Version of Record: https://www.sciencedirect.com/science/article/pii/S0165783623001054
Manuscript_ac7e3c0a2fc95eeb8961acd426a2c31e

Changes in the productivity of US West Coast
fish stocks

Richard J. Bell*!, Adrien Tableau? and Jeremy Collie?

IThe Nature Conservancy, Narragansett, RI 02882
2Graduate School of Oceanography, University of Rhode
Island, Narragansett, RI 02882

March 20, 2023

. Abstract

> The California Current ecosystem is highly dynamic at interannual to inter-
s decadal time scales. Variability has been documented in pelagic and other
+ fish species, but climate change may be altering the historical models of
s variation. This study investigates changes in productivity of 31 fish stocks
s in the California Current ecosystem. Productivity was measured from re-
7 cent stock assessments, as the per-capita recruitment rate, estimated with
¢ a dynamic stock-recruitment model. Contrary to expectations, the dynamic

o stock-recruitment model fit better than the corresponding stationary model
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for only seven of the 31 stocks. There was little evidence of linear drift in
productivity that might be expected to result from climate change. Climate
variables improved forecast accuracy for a few stocks, but there was no com-
mon climate signal in productivity. One explanation of these results is that
most of the west coast stocks are above their biomass levels for maximum
sustainable yield, making them less susceptible to environmental variation.
On the other hand, the dynamic recruitment models improved short-term
forecasts for all stocks, which may be useful for quota setting. Finally, re-
sults for the subset of stocks with dynamic recruitment models could be used

to establish dynamic biological reference points.
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1 Introduction

Climate variability and change have a large impact on natural marine re-
sources (Hollowed et al., 2013; Hutchings et al., 2012). The main ways in
which climate impacts fish stocks is by changes in distribution, changes in
phenology, and changes in productivity. Changes in distribution have been

demonstrated for fish stocks all over North America and beyond (Cheung
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et al., 2008; Nye et al., 2009; Perry et al., 2005; Pinsky et al., 2013) while
changes in seasonal timing have been recorded for a range of marine and
anadromous species (Henderson et al., 2017; Langan et al., 2021; Otero et al.,
2014). Productivity refers to a fish stock’s population growth and is a func-
tion of recruitment, survival, and individual growth (Shelton et al., 2006;
Silvar-Viladomiu et al., 2022; Tableau et al., 2019). Productivity is impacted
by density-dependent factors such as abundance and age-structure and by
density-independent factors such as the environment. The physical medium
of water can exert a strong regulatory function on fundamental aspects of
fish biology such as metabolism (Manderson, 2016). Through these biolog-
ical functions, the environment can therefore regulate where an individual
can live, how well it will survive and what capacity it has for reproduction
thereby determining its productivity in a given year.

On the west coast of the United States, a number of fish stocks show
evidence of environmental influence. Pacific sardines and northern anchovies
have varied substantially over time, often in the absence of fishing (Lindegren
et al., 2013; Schwartzlose et al., 1999). Studies have shown that changes in
water temperature and upwelling driven by large scale climate cycles, com-
bined with density-dependent effects are major factors regulating abundance.
The environment is considered such an important driver for Pacific sardines
that the management of the stock is one of few in the world that specifically
includes a temperature time-series (Lindegren and Checkley, 2012; PFMC,

2015). Sablefish have exhibited a relationship with copepod abundance and
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sea surface height under the hypothesis that changes in atmospheric-ocean
circulation impact the available prey items for early life stages and cross shelf
transport to nursery areas (McFarlane and Beamish, 1992; Johnson et al.,
2016; Tolimieri et al., 2018). The relationship is strong enough that time
series of copepod abundance and sea surface height are directly evaluated
in the stock assessment model (Johnson et al., 2016; Kapur et al., 2021).
Recently, a marine heat wave (“The Blob”) had major impacts on the Cali-
fornia current ecosystem resulting in distribution shifts, an influx of southern
species, Dimoic acid outbreaks, fishery closures and a spike in whale entan-
glements with fishing gear, showing the impacts changes in the environment
can have on marine species (Cavole et al., 2016; Chasco et al., 2022; Jacox
et al., 2018; Peterson et al., 2016; Santora et al., 2020). In addition, research
recommendations from the groundfish assessments suggest some synchrony
among rockfish recruitment at certain spatial and temporal scales (Field
et al., 2021; Stachura et al., 2014) and the California Scorpionfish assess-
ment recommended further research into a potential relationship with sea
surface temperature (Monk et al., 2017). Understanding how the environ-
ment influences natural marine resources can be important for sustainable
management.

The California current ecosystem is a large upwelling system spanning
most of the west coast of the United States (Harvey et al., 2022). The cold
water current flows from north to south resulting in the entire coastline being

relatively well connected. Many stocks are managed as single populations
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along the entire coast, though some because of lack of more detailed data.
The ecosystem is heavily influenced by large-scale, atmospheric-ocean cycles
such as El Nino and the Pacific Decadal Oscillation that alter temperature,
stratification, winds and upwelling. These changes affect nutrient availability,
prey density and advection towards or away from nursery areas (Harvey et al.,
2022). As the environment often has the largest impact on the early life stages
of natural marine resources (Houde, 1987), much of the climate and fisheries
work is focused around the recruitment process. Our goal was to evaluate if
there have been changes in the productivity of commercial fish stocks along
the west coast of the United States by examining the recruitment process.
We tested for changes in productivity with a time-varying Ricker stock-
recruitment model (Peterman et al., 2003; Dorner et al., 2008; Silvar-Viladomiu
et al., 2022). The inputs for the model are the spawning stock biomass and
recruitment outputs from an age-structure stock assessment. While the prod-
ucts are modeled data, they represent the best current sources of spawning
stock biomass and recruitment information integrated across the entire pop-
ulation (Silvar-Viladomiu et al., 2022). The environment is rarely included
in assessment models (Essington et al., 2016); however, it is possible that
the output of an assessment model can contain the signature of the impact
of the environment. For stocks with age-structured assessments (relatively
small number, but high number by volume of total landings), changes in
weight-at-age, fecundity-at-age and the annual age-structure are directly in-

corporated into the model. Annual changes in these inputs are often the
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result of changes in the environment. The spawning stock biomass and re-
cruitment estimates from an assessment model can therefore show the impact
of an environmental change, without the assessment directly incorporating
it, or explaining it. Lack of inclusion of an environmental term in an age-
structured assessment does not really change the estimates of biomass (Bell
et al., 2018), but lack of an environment driver in the model can change the
understanding of the drivers of stock abundance or stock status.

We examined changes in productivity, the reproductive potential of a
stock, for a range of species managed by the Pacific Fisheries Management
Council with a linear state-space modeling approach. The goals of the study
were first to determine if stock productivity varied over time for thirty-one
commercially important west coast species and to see if the time-varying
productivity of each stock exhibited any directionality or was related to large-
scale environmental drivers. Once the time-varying productivity time series
were estimated, we investigated whether there were any common patterns
among the different species that might indicate large-scale environmental
forcing and if stock status may be related to whether a stock exhibited time-

varying or time-invariant productivity.

2 Methods

To examine changes in stock productivity and investigate potential drivers

and patterns across the different species, the study was broken into four com-
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ponents. 1) To determine if productivity changed over time, we fit a time-
varying Ricker model and a time-invariant (standard) Ricker model to all
thirty-one commercially important stocks. The best model was determined
with a likelihood ratio test, however, as a separate analysis, we also inves-
tigated whether the time-varying or time-invariant Ricker model was better
able to forecast recruitment one to three years in the future (termed fore-
cast accuracy). 2) As a means to understand potential drivers of changes in
productivity, we incorporated a linear trend and a range of climate variables
into the time-varying Ricker model and compared the results to the best fit
model from component one (climate drivers). 3) Broad scale patterns in pro-
ductivity across the thirty-one stocks were examined with Dynamic Factor
Analysis. And 4) to determine if fishing or depletion was a potential driver,
we investigated whether there was a relationship between stock status and

variable productivity.

2.1 Assessment models

Spawning stock biomass (SSB) and recruitment from age-structured stock
assessments were used as the input for the analysis. While the output of
an assessment is an estimate, it represents the best estimates of SSB and
recruitment available, integrating multiple data sources including fisheries
independent and fisheries dependent data to produce time series of SSB and
recruitment (Tableau et al., 2019; Silvar-Viladomiu et al., 2022). The most

up-to-date stock assessments for commercial groundfish managed by the Pa-
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cific Fisheries Management Council were taken from the Council website in

the winter of 2022.

https://www.pcouncil.org/stock-assessments-star-reports-stat-reports-rebuilding

-analyses-terms-of-reference/groundfish-stock-assessment-documents/

All included assessments were run in Stock Synthesis (Methot and Wetzel,
2013) and included a Beverton-Holt stock recruitment function within the
assessment model. Only models that included non-deterministic recruitment
were used, however. Non-deterministic recruitment means that the estimates
of recruitment could deviate from the stock-recruitment function as recruit-
ment deviations, within certain constraints. The constraints typically de-
fined a distribution for the recruitment deviations with a mean of zero and a
specified standard deviation regulating how much the recruitment deviations
could deviate from the stock-recruitment function. The recruitment devia-
tions enable the estimates of recruitment to be informed by the survey-at-age
and catch-at-age data and are largely unconstrained by the stock-recruitment
function. The standard deviation of recruitment deviations was examined to
ensure recruitment estimates were able to fully deviate from the Beverton-
Holt stock-recruitment curve included in the assessment model when listed
in the assessment report. When not reported, a visual inspection of the
spawning stock biomass and recruitment was conducted. In many cases the
assessments estimated biomass going back to the late 1800s-early 1900s, how-

ever length or age data was not collected till the later half of the 1900s. The
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state-space analysis used only estimates of spawning stock biomass (SSB)
and recruitment that were informed by length or age data with starting years
varying between 1954 and 1997 depending on the stock. For most stocks in
the study, start dates were in the 1960s or 1970s. While most assessments
output SSB in weight, some output it in number of eggs. As a simple means
of scaling all units to biomass, the numbers of eggs were converted to weight
by dividing the total number of eggs each year by one million. The SSB-egg
scaling factor simply resulted in the productivity term for all species being

within the same range.

2.2 Climate data

Eight climate variables were examined to determine if they had a relation-
ship with changes in stock productivity (Table 1 & Figure 1). All variables
were available from the California Current Ecosystem Status Report (Har-
vey et al., 2022). For all variables, monthly values were averaged to produce
an annual mean. Sea surface temperature was obtained for three different
latitudes (33°N, 39°N, 44°N) and matched with the location of the stock. If
the stock spanned the entire west coast the middle latitude was selected. To
ensure independence, all variables were examined for correlation. Variables
with a correlation coefficient greater than 0.7 (r > 0.7) were not included in

the time-varying stock-recruitment model.
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2.3 Time-varying productivity: component I

Potential changes in productivity were examined with a time-varying Ricker
model (Peterman et al., 2000, 2003; Collie et al., 2012; Britten et al., 2016).
In the standard Ricker model, the number of recruits at time ¢ (R;) is equal
to the spawning stock biomass at time ¢-1 (SSB;_1) times the density-
independent, productivity term (a) and modified by the density-dependent
term (5) (Quinn and Deriso, 1999). The model assumes that productiv-
ity, the slope at the origin, o (o = e?), is stationary and that recruitment
varies only with SSB. However, studies have demonstrated that recruitment
variation is more than simply a function of SSB and can often be heavily
influenced by the environment (Szuwalski et al., 2015).

The time-varying Ricker model was fit within a state-space framework
by maximum likelihood using a Kalman filter. State-space models are a
means of identifying the true state of a quantity while accounting for the
observation error in the quantity (Peterman et al., 2000; Silvar-Viladomiu
et al., 2022). All observations are a combination of their true state plus some
observation error. The state-space model uses two equations. An observa-
tion equation, the linearized Ricker model, accounts for observation error by

explicitly modeling the variance.

n ( Rt ) = ay — bSt,1 + vy (1)
St-1

ay = a1 + wy (2)

10
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v~ N(0,V) (3)
wi ~ N(0,Wa) (4)

The process equation models the true state of the quantity, in this case,
as a random walk. The observation error (v;) and random walk parameter
(wy) are normally distributed with mean zero. The model estimates two
parameters: the variance of v; (V) and the variance of the random walk
(W,) for the time varying value (a;) that varies as a random walk capturing
potential changes in the productivity of the stock. The changes could be due
to changes in the external environment such as upwelling or prey availability
or to changes in the biology of the fish themselves (changes in fecundity,
spawner success, etc...) that could be influenced by the environment or other
stressors. The random walk captures the empirical changes in the parameters
directly from the input time series.

To improve the robustness of the analysis, we followed extensions of the
state-space method (Peterman et al., 2000; Dorner et al., 2008) made by
Tableau et al. (2019). The state-space framework includes both measure-
ment error and process error in an attempt to model the true state of a
parameter. One of the challenges when using state-space models is parti-
tioning the total error between measurement error (noise) and process error
(signal). Following a similar study on the US Northeast Shelf (Tableau et al.,
2019), we pooled the available data to estimate a single signal-to-noise ratio

(sur), the ratio of process error to measurement error, across all species to

11
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produce robust estimates of productivity. The method estimates separate
error terms for all species, but estimates a single snr for all species. Differ-
ent populations of the same species (Manderson, 2008; Minto et al., 2013)
or groups of different species in the same area can exhibit similar ratios of
process error to measurement error (Tableau et al., 2019). Parameters of all
stocks were estimated together with a single, signal-to-noise ratio (snr), the
ratio of process-error variance (W,) to observation-error variance (V). The
same model with the linear Ricker model as the observation equation and
the random walk as the process equation was used (Equation 1 & 15), but it

was formulated in matrix form.
Y, = Fi X, + v, with vy ~ N(0,V) (5)

Xt = GtXt—l -+ Wy with Wt ~ N(O, W) (6)

Within the matrix form, Y; = In (%) for each stock i from 1,....I. The time
varying productivity terms for each stock (a;;) and time-invariant density-
dependent term for each stock (5;) are included as X;. The linearized Ricker
model is F' which includes the SSB for each stock 7. Matrix G is the identity
matrix linking the process equation to the observation equation. The total
variance in the observations (n (%) is partitioned into three sources, the
observation error (v;), the process error (w;) and the density dependence

from SSB for each stock. The error vectors follow the multivariate normal

distributions defined by the covariance matrices V' (dimension IxI) and W

12
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(dimension 2Ix2I). Matrix W is the variance determining the range of the

random walk (wy).

To examine the potential for model misspecification a time-varying Beverton-

Holt stock recruitment function was fit to the spawning stock biomass and
recruitment information and compared to the output of the time-varying

Ricker model (supplemental material).

2.4 Climate drivers: component 11

In addition to the standard, time-invariant Ricker model, and the time-
varying Ricker model fit with a common signal-to-noise-ratio within the state-
space framework fit to examine changes in productivity in component one,
the study fit an additional model variant to examine large-scale drivers. In
component two, We fit a time-varying Ricker model that included a drift or
climate term to explicitly incorporate either a linear trend or climate sig-
nal within the state-space framework. The drift or climate term (c;) was
included in the process equation (eq 7) where H;; ;44 is the environmental
time series, j defines which time series and ¢ — lag determines which lag is
examined. The drift term was also modeled as c; and the time series H was a
series of ones. All other terms are as defined in eq 15. Not all environmental
time series were available for the full length of the SSB and recruitment time

series. The models were fit for only the years available for the shortest of the

13
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environmental or SSB-R time series.

ap = ag-1 + ¢ Hy—ag + wy (7)

wi ~ N(0, Wa) (8)

All the time-varying models (components I and II) were fit with the package
dlm (Dynamic Linear Modeling) in the software package R (Petris et al.,
2009).

2.5 Model comparison

Model comparison was done with two techniques: a likelihood ratio test and
an evaluation of forecast accuracy (Tableau et al., 2019). The two techniques
are complementary, but provide different information. The likelihood ratio
test compares the full time-series of the estimated ln% from the different
models (e.g. time-invariant to time-varying) with a x? distribution to de-
termine the overall best fit model. The forecast accuracy test was designed

to determine whether the time-invariant or time-varying model could better

recruits

. one to d years into the future. It does not test for a sig-
pawner

forecast In
nificant difference. The test uses only the data up to time step ¢ to predict

ln;"ec’”im'ts d time steps into the future. The test compares forecast from the
pawner

recruits
spawner

time invariant model to the known value of In and the forecast from

14
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the time-varying model to the known value.

T—d T—d
Siet1s(Firdptnun — Yirdobs)® — Si—t15(Firdtar — Yerdobs)?

T—d
t:T_15(Ft+d\t,null - Y;f—&-cl,obs)2

Accg =

(9)

Forecast accuracy (Acc) is equal to the forecast (F') from the time invariant
(null) model minus the observed value (Y) subtracted from the forecast from
the time varying (alt) model minus the observed value divided by the forecast
from the time invariant model minus the observed value.

The difference between the known and predicted value (residuals) for each
model averaged over the last fifteen years was examined to determine the
best model. The last fifteen years were selected because the early part of the
time-series can have extremely large confidence intervals making comparisons
challenging. The likelihood ratio test examines which model provides the
best fit to the data over the entire course of the time-series. The forecast
accuracy test examines how well the model can predict d time steps into the
future. It is possible that the model which provides the best fit over the
entire time-series may not provide the best forecast one, two, or three years

in the future.

2.6 Dynamic Factor Analysis: component III

A number of the west coast stock assessments recommended examining if dif-
ferent stocks exhibited similar patterns over time. Dynamic Factor Analysis

(DFA) was used to examine if there were common trends across the produc-

15
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tivity time-series of the stocks (Zuur et al., 2003a,b). DFA distills multiple
time series into common underlying state processes or trends within a state-
space model. The method is particularly useful for examining non-stationary,
short time-series. A state process, represented as a random walk was fit to
the productivity time series. The productivity time series were standardized
by subtracting the mean and dividing by the standard deviation. We fit from
one to four trends and used AICc to determine the most appropriate number
of trends. The process error equation within the DFA state-space model was

a random walk.

:Ut-i-l = Tt ‘l— Wt Wlth Wy ~ MVN(O, I) (10)

The z’s are the common trends (from one to four) among the different time
series with multivariate normal (MVN) process error. The I matrix is the
identity matrix with the same dimensions as the number of trends. The time-
varying productivity time-series for each stock (a;) are linear combinations of
the user defined number of state processes (z) (the number of trends) times

the Z matrix with measurement error v.

a1 = Z.fL"t -+ v with Vg ~ MVN(O, R) (11)

The Z matrix represents the contribution of each common trend to the orig-
inal observed time series for each species and is termed the factor loadings.

If a stock has a large, positive loading in the Z matrix, its productivity time-

16
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series is very similar to the common trend while a large, negative loading
indicates the productivity time-series is opposite the common trend. Stocks
with small loadings are generally not well explained by the common trend.
To maximize convergence, the variance-covariance structure was constrained
to estimate different variances along the diagonal, but to not have any off-
diagonal terms. The DFA was fit in the R package MARSS (Holmes et al.,
2013, 2014).

2.7 Productivity and Stock Status: components IV

We tested if the nature of stock productivity (time-varying or constant) was
related to stock status with a logistic regression. Stock status, defined as
%, was regressed against productivity defined as a binary term: time-
varying or constant. Stock status was taken directly from the appropriate
stock assessment or taken from the National Marine Fisheries Service Status
of the Stock report in the appropriate year for each stock (NMFS, 2021). The
stocks and productivity time series from this study were combined with the
stocks and productivity time series from a study investigating stock produc-

tivity on the US Northeast Shelf with very similar methods (Tableau et al.,

2019).

17



336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

3 Results

In total, time-varying productivity was estimated for thirty-one stocks man-
aged by the Pacific Fisheries Management Council (Table 2). The model
with a single, signal-to-noise ratio converged and produced good results (snr
= 0.40) (Figure S2). In general, the estimated productivity varied over time,
but none of the stocks showed clear increasing or decreasing trends, except
for a possible decrease in CA Blue-Deacon rockfish and CA Quillback rock-
fish. Across the stocks, the productivity term exhibited a range from 0.25
on the low end and up to 3.0 at the high end. This number is the range
in the number of recruits that a metric ton of spawning stock biomass on
a logarithmic scale could produce over the time-series after accounting for
SSB. For many of the stocks, the variability in productivity was not partic-
ularly large and/or the confidence intervals were quite wide indicating that
the more parsimonious time-invariant model fit the data better. Only seven
of the thirty-one stocks were better fit with the time-varying model based on
the likelihood ratio test (Figure 2).

The time-varying Ricker and time-varying Beverton-Holt models esti-
mated very similar patterns in productivity, the slope at the origin of the
stock recruit curve (Figure S1). The scale of the estimates differed depending
on the species, but the overall pattern between the two models was generally
the same. The current study is explicitly examining the time-varying pat-

terns in productivity and not the absolute value so the difference in scale for
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some species does not alter the overall results.

We fit a DFA to discern if there were common patterns across all stocks.
The model with four common trends provided the best fit to the productivity
time series based on AICc. Overall the trends explain a limited amount of
the variability in the majority of the productivity time series. The factor
loadings were relatively low for most stocks with only a handful accounting
for more than 20% of the variability. Trend one had the most support. It
was lowest in the early part of the time series and then generally increased to
the early 1990s (Figure 3). It then declined and was low in the early 2000s
before increasing to some degree in the 2010s. The productivity time series
of species loaded positively and negatively, but generally the magnitude of
the loadings was low for the majority of species. Trend two began with an
increasing trend up to the early 1980s, then declined till the early 2000s
before increasing to the present (Figure S3). All the factor loadings were
low except for Longspine Thornyhead. Trend three was highest in the late
1960s - early 1970s before declining till the mid 1980s (Figure S4). It then
increased through the 1990s before slowly declining. Longspine Thornyhead
again had a very strong loading while the majority of the other species were
low. Trend four was highest in the early part of the time series and generally
declined till the late 1990s before largely increasing to the end of the time
series (Figure S5). The factor loadings were again relatively low. The DFA
identified four common trends, but the majority of species loaded relatively

weakly on the trends indicating that there were not strong patterns across
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all the species.

The gain in forecast accuracy examined the ability of the time-varying and

recruits

one to three years forward using
spawner

time-invariant model to predict the in
only the information available up to the current time step. We examined this
only over the last fifteen years of the time-series. A negative value indicates
that the forecast from the time-invariant model performed better than the
time-varying model. Across all stocks, the time-varying model provided a
better forecast than the time-invariant model one year ahead and for most
stocks, two years ahead as well (Figure 4). At the two year ahead mark, two of
thirty-one stocks were slightly negative (Cabezon OR, -1% & Widow rockfish,
-5%) while all others were positive. The gain in forecast accuracy with the
time-varying model declined with the three year forecast. The forecasts for
the seven stocks in which the time-varying model was significantly better
than the time-invariant model based on the likelihood ratio test, had better
forecasts one, two and three years ahead.

The inclusion of the drift or climate variable within the state-space model
was also tested with both the likelihood ratio test and the gain in forecast
accuracy test. The best fitting model (base model) for each stock from above
(time-varying or time-invariant) was tested against a time-varying model
that included a drift or climate term (Figure 5). The likelihood ratio test
determines if the base model or the time-varying model with the climate
variable provided the best fit to the full time series of [nLér¥ts The forecast

Sspawner

accuracy test examined if the base model or the time-varying model with
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the climate variable provided the better one year ahead forecast of In
spawner

given only the SSB and recruits up to time ¢ and the climate variable up
to time t + 1. While the future value of the climate variables can not be
known, we assumed the future climate variable was known perfectly in order
to understand the full potential of each climate variable to accurately forecast
changes in ln%. The North Pacific High and the Northern Oscillation
Index were highly correlated with the PDO (r > 0.7) and not included in
further analyses. All other variables had correlations less than 0.7. The
North Pacific Gyre Oscillation metric was significant for black rockfish CA
and CA scorpionfish and is not displayed.

Six stocks had better forecasts when including the drift term based on
the gain in forecast accuracy test. The majority of stocks were negative indi-
cating that the drift term made the forecast worse. Based on the likelihood
ratio test examining the full time series as indicated above, the inclusion of
the drift term in the time-varying model for Canary rockfish provided a sig-
nificantly better fit than the time-invariant base model. The Oceanic Nino
Index improved the forecast for ten stocks and the likelihood ratio test found
that the models of five stocks were significantly better when including ONI
over the base model. The Pacific Decadal Oscillation made improvements
in forecasts for fourteen stocks and significantly improved the full time se-
ries fit based on the likelihood ratio test for eight stocks. The time-varying
model that included the PDO fit the ln% better than the time-invariant

base model for some stocks such as Northern Lingcod based on the likeli-
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hood ratio test (full time series), but the time-invariant base model provided
better forecasts one time step ahead. Sea Surface Temperature similarly,
made modest improvements in forecasts for eleven stocks, and four stocks
were significantly better fit with the time-varying climate model. Models
with the Habitat Compression Index were significantly better based on the
likelihood ratio test for four stocks and provided better forecasts for fifteen
stocks. The Mean Heat Wave variable improved forecasts for sixteen stocks
and was significantly better based on the likelihood ratio test for three stocks.
In general, the inclusion of the climate variables improved the one year ahead
forecasts for some stocks, but the results varied considerably from stock to
stock. A few stocks exhibited considerably better forecasts across a range of
climate drivers such as Sand dab and Southern Lingcod while the inclusion
of climate drivers in the forecast for other stocks such as Blue-deacon OR

and CA Quillback made the forecasts much worse.

3.1 Productivity and Stock Status

The logistic regression fit the data well and was significant (Table 3). Stocks
with biomass above their reference points (not overfished) tended to exhibit
time-invariant productivity while stocks that were below their reference point
tended to have time-varying productivity. The transition between time-
varying and time-invariant productivity occurred around % ~ 1 (Figure

6). Gulf of Maine Haddock in the Northeast had time-varying productivity

(Tableau et al., 2019), but its status B,iy was over seven. Haddock was a
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highly influential outlier and was removed from the analysis. Haddock were
heavily exploited for much of their time series and only recently surged well
above their biomass reference point (NEFSC, 2019). It is possible that they
were best fit with time-varying productivity because of the long period of

time at low biomass.

4 Discussion

As climate change continues to impact the ecosystem, it is important to un-
derstand how it will affect natural marine resources. While it is clear that
species are shifting their distributions in response to changes in the envi-
ronment (Cheung et al., 2008; Nye et al., 2009; Pinsky et al., 2013; Perry
et al., 2005), measuring and accounting for changes in productivity is more
challenging. Work to understand the drivers of recruitment go back over a
century (Hjort, 1914), however, environment-recruitment relationships rarely
hold up over time (Myers, 1998) and few population models explicitly incor-
porate environmental drivers (Skern-Mauritzen et al., 2016). In recognition
of the resulting changes in productivity due to climate-driven regime shifts,
a handful of stock assessments utilize different time series of data that re-
flect the current productivity regime (tanner crab (Stockhausen et al., 2013),
groundfish (NPFMC, 2012)). Other assessment models have simply split
certain time-series of data, effectively inserting a shift in productivity. For

other stocks there is recognition that environmental drivers are important,
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but they have been included in the management decisions process instead of
explicitly included in the population model (ASMFC |, Eckert et al.(2017).

In this study, we examined stock productivity, the reproductive potential,
to determine how it had changed over time and if specific climate factors may
be driving the changes. Of the thirty-one stocks examined on the west coast
of the United States, less than a quarter were found to have time-varying
productivity. The time-series of productivity were quite varied and we found
relatively weak common patterns across them. Only one stock exhibited a
monotonically increasing or decreasing trend suggesting that while produc-
tivity was changing, the environment was not consistently driving stocks to
low abundance or high abundance. This is in contrast to some stocks on
the US Northeast Shelf, such as many flatfish, that show a consistent de-
cline in productivity (Tableau et al., 2019). All the estimated time-varying
productivity time-series exhibited periods of declines and increases. Three-
quarters of the stocks were better fit with a time-invariant productivity term,
likely due to this oscillation about a central tendency, general low levels of
variability and/or large confidence intervals.

Many of the fish on west coast are long lived species (> 100 yrs) with much
of the biomass in the older year classes (Kolora et al., 2021). While there
is certainly recruitment variability, the variability might be less pronounced
then that of stocks that have a truncated age-structure and a large amount
of the SSB is less-fecund, first-time spawners as can be the case for some

East Coast stocks (NEFSC, 2019). The logistic regression indicated that the
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more heavily a stock is exploited, the more likely it is to have time-varying
productivity. As has been found in previous studies, exploitation tends to
increase variability (Brander, 2005; Anderson et al., 2008; Hsieh et al., 2006).
In this study, we found that the reproductive potential of stocks is more
variable and less connected to spawning stock biomass when the biomass was
low. This makes exploited stocks more likely to track with environmental
drivers or exhibit unstable population dynamics due to the changing life
history rates of an age truncated population (Anderson et al., 2008). The
stocks tended to transition from time-varying to time-invariant productivity
roughly when biomass was at the reference point, providing strong support
for maintaining stocks at or above the biomass reference point.

Differences between the coasts might also be related to different oceano-
graphic drivers. On the East Coast, there have been some extreme warm
events such as occurred in 2012 (Mills et al., 2013), but in general the water
temperature is simply rapidly warming (Friedland and Hare, 2007; NEFSC,
2021), and climate drivers such as the Atlantic Multidecadal Oscillation con-
tinue to increase (Nye et al., 2014). The west coast recently experienced an
extreme marine heat wave (“The Blob”) (Jacox et al., 2018), but there is a
somewhat less pronounced warming trend, and strong climate drivers such
as El Nino and the PDO. These large-scale climate drivers still exhibit shifts,
though possibly different than the past. The fact that some of the major west
coast climate drivers still move between the positive and negative phases may

help explain why the stock productivity time-series generally varied without
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trend and many stocks were better fit with a time-invariant term.

Though the majority of stocks were better fit with a time-invariant model
(base model), the inclusion of the climate drivers did show some significant
relationships. Blue rockfish exhibited a significant relationship with ONI
and the marine heat wave index. A CALCOFI report indicated that blue
rockfish is a macrozooplankton feeder and had reduced condition factor and
gonadal indices during warm water events suggesting a possible mechanism
with high SST, deeper thermocline and reduced upwelling as might occur
during an El Nino event or a marine heat wave (VenTresca et al., 1995). The
more northerly stock of blue rockfish assessed with deacon rockfish, however,
did not exhibit a relationship with any of the climate drives (the climate
drivers made the forecasts worse). The lack of relationships suggest that
the decreased prey fields due to the decline in upwelling hypothesis may
not be applicable in the northern part of the range. The biomass of the
northern population was also above the biomass reference point, which could
make it less likely to track with climate drivers. Arrowtooth flounder was
an exception in that the biomass was well above its reference point, but still
exhibited time-varying productivity and the model was improved when in-
cluding climate drivers. A number of studies have found strong influence of
climate drivers on Arrowtooth flounder in the North Pacific (Hare and Man-
tua, 2000; Hunsicker et al., 2013; Wilderbuer et al., 2010), with changes in
water temperature and availability of the cold pool habitat showing a rela-

tionship with recruitment. The inclusion of SST and the habitat compression
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index improved the model fits in this study suggesting that similar mecha-
nisms could operate on the west coast. The inclusion of climate drivers in
the California Scorpionfish model showed improved forecasts across a range
of environmental covariates as well as an overall improvement in the stock-
recruitment model. While there have been limited studies on the drivers of
Scorpionfish recruitment variability, this study, combined with an environ-
mental relationship noted in the most recent stock assessment (Monk et al.,
2017) indicates that more investigation may be warranted. Additionally, pre-
vious work found correlations between Splitnose rockfish growth and several
drivers including the PDO and upwelling (Black et al., 2005) suggesting that
warm, low primary productivity periods reduce growth and may reduce stock
productivity given the relationship found with the climate variables PDO and
HCI.

While the inclusion of the climate drivers explained some of variability in
productivity, they did not capture it all. As this was a broad meta analysis,
we may not have included the correct driver for all stocks, or may not have
included drivers in the correct manner. For example, sablefish has exhibited
relationships with sea surface height and copepod abundance likely related to
upwelling, nutrient abundance and stratification (McFarlane and Beamish,
1992; Johnson et al., 2016; Tolimieri et al., 2018). This study found a rela-
tionship with the PDO and SST that can be connected with sea surface height
and copepod abundance, but at a relatively coarse scale. A focused study

on sablefish (Tolimieri et al., 2018) involving multiple steps, at multiple life
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stages has attempted to elucidate the stage-specific mechanisms associated
with recruitment, which is simply not possible in this type of broad study.
Our study provides a rapid synthesis of a large number of stocks without
having to know the specific mechanisms, which can be used to focus research
attention on those stocks that may be most promising, or may have been
over looked (e.g. CA Scorpionfish).

The habitat compression index and the marine heat wave index were in-
cluded to account for impacts from the extreme marine heat wave (“The
Blob”) that occurred on the west coast from 2014 - 2016 (Jacox et al.,
2018). While the Blob had major impacts on the California current ecosystem
(Cavole et al., 2016), we found limited connections with the estimated time-
varying productivity of the stocks. The stock assessments for many of the
stocks end around this time period so the input information into the analyses
likely contain only limited impacts from the heat wave if any. Reconducting
the analyses after the majority of the stocks have updated assessments may
provide a better picture of the impacts. Additionally, the California current
experiences substantial changes from environmental drivers such as El Nino
and the PDO. Many of the species are likely adapted to dealing with extreme
events and the marine heat wave may simply add variability that is similar
to other drivers.

A clear caveat of the results from this study, however, is that SSB and
recruitment from a stock assessment are the input into the time-varying

stock-recruitment model. The results are therefore contingent on the as-
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sumptions and decisions within the stock assessment process. The model
could be misspecified and biases could be present, particularly if there are
significant amounts of unreported catch or time-varying natural mortality
that exhibit strong trends. The stock assessment model, however, integrates
a range of information and provides the best current estimates of SSB and
recruitment. All the stocks in the study were assessed in Stock Synthesis
and include fisheries-dependent and fisheries-independent data, length and
age data from both the catch and surveys as well as life history data and
largely cover the full range of the stock (Methot and Wetzel, 2013). Large
numbers of sensitivity runs are conducted on each assessment to understand
the influence of different assumptions and decisions as well as detect potential
biases and all the models are peer reviewed.

The state-space method also used a time-varying Ricker model while a
Beverton-Holt curve is used within the assessment models. Both the Ricker
and Beverton-Hold curves have a similar productivity parameter defining the
slope at the origin of the stock-recruitment curve and it is the estimation of
the slope at the origin that is the focus of this study. The two models differ
in the way they handle density-dependence (Quinn and Deriso, 1999). The
recruitment estimates from the assessment model are largely unconstrained
by the stock recruitment model within the assessment model, however, be-
cause the assessment model specifically includes recruitment deviations. The
recruitment deviations enable the estimates of recruitment to largely be in-

formed by the length and age data from both the catch and survey informa-
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tion. For all stocks included in the study, length and age data were available
and the standard deviation of the recruitment deviations was large enough
that the estimated output had little to no connection with the Beverton-Holt
model within the assessment. The variability of the slope at the origin over
time followed the same general pattern regardless of whether the Ricker or
Beverton-Holt curve was included within the state-space model. While using
model output as input into another model can be problematic (Brooks and
Deroba, 2015), each assessment was reviewed to ensure they met the con-
ditions above including sufficient length/age data and largely unconstrained
recruitment deviations before being included in the study.

The intent of studies such as this is to examine a range of stocks to
evaluate which may be exhibiting changes in productivity and to evaluate
larger ecological patterns. It provides perspective on the current level of pro-
ductivity (high or low) that can be useful in a risk assessment framework
when providing management advice (Collie et al., 2012) and potentially for
biomass projections. It also can help drive future research by showing which
species have had the most dramatic changes in productivity and where re-
search should be focused (e.g. forecast accuracy of Sanddab and Southern
Lingcod). While working toward understanding specific mechanistic links is
extremely important, these studies are challenging, time consuming and often
produce relationships that do not hold up over time. The state-space method
used here, to some extent is a medium-term solution, as a rapid assessment

that quickly provides information to scientists and managers to make deci-
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sions even without knowing the full mechanism driving each life stage of each
stock. Time-varying recruitment models provide a bridge between station-
ary stock assessment models and fully coupled climate-fisheries models. The
results can be used to calculate dynamic reference points, optimal harvest
control rules (Collie et al., 2021), and may be useful for short-term recruit-

ment forecasts.
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The time-series of climate variables tested in the time-varying
productivity model. HCI = Habitat Compression Index, NPH
= North Pacific High, NPGO = N. Pacfic Gyre Oscillation,
NOI = Northern Oscillation Index, ONI = Oceanic Nino In-
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invariant model provided the best fit for Dover Sole and the
static a term has the bold line in the figure). . . . ... ...
Common trend one (thick black line) of the time-varying pro-
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Dynamic Factor Analysis. The bottom figure represents the
percentage of variability the common trend explains for each
stock based on the factor loadings (Z matrix). . . ... ...
The gain in forecast accuracy predicting the ln% one to
three years ahead with the time-varying model compared to
the time-invariant model. Bold colors indicate significant fore-
cast gains compared with the time-invariant model. Signifi-
cance levels are indicated by: *** p < 0.001, ** p < 0.01, *
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The bars represent the gain in forecast accuracy predicting
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stock. Significance levels are the output of the likelihood ratio
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time series: *** p < 0.001, ** p < 0.01, * p < 0.05, p < 0.1.
The logistic regression of constant or time-varying productiv-
ity on % for stocks on the northeast US shelf (NE) and the
west coast (Pacific). Gulf of Maine Haddock is not included.
(Points have been jittered slightly for display purposes.)
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ONI Oceanic Nino Index

NPGO North Pacific Gyre Oscillation
PDO Pacific Decadal Oscillation
SST Sea Surface Temperature

HCI Habitat Compression Index
NOI Northern Oscillation Index
NPH North Pacific High

MHW  Marine Heat Wave

Table 1: The eight climate variables tested for their predictive ability.
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Species Stock Community Spawners Date min Date max
Arrowtooth Flounder flatfish weight 1965 2017
Aurora Rockfish Sebastidae weight 1978 2013
Black Rockfish CA Sebastidae weight 1975 2015
Blue and Deacon Rock CA Sebastidae weight 1960 2017
Blue and Deacon Rock OR Sebastidae weight 1970 2017
Bocaccio Rockfish Sebastidae egegs 1954 2017
California Scorpionf Scorpaenidae weight 1965 2016
Cabezon NCS  Cottidae weight 1962 2018
Cabezon OR Cottidae weight 1980 2018
Cabezon SCS  Cottidae weight 1970 2018
Canary Rockfish Sebastidae eggs 1968 2015
Chilipepper Rockfish Sebastidae weight 1965 2014
Darkblotched Rockfis Sebastidae eggs 1960 2017
Dover Sole flatfish weight 1975 2020
Greenstriped Rockfis Sebastidae eggs 1970 2009
Kelp Greenling OR Hexagrammidae  weight 1980 2015
Lingcod north Hexagrammidae  weight 1960 2020
Lingcod south Hexagrammidae  weight 1972 2020
Longspine Thornyhead Sebastidae weight 1997 2012
Pacific Ocean Perch Sebastidae eggs 1975 2017
Pacific Whiting (Hak Merlucciinae weight 1975 2020
Petrale Sole flatfish weight 1959 2018
Quillback Rockfish CA Sebastidae eggs 1991 2020
Quillback Rockfish OR Sebastidae eggs 1980 2020
Blackspotted Rockfis Sebastidae weight 1980 2013
Sablefish Anoplopomatidae weight 1975 2020
Pacific Sanddab flatfish weight 1977 2012
Splitnose Rockfish Sebastidae eggs 1960 2006
Widow Rockfish Sebastidae weight 1970 2018
Yelloweye Rockfish Sebastidae eggs 1980 2016
Yellowtail Rockfish north Sebastidae eggs 1970 2016

Table 2: The stocks used in the analysis. Only years in which length or age-
structured data were available were used in the analysis despite many of the
spawner and recruitment time-series going back further in time. Spawners

were the unit of spawning stock biomass in the assessment.
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Estimate Std. Error z value Pr(>|z|)
Intercept -1.1708 0.6428 -1.82 0.0685
b1 1.2915 0.4867 2.65  0.0080

Table 3: The parameter estimates from the logistic regression of constant or

time-varying productivity on %. Gulf of Maine Haddock is not included.
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(Monk et al., 2017)
(Cope et al., 2019)
(Cope et al., 2019)
(Cope et al., 2019)
(Thorson et al., 2016)
(Field et al., 2016)
(Wallace and Gertseva, 2017)
(Hicks and Wetzel, 2011)
(Hicks et al., 2009)

(Berger et al., 2015)

(Taylor et al., 2021)
(Johnson et al., 2021b)
(Stephens and Taylor, 2014)
(Wetzel et al., 2017)
(Johnson et al., 2021a)
(Wetzel, 2019)

(Langseth et al., 2021a)
(Langseth et al., 2021b)
(Hicks et al., 2014)

(Kapur et al., 2021)
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(Adams et al., 2019)
(Gertseva and Cope, 2017)
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Table 4: Stock assessment citations
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Figure 1: The time-series of climate variables tested in the time-varying pro-
ductivity model. HCI = Habitat Compression Index, NPH = North Pacific
High, NPGO = N. Pacfic Gyre Oscillation, NOI = Northern Oscillation In-
dex, ONI = Oceanic Nino Index, PDO = Pacific Decadal Oscillation, MHW
= Marine Heat Wave, SST = Sea Surface Temperature.
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Figure 2: The time-varying and time-invariant productivity term (a) for each
stock with 95% confidence intervals. The model that provided the best fit is
in bold for each stock (e.g. The time-invariant model provided the best fit
for Dover Sole and the static a term has the bold line in the figure).
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Figure 3: Common trend one (thick black line) of the time-varying produc-
tivity terms across all stocks (thin colored lines) from the Dynamic Factor
Analysis. The bottom figure represents the percentage of variability the com-
mon trend explains for each stock baggd on the factor loadings (Z matrix).
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Figure 6: The logistic regression of constant or time-varying productivity on
B for stocks on the northeast US shelf (NE) and the west coast (Pacific).

Gulf of Maine Haddock is not included. (Points have been jittered slightly
for display purposes.)
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