential interlinkages (Biesbroek et al., 2013; Eisenack et al., 2014;
524 Klein et al., 2014). In doing so, recognition is needed that adaptation pathways vary
525 depending on the individual or community, resulting in barriers and enablers, and hence
526 interlinkages, being felt to different extents or in response to different climate drivers and
527 exposures (Moser and Ekstrom, 2010; Eisenack et al., 2014; Klein et al., 2014; Ojea et al.,
528 2020).

529

530 Many of the barriers and enablers identified herein are not necessarily ‘new’ and instead are
531 connected to past changes experienced within the community or fishery. Many fisheries in
532 New England have experienced significant declines, such as Gulf of Maine cod and
533 Southern New England lobster, resulting in substantial social and economic impacts (Hunter
534 et al., 2020; Le Bris et al., 2018; Pershing et al., 2015; Scyphers, Picou and Grabowski,
535 2019). Peoples’ experiences of these events may have perpetuated perceived management
536 and governance barriers we identified, such as negative perceptions of science and
537 information, stakeholder input, and limited access to alternative fisheries (Dubik et al. 2019;
538 Ebel et al., 2018; Hartley and Robertson, 2006; Scyphers, Picou and Grabowski, 2019).
539 These past experiences may consequently erode trust in novel scientific projections,
540 management decisions or management actors, thereby constraining fishery management
541 options to respond to climate change as well as influencing stakeholder buy-in regarding
542 approaches for wider adaptation planning (Dannevig and Hovelsrud, 2010; Ebel et al., 2018;
543 Hartley and Robertson, 2006). Historical experiences of change can also influence peoples’
544 future responses and abilities to adapt: notions of ‘getting by’, surviving difficult situations
545 and adapting to a constantly changing environment can lead to perceptions of the industry
546 being adaptable and entrepreneurial, enabling future adaptation and contributing to a wider
547 sense of resilience (Johnson, Henry and Thompson, 2014; Korda, Gray and Stead, 2020
548 Chapt.5; Nursey-Bray et al., 2012). However, some have suggested such perceptions of
549 high adaptability may affect fishers’ receptiveness to prepare for climate change, which may
550 be problematic given the rapid rate of warming and impacts occurring (Hodgkinson, Hobday
551 and Pinkard, 2014; Maltby et al., 2021). Such examples illustrate the importance of historical
552 changes in shaping perceived barriers and enablers, and their influence on future adaptation

553 processes and pathways more broadly (Adamson, Hannaford and Rohland, 2018; Biesbroek
554 et al., 2013; Barnett et al., 2015). We argue further research is necessary to examine the
555 drivers and potential influence of historical legacies on barriers and enablers of climate
556 adaptation.

557

558 Identifying barriers and enablers provides the opportunity to guide efforts to support
559 adaptation planning and implementation. Community specific barriers or enablers are best
560 addressed through local level actions, which should aim to incorporate local experiences and
561 understandings of change and needs in municipal investments, planning decisions, and
562 fisheries management actions (West and Hovelsrud, 2010). Community organisations or
563 fisheries associations can play a role in connecting individuals to share knowledge,
564 information and ideas on future options, such as seen through the Rhode Island Fishing
565 Industry's Resilient Fisheries project (Bell et al., 2020; <http://resilientfisheriesri.org>). Broader
566 scale barriers will require interventions across multiple governance levels. For example,
567 access to new or emerging species is impeded by current permitting and regulatory
568 constraints, requiring significant changes at both state and federal levels of the fishery
569 management system. Adjusting or reallocating quotas, changing fishing season timings,
570 redefining stock areas and facilitating greater flexibility in permitting and licensing are some
571 ways to reduce this barrier (Bell et al., 2020; Bryndum-Buchholz, Tittensor and Lotze, 2021;
572 Gregg et al., 2016; Pinsky et al., 2020). Co-management approaches may help to address
573 issues of agency and support knowledge exchange between stakeholders to build
574 understanding and agreement around management issues (Bell et al., 2020).

575

576 Leveraging enablers also provides important opportunities to facilitate adaptation.
577 Developing science-industry partnerships to enable information exchange and improve
578 knowledge and learning on climate change impacts and options is one example, but
579 operationalising them would also need to consider how to overcome potential difficulties of
580 current perceptions of science and trust (Bell et al., 2020; Ebel et al., 2018). Promoting
581 alternative or diversified livelihoods, identified by some participants as an enabler, offers
582 different adaptation pathways for individuals, but such transitions depend on alternatives
583 being viable; in practice, further barriers may exist to certain alternatives that were not
584 highlighted through these interviews (Conejo-Watt et al., 2021). In addition to these practical
585 steps for addressing particular barriers and enablers, opportunities also exist to consider
586 these issues within fisheries adaptation planning more broadly. Outlining and developing
587 potential adaptation pathways for different fisheries and fleet segments can allow the
588 examination of what barriers or enablers will be most influential and under which adaptation
589 circumstances (Werners et al., 2021). Scenario planning and future foresighting are also

590 valuable tools that enable greater interrogation of how barriers and enablers to adaptation
591 may affect realising preferred futures (Bell et al., 2020; Kelly et al., 2022). For example, the
592 current East Coast Climate Change Scenario Planning Initiative is helping to identify how to
593 address jurisdictional and governance issues in the face of climate change
594 (<https://www.mafmc.org/climate-change-scenario-planning>). While not immediate in enabling
595 responses in the face of rapid change, such exercises can help to build awareness and
596 progress business, industry and governance decisions under increasing uncertainty.

597

598 Using the Leith et al., 2014 framework allowed us to identify barriers and enablers emerging
599 throughout the fishery socio-ecological system and highlight the cross-scale nature of
600 influences on adaptation processes, and resilience more broadly, within fisheries. These
601 cross-scale issues will require interventions throughout, and we argue beyond, fishery socio-
602 ecological systems (Adger et al., 2005; Ojea et al., 2020; West and Hovelsrud, 2010;
603 Whitney et al., 2017). Interestingly our results did not find barriers and enablers within the
604 'resource units' sub-system, perhaps a reflection of our questioning and emphasis on social
605 considerations. Yet, this is important to consider given that most current efforts to develop
606 'climate resilient fisheries' and have 'climate-adaptive governance' (e.g. Bell et al., 2020;
607 Bryndum-Buchholz, Tittensor and Lotze, 2021) are ecologically-centric, emphasising
608 approaches and problems such as shifting stocks, declining catch potential, and altered
609 productivity. However, our findings show that adaptation processes in fisheries systems are
610 challenged not only by what is happening to the fish stock or being governed through 'at sea'
611 fishery management measures, but also by 'on land' social, ecological, and cultural
612 influences. Greater consideration is therefore needed to focus on other parts of the fisheries
613 socio-ecological system aside from the 'resource units'. It is imperative that effective
614 fisheries adaptation efforts consider issues on land, such as working waterfronts, an aging
615 workforce, rising financial costs, and marketing and promotion difficulties, which can shape
616 individual and community vulnerability and adaptive capacity, and ultimately influence
617 adaptation and resilience processes (Colburn et al., 2016; Steneck et al., 2011; West and
618 Hovelsrud, 2010). How adaptation varies throughout the fisheries supply chain is also
619 important; while one level of the supply chain may be resilient, another level which is not
620 could create widespread impacts. For example, during a marine heatwave in the Gulf of
621 Maine, the U.S. American lobster fishery experienced major disruptions as transportation
622 and processing capacity proved inadequate for the early harvest and high-volume landings
623 that were spurred by warm temperatures, ultimately leading to a price collapse (Mills et al.
624 2013). Supply chain issues caused by the COVID-19 pandemic have also affected many
625 fisheries (Stoll et al., 2021).

626

627 These challenges are further amplified by divergent governance frameworks designed for
628 land and for sea. Currently, sector based (i.e., fisheries) climate impacts are primarily
629 addressed by national policy, thus neglecting local and regional scale influences or potential
630 mismatches between local planning (which typically addresses shoreside and coastal
631 community needs) and sector-specific trajectories (Khan, Charles and Armitage, 2016; Singh
632 et al., 2021a). Differences in responsibilities, priorities and needs between these approaches
633 can result in opposing or contrasting directions in adaptation planning for fishing
634 communities. Indeed, different stakeholders may have different views and framings of what
635 constitutes 'effective adaptation,' such that addressing barriers or enablers may support
636 adaptation at one scale or perspective but may create unintended consequences at other
637 scales or to other stressors (Moser and Ekstrom, 2010; Singh et al., 2021b; West and
638 Hovelsrud, 2010). Therefore, while efforts should continue to examine how sector-based
639 governance and institutions can adapt to support stocks and fishers as they adapt to climate
640 change, more holistic adaptation planning and implementation approaches that capture
641 changes, conditions and people-place connections influencing adaptation both shoreside
642 and at sea are needed (West and Hovelsrud, 2010). This could entail building greater
643 connections between municipal and fisheries stakeholders to understand adaptation needs
644 and goals; examining where adaptation plans at local, regional or national levels can be
645 aligned or are complementary (and identifying potential areas of divergence or conflict); or
646 identifying 'entry points' for policy integration between place-based and sector-based
647 approaches (Khan, Charles and Armitage, 2016; Singh et al., 2021a; West and Hovelsrud,
648 2010). Additionally, most municipal adaptation plans focus on certain climate impacts (e.g.
649 sea-level rise) in isolation of others, leading to plans that fail to address adaptation needs,
650 leverage enablers, and overcome barriers in a holistic, integrated manner. Multi-issue
651 comprehensive adaptation planning efforts are needed given the potential for complex
652 cascading impacts as well as for synergies that could be realised in addressing barriers in
653 ways that facilitate multiple objectives.

654

655 5. Conclusions

656

657 Through this research we demonstrate a range of barriers and enablers to climate
658 adaptation across New England fishing communities, providing much needed insights into
659 this understudied topic that are broadly relevant to adaptation planning efforts for climate
660 resilient fisheries (Galappaththi et al., 2021). The identified barriers and enablers are diverse
661 in nature, often interconnected and emerge throughout the complex fishery socio-ecological
662 system, highlighting the need for adaptation approaches that can address scale-specific as

663 well as cross-scale issues. While climate adaptation planning and implementation is
664 inherently future focused, we suggest that historical reflections and interrogations are
665 important to examine how past legacies may shape future responses and the drivers of
666 potential barriers and enablers. Finally, we argue that fisheries adaptation research and
667 planning need to extend beyond considering changes at sea and additionally examine the
668 broader cross-scale and land-sea connections that influence adaptation processes. Lessons
669 from such integrated approaches will be critical for informing future adaptation planning and
670 implementation measures to support climate resilient fisheries.

671

672 **Acknowledgements**

673 We are very grateful to interview and workshop participants who engaged in this research
674 and subsequent meeting and workshops. We thank Mary Hudson who helped conduct some
675 of the interviews. Discussions with our project team—particularly Lisa Colburn, Steve Eayrs,
676 Troy Hartley, Jonathan Labaree, and Sarah Schumann—shaped this work. We thank the
677 two anonymous reviewers for their time and constructive comments, which greatly improved
678 the manuscript.

679

680 Funding was provided by NOAA's Coastal and Ocean Climate Applications program through
681 grant NA150AR4310120.

682

683 **References**

684 Adamson, G.C.D., Hannaford, M.J. & Rohland, E.J. (2018). Re-thinking the present: The role
685 of a historical focus in climate change adaptation research. *Global Environmental Change*,
686 48, 195-205. <https://doi.org/10.1016/j.gloenvcha.2017.12.003>

687

688 Adger, W.N., Arnell, N.W. & Tompkins, E.L. (2005). Successful adaptation to climate change
689 across scales. *Global Environmental Change*, 15, 77–86.
690 <https://doi.org/10.1016/j.gloenvcha.2004.12.005>

691

692 Adger, W.N., & Barnett, J. (2009). Four reasons for concern about adaptation to climate
693 change. *Environment and Planning A*, 41,2800–2805. <https://doi.org/10.1068/a42244>

694

695 Alam, E., Hridoy, A-E.E. & Naim, M. (2021) Factors Affecting Small-Scale Fishers
696 Adaptation toward the Impacts of Climate Change: Reflections from South Eastern
697 Bangladeshi Fishers. *International Energy Journal*, 21, 119–132.

698

699 Azhoni, A., Juda, S. & Holman, I. (2018). Adapting to climate change by water management
700 organisations: Enablers and barriers. *Journal of Hydrology*, 559, 736–748.
701 <https://doi.org/10.1016/j.jhydrol.2018.02.047>

702

703 Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. &
704 Poulain, F. [Eds.] (2018). Impacts of climate change on fisheries and aquaculture: synthesis
705 of current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture
706 Technical Paper No. 627. Rome, FAO. 628 pp.

707

708 Barnett, J., Evans, L.S., Gross, C., Kiem, A.S., Kingsford, R.T., Palutikof, J.P., Pickering,
709 C.M. & Smithers, S.G. (2015). From barriers to limits to climate change adaptation: path
710 dependency and the speed of change. *Ecology and Society*, 20, 5.
711 <http://dx.doi.org/10.5751/ES-07698-200305>

712

713 Baudron, A. R., Brunel, T., Blanchet, M.A, Hidalgo, M., Chust, G., Brown, E.J., Kleisner,
714 K.M., Millar, C., MacKenzie, B.R., Nikolioudakis, N., Fernandes, J.A. & Fernandes, P.G.
715 (2020). Changing fish distributions challenge the effective management of European
716 fisheries. *Ecography*, 43, 494–505. <https://doi.org/10.1111/ecog.04864>

717

718 Bell, R.J., Odell, J., Kirchner, G. & Lomonico, S. (2020). Actions to promote and achieve
719 climate-ready fisheries: summary of current practice. *Marine and Coastal Fisheries*, 12, 166–
720 190. <https://doi.org/10.1002/mcf2.10112>

721

722 Biesbroek, G.R., Klostermann, J.E.M., Termeer, C.J.A.M. & Kabat, P. (2013). On the nature
723 of barriers to climate change adaptation. *Regional Environmental Change*, 13, 1119–1129.
724 <https://doi.org/10.1007/s10113-013-0421-y>

725

726 Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research
727 in Psychology*, 3, 77-101. <http://dx.doi.org/10.1191/1478088706qp063oa>

728

729 Bryndum-Buchholz, A., Tittensor, D.P. & Lotze, H.K. (2021) The status of climate change
730 adaptation in fisheries management: Policy, legislation and implementation. *Fish and
731 Fisheries*, 00, 1-26. <https://doi.org/10.1111/faf.12586>

732

733 Cinner, J.E., Adger, W.N., Allison, E.H., Barnes, M.L., Brown, K., Cohen, P.J. Gelcich, S.,
734 Hicks, C. C., Hughes, T. P., Lau, J., Marshall, N. A. & Morrison, T. H. (2018). Building

735 adaptive capacity to climate change in tropical coastal communities. *Nature Climate Change*,
736 2, 117–123. <https://doi.org/10.1038/s41558-017-0065-x>

737

738 Colburn, L., Jepson, M., Weng, C., Seara, T., Weiss, J. & Hare, J.A. (2016). Indicators of
739 climate change and social vulnerability in fishing dependent communities along the Eastern
740 and Gulf Coasts of the United States. *Marine Policy*, 74, 323–333.
741 <https://doi.org/10.1016/j.marpol.2016.04.030>

742

743 Conejo-Watt, H., Muench, A., Mangi, S.C., Jeffery, K. & Hyder, K. (2021). Fishers
744 perspectives on the barriers for the English inshore fleet to diversify into aquaculture. *Marine
745 Policy*, 131. <https://doi.org/10.1016/j.marpol.2021.104610>

746

747 Dannevig, H. and Hovelsrud, G.K. (2016) Understanding the need for adaptation in a natural
748 resource dependent community in Northern Norway: issue salience, knowledge and values.
749 *Climatic Change*, 135, 261–275. <https://doi.org/10.1007/s10584-015-1557-1>

750

751 Donahue, M. (2014). Maine's working waterfront: Preserving coastal access for the
752 future of commercial fishing and other water-dependent businesses. *Ocean and Coastal
753 Law Journal*, 19, 297-322. <https://digitalcommons.mainelaw.maine.edu/oclj/vol19/iss2/5>

754

755 Dubik, B. A., Clark, E. C., Young, T., Zigler, S. B. J., Provost, M. M., Pinsky, M. L., & St.
756 Martin, K. (2019). Governing fisheries in the face of change: Social responses to long-term
757 geographic shifts in a U.S. fishery. *Marine Policy*, 99, 243–251.

758 <https://doi.org/10.1016/j.marpol.2018.10.032>

759

760 Ebel, S.A., Beitl, C.M., Runnebaum, J., Aldenc, R. & Johnson, T.R. (2018). The power of
761 participation: Challenges and opportunities for facilitating trust in cooperative fisheries
762 research in the Maine lobster fishery. *Marine Policy*, 90, 47-54.
763 <https://doi.org/10.1016/j.marpol.2018.01.007>

764

765 Eisenack, K., Moser, S.C., Hofmann, E., Klein, R.J.T., Oberlack, C., Pechan, A., Rotter, M.,
766 & Termeer, C.J.A.M. (2014). Explaining and overcoming barriers to climate change
767 adaptation. *Nature Climate Change*, 4, 867-872. <https://doi.org/10.1038/NCLIMATE2350>

768

769 Galappaththi, E.K., Susarla, V.B., Loutet, S.J.T., Ichien, S.T., Hyman, A.A. & Ford, J.D.
770 (2021). Climate change adaptation in fisheries. *Fish and Fisheries*, 00, 1-18.
771 <https://doi.org/10.1111/faf.12595>

772

773 Gregg, R.M., Score, A., Pietri, D. & Hansen. L. (2016). The State of Climate Adaptation in
774 U.S. Marine Fisheries Management. EcoAdapt, Bainbridge Island, WA.

775

776 Hartley, T.W. & Robertson, R.A. (2006). Emergence of multi-stakeholder-driven cooperative
777 research in the Northwest Atlantic: The case of the Northeast Consortium. *Marine Policy*, 30,
778 580-592. <https://doi.org/10.1016/j.marpol.2005.09.006>

779

780 Hodgkinson, J. A., A. J. Hobday & E. A. Pinkard (2014). Climate adaptation in Australia's
781 resource-extraction industries: ready or not? *Regional Environmental Change*, 14,1663-1678
782 <https://doi.org/10.1007/s10113-014-0618-8>

783

784 Holbrook, N.J. & Johnson, J.E. (2014). Climate change impacts and adaptation of
785 commercial marine fisheries in Australia: a review of the science. *Climatic Change*, 124,
786 703–715. <https://doi.org/10.1007/s10584-014-1110-7>

787

788 Holsman, K. K., Hazen, E. L., Haynie, A., Gourguet, S., Hollowed, A., Bograd, S. J.,
789 Samhouri, J. F. & Aydin, K. (2019). Towards climate resiliency in fisheries management.
790 *ICES Journal of Marine Science*, 76, 1368–1378. <https://doi.org/10.1093/icesjms/fsz031>

791

792 Islam, M.M., Sallu, S., Hubacek, K. & Paavola, J. (2014). Limits and barriers to adaptation to
793 climate variability and change in Bangladeshi coastal fishing communities. *Marine Policy*, 43,
794 208–216. <https://doi.org/10.1016/j.marpol.2013.06.007>

795

796 Islam, M.M., Rahman, M.D.A., Paul, B. & Khan, M.I. (2020). Barriers to Climate Change
797 Adaptation: Insights from the Sundarbans Mangrove-based Fisheries of Bangladesh. *Asian
798 Fisheries Science*, 33, 175–186. <https://doi.org/10.33997/j.afs.2020.33.2.008>

799

800 IPCC (2014). Annex II: Glossary [Mach, K.J., S. Planton and C. von Stechow (eds.)]. In:
801 Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the
802 Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing
803 Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp. 117-130.

804

805 Johnson, T.R., Henry, A.M. and Thompson, C. (2014). Qualitative Indicators of Social
806 Resilience in Small-Scale Fishing Communities: An Emphasis on Perceptions and Practice.
807 *Human Ecology Review*, 20: 2. <https://doi.org/10.22459/HER.20.02.2014.05>

808

809 Johnson, T.R., Athearn, K., Randall, S., Garland, M., Ross, K., Cline, K., Petersen, C.,
810 Alden, R. & Guenther, C. (2015). Profiles of sixteen eastern Maine fishing communities.
811 Maine Agricultural and Forest Experiment Station Miscellaneous Report 446.

812

813 Kelly, R., Foley, P., Stephenson, R.L., Hobday, A.J., Pecl, G.T., Boschetti, F., Cvitanovic, C.,
814 Fleming, A., Fulton, E.A., Nash, K.L., Neis, B., Singh, G.G., & van Putten, I. (2022).
815 Foresighting future oceans: Considerations and opportunities. *Marine Policy*, 140, 105021.
816 <https://doi.org/10.1016/j.marpol.2022.105021>

817

818 Khan, A., Charles, A. & Armitage, D. (2016). Place-based or sector-based adaptation? A
819 case study of municipal and fishery policy integration. *Climate Policy*, 18, 14-23.
820 <https://doi.org/10.1080/14693062.2016.1228520>

821

822 Klein, R.J.T., Midgley, G.F., Preston, B.L., Alam, M., Berkhout, F.G.H., Dow, K. & Shaw,
823 M.R. (2014). Adaptation opportunities, constraints, and limits. In: Climate Change 2014:
824 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of
825 Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate
826 Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M.
827 Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S.
828 MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press,
829 Cambridge, United Kingdom and New York, NY, USA, pp. 899-943.

830

831 Korda, R., Gray, T. & Stead, S. (2020). Resilience in the English Small-Scale Fishery.
832 Springer, Switzerland. ISBN 978-3-030-54244-3. <https://doi.org/10.1007/978-3-030-54245-0>

833

834 Le Bris, A. Mills, K.E., Wahle, R.A., Chen, Y., Alexander, M.A., Allyn, A.J., Schuetz, J.G.,
835 Scott, J.D. & Pershing, A.J. (2018). Climate vulnerability and resilience in the most valuable
836 North American fishery. *Proceedings of the National Academy of Sciences*, 115, 1831–1836.
837 <https://doi.org/10.1073/pnas.1711122115>

838

839 Leith, P., Ogier, E., Pecl, G., Hoshino, E., Davidson, J. & Haward, M. (2014). Towards a
840 diagnostic approach to climate adaptation for fisheries. *Climatic Change*, 122, 55–66.
841 <https://doi.org/10.1007/s10584-013-0984-0>

842

843 Maltby, K.M., Simpson, S.D., & Turner, R. (2021). Scepticism and perceived self-efficacy
844 influence fishers' low risk perceptions of climate change. *Climate Risk Management*, 31,
845 100267. <https://doi.org/10.1016/j.crm.2020.100267>

846

847 Marshall, N. A., D. M. Fenton, P. A. Marshall & S. G. Sutton (2007). How Resource
848 Dependency Can Influence Social Resilience within a Primary Resource Industry. *Rural
849 Sociology*, 72, 359–390. <https://doi.org/10.1526/003601107781799254>

850

851 Marshall, N. A. (2010). Understanding social resilience to climate variability in primary
852 enterprises and industries. *Global Environmental Change*, 20, 36-43.
853 <https://doi.org/10.1016/j.gloenvcha.2009.10.003>

854

855 Mason, J.G., Eurich, J.G., Lau, J.D., Battista, W., Free, C.M., Mills, K.E., Tokunaga, K.,
856 Zhao, L. Z., Dickey-Collas, M., Valle, M., Pecl, G.T., Cinner, J.E., McClanahan, T.R., Allison,
857 E.H., Friedman, R., Silva, C., Yáñez, E., Barbieri, M.A. & Kleisner, K.M. (2021). Attributes of
858 climate resilience in fisheries: From theory to practice. *Fish and Fisheries*,
859 <https://doi.org/10.1111/faf.12630>

860

861 Mazur, M.D. & Johnson, T.R. (2020). Effects of increases in fishery resource abundance on
862 conservation compliance. *Marine Policy*, 122. <https://doi.org/10.1016/j.marpol.2020.104217>

863

864 McClenachan, L., Scyphers, S. & Grabowski, J.H. (2020) Views from the dock: Warming
865 waters, adaptation, and the future of Maine's lobster fishery. *Ambio*, 49, 144–155.
866 <https://doi.org/10.1007/s13280-019-01156-3>

867

868 Mills, K.E., Pershing, A.J., Brown, C.J., Chen, Y., Chiang, F.-S., Holland, D.S., Lehuta, S.,
869 Nye, J.A., Sun, J.C., Thomas, A.C. & Wahle, R.A. (2013) Fisheries management in a
870 changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic.
871 *Oceanography* 26(2), <http://dx.doi.org/10.5670/oceanog.2013.27>

872

873 Mortreux, C., O'Neill, S. & Barnett, J. (2020). Between adaptive capacity and action: new
874 insights into climate change adaptation at the household scale. *Environmental Research
875 Letters*, 15, 074035. <https://doi.org/10.1088/1748-9326/ab7834>

876

877 Moser, S.C. & Ekstrom, J.A. (2010). A framework to diagnose barriers to climate change
878 adaptation. *PNAS*, 107, 22026–22031. <https://doi.org/10.1073/pnas.1007887107>

879

880 NOAA (2020). Fisheries Office of Science and Technology, Commercial Landings Query:
881 Landings by Top US Ports. Accessed at [<https://www.fisheries.noaa.gov/foss>]

882

883 Nursey-Bray, M., Pecl, G.T., Frusher, S., Gardner, C., Haward, M., Hobday, A.J., Jennings,
884 S., Punt, A.E., Revill, H. & van Putten, I. (2012). Communicating climate change: Climate
885 change risk perceptions and rock lobster fishers, Tasmania. *Marine Policy*, 36, 753–759.
886 <https://doi.org/10.1016/j.marpol.2011.10.015>
887

888 O'Brien, K., Eriksen, S., Sygna, L., & Naess, L.O. (2006). Questioning Complacency:
889 Climate Change Impacts, Vulnerability, and Adaptation in Norway. *AMBIO: A Journal of the*
890 *Human Environment*, 35, 50–56. [https://doi.org/10.1579/0044-7447\(2006\)35\[50:QCCCIV\]2.0.CO;2](https://doi.org/10.1579/0044-7447(2006)35[50:QCCCIV]2.0.CO;2)
891

892

893 Ojea, E., Lester, S.E. & Salgueiro-Otero, D. (2020). Adaptation of Fishing Communities to
894 Climate-Driven Shifts in Target Species. *One Earth*, 2, 544–556.
895 <https://doi.org/10.1016/j.oneear.2020.05.012>
896

897 Olson, J. (2006). Changing Property, Spatializing Difference: the Sea Scallop Fishery in New
898 Bedford, Massachusetts. *Human Organization*, 65, 307–318.
899 <https://doi.org/10.17730/humo.65.3.d87bu307bxbwdcw1>
900

901 Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological
902 systems. *Science*, 325, 419–422. <https://doi.org/10.1126/science.1172133>
903

904 Papaioannou, E.A., Selden, R.L., Olson, J., McCay, B.J., Pinsky, M.L. & St. Martin, K. (2021)
905 Not All Those Who Wander Are Lost – Responses of Fishers' Communities to Shifts in the
906 Distribution and Abundance of Fish. *Frontiers in Marine Science*, 8, 669094.
907 <https://doi.org/10.3389/fmars.2021.669094>
908

909 Pershing, A.J., Alexander, M.A., Hernandez, C.M., Kerr, L.A., Le Bris, A., Mills, K.E., Nye,
910 J.A., Record., N.R., Scannell, H.A., Scott, J.D., Sherwood, G.D. & Thomas, A.C. (2015).
911 Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod
912 fishery. *Science*, 350, 809–812. <https://doi.org/10.1126/science.aac9819>
913

914 Pinsky, M.L., Fenichel, E., Fogarty, M., Levin, S., McCay, B., St. Martin, K., Selden, R.L. &
915 Young, T. (2020). Fish and fisheries in hot water: What is happening and how do we adapt?
916 *Population Ecology*, 63, 17–26. <https://doi.org/10.1002/1438-390X.12050>
917

918 Sainsbury, N.C., Genner, M.J., Saville, G.R., Pinnegar, J.K., O'Neill, C.K., Simpson, S.D. &
919 Turner, R.A. (2018). Changing storminess and global capture fisheries. *Nature Climate
920 Change*, 8, 655–659. <https://doi.org/10.1038/s41558-018-0206-x>

921

922 Scyphers, S.B., Picou, S. & Grabowski, J.H. (2019). Chronic social disruption following a
923 systemic fishery failure. *PNAS*, 119, 22912-22914.
924 <https://doi.org/10.1073/pnas.1913914116>

925

926 Shaffril, H.A.M., Samah, A.A., Samsuddin, S.F. & Ali, Z. (2019). Mirror-mirror on the wall,
927 what climate change adaptation strategies are practiced by the Asian's fishermen of all?
928 *Journal of Cleaner Production*, 232, 104–117. <https://doi.org/10.1016/j.jclepro.2019.05.262>

929

930 Singh, G.G., Cottrell, R.S., Eddy, T.D. & Cisneros-Montemayor, A.M. (2021a). Governing the
931 Land-Sea Interface to Achieve Sustainable Coastal Development. *Frontiers of Marine
932 Science*, 8, 709947. <https://doi.org/10.3389/fmars.2021.709947>

933

934 Singh, C., Iyer, A., New, M.G., Few, R., Kuchimanchi, B., Segnon, A.C. & Morchain, D.
935 (2021b) Interrogating 'effectiveness' in climate change adaptation: 11 guiding principles for
936 adaptation research and practice. *Climate and Development*.
937 <https://doi.org/10.1080/17565529.2021.1964937>

938

939 Steneck, R. S., Hughes, T.P., Cinner, J.E., Adger, W.N., Arnold, S.N., Berkes, F., Boudreau,
940 S.A., Brown, K., Folke, C., Gunderson, L., Olsson, P., Scheffer, M., Stephenson, E., Walker,
941 B., Wilson, J. & Worm, B. (2011). Creation of a gilded trap by the high economic value of the
942 Maine lobster fishery. *Conservation Biology*, 25, 904-912. <http://dx.doi.org/10.1111/j.1523-1739.2011.01717.x>

944

945 Stoll, J.S., Harrison, H.L., De Sousa, E., Callaway, D., Collier, M., Harrell, K., Jones, B.,
946 Kastlunger, J., Kramer, E., Kurian, S., Lovewell, M.A., Strobel, S., Sylvester, T., Tolley, B.,
947 Tomlinson, A., White, E.R., Young, T. & Loring, P.A. (2021) Alternative Seafood Networks
948 During COVID-19: Implications for Resilience and Sustainability. *Frontiers in Sustainable
949 Food Systems*. 5:614368. <http://doi.org/10.3389/fsufs.2021.614368>

950

951 Werners, S.E., Wise, R.M., Butler, J.R.A., Totin, E. & Vincent, K. (2021). Adaptation
952 pathways: A review of approaches and a learning framework. *Environmental Science and
953 Policy*, 116, 266-275. <https://doi.org/10.1016/j.envsci.2020.11.003>

954

955 West, J.J. & Hovelsrud, G.K. (2010). Cross-scale Adaptation Challenges in the Coastal
956 Fisheries: Findings from Lebesby, Northern Norway. *Arctic*, 63, 338–354
957 <https://doi.org/10.14430/arctic1497>

958

959 Whitney, C. K., Bennett, N. J., Ban, N.C., Allison, E.H., Armitage, D., Blythe, J.L., Burt, J.M.,
960 Cheung, W., Finkbeiner, E.M., Kaplan-Hallam, M., Perry, I., Turner, N.J. & Yumagulova, L.
961 (2017). Adaptive capacity: from assessment to action in coastal social-ecological systems.
962 *Ecology and Society*, 22, 22. <https://doi.org/10.5751/ES-09325-220222>

963

964 Young, T., Fuller, E. C., Provost, M. M., Coleman, K. E., St. Martin, K., McCay, B. J., &
965 Pinsky, M. L. (2019). Adaptation strategies of coastal fishing communities as species shift
966 poleward. *ICES Journal of Marine Science*, 76: 93–103.
967 <https://doi.org/10.1093/icesjms/fsy140>

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

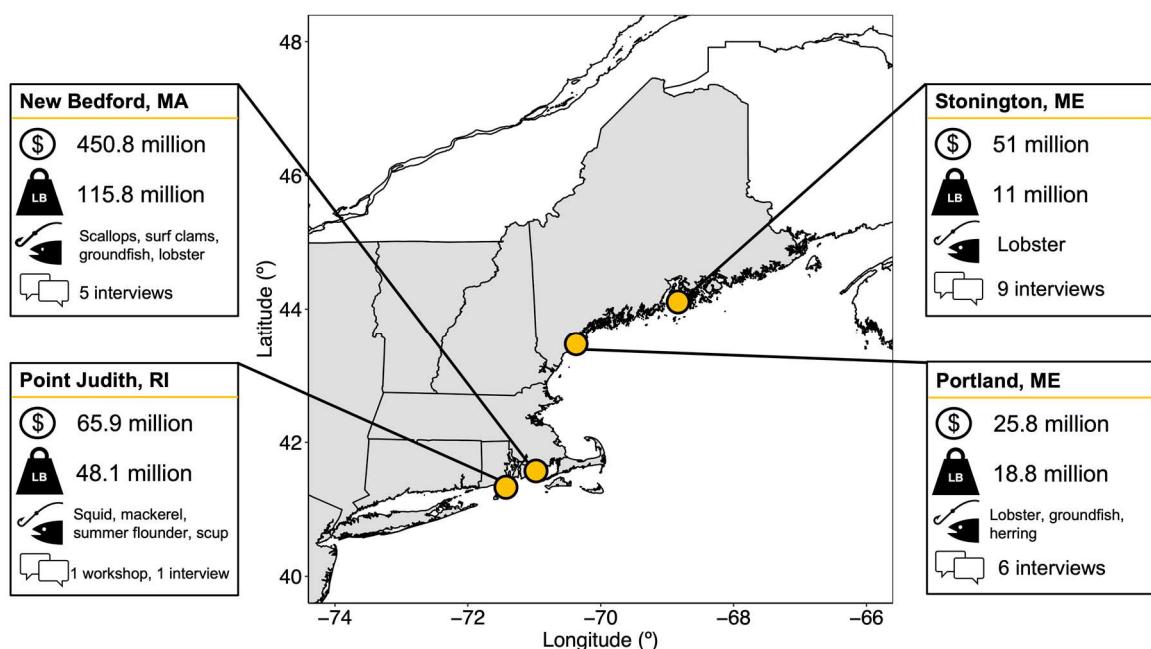
994

995

996

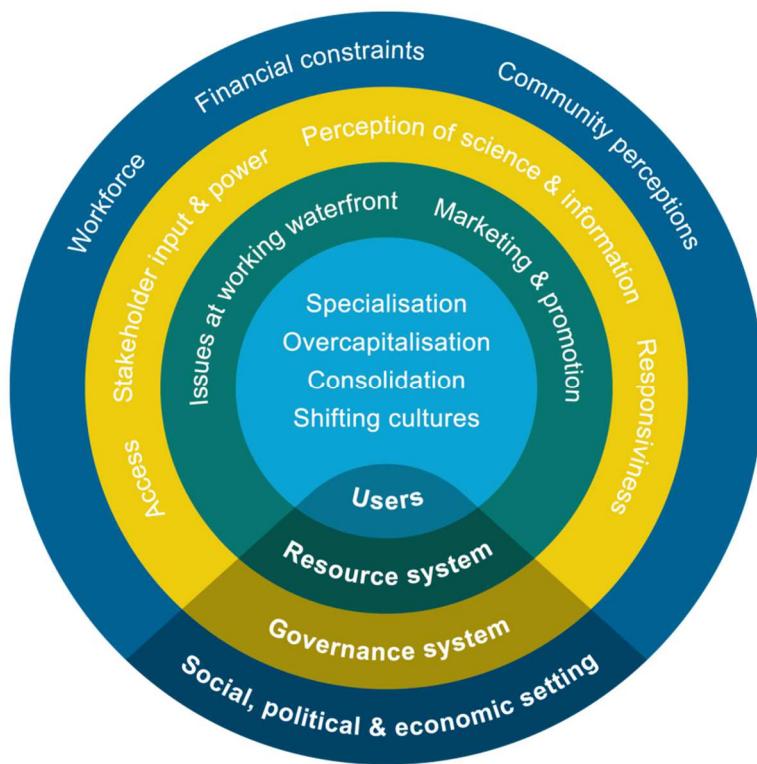
997

998

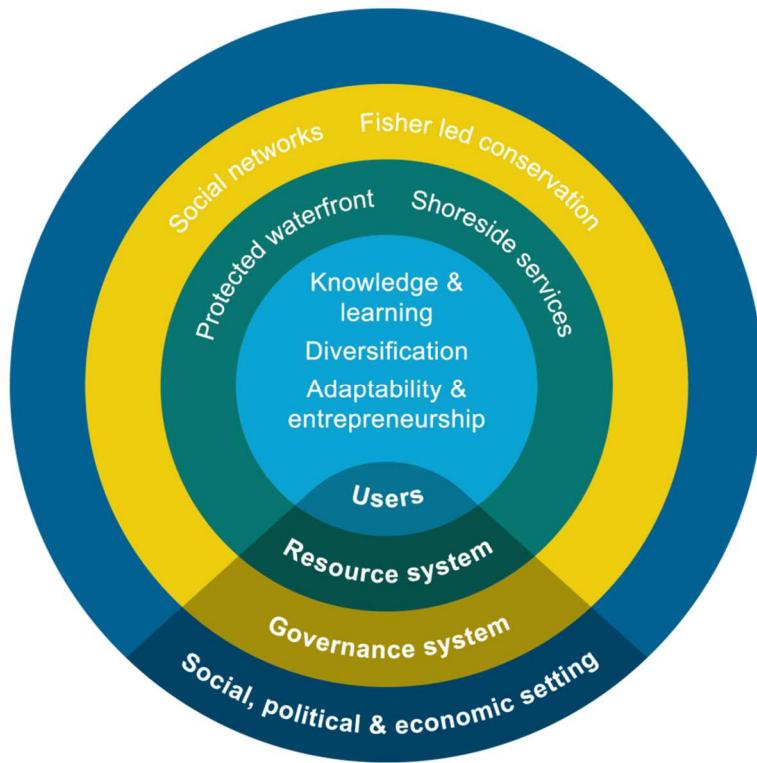

999

1000

1001


1002

1003 Figures
1004



1005
1006
1007 Figure 1. New England (US) fishing communities examined in this study. Each box contains
1008 information on landed value, landed weight, key landed species to each community, and
1009 method of data collection. In Point Judith, one workshop was undertaken with nine
1010 participants.
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039 a)

1040
1041 b)

1042

1043

1044

1045 Figure 2. Barriers (a) and enablers (b) identified within the fishery socio-ecological system
1046 across all four communities. While barriers and enablers are likely to influence adaptation
1047 processes at multiple levels of the socio-ecological system, we show where they emerge in
1048 the system most prominently.

1049 Table 1. Barriers identified from thematic analysis across the four communities (NB=New
 1050 Bedford, PJ=Point Judith, PT=Portland, ST=Stonington).

Sub-system	Barrier	Description	Communities which discussed this barrier
Users	Business consolidation	Increasing consolidation of vessels, fishing rights and on-shore services among fishing businesses.	All
Users	Specialisation & dependency	Certain fisheries have become increasingly specialised, resulting in high dependency of fishers and fishing communities on particular species, such as lobster.	ST, PT, PJ
Users	Overcapitalisation	Increasing specialisation, particularly in lobster, has resulted in large financial investments by fishers into their operations, resulting in overcapitalisation, whereby companies or individuals have more debt and equity than their assets are worth.	ST
Users	Shifting culture among fishers	A perceived shifting mindset among some younger Maine lobstermen who are focused less on long term planning and sustainability and instead on short term gains.	ST, PT
Resource system	Issues at the working waterfront	Loss of shoreside services and infrastructure at some ports constrains peoples' ability to diversify into other fisheries, while long-term continuity of the fishery and access is also threatened.	ST, PT, PJ
Resource system	Marketing and promotion of species	Issues include difficulty in accessing markets; a lack of established markets affecting the ability to sell new or emerging species; and a lack of consumer demand for new fish species hindering being able to sell them and disincentivising catching them. Food health and safety regulations can mean establishing new local direct markets with consumers is difficult.	All
Governance system	Access to alternative or emerging fisheries	Access issues centred on a number of themes: 1) high costs of permits; 2) lack of available permits at commercially viable volumes for many 'new' or emerging species; 3) allocation of permits is perceived to be unequal and problematic.	All
Governance system	Perceptions of science and information	Science and information used in management decisions are perceived to be inadequate due to: 1) neglect of other factors influencing the fishery, 2) not including fishers' knowledge, data or experiences, and 3) issues with the methods and models used to collect or interpret data and base decisions on.	All
Governance system	Responsiveness of management	Management decisions viewed as lagging in their responsiveness or being out of sync with	All

		fishers' experiences. This includes time lags between data collection and management decisions and slowness in action. In other instances, management can be overly responsive if a fishery is perceived to be declining or in crisis, when it may just be part of a natural cycle.	
Governance system	Stakeholder input and power imbalances	Issues discussed included: inputs into decision making processes were not listened to or acted upon; other actors or stakeholders had greater sway or power in influencing decision making; and there was unfairness in the balance of how fishers interests/needs were represented.	All
Social, economic and political setting	Workforce	Issues included: greying of the fleet, drug use among young workers, and issues surrounding recruitment and retention into the industry.	ST, NB, PJ
Social, economic and political setting	Wider community perceptions	NIMBYism perceptions and mindsets by those outside of fisheries on developments both onshore and offshore can hinder diversification options out of the fishery such as aquaculture, may lead to new pressures within the fishery (e.g., wind farms), or may hinder improvements or development to the working waterfront.	ST, PT, NB
Social, economic and political setting	Financial costs	Fishing and shoreside investments (e.g. facilities) are financially challenging and often involves high financial risk. This can mean diversifying fishing practices or into new fisheries is financially difficult or even unviable.	All

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076 Table 2. Enablers identified from thematic analysis across the four communities (NB=New
 1077 Bedford, PJ=Point Judith, PT=Portland, ST=Stonington).
 1078

Sub system	Enabler	Description	Communities which discussed this enabler
Users	Adaptability	Fishers and fishing businesses have always had to adjust and adapt to a dynamic marine ecosystem, meaning that they have some of the experience, skills and ability needed to overcome or buffer future challenges.	All
Users	Diversification out of the industry	Alternative incomes or other employment options outside of fishing provides diversification options. This could include aquaculture, other marine industries or investing for the future in 'something that's not just fishing'.	ST, PJ (only one)
Users	Knowledge and learning	Knowledge and learning have roles in both helping inform people's decision making, business ideas or fishing practices and also empowering people to advocate for change with decision makers.	ST, PT, NB
Resource system	Prioritising shoreside services	Shoreside infrastructure, facilities and services play a vital role in sustaining fisheries, enabling fishers to diversify into other fisheries and enabling access to other markets to process fish from elsewhere.	ST, PT, NB
Resource system	Protected working waterfront	Recognition of the value of the working waterfront, and protection of it from non-fishery related developments through historical or current regulations/city foresight, ensure there are facilities and infrastructure for the industry to use.	All
Governance system	Fishermen led conservation efforts	Actions taken by Maine lobstermen through collectively initiating and implementing conservation efforts to conserve stocks was perceived as crucial for ensuring a sustainable and resilient lobster fishery.	ST, PT
Governance system	Social networks	Social networks among different actors within or associated with fisheries systems can enable the exchange of information, skills and resources, and provide help and assistance in decision making or in times of change/difficulty.	All

1079
 1080