

# Changes in the productivity of US West Coast fish stocks

Richard J. Bell<sup>\*,1</sup>, Adrien Tableau<sup>2</sup> and Jeremy Collie<sup>2</sup>

<sup>1</sup>The Nature Conservancy, Narragansett, RI 02882

<sup>2</sup>Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882

March 20, 2023

## **1 Abstract**

2 The California Current ecosystem is highly dynamic at interannual to inter-  
3 decadal time scales. Variability has been documented in pelagic and other  
4 fish species, but climate change may be altering the historical models of  
5 variation. This study investigates changes in productivity of 31 fish stocks  
6 in the California Current ecosystem. Productivity was measured from re-  
7 cent stock assessments, as the per-capita recruitment rate, estimated with  
8 a dynamic stock-recruitment model. Contrary to expectations, the dynamic  
9 stock-recruitment model fit better than the corresponding stationary model

---

\*Corresponding author  
E-mail: rich.bell@tnc.org

10 for only seven of the 31 stocks. There was little evidence of linear drift in  
11 productivity that might be expected to result from climate change. Climate  
12 variables improved forecast accuracy for a few stocks, but there was no com-  
13 mon climate signal in productivity. One explanation of these results is that  
14 most of the west coast stocks are above their biomass levels for maximum  
15 sustainable yield, making them less susceptible to environmental variation.  
16 On the other hand, the dynamic recruitment models improved short-term  
17 forecasts for all stocks, which may be useful for quota setting. Finally, re-  
18 sults for the subset of stocks with dynamic recruitment models could be used  
19 to establish dynamic biological reference points.

## 20 **Keywords**

21 Stock productivity, spawner-recruit models, stock assessment, time-varying  
22 parameters, US west coast, groundfish

## 23 **1 Introduction**

24 Climate variability and change have a large impact on natural marine re-  
25 sources (Hollowed et al., 2013; Hutchings et al., 2012). The main ways in  
26 which climate impacts fish stocks is by changes in distribution, changes in  
27 phenology, and changes in productivity. Changes in distribution have been  
28 demonstrated for fish stocks all over North America and beyond (Cheung

29 et al., 2008; Nye et al., 2009; Perry et al., 2005; Pinsky et al., 2013) while  
30 changes in seasonal timing have been recorded for a range of marine and  
31 anadromous species (Henderson et al., 2017; Langan et al., 2021; Otero et al.,  
32 2014). Productivity refers to a fish stock's population growth and is a func-  
33 tion of recruitment, survival, and individual growth (Shelton et al., 2006;  
34 Silvar-Viladomiu et al., 2022; Tableau et al., 2019). Productivity is impacted  
35 by density-dependent factors such as abundance and age-structure and by  
36 density-independent factors such as the environment. The physical medium  
37 of water can exert a strong regulatory function on fundamental aspects of  
38 fish biology such as metabolism (Manderson, 2016). Through these biolog-  
39 ical functions, the environment can therefore regulate where an individual  
40 can live, how well it will survive and what capacity it has for reproduction  
41 thereby determining its productivity in a given year.

42 On the west coast of the United States, a number of fish stocks show  
43 evidence of environmental influence. Pacific sardines and northern anchovies  
44 have varied substantially over time, often in the absence of fishing (Lindegren  
45 et al., 2013; Schwartzlose et al., 1999). Studies have shown that changes in  
46 water temperature and upwelling driven by large scale climate cycles, com-  
47 bined with density-dependent effects are major factors regulating abundance.  
48 The environment is considered such an important driver for Pacific sardines  
49 that the management of the stock is one of few in the world that specifically  
50 includes a temperature time-series (Lindegren and Checkley, 2012; PFMC,  
51 2015). Sablefish have exhibited a relationship with copepod abundance and

52 sea surface height under the hypothesis that changes in atmospheric-ocean  
53 circulation impact the available prey items for early life stages and cross shelf  
54 transport to nursery areas (McFarlane and Beamish, 1992; Johnson et al.,  
55 2016; Tolimieri et al., 2018). The relationship is strong enough that time  
56 series of copepod abundance and sea surface height are directly evaluated  
57 in the stock assessment model (Johnson et al., 2016; Kapur et al., 2021).  
58 Recently, a marine heat wave (“The Blob”) had major impacts on the Cali-  
59 fornia current ecosystem resulting in distribution shifts, an influx of southern  
60 species, Dimoic acid outbreaks, fishery closures and a spike in whale entan-  
61 glements with fishing gear, showing the impacts changes in the environment  
62 can have on marine species (Cavole et al., 2016; Chasco et al., 2022; Jacox  
63 et al., 2018; Peterson et al., 2016; Santora et al., 2020). In addition, research  
64 recommendations from the groundfish assessments suggest some synchrony  
65 among rockfish recruitment at certain spatial and temporal scales (Field  
66 et al., 2021; Stachura et al., 2014) and the California Scorpionfish assess-  
67 ment recommended further research into a potential relationship with sea  
68 surface temperature (Monk et al., 2017). Understanding how the environ-  
69 ment influences natural marine resources can be important for sustainable  
70 management.

71 The California current ecosystem is a large upwelling system spanning  
72 most of the west coast of the United States (Harvey et al., 2022). The cold  
73 water current flows from north to south resulting in the entire coastline being  
74 relatively well connected. Many stocks are managed as single populations

75 along the entire coast, though some because of lack of more detailed data.  
76 The ecosystem is heavily influenced by large-scale, atmospheric-ocean cycles  
77 such as El Nino and the Pacific Decadal Oscillation that alter temperature,  
78 stratification, winds and upwelling. These changes affect nutrient availability,  
79 prey density and advection towards or away from nursery areas (Harvey et al.,  
80 2022). As the environment often has the largest impact on the early life stages  
81 of natural marine resources (Houde, 1987), much of the climate and fisheries  
82 work is focused around the recruitment process. Our goal was to evaluate if  
83 there have been changes in the productivity of commercial fish stocks along  
84 the west coast of the United States by examining the recruitment process.

85 We tested for changes in productivity with a time-varying Ricker stock-  
86 recruitment model (Peterman et al., 2003; Dorner et al., 2008; Silvar-Viladomiu  
87 et al., 2022). The inputs for the model are the spawning stock biomass and  
88 recruitment outputs from an age-structure stock assessment. While the prod-  
89 ucts are modeled data, they represent the best current sources of spawning  
90 stock biomass and recruitment information integrated across the entire pop-  
91 ulation (Silvar-Viladomiu et al., 2022). The environment is rarely included  
92 in assessment models (Essington et al., 2016); however, it is possible that  
93 the output of an assessment model can contain the signature of the impact  
94 of the environment. For stocks with age-structured assessments (relatively  
95 small number, but high number by volume of total landings), changes in  
96 weight-at-age, fecundity-at-age and the annual age-structure are directly in-  
97 corporated into the model. Annual changes in these inputs are often the

98 result of changes in the environment. The spawning stock biomass and re-  
99 cruitment estimates from an assessment model can therefore show the impact  
100 of an environmental change, without the assessment directly incorporating  
101 it, or explaining it. Lack of inclusion of an environmental term in an age-  
102 structured assessment does not really change the estimates of biomass (Bell  
103 et al., 2018), but lack of an environment driver in the model can change the  
104 understanding of the drivers of stock abundance or stock status.

105 We examined changes in productivity, the reproductive potential of a  
106 stock, for a range of species managed by the Pacific Fisheries Management  
107 Council with a linear state-space modeling approach. The goals of the study  
108 were first to determine if stock productivity varied over time for thirty-one  
109 commercially important west coast species and to see if the time-varying  
110 productivity of each stock exhibited any directionality or was related to large-  
111 scale environmental drivers. Once the time-varying productivity time series  
112 were estimated, we investigated whether there were any common patterns  
113 among the different species that might indicate large-scale environmental  
114 forcing and if stock status may be related to whether a stock exhibited time-  
115 varying or time-invariant productivity.

## 116 **2 Methods**

117 To examine changes in stock productivity and investigate potential drivers  
118 and patterns across the different species, the study was broken into four com-

119 ponents. 1) To determine if productivity changed over time, we fit a time-  
120 varying Ricker model and a time-invariant (standard) Ricker model to all  
121 thirty-one commercially important stocks. The best model was determined  
122 with a likelihood ratio test, however, as a separate analysis, we also inves-  
123 tigated whether the time-varying or time-invariant Ricker model was better  
124 able to forecast recruitment one to three years in the future (termed fore-  
125 cast accuracy). 2) As a means to understand potential drivers of changes in  
126 productivity, we incorporated a linear trend and a range of climate variables  
127 into the time-varying Ricker model and compared the results to the best fit  
128 model from component one (climate drivers). 3) Broad scale patterns in pro-  
129 ductivity across the thirty-one stocks were examined with Dynamic Factor  
130 Analysis. And 4) to determine if fishing or depletion was a potential driver,  
131 we investigated whether there was a relationship between stock status and  
132 variable productivity.

## 133 **2.1 Assessment models**

134 Spawning stock biomass (SSB) and recruitment from age-structured stock  
135 assessments were used as the input for the analysis. While the output of  
136 an assessment is an estimate, it represents the best estimates of SSB and  
137 recruitment available, integrating multiple data sources including fisheries  
138 independent and fisheries dependent data to produce time series of SSB and  
139 recruitment (Tableau et al., 2019; Silvar-Viladomiu et al., 2022). The most  
140 up-to-date stock assessments for commercial groundfish managed by the Pa-

<sup>141</sup> cific Fisheries Management Council were taken from the Council website in  
<sup>142</sup> the winter of 2022.

<sup>143</sup> <https://www.pcouncil.org/stock-assessments-star-reports-stat-reports-rebuilding-analyses-terms-of-reference/groundfish-stock-assessment-documents/>

<sup>145</sup> All included assessments were run in Stock Synthesis (Methot and Wetzel,  
<sup>146</sup> 2013) and included a Beverton-Holt stock recruitment function within the  
<sup>147</sup> assessment model. Only models that included non-deterministic recruitment  
<sup>148</sup> were used, however. Non-deterministic recruitment means that the estimates  
<sup>149</sup> of recruitment could deviate from the stock-recruitment function as recruit-  
<sup>150</sup> ment deviations, within certain constraints. The constraints typically de-  
<sup>151</sup> fined a distribution for the recruitment deviations with a mean of zero and a  
<sup>152</sup> specified standard deviation regulating how much the recruitment deviations  
<sup>153</sup> could deviate from the stock-recruitment function. The recruitment devia-  
<sup>154</sup> tions enable the estimates of recruitment to be informed by the survey-at-age  
<sup>155</sup> and catch-at-age data and are largely unconstrained by the stock-recruitment  
<sup>156</sup> function. The standard deviation of recruitment deviations was examined to  
<sup>157</sup> ensure recruitment estimates were able to fully deviate from the Beverton-  
<sup>158</sup> Holt stock-recruitment curve included in the assessment model when listed  
<sup>159</sup> in the assessment report. When not reported, a visual inspection of the  
<sup>160</sup> spawning stock biomass and recruitment was conducted. In many cases the  
<sup>161</sup> assessments estimated biomass going back to the late 1800s-early 1900s, how-  
<sup>162</sup> ever length or age data was not collected till the later half of the 1900s. The

<sup>163</sup> state-space analysis used only estimates of spawning stock biomass (SSB)  
<sup>164</sup> and recruitment that were informed by length or age data with starting years  
<sup>165</sup> varying between 1954 and 1997 depending on the stock. For most stocks in  
<sup>166</sup> the study, start dates were in the 1960s or 1970s. While most assessments  
<sup>167</sup> output SSB in weight, some output it in number of eggs. As a simple means  
<sup>168</sup> of scaling all units to biomass, the numbers of eggs were converted to weight  
<sup>169</sup> by dividing the total number of eggs each year by one million. The SSB-egg  
<sup>170</sup> scaling factor simply resulted in the productivity term for all species being  
<sup>171</sup> within the same range.

## <sup>172</sup> 2.2 Climate data

<sup>173</sup> Eight climate variables were examined to determine if they had a relation-  
<sup>174</sup> ship with changes in stock productivity (Table 1 & Figure 1). All variables  
<sup>175</sup> were available from the California Current Ecosystem Status Report (Har-  
<sup>176</sup> vey et al., 2022). For all variables, monthly values were averaged to produce  
<sup>177</sup> an annual mean. Sea surface temperature was obtained for three different  
<sup>178</sup> latitudes (33°N, 39°N, 44°N) and matched with the location of the stock. If  
<sup>179</sup> the stock spanned the entire west coast the middle latitude was selected. To  
<sup>180</sup> ensure independence, all variables were examined for correlation. Variables  
<sup>181</sup> with a correlation coefficient greater than 0.7 ( $r \geq 0.7$ ) were not included in  
<sup>182</sup> the time-varying stock-recruitment model.

183 **2.3 Time-varying productivity: component I**

184 Potential changes in productivity were examined with a time-varying Ricker  
185 model (Peterman et al., 2000, 2003; Collie et al., 2012; Britten et al., 2016).  
186 In the standard Ricker model, the number of recruits at time  $t$  ( $R_t$ ) is equal  
187 to the spawning stock biomass at time  $t-1$  ( $SSB_{t-1}$ ) times the density-  
188 independent, productivity term ( $\alpha$ ) and modified by the density-dependent  
189 term ( $\beta$ ) (Quinn and Deriso, 1999). The model assumes that productiv-  
190 ity, the slope at the origin,  $\alpha$  ( $\alpha = e^a$ ), is stationary and that recruitment  
191 varies only with SSB. However, studies have demonstrated that recruitment  
192 variation is more than simply a function of SSB and can often be heavily  
193 influenced by the environment (Szuwalski et al., 2015).

194 The time-varying Ricker model was fit within a state-space framework  
195 by maximum likelihood using a Kalman filter. State-space models are a  
196 means of identifying the true state of a quantity while accounting for the  
197 observation error in the quantity (Peterman et al., 2000; Silvar-Viladomiu  
198 et al., 2022). All observations are a combination of their true state plus some  
199 observation error. The state-space model uses two equations. An observa-  
200 tion equation, the linearized Ricker model, accounts for observation error by  
201 explicitly modeling the variance.

$$\ln \left( \frac{R_t}{S_{t-1}} \right) = a_t - bS_{t-1} + v_t \quad (1)$$

202

$$a_t = a_{t-1} + w_t^a \quad (2)$$

$$v_t \sim N(0, V) \quad (3)$$

203

$$w_t^a \sim N(0, W_a) \quad (4)$$

204 The process equation models the true state of the quantity, in this case,  
205 as a random walk. The observation error ( $v_t$ ) and random walk parameter  
206 ( $w_t$ ) are normally distributed with mean zero. The model estimates two  
207 parameters: the variance of  $v_t$  ( $V$ ) and the variance of the random walk  
208 ( $W_a$ ) for the time varying value ( $a_t$ ) that varies as a random walk capturing  
209 potential changes in the productivity of the stock. The changes could be due  
210 to changes in the external environment such as upwelling or prey availability  
211 or to changes in the biology of the fish themselves (changes in fecundity,  
212 spawner success, etc...) that could be influenced by the environment or other  
213 stressors. The random walk captures the empirical changes in the parameters  
214 directly from the input time series.

215 To improve the robustness of the analysis, we followed extensions of the  
216 state-space method (Peterman et al., 2000; Dorner et al., 2008) made by  
217 Tableau et al. (2019). The state-space framework includes both measure-  
218 ment error and process error in an attempt to model the true state of a  
219 parameter. One of the challenges when using state-space models is parti-  
220 tioning the total error between measurement error (noise) and process error  
221 (signal). Following a similar study on the US Northeast Shelf (Tableau et al.,  
222 2019), we pooled the available data to estimate a single signal-to-noise ratio  
223 (snr), the ratio of process error to measurement error, across all species to

224 produce robust estimates of productivity. The method estimates separate  
 225 error terms for all species, but estimates a single snr for all species. Differ-  
 226 ent populations of the same species (Manderson, 2008; Minto et al., 2013)  
 227 or groups of different species in the same area can exhibit similar ratios of  
 228 process error to measurement error (Tableau et al., 2019). Parameters of all  
 229 stocks were estimated together with a single, signal-to-noise ratio (snr), the  
 230 ratio of process-error variance ( $W_a$ ) to observation-error variance ( $V$ ). The  
 231 same model with the linear Ricker model as the observation equation and  
 232 the random walk as the process equation was used (Equation 1 & 15), but it  
 233 was formulated in matrix form.

$$Y_t = F_t X_t + v_t \text{ with } v_t \sim N(0, V) \quad (5)$$

234

$$X_t = G_t X_{t-1} + w_t \text{ with } w_t \sim N(0, W) \quad (6)$$

235 Within the matrix form,  $Y_t = \ln\left(\frac{R_{i,t}}{S_{i,t-1}}\right)$  for each stock  $i$  from 1,...,I. The time  
 236 varying productivity terms for each stock ( $a_{i,t}$ ) and time-invariant density-  
 237 dependent term for each stock ( $\beta_i$ ) are included as  $X_t$ . The linearized Ricker  
 238 model is  $F$  which includes the SSB for each stock  $i$ . Matrix  $G$  is the identity  
 239 matrix linking the process equation to the observation equation. The total  
 240 variance in the observations  $\ln\left(\frac{R_{i,t}}{S_{i,t-1}}\right)$  is partitioned into three sources, the  
 241 observation error ( $v_t$ ), the process error ( $w_t$ ) and the density dependence  
 242 from SSB for each stock. The error vectors follow the multivariate normal  
 243 distributions defined by the covariance matrices  $V$  (dimension IxI) and  $W$

244 (dimension  $2I \times 2I$ ). Matrix  $W$  is the variance determining the range of the  
245 random walk ( $w_t$ ).

246 To examine the potential for model misspecification a time-varying Beverton-  
247 Holt stock recruitment function was fit to the spawning stock biomass and  
248 recruitment information and compared to the output of the time-varying  
249 Ricker model (supplemental material).

250 **2.4 Climate drivers: component II**

251 In addition to the standard, time-invariant Ricker model, and the time-  
252 varying Ricker model fit with a common signal-to-noise-ratio within the state-  
253 space framework fit to examine changes in productivity in component one,  
254 the study fit an additional model variant to examine large-scale drivers. In  
255 component two, We fit a time-varying Ricker model that included a drift or  
256 climate term to explicitly incorporate either a linear trend or climate sig-  
257 nal within the state-space framework. The drift or climate term ( $c_j$ ) was  
258 included in the process equation (eq 7) where  $H_{j,t-lag}$  is the environmental  
259 time series,  $j$  defines which time series and  $t - lag$  determines which lag is  
260 examined. The drift term was also modeled as  $c_j$  and the time series  $H$  was a  
261 series of ones. All other terms are as defined in eq 15. Not all environmental  
262 time series were available for the full length of the SSB and recruitment time  
263 series. The models were fit for only the years available for the shortest of the

264 environmental or SSB-R time series.

$$a_t = a_{t-1} + c_j H_{t-lag} + w_t^a \quad (7)$$

265

$$w_t^a \sim N(0, W_a) \quad (8)$$

266 All the time-varying models (components I and II) were fit with the package  
267 dlm (Dynamic Linear Modeling) in the software package R (Petris et al.,  
268 2009).

## 269 2.5 Model comparison

270 Model comparison was done with two techniques: a likelihood ratio test and  
271 an evaluation of forecast accuracy (Tableau et al., 2019). The two techniques  
272 are complementary, but provide different information. The likelihood ratio  
273 test compares the full time-series of the estimated  $\ln \frac{R}{S}$  from the different  
274 models (e.g. time-invariant to time-varying) with a  $\tilde{\chi}^2$  distribution to de-  
275 termine the overall best fit model. The forecast accuracy test was designed  
276 to determine whether the time-invariant or time-varying model could better  
277 forecast  $\ln \frac{recruits}{spawner}$  one to  $d$  years into the future. It does not test for a sig-  
278 nificant difference. The test uses only the data up to time step  $t$  to predict  
279  $\ln \frac{recruits}{spawner}$   $d$  time steps into the future. The test compares forecast from the  
280 time invariant model to the known value of  $\ln \frac{recruits}{spawner}$  and the forecast from

281 the time-varying model to the known value.

$$Acc_d = \frac{\sum_{t=T-15}^{T-d} (F_{t+d|t,null} - Y_{t+d,obs})^2 - \sum_{t=T-15}^{T-d} (F_{t+d|t,alt} - Y_{t+d,obs})^2}{\sum_{t=T-15}^{T-d} (F_{t+d|t,null} - Y_{t+d,obs})^2} \quad (9)$$

282 Forecast accuracy ( $Acc$ ) is equal to the forecast ( $F$ ) from the time invariant  
283 (null) model minus the observed value ( $Y$ ) subtracted from the forecast from  
284 the time varying (alt) model minus the observed value divided by the forecast  
285 from the time invariant model minus the observed value.

286 The difference between the known and predicted value (residuals) for each  
287 model averaged over the last fifteen years was examined to determine the  
288 best model. The last fifteen years were selected because the early part of the  
289 time-series can have extremely large confidence intervals making comparisons  
290 challenging. The likelihood ratio test examines which model provides the  
291 best fit to the data over the entire course of the time-series. The forecast  
292 accuracy test examines how well the model can predict  $d$  time steps into the  
293 future. It is possible that the model which provides the best fit over the  
294 entire time-series may not provide the best forecast one, two, or three years  
295 in the future.

## 296 2.6 Dynamic Factor Analysis: component III

297 A number of the west coast stock assessments recommended examining if dif-  
298 ferent stocks exhibited similar patterns over time. Dynamic Factor Analysis  
299 (DFA) was used to examine if there were common trends across the produc-

300 tivity time-series of the stocks (Zuur et al., 2003a,b). DFA distills multiple  
 301 time series into common underlying state processes or trends within a state-  
 302 space model. The method is particularly useful for examining non-stationary,  
 303 short time-series. A state process, represented as a random walk was fit to  
 304 the productivity time series. The productivity time series were standardized  
 305 by subtracting the mean and dividing by the standard deviation. We fit from  
 306 one to four trends and used AICc to determine the most appropriate number  
 307 of trends. The process error equation within the DFA state-space model was  
 308 a random walk.

$$x_{t+1} = x_t + w_t \text{ with } w_t \sim MVN(0, I) \quad (10)$$

309 The  $x$ 's are the common trends (from one to four) among the different time  
 310 series with multivariate normal (MVN) process error. The  $I$  matrix is the  
 311 identity matrix with the same dimensions as the number of trends. The time-  
 312 varying productivity time-series for each stock ( $a_t$ ) are linear combinations of  
 313 the user defined number of state processes ( $x$ ) (the number of trends) times  
 314 the  $Z$  matrix with measurement error  $v$ .

$$a_{t+1} = Zx_t + v_t \text{ with } v_t \sim MVN(0, R) \quad (11)$$

315 The  $Z$  matrix represents the contribution of each common trend to the orig-  
 316 inal observed time series for each species and is termed the factor loadings.  
 317 If a stock has a large, positive loading in the  $Z$  matrix, its productivity time-

318 series is very similar to the common trend while a large, negative loading  
319 indicates the productivity time-series is opposite the common trend. Stocks  
320 with small loadings are generally not well explained by the common trend.  
321 To maximize convergence, the variance-covariance structure was constrained  
322 to estimate different variances along the diagonal, but to not have any off-  
323 diagonal terms. The DFA was fit in the R package MARSS (Holmes et al.,  
324 2013, 2014).

## 325 2.7 Productivity and Stock Status: components IV

326 We tested if the nature of stock productivity (time-varying or constant) was  
327 related to stock status with a logistic regression. Stock status, defined as  
328  $\frac{B}{B_{msy}}$ , was regressed against productivity defined as a binary term: time-  
329 varying or constant. Stock status was taken directly from the appropriate  
330 stock assessment or taken from the National Marine Fisheries Service Status  
331 of the Stock report in the appropriate year for each stock (NMFS, 2021). The  
332 stocks and productivity time series from this study were combined with the  
333 stocks and productivity time series from a study investigating stock produc-  
334 tivity on the US Northeast Shelf with very similar methods (Tableau et al.,  
335 2019).

336 **3 Results**

337 In total, time-varying productivity was estimated for thirty-one stocks man-  
338 aged by the Pacific Fisheries Management Council (Table 2). The model  
339 with a single, signal-to-noise ratio converged and produced good results (snr  
340 = 0.40) (Figure S2). In general, the estimated productivity varied over time,  
341 but none of the stocks showed clear increasing or decreasing trends, except  
342 for a possible decrease in CA Blue-Deacon rockfish and CA Quillback rock-  
343 fish. Across the stocks, the productivity term exhibited a range from 0.25  
344 on the low end and up to 3.0 at the high end. This number is the range  
345 in the number of recruits that a metric ton of spawning stock biomass on  
346 a logarithmic scale could produce over the time-series after accounting for  
347 SSB. For many of the stocks, the variability in productivity was not partic-  
348 ularly large and/or the confidence intervals were quite wide indicating that  
349 the more parsimonious time-invariant model fit the data better. Only seven  
350 of the thirty-one stocks were better fit with the time-varying model based on  
351 the likelihood ratio test (Figure 2).

352 The time-varying Ricker and time-varying Beverton-Holt models esti-  
353 mated very similar patterns in productivity, the slope at the origin of the  
354 stock recruit curve (Figure S1). The scale of the estimates differed depending  
355 on the species, but the overall pattern between the two models was generally  
356 the same. The current study is explicitly examining the time-varying pat-  
357 terns in productivity and not the absolute value so the difference in scale for

358 some species does not alter the overall results.

359 We fit a DFA to discern if there were common patterns across all stocks.

360 The model with four common trends provided the best fit to the productivity

361 time series based on AICc. Overall the trends explain a limited amount of

362 the variability in the majority of the productivity time series. The factor

363 loadings were relatively low for most stocks with only a handful accounting

364 for more than 20% of the variability. Trend one had the most support. It

365 was lowest in the early part of the time series and then generally increased to

366 the early 1990s (Figure 3). It then declined and was low in the early 2000s

367 before increasing to some degree in the 2010s. The productivity time series

368 of species loaded positively and negatively, but generally the magnitude of

369 the loadings was low for the majority of species. Trend two began with an

370 increasing trend up to the early 1980s, then declined till the early 2000s

371 before increasing to the present (Figure S3). All the factor loadings were

372 low except for Longspine Thornyhead. Trend three was highest in the late

373 1960s - early 1970s before declining till the mid 1980s (Figure S4). It then

374 increased through the 1990s before slowly declining. Longspine Thornyhead

375 again had a very strong loading while the majority of the other species were

376 low. Trend four was highest in the early part of the time series and generally

377 declined till the late 1990s before largely increasing to the end of the time

378 series (Figure S5). The factor loadings were again relatively low. The DFA

379 identified four common trends, but the majority of species loaded relatively

380 weakly on the trends indicating that there were not strong patterns across

381 all the species.

382 The gain in forecast accuracy examined the ability of the time-varying and  
383 time-invariant model to predict the  $\ln \frac{\text{recruits}}{\text{spawner}}$  one to three years forward using  
384 only the information available up to the current time step. We examined this  
385 only over the last fifteen years of the time-series. A negative value indicates  
386 that the forecast from the time-invariant model performed better than the  
387 time-varying model. Across all stocks, the time-varying model provided a  
388 better forecast than the time-invariant model one year ahead and for most  
389 stocks, two years ahead as well (Figure 4). At the two year ahead mark, two of  
390 thirty-one stocks were slightly negative (Cabezon OR, -1% & Widow rockfish,  
391 -5%) while all others were positive. The gain in forecast accuracy with the  
392 time-varying model declined with the three year forecast. The forecasts for  
393 the seven stocks in which the time-varying model was significantly better  
394 than the time-invariant model based on the likelihood ratio test, had better  
395 forecasts one, two and three years ahead.

396 The inclusion of the drift or climate variable within the state-space model  
397 was also tested with both the likelihood ratio test and the gain in forecast  
398 accuracy test. The best fitting model (base model) for each stock from above  
399 (time-varying or time-invariant) was tested against a time-varying model  
400 that included a drift or climate term (Figure 5). The likelihood ratio test  
401 determines if the base model or the time-varying model with the climate  
402 variable provided the best fit to the full time series of  $\ln \frac{\text{recruits}}{\text{spawner}}$ . The forecast  
403 accuracy test examined if the base model or the time-varying model with

404 the climate variable provided the better one year ahead forecast of  $\ln \frac{\text{recruits}}{\text{spawner}}$   
405 given only the SSB and recruits up to time  $t$  and the climate variable up  
406 to time  $t + 1$ . While the future value of the climate variables can not be  
407 known, we assumed the future climate variable was known perfectly in order  
408 to understand the full potential of each climate variable to accurately forecast  
409 changes in  $\ln \frac{\text{recruits}}{\text{spawner}}$ . The North Pacific High and the Northern Oscillation  
410 Index were highly correlated with the PDO ( $r \geq 0.7$ ) and not included in  
411 further analyses. All other variables had correlations less than 0.7. The  
412 North Pacific Gyre Oscillation metric was significant for black rockfish CA  
413 and CA scorpionfish and is not displayed.

414 Six stocks had better forecasts when including the drift term based on  
415 the gain in forecast accuracy test. The majority of stocks were negative indi-  
416 cating that the drift term made the forecast worse. Based on the likelihood  
417 ratio test examining the full time series as indicated above, the inclusion of  
418 the drift term in the time-varying model for Canary rockfish provided a sig-  
419 nificantly better fit than the time-invariant base model. The Oceanic Nino  
420 Index improved the forecast for ten stocks and the likelihood ratio test found  
421 that the models of five stocks were significantly better when including ONI  
422 over the base model. The Pacific Decadal Oscillation made improvements  
423 in forecasts for fourteen stocks and significantly improved the full time se-  
424 ries fit based on the likelihood ratio test for eight stocks. The time-varying  
425 model that included the PDO fit the  $\ln \frac{\text{recruits}}{\text{spawner}}$  better than the time-invariant  
426 base model for some stocks such as Northern Lingcod based on the likeli-

427 hood ratio test (full time series), but the time-invariant base model provided  
428 better forecasts one time step ahead. Sea Surface Temperature similarly,  
429 made modest improvements in forecasts for eleven stocks, and four stocks  
430 were significantly better fit with the time-varying climate model. Models  
431 with the Habitat Compression Index were significantly better based on the  
432 likelihood ratio test for four stocks and provided better forecasts for fifteen  
433 stocks. The Mean Heat Wave variable improved forecasts for sixteen stocks  
434 and was significantly better based on the likelihood ratio test for three stocks.  
435 In general, the inclusion of the climate variables improved the one year ahead  
436 forecasts for some stocks, but the results varied considerably from stock to  
437 stock. A few stocks exhibited considerably better forecasts across a range of  
438 climate drivers such as Sand dab and Southern Lingcod while the inclusion  
439 of climate drivers in the forecast for other stocks such as Blue-deacon OR  
440 and CA Quillback made the forecasts much worse.

### 441 **3.1 Productivity and Stock Status**

442 The logistic regression fit the data well and was significant (Table 3). Stocks  
443 with biomass above their reference points (not overfished) tended to exhibit  
444 time-invariant productivity while stocks that were below their reference point  
445 tended to have time-varying productivity. The transition between time-  
446 varying and time-invariant productivity occurred around  $\frac{B}{B_{msy}} \approx 1$  (Figure  
447 6). Gulf of Maine Haddock in the Northeast had time-varying productivity  
448 (Tableau et al., 2019), but its status  $\frac{B}{B_{msy}}$  was over seven. Haddock was a

449 highly influential outlier and was removed from the analysis. Haddock were  
450 heavily exploited for much of their time series and only recently surged well  
451 above their biomass reference point (NEFSC, 2019). It is possible that they  
452 were best fit with time-varying productivity because of the long period of  
453 time at low biomass.

## 454 4 Discussion

455 As climate change continues to impact the ecosystem, it is important to un-  
456 derstand how it will affect natural marine resources. While it is clear that  
457 species are shifting their distributions in response to changes in the envi-  
458 ronment (Cheung et al., 2008; Nye et al., 2009; Pinsky et al., 2013; Perry  
459 et al., 2005), measuring and accounting for changes in productivity is more  
460 challenging. Work to understand the drivers of recruitment go back over a  
461 century (Hjort, 1914), however, environment-recruitment relationships rarely  
462 hold up over time (Myers, 1998) and few population models explicitly incor-  
463 porate environmental drivers (Skern-Mauritzen et al., 2016). In recognition  
464 of the resulting changes in productivity due to climate-driven regime shifts,  
465 a handful of stock assessments utilize different time series of data that re-  
466 flect the current productivity regime (tanner crab (Stockhausen et al., 2013),  
467 groundfish (NPFMC, 2012)). Other assessment models have simply split  
468 certain time-series of data, effectively inserting a shift in productivity. For  
469 other stocks there is recognition that environmental drivers are important,

470 but they have been included in the management decisions process instead of  
471 explicitly included in the population model (ASMFC , Eckert et al.(2017).

472 In this study, we examined stock productivity, the reproductive potential,  
473 to determine how it had changed over time and if specific climate factors may  
474 be driving the changes. Of the thirty-one stocks examined on the west coast  
475 of the United States, less than a quarter were found to have time-varying  
476 productivity. The time-series of productivity were quite varied and we found  
477 relatively weak common patterns across them. Only one stock exhibited a  
478 monotonically increasing or decreasing trend suggesting that while produc-  
479 tivity was changing, the environment was not consistently driving stocks to  
480 low abundance or high abundance. This is in contrast to some stocks on  
481 the US Northeast Shelf, such as many flatfish, that show a consistent de-  
482 cline in productivity (Tableau et al., 2019). All the estimated time-varying  
483 productivity time-series exhibited periods of declines and increases. Three-  
484 quarters of the stocks were better fit with a time-invariant productivity term,  
485 likely due to this oscillation about a central tendency, general low levels of  
486 variability and/or large confidence intervals.

487 Many of the fish on west coast are long lived species (> 100 yrs) with much  
488 of the biomass in the older year classes (Kolora et al., 2021). While there  
489 is certainly recruitment variability, the variability might be less pronounced  
490 than that of stocks that have a truncated age-structure and a large amount  
491 of the SSB is less-fecund, first-time spawners as can be the case for some  
492 East Coast stocks (NEFSC, 2019). The logistic regression indicated that the

493 more heavily a stock is exploited, the more likely it is to have time-varying  
494 productivity. As has been found in previous studies, exploitation tends to  
495 increase variability (Brander, 2005; Anderson et al., 2008; Hsieh et al., 2006).  
496 In this study, we found that the reproductive potential of stocks is more  
497 variable and less connected to spawning stock biomass when the biomass was  
498 low. This makes exploited stocks more likely to track with environmental  
499 drivers or exhibit unstable population dynamics due to the changing life  
500 history rates of an age truncated population (Anderson et al., 2008). The  
501 stocks tended to transition from time-varying to time-invariant productivity  
502 roughly when biomass was at the reference point, providing strong support  
503 for maintaining stocks at or above the biomass reference point.

504 Differences between the coasts might also be related to different oceano-  
505 graphic drivers. On the East Coast, there have been some extreme warm  
506 events such as occurred in 2012 (Mills et al., 2013), but in general the water  
507 temperature is simply rapidly warming (Friedland and Hare, 2007; NEFSC,  
508 2021), and climate drivers such as the Atlantic Multidecadal Oscillation con-  
509 tinue to increase (Nye et al., 2014). The west coast recently experienced an  
510 extreme marine heat wave (“The Blob”) (Jacox et al., 2018), but there is a  
511 somewhat less pronounced warming trend, and strong climate drivers such  
512 as El Nino and the PDO. These large-scale climate drivers still exhibit shifts,  
513 though possibly different than the past. The fact that some of the major west  
514 coast climate drivers still move between the positive and negative phases may  
515 help explain why the stock productivity time-series generally varied without

516 trend and many stocks were better fit with a time-invariant term.

517 Though the majority of stocks were better fit with a time-invariant model  
518 (base model), the inclusion of the climate drivers did show some significant  
519 relationships. Blue rockfish exhibited a significant relationship with ONI  
520 and the marine heat wave index. A CALCOFI report indicated that blue  
521 rockfish is a macrozooplankton feeder and had reduced condition factor and  
522 gonadal indices during warm water events suggesting a possible mechanism  
523 with high SST, deeper thermocline and reduced upwelling as might occur  
524 during an El Nino event or a marine heat wave (VenTresca et al., 1995). The  
525 more northerly stock of blue rockfish assessed with deacon rockfish, however,  
526 did not exhibit a relationship with any of the climate drives (the climate  
527 drivers made the forecasts worse). The lack of relationships suggest that  
528 the decreased prey fields due to the decline in upwelling hypothesis may  
529 not be applicable in the northern part of the range. The biomass of the  
530 northern population was also above the biomass reference point, which could  
531 make it less likely to track with climate drivers. Arrowtooth flounder was  
532 an exception in that the biomass was well above its reference point, but still  
533 exhibited time-varying productivity and the model was improved when in-  
534 cluding climate drivers. A number of studies have found strong influence of  
535 climate drivers on Arrowtooth flounder in the North Pacific (Hare and Man-  
536 tua, 2000; Hunsicker et al., 2013; Wilderbuer et al., 2010), with changes in  
537 water temperature and availability of the cold pool habitat showing a rela-  
538 tionship with recruitment. The inclusion of SST and the habitat compression

539 index improved the model fits in this study suggesting that similar mecha-  
540 nisms could operate on the west coast. The inclusion of climate drivers in  
541 the California Scorpionfish model showed improved forecasts across a range  
542 of environmental covariates as well as an overall improvement in the stock-  
543 recruitment model. While there have been limited studies on the drivers of  
544 Scorpionfish recruitment variability, this study, combined with an environ-  
545 mental relationship noted in the most recent stock assessment (Monk et al.,  
546 2017) indicates that more investigation may be warranted. Additionally, pre-  
547 vious work found correlations between Splitnose rockfish growth and several  
548 drivers including the PDO and upwelling (Black et al., 2005) suggesting that  
549 warm, low primary productivity periods reduce growth and may reduce stock  
550 productivity given the relationship found with the climate variables PDO and  
551 HCI.

552 While the inclusion of the climate drivers explained some of variability in  
553 productivity, they did not capture it all. As this was a broad meta analysis,  
554 we may not have included the correct driver for all stocks, or may not have  
555 included drivers in the correct manner. For example, sablefish has exhibited  
556 relationships with sea surface height and copepod abundance likely related to  
557 upwelling, nutrient abundance and stratification (McFarlane and Beamish,  
558 1992; Johnson et al., 2016; Tolimieri et al., 2018). This study found a rela-  
559 tionship with the PDO and SST that can be connected with sea surface height  
560 and copepod abundance, but at a relatively coarse scale. A focused study  
561 on sablefish (Tolimieri et al., 2018) involving multiple steps, at multiple life

562 stages has attempted to elucidate the stage-specific mechanisms associated  
563 with recruitment, which is simply not possible in this type of broad study.  
564 Our study provides a rapid synthesis of a large number of stocks without  
565 having to know the specific mechanisms, which can be used to focus research  
566 attention on those stocks that may be most promising, or may have been  
567 over looked (e.g. CA Scorpionfish).

568 The habitat compression index and the marine heat wave index were in-  
569 cluded to account for impacts from the extreme marine heat wave (“The  
570 Blob”) that occurred on the west coast from 2014 - 2016 (Jacox et al.,  
571 2018). While the Blob had major impacts on the California current ecosystem  
572 (Cavole et al., 2016), we found limited connections with the estimated time-  
573 varying productivity of the stocks. The stock assessments for many of the  
574 stocks end around this time period so the input information into the analyses  
575 likely contain only limited impacts from the heat wave if any. Reconducting  
576 the analyses after the majority of the stocks have updated assessments may  
577 provide a better picture of the impacts. Additionally, the California current  
578 experiences substantial changes from environmental drivers such as El Nino  
579 and the PDO. Many of the species are likely adapted to dealing with extreme  
580 events and the marine heat wave may simply add variability that is similar  
581 to other drivers.

582 A clear caveat of the results from this study, however, is that SSB and  
583 recruitment from a stock assessment are the input into the time-varying  
584 stock-recruitment model. The results are therefore contingent on the as-

585 assumptions and decisions within the stock assessment process. The model  
586 could be misspecified and biases could be present, particularly if there are  
587 significant amounts of unreported catch or time-varying natural mortality  
588 that exhibit strong trends. The stock assessment model, however, integrates  
589 a range of information and provides the best current estimates of SSB and  
590 recruitment. All the stocks in the study were assessed in Stock Synthesis  
591 and include fisheries-dependent and fisheries-independent data, length and  
592 age data from both the catch and surveys as well as life history data and  
593 largely cover the full range of the stock (Methot and Wetzel, 2013). Large  
594 numbers of sensitivity runs are conducted on each assessment to understand  
595 the influence of different assumptions and decisions as well as detect potential  
596 biases and all the models are peer reviewed.

597 The state-space method also used a time-varying Ricker model while a  
598 Beverton-Holt curve is used within the assessment models. Both the Ricker  
599 and Beverton-Holt curves have a similar productivity parameter defining the  
600 slope at the origin of the stock-recruitment curve and it is the estimation of  
601 the slope at the origin that is the focus of this study. The two models differ  
602 in the way they handle density-dependence (Quinn and Deriso, 1999). The  
603 recruitment estimates from the assessment model are largely unconstrained  
604 by the stock recruitment model within the assessment model, however, be-  
605 cause the assessment model specifically includes recruitment deviations. The  
606 recruitment deviations enable the estimates of recruitment to largely be in-  
607 formed by the length and age data from both the catch and survey informa-

608 tion. For all stocks included in the study, length and age data were available  
609 and the standard deviation of the recruitment deviations was large enough  
610 that the estimated output had little to no connection with the Beverton-Holt  
611 model within the assessment. The variability of the slope at the origin over  
612 time followed the same general pattern regardless of whether the Ricker or  
613 Beverton-Holt curve was included within the state-space model. While using  
614 model output as input into another model can be problematic (Brooks and  
615 Deroba, 2015), each assessment was reviewed to ensure they met the con-  
616 ditions above including sufficient length/age data and largely unconstrained  
617 recruitment deviations before being included in the study.

618 The intent of studies such as this is to examine a range of stocks to  
619 evaluate which may be exhibiting changes in productivity and to evaluate  
620 larger ecological patterns. It provides perspective on the current level of pro-  
621 ductivity (high or low) that can be useful in a risk assessment framework  
622 when providing management advice (Collie et al., 2012) and potentially for  
623 biomass projections. It also can help drive future research by showing which  
624 species have had the most dramatic changes in productivity and where re-  
625 search should be focused (e.g. forecast accuracy of Sanddab and Southern  
626 Lingcod). While working toward understanding specific mechanistic links is  
627 extremely important, these studies are challenging, time consuming and often  
628 produce relationships that do not hold up over time. The state-space method  
629 used here, to some extent is a medium-term solution, as a rapid assessment  
630 that quickly provides information to scientists and managers to make deci-

631 sions even without knowing the full mechanism driving each life stage of each  
632 stock. Time-varying recruitment models provide a bridge between station-  
633 ary stock assessment models and fully coupled climate-fisheries models. The  
634 results can be used to calculate dynamic reference points, optimal harvest  
635 control rules (Collie et al., 2021), and may be useful for short-term recruit-  
636 ment forecasts.

## 637 Acknowledgements

638 We would like to acknowledge all the hard work of the sampling and survey  
639 crews that collected and processed the data as well as the many individuals  
640 that conducted the stock assessments. Two anonymous reviewers improve the  
641 manuscript. We gratefully acknowledge the NOAA office of Climate (grant  
642 number: NA210OAR4310384) and the David and Lucile Packard Foundation  
643 for supporting this work.

## 644 References

- 645 Adams, G., Kapur, M., McQuaw, K., Thurner, S., Hamel, O., Stephens, A.,  
646 Wetzel, C., 2019. Stock Assessment Update: Status of Widow Rockfish  
647 (*Sebastes entomelas*) Along the U.S. West Coast in 2019. Pacific Fishery  
648 Management Council, Portland, Oregon. .
- 649 Anderson, C., Hsieh, C., Sandin, S., Hewitt, R., Hollowed, A., Beddington,  
650 J., May, R., Sugihara, G., 2008. Why fishing magnifies fluctuations in fish  
651 abundance. *Nature* 452, 835–839.
- 652 ASMFC (Eckert, R., Whitmore, K., Richards, A., Hunter, M., Drew, K.,

- 653       Appelman, M., 2017. Stock status report for the Gulf of Maine Northern  
654       Shrimp-2016. Report.
- 655       Bell, R., Wood, A., Hare, J., Richardson, D.E., Manderson, J., Miller, T.,  
656       2018. Rebuilding in the face of climate change. Canadian Journal of  
657       Fisheries and Aquatic Science 75, 1405–1414.
- 658       Berger, A., Arnold, L., Rodomsky, B., 2015. Status of Kelp Greenling (*Hexa-*  
659       *grammos decagrammus*) along the Oregon Coast in 2015, Pacific Fisheries  
660       Management Council. Report.
- 661       Black, B., Boehlert, G., Yoklavich, M., 2005. Using tree-ring crossdat-  
662       ing techniques to validate annual growth increments in long-lived fishes.  
663       Canadian Journal of Fisheries and Aquatic Sciences 62, 2277–2284. URL:  
664       <https://doi.org/10.1139/f05-142>, doi:10.1139/f05-142.
- 665       Brander, K., 2005. Cod recruitment is strongly affected by climate when  
666       stock biomass is low. ICES Journal of Marine Science 62, 339–343.  
667       doi:10.1016/j.icesjms.2004.07.029.
- 668       Britten, G.L., Dowd, M., Worm, B., 2016. Changing recruitment capacity in  
669       global fish stocks. Proceedings of the National Academy of Sciences 113,  
670       134. URL: <http://www.pnas.org/content/113/1/134.abstract>.
- 671       Brooks, E., Deroba, J., 2015. When “data” are not data: the  
672       pitfalls of post hoc analyses that use stock assessment model out-  
673       put. Canadian Journal of Fisheries and Aquatic Sciences 72, 634–641.  
674       URL: <https://doi.org/10.1139/cjfas-2014-0231>, doi:10.1139/cjfas-  
675       2014-0231.
- 676       Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., Pagniello,  
677       C., Paulsen, M., Ramirez-Valdez, A., Schwenck, S., Yen, N., Zill,  
678       M., Franks, P., 2016. Biological impacts of the 2013–2015 warm-  
679       water anomaly in the Northeast Pacific. Oceanography 29, 273–285.  
680       doi:doi:10.5670/oceanog.2016.32.
- 681       Chasco, B., Hunsicker, M.E., Jacobson, K.C., Welch, O.T., Morgan,  
682       C.A., Muhling, B.A., Harding, J.A., 2022. Evidence of Temperature-  
683       Driven Shifts in Market Squid *Doryteuthis opalescens* Densities and Dis-  
684       tribution in the California Current Ecosystem. Marine and Coastal

- 685 Fisheries 14, e10190. URL: <https://doi.org/10.1002/mcf2.10190>,  
686 doi:<https://doi.org/10.1002/mcf2.10190>.

687 Cheung, W., Lam, V., Pauly, D., 2008. Modelling present and climate-shifted  
688 distribution of marine fishes and invertebrates. Fisheries Centre Research  
689 Reports 16. Three papers on climate, distribution and bioclimatic envelope  
690 modeling.

691 Collie, J., Bell, R., Collie, S., Minto, C., 2021. Harvest  
692 strategies for climate-resilient fisheries. ICES Journal of Marine  
693 Science, fsab152URL: <https://doi.org/10.1093/icesjms/fsab152>,  
694 doi:10.1093/icesjms/fsab152.

695 Collie, J., Peterman, R., Zuehike, B., 2012. A fisheries risk-assessment frame-  
696 work to evaluate trade-offs among management options in the presence of  
697 time-varying productivity. Canadian Journal of Fisheries and Aquatic Sci-  
698 ence 69, 209–223.

699 Cope, J., Berger, A., Whitman, A., Budrick, J., Bosley, K., Tsou, T., Niles,  
700 C., Privitera-Johnson, K., Hillier, L., Hinton, K., Wilson, M., 2019. Assess-  
701 ing Cabezon (*Scorpaenichthys marmoratus*) stocks in waters off of Califor-  
702 nia and Oregon, with catch limit estimation for Washington State. Pacific  
703 Fishery Management Council, Portland, OR .

704 Cope, J., Sampson, D., Stephens, A., Key, M., Mirick, P., Stachura, M.,  
705 Tsou, T.S., Weyland, P., Berger, A., Buell, T., Councill, E., Dick, E.,  
706 Fenske, K., Monk, M., Rodomsky, B., 2016. Assessments of California,  
707 Oregon and Washington Stocks of Black Rockfish (*Sebastodes melanops*) in  
708 2015, Pacific Fisheries Management Council .

709 Dick, E., Berger, A., Bizzarro, J., Bosley, K., Cope, J., Field, J.,  
710 Gilbert-Horvath, L., Grunloh, N., Ivens-Duran, M., Miller, R., Privitera-  
711 Johnson, K., Rodomsky, B., 2017. The Combined Status of Blue  
712 and Deacon Rockfishes in U.S. Waters off California and Oregon in  
713 2017. Pacific Fishery Management Council, Portland, OR. Available from  
714 <http://www.pcouncil.org/groundfish/stock-assessments/>. Report.

715 Dorner, B., Peterman, R., Haeseker, S., 2008. Historical trends in productiv-  
716 ity of 120 pacific pink, chum, and sockeye salmon stocks reconstructed by

- 717 using a kalman filter. Canadian Journal of Fisheries and Aquatic Science  
718 65, 1842–1866.
- 719 Essington, T., Levin, P., Marshall, K., Koehn, L., Anderson, L., Bundy, A.,  
720 Carothers, C., Coleman, F., Grabowski, J., Gerber, L., Houde, E., Jensen,  
721 O., Mollmann, C., Rose, K., Sanchirico, J., Smith, A., 2016. Building  
722 Effective Fishery Ecosystem Plans: A Report from the Lenfest Fishery  
723 Ecosystem Task Force. Lenfest Ocean Program, Washington, D.C. Report.
- 724 Field, J., Beyer, S., He, X., 2016. Status of the Chilipepper Rockfish, *Sebastodes*  
725 *goodei*, in the California Current for 2015 .
- 726 Field, J., X., A.O., Miller, R.R., Santora, J.A., Tolimieri, N., Hal-  
727 tuch, M.A.O., Brodeur, R.D., Auth, T.D., Dick, E.J., Monk, M.H.,  
728 Sakuma, K.M., Wells, B.K., 2021. Spatiotemporal patterns of vari-  
729 ability in the abundance and distribution of winter-spawned pelagic ju-  
730 venile rockfish in the California Current. PLoS ONE 16, e025163.  
731 doi:<https://doi.org/10.1371/journal.pone.0251638>.
- 732 Friedland, K., Hare, J., 2007. Long-term trends and regime shifts in sea  
733 surface temperature on the continental shelf of the northeast United States.  
734 Continental Shelf Research 27, 2313–2328.
- 735 Gertseva, V., Cope, J., 2017. Stock assessment of the yelloweye rockfish (*Se-  
736 bastes ruberrimus*) in state and Federal waters off California, Oregon and  
737 Washington. Pacific Fishery Management Council, Portland, OR. Avail-  
738 able from <http://www.pfcouncil.org/groundfish/stock-assessments/>. Re-  
739 port.
- 740 Gertseva, V., Cope, J., Pearson, D.E., 2009. Status of the U.S. splitnose rock-  
741 fish (*Sebastodes diploproa*) resource in 2009. Pacific Fisheries Management  
742 Council. Report.
- 743 Hamel, O., Cope, J., Matson, S., 2013. Stock Assessment of Aurora Rockfish  
744 in 2013, Pacific Fisheries Management Council. Report.
- 745 Hare, S., Mantua, N., 2000. Empirical evidence for north pacific regime shifts  
746 in 1977 and 1989. Progress in Oceanography 47, 103–145.
- 747 Harvey, C., Garfield, T., Williams, G., Tolimieri, N., 2022. 2021-2022 CAL-  
748 IFORNIA CURRENT ECOSYSTEM STATUS REPORT: A report of

- 749 the NOAA California Current Integrated Ecosystem Assessment Team  
750 (CCIEA) to the Pacific Fishery Management Council, March 13, 2022  
751 .
- 752 He, X., Field, J., 2017. Stock Assessment Update: Status of Bocaccio, Se-  
753 bastes paucispinis, in the Conception, Monterey and Eureka INPFC areas  
754 for 2017. Pacific Fishery Management Council, Portland, Oregon. Report.
- 755 He, X., Pearson, D.E., Field, J., Lefebvre, L., Key, M., 2013. Status of  
756 the U.S. Pacific Sanddab Resource in 2013, Pacific Fisheries Management  
757 Council. Report.
- 758 Henderson, M., Mills, K., Thomas, A., Pershing, A., Nye, J., 2017. Effects of  
759 spring onset and summer duration on fish species distribution and biomass  
760 along the northeast united states continental shelf. Reviews in Fish Biology  
761 and Fisheries 27, 411.
- 762 Hicks, A., Haltuch, M., Wetzel, C.R., 2009. Status of greenstriped rock-  
763 fish (*Sebastodes elongatus*) along the outer coast of California, Oregon, and  
764 Washington, Pacific Fisheries Management Council. Report.
- 765 Hicks, A., Wetzel, C.R., 2011. The Status of Dover Sole (*Microstomus paci-*  
766 *ficus*) along the U.S. West Coast in 2011, Pacific Fisheries Management  
767 Council. Report.
- 768 Hicks, A., Wetzel, C.R., Harms, J., 2014. The status of rougheye rockfish  
769 (*Sebastes aleutianus*) and blackspotted rockfish (*S. melanostictus*) as a  
770 complex along the U.S. West Coast in 2013, Pacific Fisheries Management  
771 Council. Report.
- 772 Hjort, J., 1914. Fluctuations in the great fisheries of northern europe  
773 viewed in the light of biological research. Rapports et Procès-Verbaux  
774 des Réunions du Conseil Permanent International Pour L'Exploration de  
775 la Mer 20, 1–228.
- 776 Hollowed, A., Barange, M., Beamish, R., Brander, K., Cochrane, K.,  
777 Drinkwater, K., Foreman, M., Hare, J., Holt, J., Ito, S.I., Kim, S., King,  
778 J., Loeng, H., MacKenzie, B., Mueter, F., Okey, T., Peck, M., Radchenko,  
779 V., Rice, J., Schirripa, M., Yatsu, A., Yamanaka, Y., 2013. Projected  
780 impacts of climate change on marine fish and fisheries. ICES Journal of  
781 Marine Science 70, 1023–1037.

- 782 Holmes, E., Ward, E., Scheuerell, M., 2014. Analysis of multivariate time-  
783 series using the MARSS package. NOAA Fisheries, Northwest Fisheries  
784 Science Center, 2725 Montlake Blvd E., Seattle, WA 98112. Technical  
785 Report.
- 786 Holmes, E., Ward, E., Wills, K., 2013. MARSS: Multivariate  
787 Autoregressive State-Space Modeling. URL:  
788 <http://cran.r-project.org/web/packages/MARSS/>. r package ver-  
789 sion 3.7.
- 790 Houde, E., 1987. Fish early life dynamics and recruitment variability. American  
791 Fisheries Society, Symposium 2, 17–29.
- 792 Hsieh, C., Reiss, C., Hunter, J., Beddington, J., May, R., Sugihara, G., 2006.  
793 Fishing elevates variability in the abundance of exploited species. Nature  
794 443, 859–862. doi:doi: 10.1038/nature05232. PMID: 17051218.
- 795 Hunsicker, M., Ciannelli, L., Bailey, K., Zador, S., Stige, L.,  
796 2013. Climate and demography dictate the strength of predator-  
797 prey overlap in a subarctic marine ecosystem. PloS one 8, e66025.  
798 doi:10.1371/journal.pone.0066025.
- 799 Hutchings, J., Côté, I., Dodson, J., Fleming, I., Jennings, S., Mantua, N.,  
800 Peterman, R., Riddell, B., Weaver, A., 2012. Climate change, fisheries, and  
801 aquaculture: trends and consequences for canadian marine biodiversity.  
802 Canadian Journal of Fisheries and Aquatic Science 20, 220–311.
- 803 Jacox, M., Alexander, M., Mantua, N., Scott, J., Hervieux, G., Webb,  
804 R., Werner, F., 2018. 6. Forcing of multiyear extreme ocean tem-  
805 peratures that impacted California current living marine resources in  
806 2016. Bulletin of the American Meteorological Society, 99, S27–S33.  
807 doi:<https://doi.org/10.1175/BAMS-D-17-0119.1>.
- 808 Johnson, K., Edwards, A., Berger, A., Grandin, C., 2021a. Status of the  
809 Pacific Hake (whiting) stock in U.S. and Canadian waters in 2021. Pre-  
810 pared by the Joint Technical Committee of the U.S. and Canada Pacific  
811 Hake/Whiting Agreement, National Marine Fisheries Service and Fisheries  
812 and Oceans Canada. 269 p. .

- 813 Johnson, K., Rudd, M., Pons, M., Akselrud, C., Lee, Q., Hurtado-Ferro, H.,  
814 Haltuch, M., Hamel, O., 2016. Status of the U.S. sablefish resource in  
815 2015, Pacific Fisheries Management Council. Report.
- 816 Johnson, K., Taylor, I., Langseth, B., Stephens, A., Lam, L., Monk, M.,  
817 Budrick, J., Haltuch, M., 2021b. Status of lingcod (*Ophiodon elongatus*)  
818 along the southern U.S. west coast in 2021. Pacific Fisheries Management  
819 Council, Portland, Oregon. 212p. .
- 820 Kapur, M.S., Lee, Q., Correa, G.M., Haltuch, M., Gertseva, V., Hamel,  
821 O.S., 2021. DRAFT Status of Sablefish (*Anoplopoma fimbria*) along the  
822 US West coast in 2021. Pacific Fisheries Management Council, Portland,  
823 Oregon. 136 p. .
- 824 Kolora, S.R.R., Owens, G.L., Vazquez, J.M., Stubbs, A., Chatla, K., Jainese,  
825 C., Seeto, K., McCrea, M., Sandel, M.W., Vianna, J.A., Maslenikov,  
826 K., Bachtrog, D., Orr, J.W., Love, M., Sudmant, P.H., 2021. Ori-  
827 gins and evolution of extreme life span in pacific ocean rockfishes. Sci-  
828 ence 374, 842–847. URL: <https://doi.org/10.1126/science.abg5332>,  
829 doi:10.1126/science.abg5332.
- 830 Langan, J.A., Puggioni, G., Oviatt, C.A., Henderson, M.E., Collie,  
831 J.S., 2021. Climate alters the migration phenology of coastal ma-  
832 rine species. Marine Ecology Progress Series 660, 1–18. URL:  
833 <https://www.int-res.com/abstracts/meps/v660/p1-18/>.
- 834 Langseth, B., Wetzel, C., Cope, J., Budrick, J., 2021a. Status of quillback  
835 rockfish (*Sebastodes maliger*) in U.S. waters off the coast of California in  
836 2021 using catch and length data. Pacific Fisheries Management Council,  
837 Portland, Oregon. 127 p. .
- 838 Langseth, B., Wetzel, C., Cope, J., Whitman, A., 2021b. Status of quill-  
839 back rockfish (*Sebastodes maliger*) in U.S. waters off the coast of Oregon in  
840 2021 using catch and length data. Pacific Fisheries Management Council,  
841 Portland, Oregon. 120 p. .
- 842 Lindgren, M., Checkley, D.M., 2012. Temperature dependence of pacific  
843 sardine (*sardinops sagax*) recruitment in the california current ecosystem  
844 revisited and revised. Canadian Journal of Fisheries and Aquatic Sci-  
845 ences 70, 245–252. URL: <https://doi.org/10.1139/cjfas-2012-0211>,  
846 doi:10.1139/cjfas-2012-0211.

- 847 Lindegren, M., Checkley, D.M., Rouyer, T., MacCall, A.D., Stenseth, N.C.,  
848 2013. Climate, fishing, and fluctuations of sardine and anchovy in the  
849 California current. *Proceedings of the National Academy of Sciences* 110.
- 850 Manderson, J., 2008. The spatial scale of phase synchrony in winter flounder  
851 (*Pseudopleuronectes americanus*) production increased among southern  
852 New England nurseries in the 1990s. *Canadian Journal of Fisheries and*  
853 *Aquatic Sciences* 65, 340–351.
- 854 Manderson, J., 2016. Seascapes are not landscapes: An analysis performed  
855 using Bernhard Riemann's rules. *ICES Journal of Marine Science* 73,  
856 1831–1838.
- 857 McFarlane, G., Beamish, R., 1992. Climatic influence linking copepod pro-  
858 duction with strong year-classes in sablefish, *Anoplopoma fimbria*. *Canadian*  
859 *Journal of Fisheries and Aquatic Science* 49, 743–753.
- 860 Methot, R., Wetzel, C.R., 2013. Stock synthesis: A biological and statistical  
861 framework for fish stock assessment and fishery management. *Fisheries*  
862 *Research* 142, 86–99. doi:<https://doi.org/10.1016/j.fishres.2012.10.012>.
- 863 Mills, K., Pershing, A., Brown, C., Chen, Y., Chiang, F.S., Holland, D.,  
864 Lehuta, S., Nye, J., Sun, J., Thomas, A., Wahle, R., 2013. Fisheries  
865 management in a changing climate: Lessons from the 2012 ocean heat  
866 wave in the Northwest Atlantic. *Oceanography* 26, 191–195.
- 867 Minto, C., Mills Flemming, J., Britten, G., Worm, B., 2013. Productivity  
868 dynamics of Atlantic cod. *Canadian Journal of Fisheries and Aquatic*  
869 *Science* 71, 203–216.
- 870 Monk, M., He, X., Budrick, J., 2017. Status of the California Scorpionfish (*Scorpaena guttata*) Off Southern California in 2017. Pacific Fishery Management Council, Portland, OR. Available from <http://www.pcouncil.org/groundfish/stock-assessments/>. Report.
- 874 Myers, R.A., 1998. When do environmental - recruitment correlations work?  
875 *Reviews in Fish Biology and Fisheries* 8, 285–305.
- 876 NEFSC, 2019. Operational Assessment of 14 Northeast Groundfish Stocks,  
877 Updated Through 2018 .

- 878 NEFSC, 2021. State of the Ecosystem 2021: New Eng-  
879 land. Northeast Fisheries Science Center. <https://apps->  
880 <https://nefsc.fisheries.noaa.gov/rcb/publications/SOE-NEFMC-2021-508-Final.pdf> .
- 882 NMFS, 2021. Status of Stocks 2020: Annual Report to Congress on the  
883 Status of U.S. Fisheries .
- 884 NPFMC, 2012. Fishery management plan for groundfish of the Bering Sea  
885 and Aleutian Islands management area. North Pacific Fishery Management  
886 Council, 605W. 4th Avenue, Suite 306, Anchorage, Alaska, 99501, USA.  
887 Technical Report.
- 888 Nye, J., Baker, M., Bell, R., Kenny, A., Kilbourne, K., Martino, E., Stachura,  
889 M., Van Houtan, K., Wood, R., 2014. Ecosystem effects of the Atlantic  
890 Multidecadal Oscillation. *Journal of Marine Science* 133, 103–116.
- 891 Nye, J., Link, J., Hare, J., Overholtz, W., 2009. Changing spatial distribution  
892 of fish stocks in relation to climate and population size on the Northeast  
893 United States continental shelf. *Marine Ecology Progress Series* 393, 111–  
894 129.
- 895 Otero, J., L'Abée-Lund, J.H., Castro-Santos, T., Leonardsson, K., Storvik,  
896 G.O., Jonsson, B., Dempson, B., Russell, I.C., Jensen, A.J., Baglinière,  
897 J.L., Dionne, M., Armstrong, J.D., Romakkaniemi, A., Letcher, B.H., Ko-  
898 cik, J.F., Erkinaro, J., Poole, R., Rogan, G., Lundqvist, H., MacLean, J.C.,  
899 Jokikokko, E., Arnekleiv, J.V., Kennedy, R.J., Niemelä, E., Caballero, P.,  
900 Music, P.A., Antonsson, T., Gudjonsson, S., Veselov, A.E., Lamberg, A.,  
901 Groom, S., Taylor, B.H., Taberner, M., Dillane, M., Arnason, F., Hor-  
902 ton, G., Hvidsten, N.A., Jonsson, I.R., Jonsson, N., McKelvey, S., Næsje,  
903 T.F., Skaala, y., Smith, G.W., Sægrov, H., Stenseth, N.C., Vøllestad, L.A.,  
904 2014. Basin-scale phenology and effects of climate variability on global tim-  
905 ing of initial seaward migration of Atlantic salmon (*Salmo salar*). *Global  
906 Change Biology* 20, 61–75. URL: <https://doi.org/10.1111/gcb.12363>,  
907 doi:<https://doi.org/10.1111/gcb.12363>.
- 908 Perry, A., Low, P., Ellis, J., Reynolds, J., 2005. Climate change and distri-  
909 bution shifts in marine fishes. *Science* 308, 1912–1915.

- 910 Peterman, R., Pyper, B., Grout, J., 2000. Comparison of parameter esti-  
911 mation methods for detecting climate-induced changes in productivity of  
912 Pacific salmon (*Oncorhynchus spp.*). Canadian Journal of Fisheries and  
913 Aquatic Science 57, 181–191.
- 914 Peterman, R., Pyper, B., MacGregor, B., 2003. Use of the Kalman filter to  
915 reconstruct historical trends in productivity of Bristol Bay sockeye salmon  
916 (*Oncorhynchus nerka*). Canadian Journal of Fisheries and Aquatic Science  
917 60, 809–824.
- 918 Peterson, W., Bond, N., Robert, M., 2016. The Blob (Part three):  
919 Going, going, gone? PICES Press, 24, 46–48. Available online at  
920 [www.pices.int/publications/pices\\_press/volume24/PPJan2016.pdf](http://www.pices.int/publications/pices_press/volume24/PPJan2016.pdf). Re-  
921 port.
- 922 Petris, G., Petrone, S., Campagnoli, P., 2009. Dynamic Linear Models with  
923 R. Use R!, Springer, Verlag, New York.
- 924 PFMC, 2015. (Pacific Fishery Management Council). Status of the Pacific  
925 Coast coastal pelagic species fishery and recommended acceptable biologi-  
926 cal catches. Stock Assessment and Fishery Evaluation for 2014. Appendix  
927 C: 2014 Pacific Sardine Stock Assessment. Report.
- 928 Pinsky, M.L., Worm, B., Fogarty, M., Sarmiento, J., Levin, S., 2013. Marine  
929 taxa track local climate velocities. Science 341, 1239–1242.
- 930 Quinn, T., Deriso, R., 1999. Quantitative Fish Dynamics. Oxford University  
931 Press, New York, Oxford.
- 932 Sampson, D., Hamel, O., Bosley, K., Budrick, J., Cronin-Fine, L., Hillier,  
933 L., Hinton, K., Krigbaum, M., Miller, S., Privitera-Johnson, K., Ramey,  
934 K., Rodomsky, B., Solinger, L., Whitman, A., 2017. 2017 Assess-  
935 ment Update for the US West Coast Stock of Arrowtooth Flounder.  
936 Pacific Fishery Management Council, Portland, OR. Available from  
937 <http://www.pcouncil.org/groundfish/stock-assessments/>. Report.
- 938 Santora, J., Mantua, N., Schroeder, I., Field, J.C., Hazen, E., Bograd, S.,  
939 Sydeman, W., Wells, B., Calambokidis, J., Saez, L., Lawson, D., Forney,  
940 K., 2020. Habitat compression and ecosystem shifts as potential links  
941 between marine heatwave and record whale entanglements. Nature Com-  
942 munications 11. doi:<https://doi.org/10.1038/s41467-019>.

- 943 Schwartzlose, R.A., Alheit, J., Bakun, A., Baumgartner, T., Cloete, R.,  
944 Crawford, R., Fletcher, W., Green-Ruiz, Y., Hagen, E., Kawasaki, T.,  
945 Lluch-Belda, D., Lluch-Cota, S., MacCall, A., Matsuura, Y., Nevárez-  
946 Martínez, M., Parrish, R., Roy, C., Serra, R., Shust, K., Ward, M., Zuzu-  
947 naga, J., 1999. Worldwide large-scale fluctuations of sardine and anchovy  
948 populations. *South African Journal of Marine Science* 21, 289–347.
- 949 Shelton, P., Sinclair, A., Chouinard, G., Mohn, R., Duplisea, D., 2006. Fishing  
950 under low productivity conditions is further delaying recovery of Northwest  
951 Atlantic cod (*Gadus morhua*). *Canadian Journal of Fisheries and*  
952 *Aquatic Science* 63, 235–238.
- 953 Silvar-Viladomiu, P., Minto, C., Brophy, D., Reid, D.G., 2022. Peterman's  
954 productivity method for estimating dynamic reference  
955 points in changing ecosystems. *ICES Journal of Marine Science*, , fsac035URL: <https://doi.org/10.1093/icesjms/fsac035>,  
956 doi:10.1093/icesjms/fsac035.
- 958 Skern-Mauritzen, M., Ottersen, G., Handegard, N., Huse, G., Dingsør, G.,  
959 Stenseth, N., Kjesbu, O., 2016. Ecosystem processes are rarely included  
960 in tactical fisheries management. *Fish and Fisheries* 17, 165–175.
- 961 Stachura, M., Essington, T., Mantua, N., Hollowed, A., Haltuch, M.,  
962 Spencer, P., Branch, T., Doyle, M., 2014. Linking Northeast Pacific re-  
963 cruitment synchrony to environmental variability. *Fisheries Oceanography*  
964 23. doi:10.1111/fog.12066.
- 965 Stephens, A., Taylor, I., 2014. Stock Assessment and Status of Longspine  
966 Thornyhead (*Sebastolobus altivelis*) off California, Oregon and Washing-  
967 ton in 2013, Pacific Fisheries Management Council. Report.
- 968 Stephens, A., Taylor, I., 2018. Status of Yellowtail Rockfish (*Sebastes*  
969 *flavidus*) Along the U.S. Pacific Coast in 2017. Northwest Fisheries Science  
970 Center, U.S. Department of Commerce, National Oceanic and Atmospheric  
971 Administration, National Marine Fisheries Service, 2032 S.E. OSU Drive  
972 Newport, Oregon 97365 .
- 973 Stockhausen, W., Turnock, B., Rugolo, L., 2013. Draft 2013 stock assessment  
974 and fishery evaluation report for the Tanner crab fisheries of the Bering Sea  
975 and Aleutian Islands Regions. In Stock Assessment and Fishery Evaluation

- 976 Report for the King and Tanner Crab Fisheries of the Bering Sea and  
977 Aleutian Islands Regions (eds North Pacific Fishery Management Council  
978 Crab Plan Team), pp. 342-478. Anchorage, AK: North Pacific Fishery  
979 Management Council. Report.
- 980 Szuwalski, C., Vert-Pre, K., Punt, A., Branch, T., Hilborn, R., 2015. Ex-  
981 amining common assumptions about recruitment: a meta-analysis of re-  
982 cruitment dynamics for worldwide marine fisheries. Fish and Fisheries 16,  
983 633–648.
- 984 Tableau, A., Collie, J.S., Bell, R., Minto, C., 2019. Decadal changes in  
985 the productivity of new england fish populations. Canadian Journal of  
986 Fisheries and Aquatic Science .
- 987 Taylor, I., Johnson, K., Langseth, B., Stephens, A., Lam, L., Monk, M.,  
988 Whitman, A., Haltuch, M., 2021. Status of lingcod (*Ophiodon elongatus*)  
989 along the northern U.S. west coast in 2021. Pacific Fisheries Management  
990 Council, Portland, Oregon. 254p. .
- 991 Thorson, J., Rindorf, A., Gao, J., Hanselman, D., Winker, H., 2016. Density-  
992 dependent changes in effective area occupied for sea-bottom-associated  
993 marine fishes. Proceedings of the Royal Society B 283, 20161853.
- 994 Tolimieri, N., Haltuch, M.A., Lee, Q., Jacox, M.G., Bograd, S.J.,  
995 2018. Oceanographic drivers of sablefish recruitment in the cal-  
996 ifornia current. Fisheries Oceanography 27, 458–474. URL:  
997 <https://doi.org/10.1111/fog.12266>, doi:10.1111/fog.12266.
- 998 VenTresca, D., Parrish, R., Houk, J., Gingras, M., Short, S., Crane, N., 1995.  
999 El Nino effects on the somatic and reproductive condition of blue rockfish,  
1000 *Sebastes mystinus*. CalCOFI Reports 36: 167 –174. Report.
- 1001 Wallace, J., Gertseva, V., 2017. Status of the darkblotched rockfish resource  
1002 off the continental U.S. Pacific Coast in 2017 (Update of 2015 assessment  
1003 model). Pacific Fishery Management Council, Portland, OR. Available  
1004 from <http://www.pcouncil.org/groundfish/stock-assessments/>. Report.
- 1005 Wetzel, C., 2019. Status of petrale sole (*Eopsetta jordani*) along the U.S.  
1006 west coast in 2019. Pacific Fishery Management Council, 7700 Ambassador  
1007 Place NE, Suite 101, Portland, OR 97220. .

- 1008 Wetzel, C., Cronin-Fine, L., Johnson, K., 2017. Status of Pacific ocean  
 1009 perch (*Sebastodes alutus*) along the US west coast in 2017. Pacific Fishery  
 1010 Management Council, 7700 Ambassador Place NE, Suite 200, Portland,  
 1011 OR 97220. .
- 1012 Wilderbuer, T., Nichol, D., Aydin, K., 2010. Arrowtooth Flounder. In Stock  
 1013 Assessment and fishery evaluation report for the groundfish resources of  
 1014 the Bering Sea and Aleutian Islands regions. North Pacific Fishery Man-  
 1015 agement Council, Anchorage, AK. Report.
- 1016 Zuur, A., Fryer, R., Jolliffe, I., Dekker, R., Beukema, J., 2003a. Estimating  
 1017 common trends in multivariate time series using dynamic factor analysis.  
 1018 Environmetrics 14, 665–685.
- 1019 Zuur, A., Tuck, I., Bailey, N., 2003b. Dynamic factor analysis to estimate  
 1020 common trends in fisheries time series. Canadian Journal of Fisheries and  
 1021 Aquatic Science 60, 542–552.

1022 **Tables and Figures**

1023 **List of Tables**

|        |                                                                                                                                                                                                                                                                                                                             |    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1024 1 | The eight climate variables tested for their predictive ability. . . . .                                                                                                                                                                                                                                                    | 45 |
| 1025 2 | The stocks used in the analysis. Only years in which length or<br>1026 age-structured data were available were used in the analysis<br>1027 despite many of the spawner and recruitment time-series going<br>1028 back further in time. Spawners were the unit of spawning stock<br>1029 biomass in the assessment. . . . . | 46 |
| 1030 3 | The parameter estimates from the logistic regression of con-<br>1031 stant or time-varying productivity on $\frac{B}{B_{m\text{sy}}}$ . Gulf of Maine<br>1032 Haddock is not included. . . . .                                                                                                                              | 47 |
| 1033 4 | Stock assessment citations . . . . .                                                                                                                                                                                                                                                                                        | 48 |

1034 **List of Figures**

|                                                                                                       |                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 1035 1                                                                                                | The time-series of climate variables tested in the time-varying                                  |  |
| 1036 productivity model. HCI = Habitat Compression Index, NPH                                         | = North Pacific High, NPGO = N. Pacific Gyre Oscillation,                                        |  |
| 1037 NOI = Northern Oscillation Index, ONI = Oceanic Nino In-                                         | dex, PDO = Pacific Decadal Oscillation, MHW = Marine Heat                                        |  |
| 1038 Wave, SST = Sea Surface Temperature. . . . .                                                     | 49                                                                                               |  |
| 1040                                                                                                  |                                                                                                  |  |
| 1041 2                                                                                                | The time-varying and time-invariant productivity term ( <i>a</i> ) for                           |  |
| 1042 each stock with 95% confidence intervals. The model that                                         |                                                                                                  |  |
| 1043 provided the best fit is in bold for each stock (e.g. The time-                                  |                                                                                                  |  |
| 1044 invariant model provided the best fit for Dover Sole and the                                     |                                                                                                  |  |
| 1045 static <i>a</i> term has the bold line in the figure). . . . .                                   | 50                                                                                               |  |
| 1046                                                                                                  |                                                                                                  |  |
| 1047 3                                                                                                | Common trend one (thick black line) of the time-varying pro-                                     |  |
| 1048 ductivity terms across all stocks (thin colored lines) from the                                  |                                                                                                  |  |
| 1049 Dynamic Factor Analysis. The bottom figure represents the                                        |                                                                                                  |  |
| 1050 percentage of variability the common trend explains for each                                     |                                                                                                  |  |
| 1051 stock based on the factor loadings ( <i>Z</i> matrix). . . . .                                   | 51                                                                                               |  |
| 1052                                                                                                  |                                                                                                  |  |
| 1053 4                                                                                                | The gain in forecast accuracy predicting the $\ln \frac{\text{recruits}}{\text{spawner}}$ one to |  |
| 1054 three years ahead with the time-varying model compared to                                        |                                                                                                  |  |
| 1055 the time-invariant model. Bold colors indicate significant fore-                                 |                                                                                                  |  |
| 1056 cast gains compared with the time-invariant model. Signifi-                                      |                                                                                                  |  |
| 1057 cance levels are indicated by: *** $p < 0.001$ , ** $p < 0.01$ , *                               |                                                                                                  |  |
| 1058 $p < 0.05$ , · $p < 0.1$ . . . . .                                                               | 52                                                                                               |  |
| 1059                                                                                                  |                                                                                                  |  |
| 1060 5                                                                                                | The bars represent the gain in forecast accuracy predicting                                      |  |
| 1061 the $\ln \frac{\text{recruits}}{\text{spawner}}$ one year ahead with the time-varying model that |                                                                                                  |  |
| 1062 included a climate index compared to the base model for each                                     |                                                                                                  |  |
| 1063 stock. Significance levels are the output of the likelihood ratio                                |                                                                                                  |  |
| 1064 test comparing the climate and base models over the entire                                       |                                                                                                  |  |
| 1065 time series: *** $p < 0.001$ , ** $p < 0.01$ , * $p < 0.05$ , · $p < 0.1$ . .                    | 53                                                                                               |  |
| 1066                                                                                                  |                                                                                                  |  |
| 1067 6                                                                                                | The logistic regression of constant or time-varying productiv-                                   |  |
| 1068 ity on $\frac{B}{B_{msy}}$ for stocks on the northeast US shelf (NE) and the                     |                                                                                                  |  |
| 1069 west coast (Pacific). Gulf of Maine Haddock is not included.                                     |                                                                                                  |  |
| 1070 (Points have been jittered slightly for display purposes.) . . .                                 | 54                                                                                               |  |

|      |                                |
|------|--------------------------------|
| ONI  | Oceanic Nino Index             |
| NPGO | North Pacific Gyre Oscillation |
| PDO  | Pacific Decadal Oscillation    |
| SST  | Sea Surface Temperature        |
| HCI  | Habitat Compression Index      |
| NOI  | Northern Oscillation Index     |
| NPH  | North Pacific High             |
| MHW  | Marine Heat Wave               |

Table 1: The eight climate variables tested for their predictive ability.

| Species              | Stock | Community       | Spawners | Date min | Date max |
|----------------------|-------|-----------------|----------|----------|----------|
| Arrowtooth Flounder  |       | flatfish        | weight   | 1965     | 2017     |
| Aurora Rockfish      |       | Sebastidae      | weight   | 1978     | 2013     |
| Black Rockfish       | CA    | Sebastidae      | weight   | 1975     | 2015     |
| Blue and Deacon Rock | CA    | Sebastidae      | weight   | 1960     | 2017     |
| Blue and Deacon Rock | OR    | Sebastidae      | weight   | 1970     | 2017     |
| Bocaccio Rockfish    |       | Sebastidae      | eggs     | 1954     | 2017     |
| California Scorpionf |       | Scorpaenidae    | weight   | 1965     | 2016     |
| Cabezon              | NCS   | Cottidae        | weight   | 1962     | 2018     |
| Cabezon              | OR    | Cottidae        | weight   | 1980     | 2018     |
| Cabezon              | SCS   | Cottidae        | weight   | 1970     | 2018     |
| Canary Rockfish      |       | Sebastidae      | eggs     | 1968     | 2015     |
| Chilipepper Rockfish |       | Sebastidae      | weight   | 1965     | 2014     |
| Darkblotched Rockfis |       | Sebastidae      | eggs     | 1960     | 2017     |
| Dover Sole           |       | flatfish        | weight   | 1975     | 2020     |
| Greenstriped Rockfis |       | Sebastidae      | eggs     | 1970     | 2009     |
| Kelp Greenling       | OR    | Hexagrammidae   | weight   | 1980     | 2015     |
| Lingcod              | north | Hexagrammidae   | weight   | 1960     | 2020     |
| Lingcod              | south | Hexagrammidae   | weight   | 1972     | 2020     |
| Longspine Thornyhead |       | Sebastidae      | weight   | 1997     | 2012     |
| Pacific Ocean Perch  |       | Sebastidae      | eggs     | 1975     | 2017     |
| Pacific Whiting (Hak |       | Merlucciinae    | weight   | 1975     | 2020     |
| Petrale Sole         |       | flatfish        | weight   | 1959     | 2018     |
| Quillback Rockfish   | CA    | Sebastidae      | eggs     | 1991     | 2020     |
| Quillback Rockfish   | OR    | Sebastidae      | eggs     | 1980     | 2020     |
| Blackspotted Rockfis |       | Sebastidae      | weight   | 1980     | 2013     |
| Sablefish            |       | Anoplopomatidae | weight   | 1975     | 2020     |
| Pacific Sanddab      |       | flatfish        | weight   | 1977     | 2012     |
| Splitnose Rockfish   |       | Sebastidae      | eggs     | 1960     | 2006     |
| Widow Rockfish       |       | Sebastidae      | weight   | 1970     | 2018     |
| Yelloweye Rockfish   |       | Sebastidae      | eggs     | 1980     | 2016     |
| Yellowtail Rockfish  | north | Sebastidae      | eggs     | 1970     | 2016     |

Table 2: The stocks used in the analysis. Only years in which length or age-structured data were available were used in the analysis despite many of the spawner and recruitment time-series going back further in time. Spawners were the unit of spawning stock biomass in the assessment.

|           | Estimate | Std. Error | z value | Pr(> z ) |
|-----------|----------|------------|---------|----------|
| Intercept | -1.1708  | 0.6428     | -1.82   | 0.0685   |
| $\beta_1$ | 1.2915   | 0.4867     | 2.65    | 0.0080   |

Table 3: The parameter estimates from the logistic regression of constant or time-varying productivity on  $\frac{B}{B_{msy}}$ . Gulf of Maine Haddock is not included.

| stock                 | comm                         |
|-----------------------|------------------------------|
| arrowtooth            | (Sampson et al., 2017)       |
| aurora                | (Hamel et al., 2013)         |
| black_rockfish_CA     | (Cope et al., 2016)          |
| blue_deacon_CA        | (Dick et al., 2017)          |
| blue_deacon_OR        | (Dick et al., 2017)          |
| bocaccio              | (He and Field, 2017)         |
| CA_scorpionfish       | (Monk et al., 2017)          |
| cabezon_NCS           | (Cope et al., 2019)          |
| cabezon_OR            | (Cope et al., 2019)          |
| cabezon_SCS           | (Cope et al., 2019)          |
| canary                | (Thorson et al., 2016)       |
| chillipepper          | (Field et al., 2016)         |
| darkblotched          | (Wallace and Gertseva, 2017) |
| dover_sole            | (Hicks and Wetzel, 2011)     |
| greenstriped          | (Hicks et al., 2009)         |
| kelp_greenling        | (Berger et al., 2015)        |
| lingcod_N             | (Taylor et al., 2021)        |
| lingcod_S             | (Johnson et al., 2021b)      |
| longspine_thornyhead  | (Stephens and Taylor, 2014)  |
| ocean_perch           | (Wetzel et al., 2017)        |
| pacific_hake          | (Johnson et al., 2021a)      |
| petrale_sole          | (Wetzel, 2019)               |
| quillback_CA          | (Langseth et al., 2021a)     |
| quillback_OR          | (Langseth et al., 2021b)     |
| rougheye_blackspotted | (Hicks et al., 2014)         |
| sablefish             | (Kapur et al., 2021)         |
| sanddab               | (He et al., 2013)            |
| splitnose             | (Gertseva et al., 2009)      |
| widow                 | (Adams et al., 2019)         |
| yelloweye             | (Gertseva and Cope, 2017)    |
| yellowtail_N          | (Stephens and Taylor, 2018)  |

Table 4: Stock assessment citations

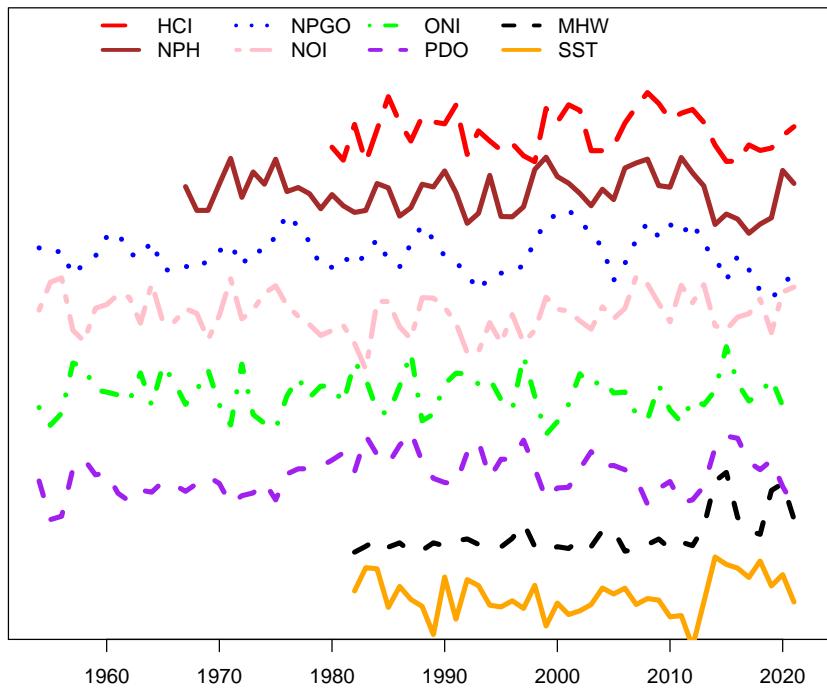


Figure 1: The time-series of climate variables tested in the time-varying productivity model. HCI = Habitat Compression Index, NPH = North Pacific High, NPGO = N. Pacific Gyre Oscillation, NOI = Northern Oscillation Index, ONI = Oceanic Nino Index, PDO = Pacific Decadal Oscillation, MHW = Marine Heat Wave, SST = Sea Surface Temperature.

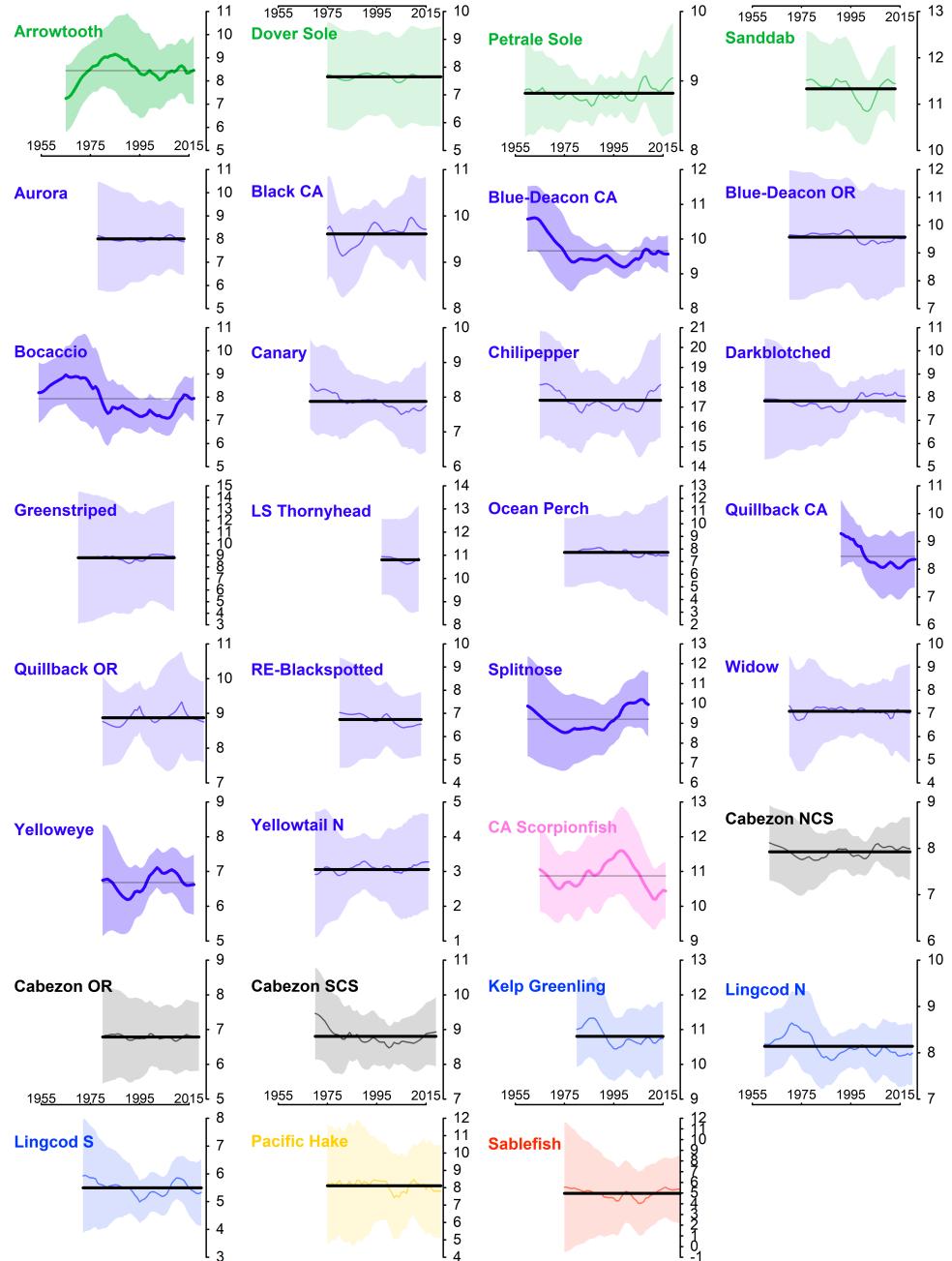


Figure 2: The time-varying and time-invariant productivity term ( $a$ ) for each stock with 95% confidence intervals. The model that provided the best fit is in bold for each stock (e.g. The time-invariant model provided the best fit for Dover Sole and the static  $a$  term has the bold line in the figure).

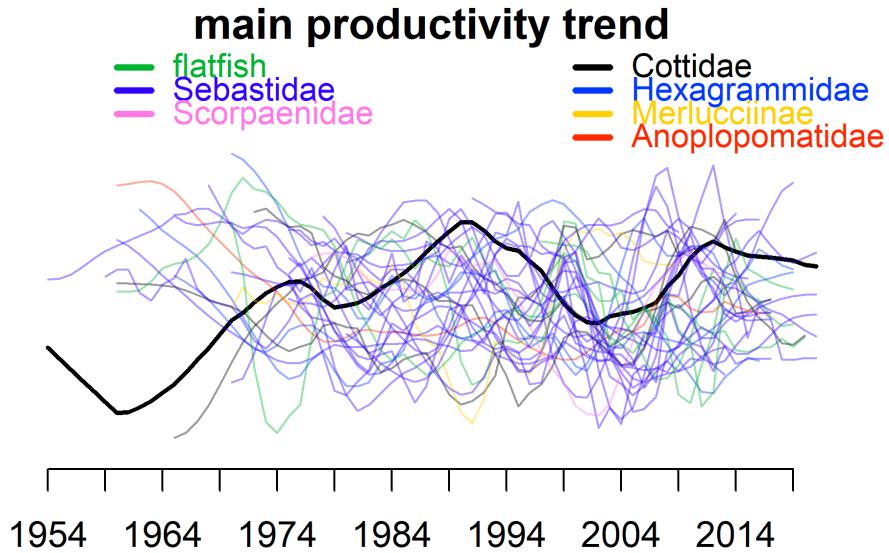
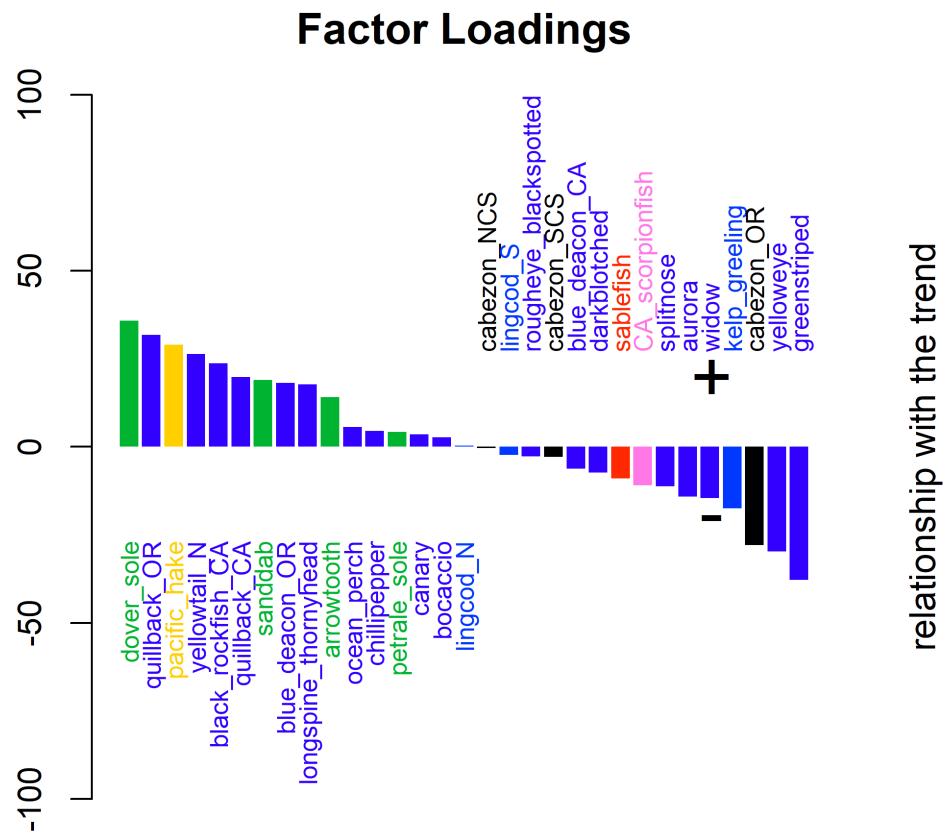


Figure 3: Common trend one (thick black line) of the time-varying productivity terms across all stocks (thin colored lines) from the Dynamic Factor Analysis. The bottom figure represents the percentage of variability the common trend explains for each stock based on the factor loadings (Z matrix).

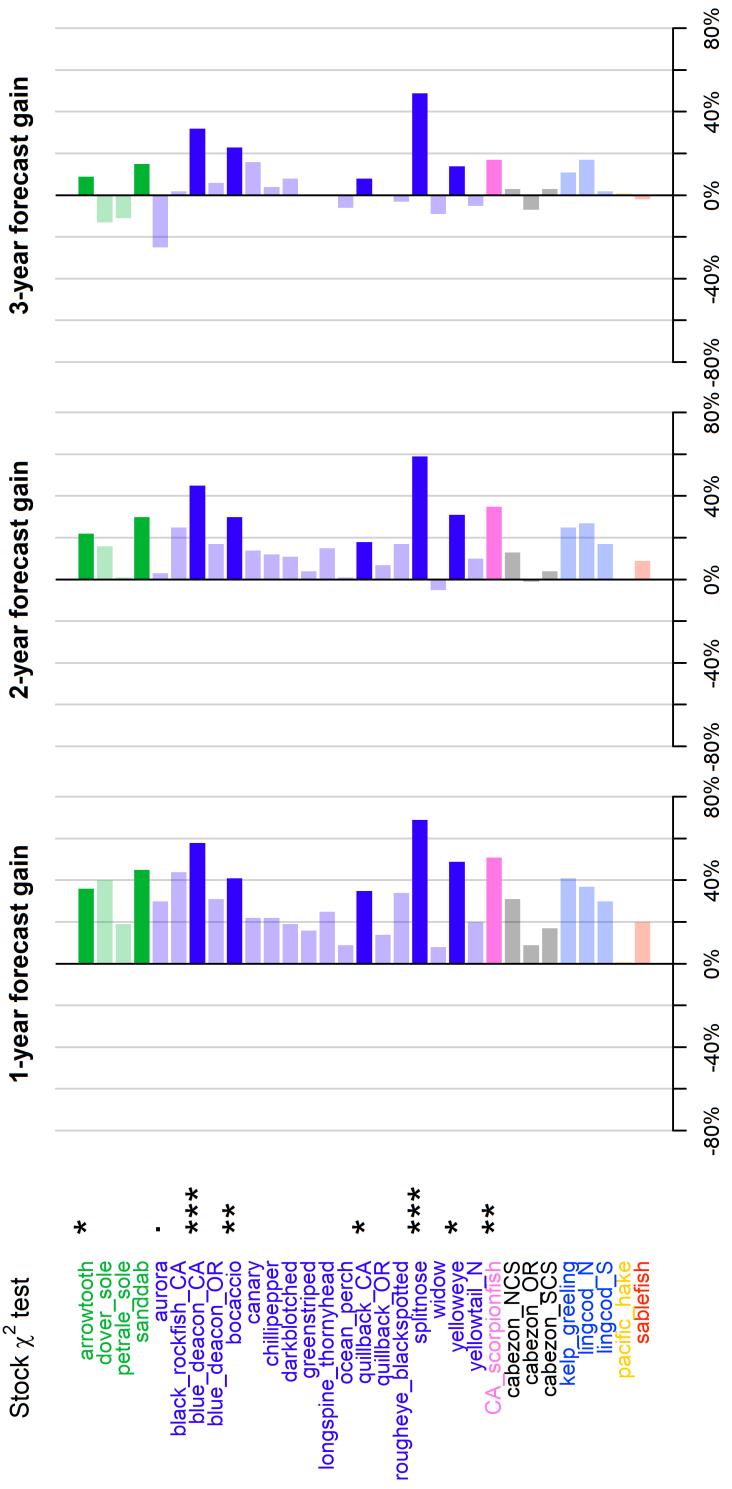


Figure 4: The gain in forecast accuracy predicting the  $\ln \text{recruits}$  one to three years ahead with the time-varying model compared to the time-invariant model. Bold colors indicate significant forecast gains compared with the time-invariant model. Significance levels are indicated by: \*\*\*  $p < 0.001$ , \*\*  $p < 0.01$ , \*  $p < 0.05$ ,  $p < 0.1$ .

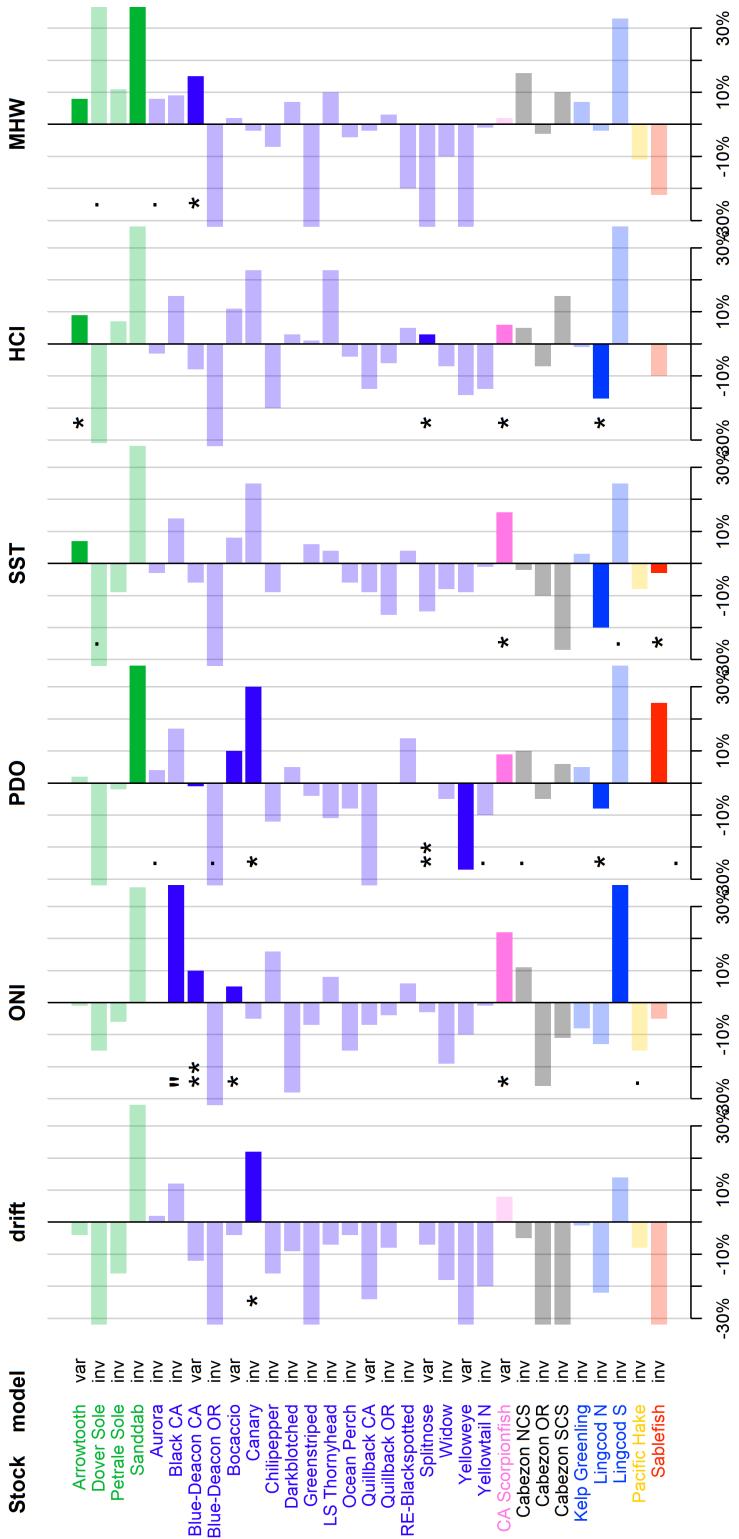


Figure 5: The bars represent the gain in forecast accuracy predicting the  $\ln(\text{recruits})$  one year ahead with the time-varying model that included a climate index compared to the base model for each stock. Significance levels are the output of the likelihood ratio test comparing the climate and base models over the entire time series: \*\*\*  $p < 0.001$ , \*\*  $p < 0.01$ , \*  $p < 0.05$ , ·  $p < 0.1$ .

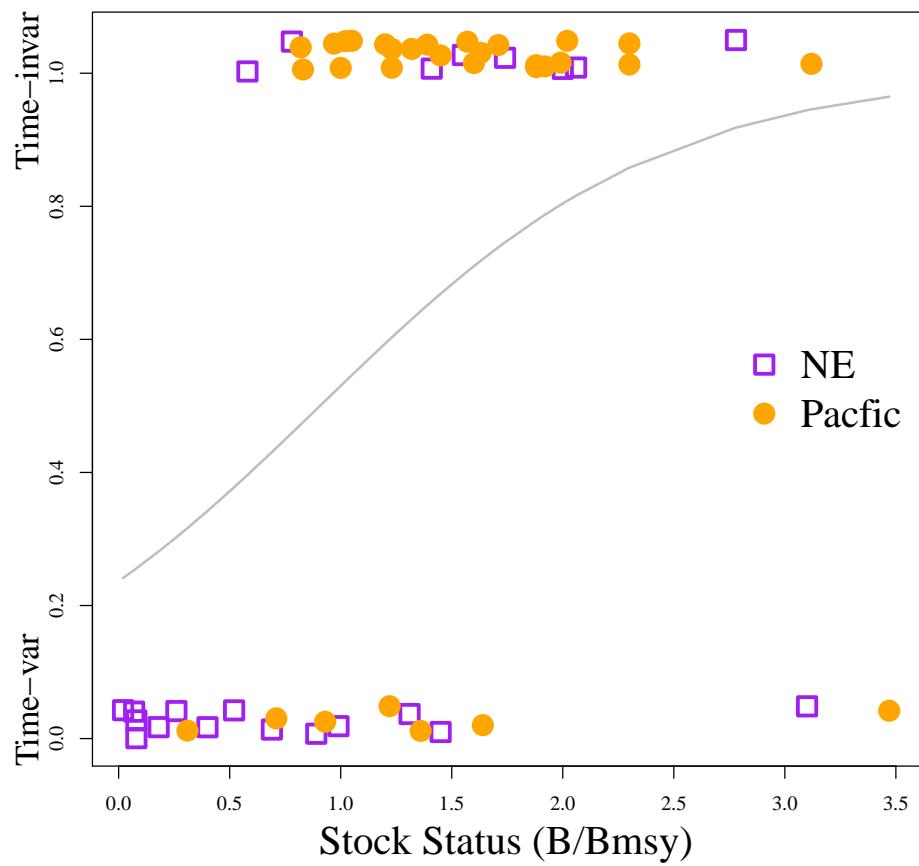


Figure 6: The logistic regression of constant or time-varying productivity on  $\frac{B}{B_{msy}}$  for stocks on the northeast US shelf (NE) and the west coast (Pacific). Gulf of Maine Haddock is not included. (Points have been jittered slightly for display purposes.)