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Abstract

The impact of warming on fisheries resources on the Northeast U.S. Shelf is increasingly
apparent through shifts in species distribution and productivity changes of economically and
culturally important stocks, such as groundfish. Ignoring such impacts can potentially lead to
problems with stock assessment performance and effectiveness of fisheries management
decisions. Retrospective patterns (i.e., inconsistency of recent estimates after adding another year
of data) currently present a large source of uncertainty in the classification of stock status and
determination of catch advice for New England groundfish. We evaluated the impact of ignoring
historical climate impacts on assessment performance and the resulting management for New
England groundfish. We utilized a management strategy evaluation framework to simulate the
impacts of climate change on recruitment, natural mortality, and growth for New England
groundfish, emulate stock assessment misspecifications, and evaluate the performance of harvest
control rules. Three harvest control rules were evaluated: ramped, step in advised fishing
mortality (i.e., fishing mortality reduces from 75% Fusy to 70% Fuvsy when biomass decreases
below the biomass threshold) and a constrained ramped harvest control rule (i.e., the target
advised catch cannot vary more than 20% from the previous year’s catch). Results suggest
tradeoffs among control rules, but addressing stock assessment bias resulting from
misspecifications may be more important than identifying an optimal harvest control rule for
meeting management objectives. Failure to account for changes in stock dynamics from climate
change resulted in adverse effects on the performance of New England groundfish assessment
and management, but the magnitude of impact varied by harvest control rule. Retrospective
patterns caused unintended overfishing because of management actions derived from
misperceptions of stock status. Our research shows how management strategy evaluation can be
used to test the robustness of harvest control rules to climate change impacts on stock dynamics.
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1. Introduction
1.1. Climate change and stock assessments

Climate change is impacting fish populations throughout the world. Increasing
temperatures affect key fish life history parameters, such as growth, recruitment, and natural
mortality (M; Drinkwater et al., 2009), and changes in these life history parameters affect fish
stock productivity and fisheries (Portner and Peck, 2010). These impacts caused by climate
change pose challenges to our fisheries management system.

Fisheries stock assessment and the resulting fisheries management do not usually
explicitly incorporate the impact of changing environmental conditions on productivity. Skern-
Mauritzen et al. (2016) reviewed stock assessments and found that ecosystem processes were
only incorporated into 2% of the assessments. Many assumptions in our fishery management
process are strongly linked to historical productivity and the concept of stationarity, meaning that
stock assessments often do not assume that parameters vary over time.

Ignoring changes in stock dynamics can lead to retrospective patterns, which are
inconsistencies of recent estimates after adding another year of data to the stock assessment
model (Mohn, 1999). Retrospective patterns are an expression of model instability that in some
cases managers attempt to either correct for by adjusting final estimates in accordance with
historical retrospective bias (e.g., Legault, 2009; Deroba, 2014) or mitigate by increasing the
uncertainty associated with the overfishing limit (e.g., MAFMC, 2020). Retrospective patterns
pose challenges for fisheries around the world and have been observed in many types of stock
assessment models (Legault, 2009). Many New England groundfish stock assessments , which
use virtual population analysis and statistical catch-at-age models, have retrospective patterns
(NEFSC, 2022). Retrospective patterns can be a large source of uncertainty and if left
unresolved, can lead to unintentional overfishing that undermines efforts to sustainably manage
fisheries (Deroba, 2014) or, alternatively, underutilization of the resource that may have social
implications. Simulation studies have shown that retrospective patterns can be caused by biased
catch, trends in M, or trends in survey catchability (Legault 2009).

1.2. New England groundfish

Over the past several decades, Northeast U.S. Shelf water temperatures have increased
significantly, with bottom water temperatures increasing at rates from 0.1 to 0.48°C per decade
(Kavanaugh et al. 2017) and sea surface temperatures (SSTs) in the Gulf of Maine (GOM)
increasing at a rate of 0.23°C per year since 2004 (Pershing et al., 2015). Groundfish off the
coast of New England are expected to have differential responses to climate change due to their
exposure and sensitivity to climate impacts (Hare et al., 2016; Klein et al., 2017).

Twenty groundfish stocks are managed under the Northeast multispecies groundfish
federal fishery management plan (FMP) by the New England Fishery Management Council.
Management of the groundfish fisheries is challenging because of historic overfishing and
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species-specific climate impacts on the mixed-stock fishery (Brodziak et al., 2008). The current
management procedure has not performed well for New England groundfish, including recent
failures of stock assessment models, lack of rebuilding or continued overfishing of several
overfished stocks, and an economic disaster declaration. Management procedures are the
methods for determining catch advice, which include the stock assessment methods, biological
reference points (BRPs), and the harvest control rule (HCR). Harvest control rules have an
important role in fishery management plans; they define management actions and are based on
the status of a stock relative to reference points. The current MP usually consists of 1) a
statistical catch-at-age stock assessment model, applied every two years, with many stationary
assumptions and retrospective adjustments, 2) F40%, or the fishing mortality (F) expected to
maintain 40% of the unfished spawning stock biomass (SSB) per recruit, as the the proxy for
maximum sustainable yield and 50% of the long-term equilibrium SSB that corresponds to F40%
as the overfished threshold, and 3) a stepped HCR (75% F40% when SSB is above the
overfished threshold and 70% F40% when SSB is below the overfished threshold). However,
when SSB is estimated to be below the overfished threshold, annual catch limits should ideally
be derived from a ramped HCR with a bycatch only catch minimum and F iterated to allow 50%
rebuilding probability in ten years (NEFMC, 2009). Several New England groundfish stocks are
at or near historic low biomass (e.g., GOM cod, Gadus morhua; Georges Bank (GB) cod; GB
winter flounder, Pseudopleuronectes americanus; GB yellowtail flounder, Limanda ferruginea;
Southern New England-Mid Atlantic (SNE/MA) yellowtail flounder; witch flounder,
Glyptocephalus cynoglossus; and GOM-GB windowpane flounder, Scophthalmus aquosus),
whereas other stocks have increased to record highs (e.g., GB haddock, Melanogrammus
aeglefinus; GOM haddock; and redfish, Sebastes fasciatus; NEFSC 2020, 2022).

The majority of New England groundfish stocks that have analytical assessments (e.g.,
statistical catch-at-age models) exhibit a retrospective pattern with estimates of SSB revised
downward and estimates of F revised upwards with the addition of new data (NEFSC, 2021,
2022). Retrospective patterns represent a large source of uncertainty and pose challenges in the
determination of groundfish stock status and catch advice (Brooks & Legault, 2016;
Wiedenmann & Jensen, 2018). Mohn’s rho (Mohn, 1999) is used to measure the magnitude of
retrospective patterns, and a value higher than 0.2 or lower than -0.15 indicates considerable
retrospective patterns for long-lived species (Hurtado-Ferro et al., 2015). Mohn’s rho for SSB
was 0.52 in the 2019 stock assessment of GOM cod when M was assumed constant at 0.2 and
0.69 in the 2019 stock assessment of GB haddock (NEFSC, 2022). Some of the candidate causes
of retrospective patterns relevant to Northeast groundfish stocks include misreporting of catch,
changes in survey or fishery catchability and/or selectivity, and, more generally, directional
ecosystem change such as the impact of ocean warming on population dynamics that may impact
those processes. Kerr et al. (2020) found that catch misreporting impacts stock trajectories,
assessment, and management performance of GOM cod. Retrospective patterns appeared when
catch bias changed overtime.

Given the documented impacts of climate change on New England groundfish population
dynamics and significant retrospective patterns in New England groundfish stock assessments,
there is a need to evaluate the impacts of stock assessment misspecifications due to climate
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change. The objectives of this study are: 1) to evaluate the consequences of ignoring historical
climate change impacts on New England groundfish stock dynamics and how this affects current
stock assessment and management performance, and 2) test robustness of fisheries management
alternatives to stock assessment misspecifications. A stock assessment misspecification is when
the assessment assumptions are not consistent with true system dynamics, which, if the
misspecification varies over time, can lead to retrospective patterns. To address these objectives,
we applied management strategy evaluation (MSE), which involves simulating the natural and
human aspects of the managed fishery system under different scenarios and evaluating
performance for meeting management objectives. We simulated groundfish population dynamics
impacted by climate change, stock assessment specifications, and HCRs. The performance of the
current New England groundfish management procedure and possible alternatives have not yet
been simulation tested. MSE is valuable for identifying HCRs that are robust to natural variation
in the system and to uncertainty and error (ICES, 2020). The better uncertainty is represented in
an MSE, the more informative such model frameworks are for fisheries management (Punt et al.,
2016).

2. Methods
2.1. Model framework overview

In the MSE framework we used to evaluate the impacts of stock assessment
misspecifications on groundfish fisheries (https://github.com/lkerr/groundfish-MSE), the
operating model (OM) represented the true fish population dynamics and was the basis for
evaluating performance relative to the ‘true’ values for the stock and fishery (1; Fig. 1). Through
an observation model (2; Fig. 1), simulated trawl survey and catch data were generated with
random error to represent the information available for groundfish assessment and management.
The simulated survey and catch data informed a statistical catch-at-age stock assessment model
(3; Fig. 1) used to estimate stock and fishery metrics. This study emulated current groundfish
stock assessment methods and applied the Age Structured Assessment Program (ASAP; Legault
& Restrepo, 1998) as the estimation model, which is used for the majority of analytical
groundfish stock assessments in the region. Biological reference points (4; Fig.1) were then
calculated. The stock assessment output and estimated BRPs were compared to produce
estimated stock status. A HCR (5; Fig. 1) then determined a prescribed F based on the estimated
stock status. Both the F from the HCR (5) and output from the stock assessment (3) were used in
projections (6; Fig. 1) to determine catch advice. Catch advice was generated from projected
catch with F determined from the HCR for two years. This catch advice was then applied to
simulate harvest in the OM (7; Fig. 1). The advised catch was assumed to be caught in the OM
(i.e., there was no bias or uncertainty in catch). Quantities necessary to develop the performance
metrics were compiled at each timestep (8; Fig. 1). One hundred iterations were simulated for
each scenario. Further description of the MSE components can be found on the Github repository
Wiki page (https://github.com/lkerr/groundfish-MSE/wiki).

New England groundfish stock assessments are updated every two years and use data up
to the year before the assessment year unless there are unforeseeable circumstances (i.e. a
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pandemic). This simulated process was designed to be consistent with current New England
groundfish management procedure whereby the stock assessment performed in year ¢ had a
terminal year of #-/, and the resulting catch advice was for year r+/ and 7+2. Thus, there was a
lag in information that informed the catch advice. This simulated fishery resource, management,
and harvest feedback loop continued until the end of the management procedure period (2019 -
2040). The MSE approach used in this study was not a full participatory MSE because
management objectives were not identified and prioritized by stakeholders. Operating model
parameters and stock assessment misspecifications described below were specified in the
respective R script  in  the stockParameters folder on the Github
(https://github.com/lkerr/groundfish-MSE/tree/master/modelParameters/stockParameters).
Biological reference points and HCRs described below were specified in the csv file for
management procedure specifications (https://github.com/lkerr/groundfish-
MSE/blob/master/modelParameters/mproc.csv).

2.2. Operating models

We focused OM development on two groundfish stocks: GOM cod and GB haddock to
typify a range of conditions experienced by groundfish stocks. The current stock status of GOM
cod is overfished and undergoing overfishing, whereas GB haddock is not overfished and not
undergoing overfishing (NEFSC, 2021, 2022). GB haddock exemplifies a groundfish stock with
a recently increasing stock size. Throughout the manuscript, GOM cod represents an overfished
stock and GB haddock represents a not overfished stock, because GOM cod and GB haddock
have similar characteristics to other overfished and not overfished New England groundfish
stocks, respectively.

The OMs for groundfish stocks in this framework were single species, stochastic, age-
structured models designed to emulate population dynamics. The GOM cod and GB haddock
historical trajectories were reconstructed by incorporating recruitment and F time series (1982-
2018 for cod, 1931-2018 for haddock) from the 2019 stock assessments (NEFSC, 2022) and
calculating SSB and catch as emergent properties. Abundance-at-age was calculated using
exponential survival. Haddock growth and maturity in the management procedure period were
modeled using the average weight-at-age and maturity-at-age from the last five years of the stock
assessment. Cod growth and maturity used the weight-at-age and maturity-at-age used in the
2019 projections. The purpose of the historical period was to emulate reality, as it was perceived
by groundfish stock assessments. The management procedure period began in 2019. A
description of how to modify operating models in the MSE framework can be found at
https://github.com/lkerr/groundfish-MSE/blob/master/documentation/Operating_models.pdf.

2.3. Simulating impacts of climate change on groundfish dynamics

We simulated climate and ecosystem change on stock dynamics, specifically changes in
recruitment, natural survival, and growth. GB haddock exhibit periodic high recruitment events
that are not explained by a theoretical stock-recruitment relationship (SRR), but have been linked
to ocean conditions (i.e., autumn bloom; Leaf and Friedland, 2014; Friedland et al., 2015).
However, recent abnormally high recruitment events were not explained by ocean conditions. As
a result, for GB haddock, recruitment was modeled using empirical cumulative distribution
functions based on historical estimated recruitment. Previous studies have documented evidence
of the negative impacts of warming water temperatures on GOM cod recruitment (Fogarty et al.,
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2008, Pershing et al., 2015). For GOM cod, recruitment was modeled using a Beverton-Holt
stock recruitment model that included the effect of projected temperature increase on recruitment
in the management procedure period. The stock-recruitment model was fit to recruitment and
SSB output from the 2019 stock assessment (M=M-ramp; NEFSC, 2022) and annual mean SST
anomalies for the GOM. Sea surface temperature anomalies were derived from GOM Optimum
Interpolation SST (OISST) data (Huang et al., 2020), which were used to downscale Northeast
LME CMIPS projections. This relationship showed a negative impact of temperature on cod
recruitment.

Natural mortality, a highly uncertain parameter for most fish populations, is often
assumed to be constant over time, and this assumption is likely not true (Vetter, 1988; Lorenzen,
2022). The survival of GOM cod is negatively impacted by warming waters (Fogarty et al. 2008;
Pershing et al. 2015), and including a specified time-varying M in the GOM cod stock
assessment model improved model diagnostics and performance (Pershing et al., 2016; NEFSC,
2022). For these reasons, we simulated an increase in M for GOM cod over time in the OM.
Natural mortality increased from 0.2 to 0.4 based on the parameterization of increasing M in the
GOM cod stock assessment (i.e., M-ramp scenario). In this scenario, M started increasing from
0.2 in 1988 to 0.4 in 2003 where it remained at 0.4 through the rest of the historical period and
into the management procedure period (NEFSC, 2022). This OM specification was designed to
capture the shift in M to a higher state.

Haddock weight-at-age has decreased over time. This change in growth is explained by
density-dependent factors but also temperature (Wang et al., 2021). Warm temperatures at the
larval stage for haddock negatively impact adult growth (Brodziak and Link, 2008). For these
reasons, we simulated a decrease in weight-at-age over time for haddock during the historical
period, based on the parameterization from the GB haddock stock assessment (NEFSC, 2022).
During the management procedure period, haddock weight-at-age was constant over time.
Values for weight-at-age during the management procedure period were the average of the last
five years of the most recent haddock stock assessment (NEFSC, 2022).

2.4. Stock assessment specifications

We simulated scenarios in which the stock assessment accounts and does not account for
the historical impacts of a changing climate. For GOM cod, three stock assessment assumptions
were simulated; M was assumed constant at 0.2 or 0.3 or correctly assumed to be increasing from
0.2 to 0.4. Constant M assumptions were consistent throughout the historical and management
procedure period. The projections had the same assumptions as the final period of the stock
assessment. Both true and estimated BRPs were estimated with M at 0.2, even though M
increased to 0.4 in the OM, because the stock was at a lower productivity (Legault and Palmer,
2016). Another reason we chose to calculate true and estimated reference points with M=0.2 was
to be able to provide insights to other overfished stocks. Additionally, the BRP estimation and
projections do not account for the negative impact of temperature on recruitment. BRP
estimation and projections assume recruitment to be the mean of the previous 20 years of
estimated recruitment.
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For haddock, three stock assessment assumptions were simulated; weight-at-age assumed
to be high and constant, intermediate and constant, and decreasing as in the OM, based on the
parameterization from the GB haddock stock assessment (NEFSC, 2022; Table 1). In the high
and constant assumption, weight-at-age was assumed to be the average weight-at-age from the
OM from 2000 to 2005. In the intermediate and constant assumption, weight-at-age was assumed
to be the weight-at-age from the OM from 2010 to 2015. In the decreasing the same as the OM
assumption, the stock assessment correctly assumed time-varying weight-at-age. The projections
and BRP estimations had the same assumptions as in the final five years of the stock assessment
model to account for the decreased weight-at-age when correctly specified. In both the cod and
haddock scenarios, retrospective adjustments were not applied to the estimated values from the
stock assessment. A description of how to specify the stock assessment methods in the MSE
framework can be found at https://github.com/lkerr/groundfish-
MSE/blob/master/documentation/MSEFramework_StockAssessmentMethods.pdf.

2.5. Biological reference points

The F associated with the maximum sustainable yield (Fmsy) proxy used in these HCRs
was Fao%, or the F expected to maintain 40% of the unfished SSB per recruit, which was
determined with spawner per recruit (SPR) analysis and is the current overfishing definition for
GOM cod, GB haddock and other groundfish. The Fusy proxy Faios will hereafter be referred to
as Fusy. The SSBmsy proxy was the long-term equilibrium SSB that corresponded to Fusy (i.e.,
SSBFa0%) and is the current Bmsy proxy for GOM cod, GB haddock and other groundfish in the
northeast US. For the estimated and true (OM) SSBwmsy proxies, recruitment used in the
equilibrium calculation was the mean of the previous 20 years of estimated or true (OM)
recruitment values. These recruitment values were dynamic and changed with the addition of
years in the simulation. The SSBwmsy proxy SSBFa04 will hereafter be referred to as SSBwmsy. The
SSB threshold used in alternative HCRs was 50% SSBwmsy; when SSB is estimated to be below
this level the stock is deemed overfished. True reference points were re-calculated every year
and are dynamic. A description of how to specify BRPs in the MSE framework can be found at
https://github.com/lkerr/groundfish-MSE/blob/master/documentation/MSE_ReferencePoints.pdf.

2.6. Alternative harvest control rules

Three HCRs were evaluated: ramp, F-step, and constrained ramp HCRs. All HCR
alternatives included a constraint on catch advice so that it would not be higher than the
estimated catch that corresponds to the estimated overfishing limit (OFL) from the stock
assessment (1.e., catch at Fysy) to emulate the current in-season quota monitoring system.
However, in misspecified scenarios, the true catch could be larger than the catch that corresponds
to the true OFL in the OM when there was biased estimation from the stock assessment. All
these alternatives also had a minimum catch limit (i.e., the minimum bycatch of the last ten years
in the historical period), which would prevent F from declining to zero.

The ramp HCR is intended to promote rebuilding and optimal yield when the stock is not
overfished (Fig. 2a). When stock status was greater than 50% SSB wmsy (i.e., the ‘overfished’
threshold), the target F was 75% Fusy. When stock status was perceived to be less than 50%
SSB wmsy, the target F linearly decreased towards zero as SSB decreased. This HCR is modeled
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after the current groundfish harvest strategy employed by the NEFMC which allows for fishing
at 75% Fwusy, but requires a lower fishing mortality if the stock is overfished and fishing at 75%
of Fmsy does not achieve the mandated rebuilding requirements.

If the SSB decreased below the biomass threshold (50% SSBwmsy), the F-step HCR used a
target F of 70% Fwmsy, which has recently been applied to some New England groundfish, such as
SNE/MA yellowtail flounder and GB winter flounder, as the Frepuila (Fig. 2b). If the SSB never
decreased below the biomass threshold or increased to over SSBwmsy (rebuilt) after dropping
below the biomass threshold, this HCR used a target F of 75% Fmsy. This HCR has been applied
after National Standard Guidelines were amended in 2016 (NOAA, 2016). These revisions
reduced the need to identify an incidental bycatch ABC for overfished stocks.

In some instances, groundfish catch advice has been characterized by large year-to-year
changes that have presented challenges to the fishery. The aim of the constrained ramp HCR was
to promote rebuilding, optimal yield, and to provide catch stability if stock biomass were to
substantially change from year to year (Fig. 2¢). This differed from the ramp HCR in that there
was a constraint on variation in target catch from year to year, meaning that the current year’s
catch limit would not change more than 20% from the previous year’s catch limit. The threshold
of 20% change in catch was in the middle of the range of change in catch thresholds used in
HCRs in other fisheries (Apostolaki and Hillary, 2009; Dankel et al., 2016; IOTC, 2016). Further
description of HCRs in the MSE framework can be found at https://github.com/lkerr/groundfish-
MSE/blob/master/documentation/MSEFramework_HCRs.pdf.

2.7. Performance Metrics

We evaluated tradeoffs among HCRs by comparing performance metrics. Performance
metrics included stock, stock assessment, and management performance metrics. Stock
performance metrics included OM catch stability, and SSB, F, catch, and recruitment
trajectories. Catch stability was measured as interannual variation in catch (IAV; A’Mar et al.
2009). Stock assessment performance metrics included accuracy (measured as relative error;
REE) and Mohn’s Rho trajectories for SSB and F and accuracy of estimated reference points
(Fmsy and SSBwmsy). REE for SSB and F was the relative error of the terminal estimated
assessment values at each year. REE at each year was calculated as:

REE = SSBest - SSBtrue +100
SSBtrue
with SSB as an example, where [1[1[1[1[][] is estimated terminal SSB from the stock
assessment, and [T is true or simulated SSB corresponding to the terminal year of the
stock assessment. Mohn’s Rho values were calculated with a 7-year peel each year in the
management procedure period and plotted over time. Mohn’s Rho, which provides measures of
retrospective inconsistencies, was calculated as:

x
n=1 SSBest=T—n,T—n - SSBest=T—n,T

SSBeSt=T—n,T
X

pr =

with SSB as an example, where [1T] is Mohn’s Rho at year T, x is the desired number of
assessments with different terminal years to be used in estimating Mohn’s Rho (i.e. the number
of “peels”), (111,002 is estimated SSB from the stock assessment at year y1 and year
y2. Management performance metrics included true or OM stock status trajectories, the true
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frequency of overfishing, and the true frequency of being overfished. Metrics were characterized
in the short-term (1-5 years), medium-term (6-10 years), and long-term (11-21 years). Code for
more complex stock assessment performance metrics can be found at
https://github.com/lkerr/groundfish-MSE/tree/master/functions/performance_metrics.

3. Results
3.1. Performance with no misspecification

When there was no misspecification, the ramp and F-step HCRs were most responsive in
adjusting catch advice to changes in SSB, whereas the constrained ramp HCR with limited scope
for change in year-to-year catch advice responded more slowly to increasing biomass and
consequently conserved a higher SSB regardless of the initial status of the stock (Fig. 4). The
constrained ramp HCR tended to produce the lowest catch and F in the short-term. The initial
status of the stock led to differences in HCR performance with no stock assessment
misspecification. For GOM cod, the ramp and constrained ramp HCRs resulted in less time
overfished, while the F-step HCR produced the highest catch and F in the short-term and more
time overfished (Figs. 3-5). However, in the medium- and long-term, the ramp HCR led to
higher catch and more time overfished. For GB haddock (i.e., not overfished), the constrained
ramp HCR produced the lowest catch in the short- and medium- term and resulted in a stock that
was always rebuilt (Figs. 3-5). As a result, the constrained ramp HCR produced the highest catch
in the long-term. The ramp and F-step HCRs resulted in the highest catch and F in the short-
term. In the long-term, the stock fluctuated around SSBmsy under the ramp and F-step HCRs.

3.2. Stock assessment performance with a misspecification

Ignoring climate impacts in the stock assessment led to error and retrospective patterns in
the assessment (Figs. 6-8). The M and weight-at-age misspecifications resulted in an
overestimation of SSB, underestimation of F, and retrospective patterns. For GB haddock, the
large REE values in the beginning of the management procedure period (Fig. 6) may be due to a
large recruitment event in 2014. With a misspecification, the stock assessment model had
difficulty estimating the increase in biomass that results from that large recruitment event. The
stock assessment model assumed a weight-at-age that was higher than the true weight-at-age,
which in combination with a large recruitment event, resulted in a large overestimation of SSB
and underestimation of F. For both GOM cod and GB haddock, there was no error in Fvsy with
or without a misspecification. However, SSBmsy was consistently underestimated with a
misspecification in the case of GOM cod. For GB haddock, SSBmsy was overestimated in the
short-term with a small misspecification, and in the medium- and long-term, the constrained
ramp HCR resulted in overestimation of SSBmsy. For GB haddock, estimated SSBwmsy was
higher in the medium- and long-term under the constrained ramp HCR than under the other
HCRs, because estimates of recruitment were higher under the constrained ramp HCR. Mean
estimated recruitment from the last 20 years was used in the SSBmsy estimations. Assessment
performance interacted and was influenced by the performance of alternative HCRs. Under the
constrained ramp HCR with a misspecification, error in SSB tended to be the highest regardless
of the initial stock status. For GOM cod, the constrained ramp HCR resulted in the highest
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absolute values of Mohn’s Rho. Also, the ramp and F-step HCRs resulted in the highest absolute
values of Mohn’s Rho for GB haddock. As the misspecification increased, stock assessment
performance changed (Figs. 6-8). For GOM cod, SSBumsy was increasingly underestimated as the
magnitude of the M misspecification increased. For GB haddock with an increased
misspecification, SSBmsy was underestimated under all HCRs. For GOM cod in the long-term,
SSB was underestimated, and error in F was near zero. Mohn’s Rho values also increased.

3.3. Overall stock and management performance with a misspecification

Ignoring climate impacts in the stock assessment led to changes in performance of HCRs.
An overestimation of SSB and underestimation of SSBmsy resulted in overly optimistic estimated
stock status. As a result, the prescribed F from the HCR was higher than it should have been,
which resulted in catch advice that was also higher. The catch advice was impacted by the
prescribed F as well as the estimates of abundance used in the projections, which were overly
optimistic. Through prescribed F and projections, the impact of stock assessment error increased
throughout the simulation loop. Consequently, the overly optimistic catch advice resulted in
more time overfished and overfishing and a lack of rebuilt status in the OM (Figs. 4 and 5). This
corresponded with lower SSB and higher Fs (Fig. 3).

As the misspecification increased, stocks experienced more time overfished and with
overfishing (Figs. 5). For GOM cod, SSB decreased and F increased with a greater
misspecification (Fig. 3). For GB haddock, with an increase in the misspecification, F increased
and SSB decreased even more with SSB hovering around the overfished threshold in the long-
term.

3.4. Relative stock and management performance with a misspecification

When a misspecification was introduced, relative performance of HCRs was similar
compared to the performance with no misspecification (Figs. 3 and 4). For example, regardless
of the initial stock status, the constrained ramp HCR tended to result in the highest SSB, which
also occurred with no misspecification. For GOM cod, the F-step HCR resulted in the highest
catch in the short-term and highest catch stability in the short- and medium-term with and
without a misspecification. The constrained ramp HCR resulted in the lowest F and catch in the
medium-term and the highest catch stability in the short-term, which occurred with no
misspecification as well. For GB haddock, the constrained ramp HCR resulted in the lowest F
and catch and highest catch stability in the short-term, which also occurred with no
misspecification. Also, the F-step and ramp HCRs produced the highest catch in the medium-
term, and the constrained ramp HCR resulted in the highest catch in the long-term with and
without a misspecification.

However, the error introduced by the misspecifications led to a few notable differences in
relative performance (Fig. 4). For GOM cod, the constrained ramp HCR resulted in the highest
catch in the long-term, which did not occur without a misspecification. Also, the ramp HCR
resulted in the highest catch in the medium-term.
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The error also caused overfishing and overfished status for the ‘true’ stock, with the
frequencies differing among HCRs (Figs. 4 and 5). The constrained ramp HCR also resulted in
the least overfishing. For GB haddock, the constrained ramp HCR resulted in the most time
above SSBwmsy. The constrained ramp HCR also resulted in the most time overfishing in the
long-term but the least time overfishing in the short- and medium-term.

Relative performance of HCRs also changed slightly when the misspecification level
increased (Figs. 3-5). For GOM cod, F did not get as high under the constrained ramp HCR with
an increased misspecification. For GB haddock with an increased misspecification, the ramp
HCR led to more time overfished and overfishing in the short-term, and the F-step HCR led to
more time overfished in the long-term. Also, more overfishing occurred in the long-term with an
increased misspecification for GB haddock.

4. Discussion

Emulating the impacts of climate on stock assessment and fishery management can be
challenging for simulation testing, because the mechanisms and processes of climate impacts are
uncertain. However, the conditioning of our OMs and misspecification of estimation models
produced similar diagnostic problems as experienced for New England groundfish. For example,
the magnitude of retrospective inconsistencies was similar to those from recent stock
assessments (NEFSC, 2022). The simulations showed that ignoring climate impacts in stock
assessment models led to assessment error, that impacted management performance.

4.2. Management performance with a correctly specified stock assessment

With a correctly specified stock assessment (i.e. perfect knowledge of climate impacts on
stock dynamics), there were tradeoffs among management alternatives. The constrained ramp
HCR can help meet conservation objectives, because the constraint on year-to-year changes in
catch maintains greater SSB. The constrained ramp HCR can also help meet economic
objectives, because stability in catch can be beneficial for markets. However, the constrained
ramp HCR can also have negative impacts on catch in the short-term. If stock size increases
substantially, the constrained ramp HCR produces lower catch in the short-term but the highest
catch in the long-term relative to the other HCRs due to slow pace of increase in catch advice.
However, if the stock were to collapse, we could expect a different response. In this case, the
constrained ramp would result in a slow decrease in catch advice, which may not be
conservative. In cases where the stock size was above the overfished threshold, the ramp and F-
step HCRs typically performed similarly.

For GOM cod (i.e., the overfished stock), responsive HCRs, such as the ramp HCR and
the constrained ramp HCR, were able to increase stock size above the overfished threshold at the
fastest rate. Responsive HCRs, in which F changes as a function of biomass, can mitigate
negative impacts of climate change (Kritzer et al., 2019). Responsive HCRs are necessary to
effectively manage highly variable fisheries (Plagdnyi et al., 2018). When environmental effects
are negligible or beneficial, a fixed F HCR can be effective (Kritzer et al., 2019). However, the
environmental effects simulated in the GOM cod OM in this study reduced productivity and
were not negligible.
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4.3. Consequences of ignoring climate impacts on management performance

Comparing correctly specified scenarios to those with stock assessment misspecifications
allowed us to understand how unaccounted changes in population dynamics and resulting stock
assessment bias can impact HCR performance. Natural mortality and weight-at-age
misspecifications resulted in stock assessment error and retrospective patterns. Stock size was
overestimated, and F was underestimated in both cases, which led to overly optimistic stock
status estimates. With these misspecifications, simulated Mohn’s Rho values were as large as
they are for some of the current groundfish assessments (NEFSC, 2022). In the 2019
assessments, GOM cod Mohn’s rho was 0.52 for SSB and -0.29 for F under the M=0.2
assumption and 0.29 for SSB and -0.16 for F under the increasing M assumption. Georges Bank
haddock Mohn’s Rho was 0.69 for SSB and -0.44 for F (NEFSC, 2022). Interestingly, the
Mohn’s Rho values became larger in absolute value as the M misspecification increased but not
as the weight-at-age misspecification increased. The degree of bias in the stock assessment
performance and retrospective inconsistencies varied among HCRs and misspecifications and did
not always coincide in direction. This is similar to other findings that the direction and
magnitude of retrospective patterns are not related to true bias (Hurtado-Ferro et al., 2015).
Additionally, Kerr et al. (2020) found that relative errors in SSB were sometimes in the opposite
direction of the retrospective bias (i.e. relative error was negative while retrospective bias was
positive). The difference in error and retrospective patterns among HCRs suggests that error is
not only dependent upon whether the stock assessment is correctly specified but also the trends
in stock dynamics. Indeed, a lack of retrospective patterns does not mean that there is no data or
model inconsistency (Legault, 2009).

Although HCRs affect stock and management performance, stock assessment
misspecifications can alter stock assessment performance, which also impacts stock and
management performance. Relative HCR performance was generally similar with and without a
misspecification. However, there were a few differences. For example, the constrained ramp
HCR met the fishery objective of higher catch even more than the other HCRs in the long-term
with a misspecification than without a misspecification for GOM cod. Nevertheless, the
constrained ramp HCR consistently conserved SSB regardless of the initial stock status and stock
assessment specifications. The F-step HCR also met fishery objectives more than the other HCRs
in the short- and medium-term regardless of stock assessment specifications.

Although there were some relative differences in HCR performance, HCRs did not
compensate for the impact of a stock assessment misspecification. The demand for fisheries
management to implement a precautionary approach has led to the development of HCRs
(Kvamsdal et al., 2016), and HCRs are supposed to allow for fisheries management to be
effective in the face of uncertainty (Walters and Hilborn, 1976). However, although the
precautionary target (e.g., 75%Fwmsy) may help to mitigate imprecision in stock assessment, these
HCRs were not robust to the stock assessment bias created by climate impacts. In these
simulations, when the stationary assumptions were violated, fisheries management was
negatively affected. Stock assessment misspecifications had a larger impact on stock status in the
long-term than HCRs. The impact of stock assessment error influences the catch advice through
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an overly optimistic F prescribed from the HCR and overly optimistic abundance estimates used
in the projections. At the end of the management procedure period with a misspecification, SSB
was below the overfished threshold and undergoing overfishing for GOM cod and below the
rebuilt threshold or fluctuating around the overfished threshold for GB haddock regardless of the
control rule. However, even with no misspecification for GOM cod, the stock was under the
overfished threshold in the long-term, and under the F-step HCR, the stock did not increase over
the overfished threshold at all during the management procedure period. For GOM cod, the
increase in M has decreased productivity for the stock, which no longer has the capacity to
rebuild, even when near perfect knowledge of stock dynamics is provided to the stock
assessment.

4.4. Future studies

Our results suggest that correctly specifying stock assessments should be a priority,
especially for stock assessments that exhibit retrospective patterns. However, it is difficult to
identify the source of retrospective patterns, although determining the timing of a
misspecification that led to retrospective patterns may be possible (Legault, 2009, Kerr et al.
2022). Findings from research that analyzes the relationship between life history parameters and
environmental conditions would be helpful for parameterizing stock assessment models.
Population dynamics of the focus stock unit should be understood as well as possible so the stock
assessment can be updated with assumptions that are more likely to be correct, resulting in a
more accurate stock status determination. Waters in the GOM are continuing to warm (NOAA
Fisheries, 2021) with impacts on aspects of groundfish population dynamics; therefore, it is
important to continue groundfish research. Previous and ongoing research have focused on
groundfish population dynamics. For example, Runge et al. (2010) found that forecasts of
environmental conditions for recruitment for GOM cod can be developed with coupled physical-
biological models. Buckley et al. (2004) found that Atlantic cod and haddock growth increased
with temperature until 7°C and then decreased. However, there are still knowledge gaps in our
understanding of the impacts of environmental factors, aside from temperature, on New England
groundfish (Klein et al., 2017). As our understanding of groundfish population dynamics
improves, stock assessment parameters may need to be updated and other stock assessment
models may need to be considered. In a changing climate, time-varying parameters are often
needed. Our results also suggest that the HCRs evaluated in this study are not robust to stock
assessment model misspecifications, and there is a need for identification of HCRs that are
robust to stock assessment model misspecifications that drive retrospective patterns.

This MSE framework can also be used for other groundfish fisheries. The simulation
framework used in this study is flexible with the capacity to customize OMs for specific
groundfish stocks and evaluate relative performance of all aspects of the management procedure:
consideration of alternative monitoring systems (e.g., Kerr et al., 2020), the ability to integrate
new stock assessment methods, and alternative HCRs.

4.5. Limitations
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Although our simulations represent New England groundfish dynamics and issues with
stock, stock assessment, and management performance, there are some limitations that should be
noted. Other factors may be causing retrospective patterns that were not explored in this study.
Also, BRPs can impact how HCRs perform. In this study, BRPs were calculated to be consistent
with the current groundfish stock assessments (NEFSC, 2021; 2022). GOM cod BRPs were
calculated with M assumed at 0.2. Even though M increased in the GOM cod OM, both true and
estimated BRPs were calculated/estimated with a lower M. However, because M remains at 0.4,
the GOM cod stock cannot rebuild even with a correctly specified stock assessment. This
fundamental shift in resource productivity due to climate caused the stock to no longer have the
capacity to rebuild, even with a precautionary approach (NRC, 2016). Additionally, simulated
recruitment was similar among HCRs for GB haddock. Recruitment was drawn from empirical
distribution functions, so there was no assumed relationship between recruitment and SSB. By
simulating no SRR, the stock would be less impacted by HCRs than with a SRR. However, a
traditional stock-recruitment model does not explain GB haddock recruitment, which is impacted
by other factors other than SSB. Large GB haddock recruitment events could be explained by
autumn phytoplankton blooms the year prior to spawning (Leaf and Friedland, 2014; Friedland et
al., 2015). Forecasts of autumn blooms are not available, so a SRR that includes autumn blooms
could not be used in the simulations in the management procedure period. However, recruitment
was related to SSB and temperature in the GOM cod simulations.

There are also additional HCR forms and adjustments to the features of the HCRs
evaluated in this study that could be worthwhile exploring in the future based on the desired
outcomes of groundfish fishery management (i.e., management objectives). For example, a
constant F HCR was not explored in this analysis. Kerr et al. (2020) did simulate a constant F
HCR in the context of catch misreporting scenarios that could be informative for decision
making regarding this HCR’s performance. Another limitation of this analysis was that technical
interactions were not simulated. For some stocks, the groundfish fishery harvests considerably
less than the annual catch limit (ACL) due to technical interactions of the mixed-stock fishery
(i.e. choke species issues; Cadrin, 2016). However, if technical interactions were included in the
haddock scenarios, HCR performance would be difficult to evaluate if the catch was a small
percentage of the ACL. Additionally, the constrained ramp HCR may perform differently if the
stock was collapsing. Since the constrained ramp HCR has a 20% limit in change in catch, the
catch advice from this HCR could be aggressive if the stock were rapidly and consistently
declining. The simulations in this study do not include a stock where the biomass is rapidly and
consistently declining in the management procedure period. Also, there is no depensation or
strong autocorrelative recruitment simulated, which may result in a collapsed stock.

In addition, the OMs are flexible and can be further tuned to represent additional
complexity and variability in groundfish dynamics and operation of groundfish fisheries. For
example, declining weight-at-age and density-dependent growth are evident for GB haddock
(NEFSC, 2022; Wang et al., 2021), but this was not included during the management procedure
period for haddock scenarios. Declining weight-at-age was only included during the historical
period. While cod M was constant at 0.4 in the management procedure period, recruitment was
negatively impacted by increasing temperatures. However, we can expect similar climate
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impacts on natural mortality of cod and haddock size in the future. The warming and predation
trends in the region are expected to continue. Cod natural mortality and haddock size are
positively and negatively related to temperature, respectively (Pershing et al. 2015; Brodziak and
Link 2008). Seal predation is also expected to continue, because seal populations are being
maintained by the marine mammal protection act. Given these relationships, we could expect cod
natural mortality to continue to increase and haddock size to continue to decrease. As a result,
the management impacts measured in the current study could likely be a conservative assessment
of the long-term management performance. However, since species will occupy habitats that
maximize their fitness, cod and haddock spatial distributions are expected to change. Cod natural
mortality cannot increase infinitely, and haddock size cannot decrease to zero. Indeed, GOM cod
have shifted to greater depths but no significant change in haddock distribution off the Northeast
shelf has been observed (Nye et al. 2009). However, haddock size is not only impacted by
temperature but also density-dependent mechanisms (Brodziak and Link 2008). Nevertheless,
including climate impacts in stock assessments will be increasingly important.

Additionally, unbiased implementation of HCRs was assumed (i.e., no bias in catch
observations but some random error), however there is some evidence of an observer effect in
catch reporting in the groundfish fishery that could introduce bias (Demarest, 2019; McNamee et
al., 2019; Nitschke, 2019). Also, catchability may be changing due to changing species
distributions, which may move out of current survey areas. In this study, catchability was
assumed constant in the OMs and stock assessment models. However, ASAP has the ability to
assume a varying catchability.

4.6. Management implications

Poor stock assessment performance caused by ignoring climate impacts can have
negative impacts on management. Tradeoffs among HCRs exist, but addressing stock assessment
bias may be the more immediate and important task compared to identifying an optimal HCR in
meeting management objectives. If stock assessment models with misspecifications that have a
large impact are not able to be corrected or corrected in a timely manner, there is likely to be
adverse impacts on management. This study suggests that no commonly applied HCRs, even
precautionary HCRs, perform well with large misspecifications. If significant retrospective
patterns exist, the stock status determination is likely to be biased. The resulting F from the HCR
will then be inappropriate. However, certain HCRs can help mitigate some of the impacts of bias
and help to implement a precautionary approach. However, typical HCRs employed for
groundfish stock are not sufficiently robust to overcome the level of bias in many of the current
stock assessments. Large retrospective patterns can lead to inappropriate fishery management,
possibly causing a depleted stock even though stock assessments suggest that the stock is above
target levels (Legault, 2009). Legault (2009) recommends that if strong retrospective patterns are
present, the stock assessment model as the basis for management advice should be rejected. In
this case, an index-based method may perform better. Additionally, future research could
identify an HCR that is robust to stock assessment misspecifications. In the short term,
improvements in the accuracy of stock assessments and stock status determinations will provide
the greatest scope for improvement in New England groundfish management..
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Figure Captions
Figure 1. The management strategy evaluation framework used in this project.

Figure 2. Alternative harvest control rules (HCRs): a) ramp, b) F-step, and c) constrained
ramp harvest control rules. The constrained ramp HCR (c¢) is the ramp HCR (a) but with a
20% constraint on change in catch from year to year.

Figure 3. True operating model median spawning stock biomass (SSB), fishing mortality
(F), and catch with 95% confidence intervals for a) Gulf of Maine cod and b) Georges Bank
haddock with no stock assessment model misspecification (none), a small misspecification
(intermediate), and a large misspecification (high) from 2019 to 2040.

Color should be used for Figure 3 in print.

Figure 4. Harvest control rule (HCR) performance for a) Gulf of Maine cod and b) Georges
Bank haddock with no stock assessment model misspecification (none), a small
misspecification (intermediate), and a large misspecification (large) in the short- (1-5
years), and long-term (11-21 years). Some metrics (SSB, catch stability and catch) are
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standardized to the maximum value for each metric attained by the different HCRs by
dividing the values by the maximum value across HCRs. Frequency not overfished and
frequency not overfishing are automatically on a scale from 0 to 1. Metrics are also equally
weighted. Spawning stock biomass (SSB) and catch are median SSB and catch for the time
period. Black, orange, and blue lines and points represent the ramp, F-step, and
constrained ramp harvest control rules, respectively. Sometimes the black and orange lines
do not appear due to overlap.

Color should be used for Figure 4 in print.

Figure 5. True stock status trajectories (ratio of fishing mortality to the fishing mortality
reference point (F/Fusy) versus ratio of spawning stock biomass to the spawning stock
biomass reference point (SSB/SSBwmsy)) for a) Gulf of Maine cod with no stock assessment
model misspecification (none), natural mortality incorrectly assumed constant at (0.3
(intermediate), and natural mortality incorrectly assumed constant at 0.2 (high) and b)
Georges Bank haddock with no stock assessment model misspecification (none), a small
weight-at-age stock assessment misspecification (intermediate), and a large weight-at-age
stock assessment misspecification (high). The dashed line represents the overfished
threshold. Black, orange, and blue lines and points represent the ramp, F-step, and
constrained ramp harvest control rules, respectively. In the red quadrant, the stock is not
rebuilt and undergoing overfishing. In the lower left yellow quadrant, the stock is not
rebuilt. In the upper right yellow quadrant, overfishing is occurring. In the green
quadrant, the stock is in good status.

Color should be used for Figure 5 in print.

Figure 6. Median percent relative error (REE) in terminal estimated spawning stock
biomass (SSB) and fishing mortality (F) with 95% confidence intervals for a) Gulf of Maine
cod with no stock assessment model misspecification (none), natural mortality incorrectly
assumed constant at 0.3 (intermediate; smaller misspecification), and natural mortality
incorrectly assumed constant at 0.2 (high; larger misspecification) and b) Georges Bank
haddock with no stock assessment model misspecification (none), a small weight-at-age
stock assessment misspecification (intermediate), and a large weight-at-age stock
assessment misspecification (high). Black, orange, and blue lines represent the ramp, F-
step, and constrained ramp harvest control rules, respectively.

Color should be used for Figure 6 in print.

Figure 7. Median Mohn’s Rho values for spawning stock biomass (SSB) and fishing
mortality (F) with 95% confidence intervals for a) Gulf of Maine cod with no stock
assessment model misspecification (none), natural mortality incorrectly assumed constant
and 0.3 (intermediate), and natural mortality incorrectly assumed constant at 0.2 (high)
and b) Georges Bank haddock with no stock assessment model misspecification (none), a
small weight-at-age misspecification (intermediate), and a large weight-at-age
misspecification (high). Black, orange, and blue lines represent the ramp, F-step, and
constrained ramp harvest control rules, respectively.
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Color should be used for Figure 7 in print.

Figure 8. Median ratios of estimated to true stock biomass reference point (SSBmsy) for a)
Gulf of Maine cod with no stock assessment model misspecification (none), natural
mortality incorrectly assumed constant at 0.3 (intermediate), and natural mortality
incorrectly assumed constant at 0.2 (high) and b) Georges Bank haddock with no stock
assessment model misspecification (none), a small weight-at-age stock assessment
misspecification (intermediate), and a large weight-at-age stock assessment misspecification
(high) in the short- (1-5 years), medium- (6-10 years), and long-term (11-21 years).

Color should be used for Figure 8 in print.

Data availability statement

All code and instructions for the management strategy evaluation framework used in this study
can be found at the following Github repository: https://github.com/lkerr/groundfish-MSE.
Instructions on how to specify the operating models (OMs) and management procedures can be
found on the Wiki page: https://github.com/lkerr/groundfish-MSE/wiki. This study was
conducted using the ‘MDM_Misspecifications’ branch. Each scenario uses different
specifications of OMs and/or management procedures. Parameters and historical time series from
the Gulf of Maine cod and Georges Bank haddock assessments can be found at the Northeast
Fisheries Science Center Stock Assessment Support Information: https://apps-
nefsc.fisheries.noaa.gov/saw/sasi/sasi_report_options.php. Gulf of Maine sea surface
temperature data can be found at the Optimum Interpolation Sea Surface Temperature (OISST)
database: https://www.ncei.noaa.gov/products/optimum-interpolation-sst.
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Table 1. Georges Bank haddock weight-at-ages used in the operating model and stock

assessments.

Age 1

Weight-at-age 0.00018
in the operating

model (2019-

2040)

Weight-at-age 0.00033
in stock

assessment

(high and

constant

scenario)

Weight-at-age 0.00019
in stock

assessment

(intermediate

and constant

scenario)

Age 2

0.00043

0.00080

0.00055

Age 3

0.00069

0.00128

0.00090

Age 4

0.00089

0.00166

0.00114

Age 5

0.00109

0.00192

0.00126

Age 6

0.00125

0.00220

0.00137

Age 7

0.00149

0.00252

0.00152

Age 8

0.00158

0.00275

0.00164

Age 9+

0.00178

0.00313

0.00188






