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Abstract1

The California Current ecosystem is highly dynamic at interannual to inter-2

decadal time scales. Variability has been documented in pelagic and other3

fish species, but climate change may be altering the historical models of4

variation. This study investigates changes in productivity of 31 fish stocks5

in the California Current ecosystem. Productivity was measured from re-6

cent stock assessments, as the per-capita recruitment rate, estimated with7

a dynamic stock-recruitment model. Contrary to expectations, the dynamic8

stock-recruitment model fit better than the corresponding stationary model9
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for only seven of the 31 stocks. There was little evidence of linear drift in10

productivity that might be expected to result from climate change. Climate11

variables improved forecast accuracy for a few stocks, but there was no com-12

mon climate signal in productivity. One explanation of these results is that13

most of the west coast stocks are above their biomass levels for maximum14

sustainable yield, making them less susceptible to environmental variation.15

On the other hand, the dynamic recruitment models improved short-term16

forecasts for all stocks, which may be useful for quota setting. Finally, re-17

sults for the subset of stocks with dynamic recruitment models could be used18

to establish dynamic biological reference points.19
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1 Introduction23

Climate variability and change have a large impact on natural marine re-24

sources (Hollowed et al., 2013; Hutchings et al., 2012). The main ways in25

which climate impacts fish stocks is by changes in distribution, changes in26

phenology, and changes in productivity. Changes in distribution have been27

demonstrated for fish stocks all over North America and beyond (Cheung28
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et al., 2008; Nye et al., 2009; Perry et al., 2005; Pinsky et al., 2013) while29

changes in seasonal timing have been recorded for a range of marine and30

anadromous species (Henderson et al., 2017; Langan et al., 2021; Otero et al.,31

2014). Productivity refers to a fish stock’s population growth and is a func-32

tion of recruitment, survival, and individual growth (Shelton et al., 2006;33

Silvar-Viladomiu et al., 2022; Tableau et al., 2019). Productivity is impacted34

by density-dependent factors such as abundance and age-structure and by35

density-independent factors such as the environment. The physical medium36

of water can exert a strong regulatory function on fundamental aspects of37

fish biology such as metabolism (Manderson, 2016). Through these biolog-38

ical functions, the environment can therefore regulate where an individual39

can live, how well it will survive and what capacity it has for reproduction40

thereby determining its productivity in a given year.41

On the west coast of the United States, a number of fish stocks show42

evidence of environmental influence. Pacific sardines and northern anchovies43

have varied substantially over time, often in the absence of fishing (Lindegren44

et al., 2013; Schwartzlose et al., 1999). Studies have shown that changes in45

water temperature and upwelling driven by large scale climate cycles, com-46

bined with density-dependent effects are major factors regulating abundance.47

The environment is considered such an important driver for Pacific sardines48

that the management of the stock is one of few in the world that specifically49

includes a temperature time-series (Lindegren and Checkley, 2012; PFMC,50

2015). Sablefish have exhibited a relationship with copepod abundance and51
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sea surface height under the hypothesis that changes in atmospheric-ocean52

circulation impact the available prey items for early life stages and cross shelf53

transport to nursery areas (McFarlane and Beamish, 1992; Johnson et al.,54

2016; Tolimieri et al., 2018). The relationship is strong enough that time55

series of copepod abundance and sea surface height are directly evaluated56

in the stock assessment model (Johnson et al., 2016; Kapur et al., 2021).57

Recently, a marine heat wave (“The Blob”) had major impacts on the Cali-58

fornia current ecosystem resulting in distribution shifts, an influx of southern59

species, Dimoic acid outbreaks, fishery closures and a spike in whale entan-60

glements with fishing gear, showing the impacts changes in the environment61

can have on marine species (Cavole et al., 2016; Chasco et al., 2022; Jacox62

et al., 2018; Peterson et al., 2016; Santora et al., 2020). In addition, research63

recommendations from the groundfish assessments suggest some synchrony64

among rockfish recruitment at certain spatial and temporal scales (Field65

et al., 2021; Stachura et al., 2014) and the California Scorpionfish assess-66

ment recommended further research into a potential relationship with sea67

surface temperature (Monk et al., 2017). Understanding how the environ-68

ment influences natural marine resources can be important for sustainable69

management.70

The California current ecosystem is a large upwelling system spanning71

most of the west coast of the United States (Harvey et al., 2022). The cold72

water current flows from north to south resulting in the entire coastline being73

relatively well connected. Many stocks are managed as single populations74

4



along the entire coast, though some because of lack of more detailed data.75

The ecosystem is heavily influenced by large-scale, atmospheric-ocean cycles76

such as El Nino and the Pacific Decadal Oscillation that alter temperature,77

stratification, winds and upwelling. These changes affect nutrient availability,78

prey density and advection towards or away from nursery areas (Harvey et al.,79

2022). As the environment often has the largest impact on the early life stages80

of natural marine resources (Houde, 1987), much of the climate and fisheries81

work is focused around the recruitment process. Our goal was to evaluate if82

there have been changes in the productivity of commercial fish stocks along83

the west coast of the United States by examining the recruitment process.84

We tested for changes in productivity with a time-varying Ricker stock-85

recruitment model (Peterman et al., 2003; Dorner et al., 2008; Silvar-Viladomiu86

et al., 2022). The inputs for the model are the spawning stock biomass and87

recruitment outputs from an age-structure stock assessment. While the prod-88

ucts are modeled data, they represent the best current sources of spawning89

stock biomass and recruitment information integrated across the entire pop-90

ulation (Silvar-Viladomiu et al., 2022). The environment is rarely included91

in assessment models (Essington et al., 2016); however, it is possible that92

the output of an assessment model can contain the signature of the impact93

of the environment. For stocks with age-structured assessments (relatively94

small number, but high number by volume of total landings), changes in95

weight-at-age, fecundity-at-age and the annual age-structure are directly in-96

corporated into the model. Annual changes in these inputs are often the97
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result of changes in the environment. The spawning stock biomass and re-98

cruitment estimates from an assessment model can therefore show the impact99

of an environmental change, without the assessment directly incorporating100

it, or explaining it. Lack of inclusion of an environmental term in an age-101

structured assessment does not really change the estimates of biomass (Bell102

et al., 2018), but lack of an environment driver in the model can change the103

understanding of the drivers of stock abundance or stock status.104

We examined changes in productivity, the reproductive potential of a105

stock, for a range of species managed by the Pacific Fisheries Management106

Council with a linear state-space modeling approach. The goals of the study107

were first to determine if stock productivity varied over time for thirty-one108

commercially important west coast species and to see if the time-varying109

productivity of each stock exhibited any directionality or was related to large-110

scale environmental drivers. Once the time-varying productivity time series111

were estimated, we investigated whether there were any common patterns112

among the different species that might indicate large-scale environmental113

forcing and if stock status may be related to whether a stock exhibited time-114

varying or time-invariant productivity.115

2 Methods116

To examine changes in stock productivity and investigate potential drivers117

and patterns across the different species, the study was broken into four com-118
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ponents. 1) To determine if productivity changed over time, we fit a time-119

varying Ricker model and a time-invariant (standard) Ricker model to all120

thirty-one commercially important stocks. The best model was determined121

with a likelihood ratio test, however, as a separate analysis, we also inves-122

tigated whether the time-varying or time-invariant Ricker model was better123

able to forecast recruitment one to three years in the future (termed fore-124

cast accuracy). 2) As a means to understand potential drivers of changes in125

productivity, we incorporated a linear trend and a range of climate variables126

into the time-varying Ricker model and compared the results to the best fit127

model from component one (climate drivers). 3) Broad scale patterns in pro-128

ductivity across the thirty-one stocks were examined with Dynamic Factor129

Analysis. And 4) to determine if fishing or depletion was a potential driver,130

we investigated whether there was a relationship between stock status and131

variable productivity.132

2.1 Assessment models133

Spawning stock biomass (SSB) and recruitment from age-structured stock134

assessments were used as the input for the analysis. While the output of135

an assessment is an estimate, it represents the best estimates of SSB and136

recruitment available, integrating multiple data sources including fisheries137

independent and fisheries dependent data to produce time series of SSB and138

recruitment (Tableau et al., 2019; Silvar-Viladomiu et al., 2022). The most139

up-to-date stock assessments for commercial groundfish managed by the Pa-140
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cific Fisheries Management Council were taken from the Council website in141

the winter of 2022.142

https://www.pcouncil.org/stock-assessments-star-reports-stat-reports-rebuilding143

-analyses-terms-of-reference/groundfish-stock-assessment-documents/144

All included assessments were run in Stock Synthesis (Methot and Wetzel,145

2013) and included a Beverton-Holt stock recruitment function within the146

assessment model. Only models that included non-deterministic recruitment147

were used, however. Non-deterministic recruitment means that the estimates148

of recruitment could deviate from the stock-recruitment function as recruit-149

ment deviations, within certain constraints. The constraints typically de-150

fined a distribution for the recruitment deviations with a mean of zero and a151

specified standard deviation regulating how much the recruitment deviations152

could deviate from the stock-recruitment function. The recruitment devia-153

tions enable the estimates of recruitment to be informed by the survey-at-age154

and catch-at-age data and are largely unconstrained by the stock-recruitment155

function. The standard deviation of recruitment deviations was examined to156

ensure recruitment estimates were able to fully deviate from the Beverton-157

Holt stock-recruitment curve included in the assessment model when listed158

in the assessment report. When not reported, a visual inspection of the159

spawning stock biomass and recruitment was conducted. In many cases the160

assessments estimated biomass going back to the late 1800s-early 1900s, how-161

ever length or age data was not collected till the later half of the 1900s. The162
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state-space analysis used only estimates of spawning stock biomass (SSB)163

and recruitment that were informed by length or age data with starting years164

varying between 1954 and 1997 depending on the stock. For most stocks in165

the study, start dates were in the 1960s or 1970s. While most assessments166

output SSB in weight, some output it in number of eggs. As a simple means167

of scaling all units to biomass, the numbers of eggs were converted to weight168

by dividing the total number of eggs each year by one million. The SSB-egg169

scaling factor simply resulted in the productivity term for all species being170

within the same range.171

2.2 Climate data172

Eight climate variables were examined to determine if they had a relation-173

ship with changes in stock productivity (Table 1 & Figure 1). All variables174

were available from the California Current Ecosystem Status Report (Har-175

vey et al., 2022). For all variables, monthly values were averaged to produce176

an annual mean. Sea surface temperature was obtained for three different177

latitudes (33◦N, 39◦N, 44◦N) and matched with the location of the stock. If178

the stock spanned the entire west coast the middle latitude was selected. To179

ensure independence, all variables were examined for correlation. Variables180

with a correlation coefficient greater than 0.7 (r ≥ 0.7) were not included in181

the time-varying stock-recruitment model.182
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2.3 Time-varying productivity: component I183

Potential changes in productivity were examined with a time-varying Ricker184

model (Peterman et al., 2000, 2003; Collie et al., 2012; Britten et al., 2016).185

In the standard Ricker model, the number of recruits at time t (Rt) is equal186

to the spawning stock biomass at time t-1 (SSBt−1) times the density-187

independent, productivity term (α) and modified by the density-dependent188

term (β) (Quinn and Deriso, 1999). The model assumes that productiv-189

ity, the slope at the origin, α (α = ea), is stationary and that recruitment190

varies only with SSB. However, studies have demonstrated that recruitment191

variation is more than simply a function of SSB and can often be heavily192

influenced by the environment (Szuwalski et al., 2015).193

The time-varying Ricker model was fit within a state-space framework194

by maximum likelihood using a Kalman filter. State-space models are a195

means of identifying the true state of a quantity while accounting for the196

observation error in the quantity (Peterman et al., 2000; Silvar-Viladomiu197

et al., 2022). All observations are a combination of their true state plus some198

observation error. The state-space model uses two equations. An observa-199

tion equation, the linearized Ricker model, accounts for observation error by200

explicitly modeling the variance.201

ln

(
Rt

St−1

)
= at − bSt−1 + vt (1)

202

at = at−1 + wat (2)
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vt ∼ N(0, V ) (3)
203

wat ∼ N(0,Wa) (4)

The process equation models the true state of the quantity, in this case,204

as a random walk. The observation error (vt) and random walk parameter205

(wt) are normally distributed with mean zero. The model estimates two206

parameters: the variance of vt (V ) and the variance of the random walk207

(Wa) for the time varying value (at) that varies as a random walk capturing208

potential changes in the productivity of the stock. The changes could be due209

to changes in the external environment such as upwelling or prey availability210

or to changes in the biology of the fish themselves (changes in fecundity,211

spawner success, etc...) that could be influenced by the environment or other212

stressors. The random walk captures the empirical changes in the parameters213

directly from the input time series.214

To improve the robustness of the analysis, we followed extensions of the215

state-space method (Peterman et al., 2000; Dorner et al., 2008) made by216

Tableau et al. (2019). The state-space framework includes both measure-217

ment error and process error in an attempt to model the true state of a218

parameter. One of the challenges when using state-space models is parti-219

tioning the total error between measurement error (noise) and process error220

(signal). Following a similar study on the US Northeast Shelf (Tableau et al.,221

2019), we pooled the available data to estimate a single signal-to-noise ratio222

(snr), the ratio of process error to measurement error, across all species to223
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produce robust estimates of productivity. The method estimates separate224

error terms for all species, but estimates a single snr for all species. Differ-225

ent populations of the same species (Manderson, 2008; Minto et al., 2013)226

or groups of different species in the same area can exhibit similar ratios of227

process error to measurement error (Tableau et al., 2019). Parameters of all228

stocks were estimated together with a single, signal-to-noise ratio (snr), the229

ratio of process-error variance (Wa) to observation-error variance (V ). The230

same model with the linear Ricker model as the observation equation and231

the random walk as the process equation was used (Equation 1 & 15), but it232

was formulated in matrix form.233

Yt = FtXt + vt with vt ∼ N(0, V ) (5)

234

Xt = GtXt−1 + wt with wt ∼ N(0,W ) (6)

Within the matrix form, Yt = ln
(

Ri,t

Si,t−1

)
for each stock i from 1,...,I. The time235

varying productivity terms for each stock (ai,t) and time-invariant density-236

dependent term for each stock (βi) are included as Xt. The linearized Ricker237

model is F which includes the SSB for each stock i. Matrix G is the identity238

matrix linking the process equation to the observation equation. The total239

variance in the observations ln
(

Ri,t

Si,t−1

)
is partitioned into three sources, the240

observation error (vt), the process error (wt) and the density dependence241

from SSB for each stock. The error vectors follow the multivariate normal242

distributions defined by the covariance matrices V (dimension IxI) and W243
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(dimension 2Ix2I). Matrix W is the variance determining the range of the244

random walk (wt).245

To examine the potential for model misspecification a time-varying Beverton-246

Holt stock recruitment function was fit to the spawning stock biomass and247

recruitment information and compared to the output of the time-varying248

Ricker model (supplemental material).249

2.4 Climate drivers: component II250

In addition to the standard, time-invariant Ricker model, and the time-251

varying Ricker model fit with a common signal-to-noise-ratio within the state-252

space framework fit to examine changes in productivity in component one,253

the study fit an additional model variant to examine large-scale drivers. In254

component two, We fit a time-varying Ricker model that included a drift or255

climate term to explicitly incorporate either a linear trend or climate sig-256

nal within the state-space framework. The drift or climate term (cj) was257

included in the process equation (eq 7) where Hj,t−lag is the environmental258

time series, j defines which time series and t − lag determines which lag is259

examined. The drift term was also modeled as cj and the time series H was a260

series of ones. All other terms are as defined in eq 15. Not all environmental261

time series were available for the full length of the SSB and recruitment time262

series. The models were fit for only the years available for the shortest of the263
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environmental or SSB-R time series.264

at = at−1 + cjHt−lag + wat (7)

265

wat ∼ N(0,Wa) (8)

All the time-varying models (components I and II) were fit with the package266

dlm (Dynamic Linear Modeling) in the software package R (Petris et al.,267

2009).268

2.5 Model comparison269

Model comparison was done with two techniques: a likelihood ratio test and270

an evaluation of forecast accuracy (Tableau et al., 2019). The two techniques271

are complementary, but provide different information. The likelihood ratio272

test compares the full time-series of the estimated lnR
S

from the different273

models (e.g. time-invariant to time-varying) with a χ̃2 distribution to de-274

termine the overall best fit model. The forecast accuracy test was designed275

to determine whether the time-invariant or time-varying model could better276

forecast ln recruits
spawner

one to d years into the future. It does not test for a sig-277

nificant difference. The test uses only the data up to time step t to predict278

ln recruits
spawner

d time steps into the future. The test compares forecast from the279

time invariant model to the known value of ln recruits
spawner

and the forecast from280
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the time-varying model to the known value.281

Accd =

∑T−d
t=T−15(Ft+d|t,null − Yt+d,obs)2 −

∑T−d
t=T−15(Ft+d|t,alt − Yt+d,obs)2∑T−d

t=T−15(Ft+d|t,null − Yt+d,obs)2
(9)

Forecast accuracy (Acc) is equal to the forecast (F ) from the time invariant282

(null) model minus the observed value (Y ) subtracted from the forecast from283

the time varying (alt) model minus the observed value divided by the forecast284

from the time invariant model minus the observed value.285

The difference between the known and predicted value (residuals) for each286

model averaged over the last fifteen years was examined to determine the287

best model. The last fifteen years were selected because the early part of the288

time-series can have extremely large confidence intervals making comparisons289

challenging. The likelihood ratio test examines which model provides the290

best fit to the data over the entire course of the time-series. The forecast291

accuracy test examines how well the model can predict d time steps into the292

future. It is possible that the model which provides the best fit over the293

entire time-series may not provide the best forecast one, two, or three years294

in the future.295

2.6 Dynamic Factor Analysis: component III296

A number of the west coast stock assessments recommended examining if dif-297

ferent stocks exhibited similar patterns over time. Dynamic Factor Analysis298

(DFA) was used to examine if there were common trends across the produc-299
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tivity time-series of the stocks (Zuur et al., 2003a,b). DFA distills multiple300

time series into common underlying state processes or trends within a state-301

space model. The method is particularly useful for examining non-stationary,302

short time-series. A state process, represented as a random walk was fit to303

the productivity time series. The productivity time series were standardized304

by subtracting the mean and dividing by the standard deviation. We fit from305

one to four trends and used AICc to determine the most appropriate number306

of trends. The process error equation within the DFA state-space model was307

a random walk.308

xt+1 = xt + wt with wt ∼MVN(0, I) (10)

The x ’s are the common trends (from one to four) among the different time309

series with multivariate normal (MVN) process error. The I matrix is the310

identity matrix with the same dimensions as the number of trends. The time-311

varying productivity time-series for each stock (at) are linear combinations of312

the user defined number of state processes (x ) (the number of trends) times313

the Z matrix with measurement error v.314

at+1 = Zxt + vt with vt ∼MVN(0, R) (11)

The Z matrix represents the contribution of each common trend to the orig-315

inal observed time series for each species and is termed the factor loadings.316

If a stock has a large, positive loading in the Z matrix, its productivity time-317
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series is very similar to the common trend while a large, negative loading318

indicates the productivity time-series is opposite the common trend. Stocks319

with small loadings are generally not well explained by the common trend.320

To maximize convergence, the variance-covariance structure was constrained321

to estimate different variances along the diagonal, but to not have any off-322

diagonal terms. The DFA was fit in the R package MARSS (Holmes et al.,323

2013, 2014).324

2.7 Productivity and Stock Status: components IV325

We tested if the nature of stock productivity (time-varying or constant) was326

related to stock status with a logistic regression. Stock status, defined as327

B
Bmsy

, was regressed against productivity defined as a binary term: time-328

varying or constant. Stock status was taken directly from the appropriate329

stock assessment or taken from the National Marine Fisheries Service Status330

of the Stock report in the appropriate year for each stock (NMFS, 2021). The331

stocks and productivity time series from this study were combined with the332

stocks and productivity time series from a study investigating stock produc-333

tivity on the US Northeast Shelf with very similar methods (Tableau et al.,334

2019).335
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3 Results336

In total, time-varying productivity was estimated for thirty-one stocks man-337

aged by the Pacific Fisheries Management Council (Table 2). The model338

with a single, signal-to-noise ratio converged and produced good results (snr339

= 0.40) (Figure S2). In general, the estimated productivity varied over time,340

but none of the stocks showed clear increasing or decreasing trends, except341

for a possible decrease in CA Blue-Deacon rockfish and CA Quillback rock-342

fish. Across the stocks, the productivity term exhibited a range from 0.25343

on the low end and up to 3.0 at the high end. This number is the range344

in the number of recruits that a metric ton of spawning stock biomass on345

a logarithmic scale could produce over the time-series after accounting for346

SSB. For many of the stocks, the variability in productivity was not partic-347

ularly large and/or the confidence intervals were quite wide indicating that348

the more parsimonious time-invariant model fit the data better. Only seven349

of the thirty-one stocks were better fit with the time-varying model based on350

the likelihood ratio test (Figure 2).351

The time-varying Ricker and time-varying Beverton-Holt models esti-352

mated very similar patterns in productivity, the slope at the origin of the353

stock recruit curve (Figure S1). The scale of the estimates differed depending354

on the species, but the overall pattern between the two models was generally355

the same. The current study is explicitly examining the time-varying pat-356

terns in productivity and not the absolute value so the difference in scale for357
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some species does not alter the overall results.358

We fit a DFA to discern if there were common patterns across all stocks.359

The model with four common trends provided the best fit to the productivity360

time series based on AICc. Overall the trends explain a limited amount of361

the variability in the majority of the productivity time series. The factor362

loadings were relatively low for most stocks with only a handful accounting363

for more than 20% of the variability. Trend one had the most support. It364

was lowest in the early part of the time series and then generally increased to365

the early 1990s (Figure 3). It then declined and was low in the early 2000s366

before increasing to some degree in the 2010s. The productivity time series367

of species loaded positively and negatively, but generally the magnitude of368

the loadings was low for the majority of species. Trend two began with an369

increasing trend up to the early 1980s, then declined till the early 2000s370

before increasing to the present (Figure S3). All the factor loadings were371

low except for Longspine Thornyhead. Trend three was highest in the late372

1960s - early 1970s before declining till the mid 1980s (Figure S4). It then373

increased through the 1990s before slowly declining. Longspine Thornyhead374

again had a very strong loading while the majority of the other species were375

low. Trend four was highest in the early part of the time series and generally376

declined till the late 1990s before largely increasing to the end of the time377

series (Figure S5). The factor loadings were again relatively low. The DFA378

identified four common trends, but the majority of species loaded relatively379

weakly on the trends indicating that there were not strong patterns across380
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all the species.381

The gain in forecast accuracy examined the ability of the time-varying and382

time-invariant model to predict the ln recruits
spawner

one to three years forward using383

only the information available up to the current time step. We examined this384

only over the last fifteen years of the time-series. A negative value indicates385

that the forecast from the time-invariant model performed better than the386

time-varying model. Across all stocks, the time-varying model provided a387

better forecast than the time-invariant model one year ahead and for most388

stocks, two years ahead as well (Figure 4). At the two year ahead mark, two of389

thirty-one stocks were slightly negative (Cabezon OR, -1% & Widow rockfish,390

-5%) while all others were positive. The gain in forecast accuracy with the391

time-varying model declined with the three year forecast. The forecasts for392

the seven stocks in which the time-varying model was significantly better393

than the time-invariant model based on the likelihood ratio test, had better394

forecasts one, two and three years ahead.395

The inclusion of the drift or climate variable within the state-space model396

was also tested with both the likelihood ratio test and the gain in forecast397

accuracy test. The best fitting model (base model) for each stock from above398

(time-varying or time-invariant) was tested against a time-varying model399

that included a drift or climate term (Figure 5). The likelihood ratio test400

determines if the base model or the time-varying model with the climate401

variable provided the best fit to the full time series of ln recruits
spawner

. The forecast402

accuracy test examined if the base model or the time-varying model with403
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the climate variable provided the better one year ahead forecast of ln recruits
spawner

404

given only the SSB and recruits up to time t and the climate variable up405

to time t + 1. While the future value of the climate variables can not be406

known, we assumed the future climate variable was known perfectly in order407

to understand the full potential of each climate variable to accurately forecast408

changes in ln recruits
spawner

. The North Pacific High and the Northern Oscillation409

Index were highly correlated with the PDO (r ≥ 0.7) and not included in410

further analyses. All other variables had correlations less than 0.7. The411

North Pacific Gyre Oscillation metric was significant for black rockfish CA412

and CA scorpionfish and is not displayed.413

Six stocks had better forecasts when including the drift term based on414

the gain in forecast accuracy test. The majority of stocks were negative indi-415

cating that the drift term made the forecast worse. Based on the likelihood416

ratio test examining the full time series as indicated above, the inclusion of417

the drift term in the time-varying model for Canary rockfish provided a sig-418

nificantly better fit than the time-invariant base model. The Oceanic Nino419

Index improved the forecast for ten stocks and the likelihood ratio test found420

that the models of five stocks were significantly better when including ONI421

over the base model. The Pacific Decadal Oscillation made improvements422

in forecasts for fourteen stocks and significantly improved the full time se-423

ries fit based on the likelihood ratio test for eight stocks. The time-varying424

model that included the PDO fit the ln recruits
spawner

better than the time-invariant425

base model for some stocks such as Northern Lingcod based on the likeli-426
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hood ratio test (full time series), but the time-invariant base model provided427

better forecasts one time step ahead. Sea Surface Temperature similarly,428

made modest improvements in forecasts for eleven stocks, and four stocks429

were significantly better fit with the time-varying climate model. Models430

with the Habitat Compression Index were significantly better based on the431

likelihood ratio test for four stocks and provided better forecasts for fifteen432

stocks. The Mean Heat Wave variable improved forecasts for sixteen stocks433

and was significantly better based on the likelihood ratio test for three stocks.434

In general, the inclusion of the climate variables improved the one year ahead435

forecasts for some stocks, but the results varied considerably from stock to436

stock. A few stocks exhibited considerably better forecasts across a range of437

climate drivers such as Sand dab and Southern Lingcod while the inclusion438

of climate drivers in the forecast for other stocks such as Blue-deacon OR439

and CA Quillback made the forecasts much worse.440

3.1 Productivity and Stock Status441

The logistic regression fit the data well and was significant (Table 3). Stocks442

with biomass above their reference points (not overfished) tended to exhibit443

time-invariant productivity while stocks that were below their reference point444

tended to have time-varying productivity. The transition between time-445

varying and time-invariant productivity occurred around B
Bmsy

≈ 1 (Figure446

6). Gulf of Maine Haddock in the Northeast had time-varying productivity447

(Tableau et al., 2019), but its status B
Bmsy

was over seven. Haddock was a448
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highly influential outlier and was removed from the analysis. Haddock were449

heavily exploited for much of their time series and only recently surged well450

above their biomass reference point (NEFSC, 2019). It is possible that they451

were best fit with time-varying productivity because of the long period of452

time at low biomass.453

4 Discussion454

As climate change continues to impact the ecosystem, it is important to un-455

derstand how it will affect natural marine resources. While it is clear that456

species are shifting their distributions in response to changes in the envi-457

ronment (Cheung et al., 2008; Nye et al., 2009; Pinsky et al., 2013; Perry458

et al., 2005), measuring and accounting for changes in productivity is more459

challenging. Work to understand the drivers of recruitment go back over a460

century (Hjort, 1914), however, environment-recruitment relationships rarely461

hold up over time (Myers, 1998) and few population models explicitly incor-462

porate environmental drivers (Skern-Mauritzen et al., 2016). In recognition463

of the resulting changes in productivity due to climate-driven regime shifts,464

a handful of stock assessments utilize different time series of data that re-465

flect the current productivity regime (tanner crab (Stockhausen et al., 2013),466

groundfish (NPFMC, 2012)). Other assessment models have simply split467

certain time-series of data, effectively inserting a shift in productivity. For468

other stocks there is recognition that environmental drivers are important,469
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but they have been included in the management decisions process instead of470

explicitly included in the population model (ASMFC , Eckert et al.(2017).471

In this study, we examined stock productivity, the reproductive potential,472

to determine how it had changed over time and if specific climate factors may473

be driving the changes. Of the thirty-one stocks examined on the west coast474

of the United States, less than a quarter were found to have time-varying475

productivity. The time-series of productivity were quite varied and we found476

relatively weak common patterns across them. Only one stock exhibited a477

monotonically increasing or decreasing trend suggesting that while produc-478

tivity was changing, the environment was not consistently driving stocks to479

low abundance or high abundance. This is in contrast to some stocks on480

the US Northeast Shelf, such as many flatfish, that show a consistent de-481

cline in productivity (Tableau et al., 2019). All the estimated time-varying482

productivity time-series exhibited periods of declines and increases. Three-483

quarters of the stocks were better fit with a time-invariant productivity term,484

likely due to this oscillation about a central tendency, general low levels of485

variability and/or large confidence intervals.486

Many of the fish on west coast are long lived species (> 100 yrs) with much487

of the biomass in the older year classes (Kolora et al., 2021). While there488

is certainly recruitment variability, the variability might be less pronounced489

then that of stocks that have a truncated age-structure and a large amount490

of the SSB is less-fecund, first-time spawners as can be the case for some491

East Coast stocks (NEFSC, 2019). The logistic regression indicated that the492
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more heavily a stock is exploited, the more likely it is to have time-varying493

productivity. As has been found in previous studies, exploitation tends to494

increase variability (Brander, 2005; Anderson et al., 2008; Hsieh et al., 2006).495

In this study, we found that the reproductive potential of stocks is more496

variable and less connected to spawning stock biomass when the biomass was497

low. This makes exploited stocks more likely to track with environmental498

drivers or exhibit unstable population dynamics due to the changing life499

history rates of an age truncated population (Anderson et al., 2008). The500

stocks tended to transition from time-varying to time-invariant productivity501

roughly when biomass was at the reference point, providing strong support502

for maintaining stocks at or above the biomass reference point.503

Differences between the coasts might also be related to different oceano-504

graphic drivers. On the East Coast, there have been some extreme warm505

events such as occurred in 2012 (Mills et al., 2013), but in general the water506

temperature is simply rapidly warming (Friedland and Hare, 2007; NEFSC,507

2021), and climate drivers such as the Atlantic Multidecadal Oscillation con-508

tinue to increase (Nye et al., 2014). The west coast recently experienced an509

extreme marine heat wave (“The Blob”) (Jacox et al., 2018), but there is a510

somewhat less pronounced warming trend, and strong climate drivers such511

as El Nino and the PDO. These large-scale climate drivers still exhibit shifts,512

though possibly different than the past. The fact that some of the major west513

coast climate drivers still move between the positive and negative phases may514

help explain why the stock productivity time-series generally varied without515
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trend and many stocks were better fit with a time-invariant term.516

Though the majority of stocks were better fit with a time-invariant model517

(base model), the inclusion of the climate drivers did show some significant518

relationships. Blue rockfish exhibited a significant relationship with ONI519

and the marine heat wave index. A CALCOFI report indicated that blue520

rockfish is a macrozooplankton feeder and had reduced condition factor and521

gonadal indices during warm water events suggesting a possible mechanism522

with high SST, deeper thermocline and reduced upwelling as might occur523

during an El Nino event or a marine heat wave (VenTresca et al., 1995). The524

more northerly stock of blue rockfish assessed with deacon rockfish, however,525

did not exhibit a relationship with any of the climate drives (the climate526

drivers made the forecasts worse). The lack of relationships suggest that527

the decreased prey fields due to the decline in upwelling hypothesis may528

not be applicable in the northern part of the range. The biomass of the529

northern population was also above the biomass reference point, which could530

make it less likely to track with climate drivers. Arrowtooth flounder was531

an exception in that the biomass was well above its reference point, but still532

exhibited time-varying productivity and the model was improved when in-533

cluding climate drivers. A number of studies have found strong influence of534

climate drivers on Arrowtooth flounder in the North Pacific (Hare and Man-535

tua, 2000; Hunsicker et al., 2013; Wilderbuer et al., 2010), with changes in536

water temperature and availability of the cold pool habitat showing a rela-537

tionship with recruitment. The inclusion of SST and the habitat compression538
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index improved the model fits in this study suggesting that similar mecha-539

nisms could operate on the west coast. The inclusion of climate drivers in540

the California Scorpionfish model showed improved forecasts across a range541

of environmental covariates as well as an overall improvement in the stock-542

recruitment model. While there have been limited studies on the drivers of543

Scorpionfish recruitment variability, this study, combined with an environ-544

mental relationship noted in the most recent stock assessment (Monk et al.,545

2017) indicates that more investigation may be warranted. Additionally, pre-546

vious work found correlations between Splitnose rockfish growth and several547

drivers including the PDO and upwelling (Black et al., 2005) suggesting that548

warm, low primary productivity periods reduce growth and may reduce stock549

productivity given the relationship found with the climate variables PDO and550

HCI.551

While the inclusion of the climate drivers explained some of variability in552

productivity, they did not capture it all. As this was a broad meta analysis,553

we may not have included the correct driver for all stocks, or may not have554

included drivers in the correct manner. For example, sablefish has exhibited555

relationships with sea surface height and copepod abundance likely related to556

upwelling, nutrient abundance and stratification (McFarlane and Beamish,557

1992; Johnson et al., 2016; Tolimieri et al., 2018). This study found a rela-558

tionship with the PDO and SST that can be connected with sea surface height559

and copepod abundance, but at a relatively coarse scale. A focused study560

on sablefish (Tolimieri et al., 2018) involving multiple steps, at multiple life561
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stages has attempted to elucidate the stage-specific mechanisms associated562

with recruitment, which is simply not possible in this type of broad study.563

Our study provides a rapid synthesis of a large number of stocks without564

having to know the specific mechanisms, which can be used to focus research565

attention on those stocks that may be most promising, or may have been566

over looked (e.g. CA Scorpionfish).567

The habitat compression index and the marine heat wave index were in-568

cluded to account for impacts from the extreme marine heat wave (“The569

Blob”) that occurred on the west coast from 2014 - 2016 (Jacox et al.,570

2018). While the Blob had major impacts on the California current ecosystem571

(Cavole et al., 2016), we found limited connections with the estimated time-572

varying productivity of the stocks. The stock assessments for many of the573

stocks end around this time period so the input information into the analyses574

likely contain only limited impacts from the heat wave if any. Reconducting575

the analyses after the majority of the stocks have updated assessments may576

provide a better picture of the impacts. Additionally, the California current577

experiences substantial changes from environmental drivers such as El Nino578

and the PDO. Many of the species are likely adapted to dealing with extreme579

events and the marine heat wave may simply add variability that is similar580

to other drivers.581

A clear caveat of the results from this study, however, is that SSB and582

recruitment from a stock assessment are the input into the time-varying583

stock-recruitment model. The results are therefore contingent on the as-584
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sumptions and decisions within the stock assessment process. The model585

could be misspecified and biases could be present, particularly if there are586

significant amounts of unreported catch or time-varying natural mortality587

that exhibit strong trends. The stock assessment model, however, integrates588

a range of information and provides the best current estimates of SSB and589

recruitment. All the stocks in the study were assessed in Stock Synthesis590

and include fisheries-dependent and fisheries-independent data, length and591

age data from both the catch and surveys as well as life history data and592

largely cover the full range of the stock (Methot and Wetzel, 2013). Large593

numbers of sensitivity runs are conducted on each assessment to understand594

the influence of different assumptions and decisions as well as detect potential595

biases and all the models are peer reviewed.596

The state-space method also used a time-varying Ricker model while a597

Beverton-Holt curve is used within the assessment models. Both the Ricker598

and Beverton-Hold curves have a similar productivity parameter defining the599

slope at the origin of the stock-recruitment curve and it is the estimation of600

the slope at the origin that is the focus of this study. The two models differ601

in the way they handle density-dependence (Quinn and Deriso, 1999). The602

recruitment estimates from the assessment model are largely unconstrained603

by the stock recruitment model within the assessment model, however, be-604

cause the assessment model specifically includes recruitment deviations. The605

recruitment deviations enable the estimates of recruitment to largely be in-606

formed by the length and age data from both the catch and survey informa-607
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tion. For all stocks included in the study, length and age data were available608

and the standard deviation of the recruitment deviations was large enough609

that the estimated output had little to no connection with the Beverton-Holt610

model within the assessment. The variability of the slope at the origin over611

time followed the same general pattern regardless of whether the Ricker or612

Beverton-Holt curve was included within the state-space model. While using613

model output as input into another model can be problematic (Brooks and614

Deroba, 2015), each assessment was reviewed to ensure they met the con-615

ditions above including sufficient length/age data and largely unconstrained616

recruitment deviations before being included in the study.617

The intent of studies such as this is to examine a range of stocks to618

evaluate which may be exhibiting changes in productivity and to evaluate619

larger ecological patterns. It provides perspective on the current level of pro-620

ductivity (high or low) that can be useful in a risk assessment framework621

when providing management advice (Collie et al., 2012) and potentially for622

biomass projections. It also can help drive future research by showing which623

species have had the most dramatic changes in productivity and where re-624

search should be focused (e.g. forecast accuracy of Sanddab and Southern625

Lingcod). While working toward understanding specific mechanistic links is626

extremely important, these studies are challenging, time consuming and often627

produce relationships that do not hold up over time. The state-space method628

used here, to some extent is a medium-term solution, as a rapid assessment629

that quickly provides information to scientists and managers to make deci-630
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sions even without knowing the full mechanism driving each life stage of each631

stock. Time-varying recruitment models provide a bridge between station-632

ary stock assessment models and fully coupled climate-fisheries models. The633

results can be used to calculate dynamic reference points, optimal harvest634

control rules (Collie et al., 2021), and may be useful for short-term recruit-635

ment forecasts.636
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ONI Oceanic Nino Index
NPGO North Pacific Gyre Oscillation
PDO Pacific Decadal Oscillation
SST Sea Surface Temperature
HCI Habitat Compression Index
NOI Northern Oscillation Index
NPH North Pacific High
MHW Marine Heat Wave

Table 1: The eight climate variables tested for their predictive ability.
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Species Stock Community Spawners Date min Date max
Arrowtooth Flounder flatfish weight 1965 2017
Aurora Rockfish Sebastidae weight 1978 2013
Black Rockfish CA Sebastidae weight 1975 2015
Blue and Deacon Rock CA Sebastidae weight 1960 2017
Blue and Deacon Rock OR Sebastidae weight 1970 2017
Bocaccio Rockfish Sebastidae eggs 1954 2017
California Scorpionf Scorpaenidae weight 1965 2016
Cabezon NCS Cottidae weight 1962 2018
Cabezon OR Cottidae weight 1980 2018
Cabezon SCS Cottidae weight 1970 2018
Canary Rockfish Sebastidae eggs 1968 2015
Chilipepper Rockfish Sebastidae weight 1965 2014
Darkblotched Rockfis Sebastidae eggs 1960 2017
Dover Sole flatfish weight 1975 2020
Greenstriped Rockfis Sebastidae eggs 1970 2009
Kelp Greenling OR Hexagrammidae weight 1980 2015
Lingcod north Hexagrammidae weight 1960 2020
Lingcod south Hexagrammidae weight 1972 2020
Longspine Thornyhead Sebastidae weight 1997 2012
Pacific Ocean Perch Sebastidae eggs 1975 2017
Pacific Whiting (Hak Merlucciinae weight 1975 2020
Petrale Sole flatfish weight 1959 2018
Quillback Rockfish CA Sebastidae eggs 1991 2020
Quillback Rockfish OR Sebastidae eggs 1980 2020
Blackspotted Rockfis Sebastidae weight 1980 2013
Sablefish Anoplopomatidae weight 1975 2020
Pacific Sanddab flatfish weight 1977 2012
Splitnose Rockfish Sebastidae eggs 1960 2006
Widow Rockfish Sebastidae weight 1970 2018
Yelloweye Rockfish Sebastidae eggs 1980 2016
Yellowtail Rockfish north Sebastidae eggs 1970 2016

Table 2: The stocks used in the analysis. Only years in which length or age-
structured data were available were used in the analysis despite many of the
spawner and recruitment time-series going back further in time. Spawners
were the unit of spawning stock biomass in the assessment.
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Estimate Std. Error z value Pr(>|z|)
Intercept -1.1708 0.6428 -1.82 0.0685

β1 1.2915 0.4867 2.65 0.0080

Table 3: The parameter estimates from the logistic regression of constant or
time-varying productivity on B

Bmsy
. Gulf of Maine Haddock is not included.
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stock comm
arrowtooth (Sampson et al., 2017)
aurora (Hamel et al., 2013)
black rockfish CA (Cope et al., 2016)
blue deacon CA (Dick et al., 2017)
blue deacon OR (Dick et al., 2017)
bocaccio (He and Field, 2017)
CA scorpionfish (Monk et al., 2017)
cabezon NCS (Cope et al., 2019)
cabezon OR (Cope et al., 2019)
cabezon SCS (Cope et al., 2019)
canary (Thorson et al., 2016)
chillipepper (Field et al., 2016)
darkblotched (Wallace and Gertseva, 2017)
dover sole (Hicks and Wetzel, 2011)
greenstriped (Hicks et al., 2009)
kelp greenling (Berger et al., 2015)
lingcod N (Taylor et al., 2021)
lingcod S (Johnson et al., 2021b)
longspine thornyhead (Stephens and Taylor, 2014)
ocean perch (Wetzel et al., 2017)
pacific hake (Johnson et al., 2021a)
petrale sole (Wetzel, 2019)
quillback CA (Langseth et al., 2021a)
quillback OR (Langseth et al., 2021b)
rougheye blackspotted (Hicks et al., 2014)
sablefish (Kapur et al., 2021)
sanddab (He et al., 2013)
splitnose (Gertseva et al., 2009)
widow (Adams et al., 2019)
yelloweye (Gertseva and Cope, 2017)
yellowtail N (Stephens and Taylor, 2018)

Table 4: Stock assessment citations
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Figure 1: The time-series of climate variables tested in the time-varying pro-
ductivity model. HCI = Habitat Compression Index, NPH = North Pacific
High, NPGO = N. Pacfic Gyre Oscillation, NOI = Northern Oscillation In-
dex, ONI = Oceanic Nino Index, PDO = Pacific Decadal Oscillation, MHW
= Marine Heat Wave, SST = Sea Surface Temperature.
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Figure 2: The time-varying and time-invariant productivity term (a) for each
stock with 95% confidence intervals. The model that provided the best fit is
in bold for each stock (e.g. The time-invariant model provided the best fit
for Dover Sole and the static a term has the bold line in the figure).
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Figure 3: Common trend one (thick black line) of the time-varying produc-
tivity terms across all stocks (thin colored lines) from the Dynamic Factor
Analysis. The bottom figure represents the percentage of variability the com-
mon trend explains for each stock based on the factor loadings (Z matrix).51
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Figure 6: The logistic regression of constant or time-varying productivity on
B

Bmsy
for stocks on the northeast US shelf (NE) and the west coast (Pacific).

Gulf of Maine Haddock is not included. (Points have been jittered slightly
for display purposes.)
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