

1 **Consequences of ignoring climate impacts on New England groundfish stock assessment**
2 **and management**

3 Mackenzie Mazur^{a1*}, Jerelle Jesse^a, Steven X. Cadrian^b, Sam Truesdell^{a2}, and Lisa Kerr^a

4 ^aGulf of Maine Research Institute, 350 Commercial St., Portland, ME, 04101, USA;
5 lkerr@gmri.org, jjesse@gmri.org

6 ^bUMass, School for Marine Science & Technology, 836 South Rodney French Boulevard
7 New Bedford, MA 02744, USA; scadrin@umassd.edu

8 ¹Current address: Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T
9 6N7, Canada

10 ²Current address: Massachusetts Division of Marine Fisheries Cat Cove Marine Laboratory, 92
11 Fort Ave, Salem, MA 01970, samuel.truesdell@mass.gov

12 *Corresponding author, mackenzie.mazur@dfo-mpo.gc.ca

13 **Abstract**

14 The impact of warming on fisheries resources on the Northeast U.S. Shelf is increasingly
15 apparent through shifts in species distribution and productivity changes of economically and
16 culturally important stocks, such as groundfish. Ignoring such impacts can potentially lead to
17 problems with stock assessment performance and effectiveness of fisheries management
18 decisions. Retrospective patterns (i.e., inconsistency of recent estimates after adding another year
19 of data) currently present a large source of uncertainty in the classification of stock status and
20 determination of catch advice for New England groundfish. We evaluated the impact of ignoring
21 historical climate impacts on assessment performance and the resulting management for New
22 England groundfish. We utilized a management strategy evaluation framework to simulate the
23 impacts of climate change on recruitment, natural mortality, and growth for New England
24 groundfish, emulate stock assessment misspecifications, and evaluate the performance of harvest
25 control rules. Three harvest control rules were evaluated: ramped, step in advised fishing
26 mortality (i.e., fishing mortality reduces from 75% F_{MSY} to 70% F_{MSY} when biomass decreases
27 below the biomass threshold) and a constrained ramped harvest control rule (i.e., the target
28 advised catch cannot vary more than 20% from the previous year's catch). Results suggest
29 tradeoffs among control rules, but addressing stock assessment bias resulting from
30 misspecifications may be more important than identifying an optimal harvest control rule for
31 meeting management objectives. Failure to account for changes in stock dynamics from climate
32 change resulted in adverse effects on the performance of New England groundfish assessment
33 and management, but the magnitude of impact varied by harvest control rule. Retrospective
34 patterns caused unintended overfishing because of management actions derived from
35 misperceptions of stock status. Our research shows how management strategy evaluation can be
36 used to test the robustness of harvest control rules to climate change impacts on stock dynamics.

37 **Keywords**

38 Climate change, stock assessment, management strategy evaluation, harvest control rules,
39 groundfish

40 **1. Introduction**

41 *1.1. Climate change and stock assessments*

42 Climate change is impacting fish populations throughout the world. Increasing
43 temperatures affect key fish life history parameters, such as growth, recruitment, and natural
44 mortality (M; Drinkwater et al., 2009), and changes in these life history parameters affect fish
45 stock productivity and fisheries (Pörtner and Peck, 2010). These impacts caused by climate
46 change pose challenges to our fisheries management system.

47 Fisheries stock assessment and the resulting fisheries management do not usually
48 explicitly incorporate the impact of changing environmental conditions on productivity. Skern-
49 Mauritzen et al. (2016) reviewed stock assessments and found that ecosystem processes were
50 only incorporated into 2% of the assessments. Many assumptions in our fishery management
51 process are strongly linked to historical productivity and the concept of stationarity, meaning that
52 stock assessments often do not assume that parameters vary over time.

53 Ignoring changes in stock dynamics can lead to retrospective patterns, which are
54 inconsistencies of recent estimates after adding another year of data to the stock assessment
55 model (Mohn, 1999). Retrospective patterns are an expression of model instability that in some
56 cases managers attempt to either correct for by adjusting final estimates in accordance with
57 historical retrospective bias (e.g., Legault, 2009; Deroba, 2014) or mitigate by increasing the
58 uncertainty associated with the overfishing limit (e.g., MAFMC, 2020). Retrospective patterns
59 pose challenges for fisheries around the world and have been observed in many types of stock
60 assessment models (Legault, 2009). Many New England groundfish stock assessments , which
61 use virtual population analysis and statistical catch-at-age models, have retrospective patterns
62 (NEFSC, 2022). Retrospective patterns can be a large source of uncertainty and if left
63 unresolved, can lead to unintentional overfishing that undermines efforts to sustainably manage
64 fisheries (Deroba, 2014) or, alternatively, underutilization of the resource that may have social
65 implications. Simulation studies have shown that retrospective patterns can be caused by biased
66 catch, trends in M, or trends in survey catchability (Legault 2009).

67 *1.2. New England groundfish*

68 Over the past several decades, Northeast U.S. Shelf water temperatures have increased
69 significantly, with bottom water temperatures increasing at rates from 0.1 to 0.48°C per decade
70 (Kavanaugh et al. 2017) and sea surface temperatures (SSTs) in the Gulf of Maine (GOM)
71 increasing at a rate of 0.23°C per year since 2004 (Pershing et al., 2015). Groundfish off the
72 coast of New England are expected to have differential responses to climate change due to their
73 exposure and sensitivity to climate impacts (Hare et al., 2016; Klein et al., 2017).

74 Twenty groundfish stocks are managed under the Northeast multispecies groundfish
75 federal fishery management plan (FMP) by the New England Fishery Management Council.
76 Management of the groundfish fisheries is challenging because of historic overfishing and

77 species-specific climate impacts on the mixed-stock fishery (Brodziak et al., 2008). The current
78 management procedure has not performed well for New England groundfish, including recent
79 failures of stock assessment models, lack of rebuilding or continued overfishing of several
80 overfished stocks, and an economic disaster declaration. Management procedures are the
81 methods for determining catch advice, which include the stock assessment methods, biological
82 reference points (BRPs), and the harvest control rule (HCR). Harvest control rules have an
83 important role in fishery management plans; they define management actions and are based on
84 the status of a stock relative to reference points. The current MP usually consists of 1) a
85 statistical catch-at-age stock assessment model, applied every two years, with many stationary
86 assumptions and retrospective adjustments, 2) F40%, or the fishing mortality (F) expected to
87 maintain 40% of the unfished spawning stock biomass (SSB) per recruit, as the the proxy for
88 maximum sustainable yield and 50% of the long-term equilibrium SSB that corresponds to F40%
89 as the overfished threshold, and 3) a stepped HCR (75% F40% when SSB is above the
90 overfished threshold and 70% F40% when SSB is below the overfished threshold). However,
91 when SSB is estimated to be below the overfished threshold, annual catch limits should ideally
92 be derived from a ramped HCR with a bycatch only catch minimum and F iterated to allow 50%
93 rebuilding probability in ten years (NEFMC, 2009). Several New England groundfish stocks are
94 at or near historic low biomass (e.g., GOM cod, *Gadus morhua*; Georges Bank (GB) cod; GB
95 winter flounder, *Pseudopleuronectes americanus*; GB yellowtail flounder, *Limanda ferruginea*;
96 Southern New England-Mid Atlantic (SNE/MA) yellowtail flounder; witch flounder,
97 *Glyptocephalus cynoglossus*; and GOM-GB windowpane flounder, *Scophthalmus aquosus*),
98 whereas other stocks have increased to record highs (e.g., GB haddock, *Melanogrammus*
99 *aeglefinus*; GOM haddock; and redfish, *Sebastes fasciatus*; NEFSC 2020, 2022).

100 The majority of New England groundfish stocks that have analytical assessments (e.g.,
101 statistical catch-at-age models) exhibit a retrospective pattern with estimates of SSB revised
102 downward and estimates of F revised upwards with the addition of new data (NEFSC, 2021,
103 2022). Retrospective patterns represent a large source of uncertainty and pose challenges in the
104 determination of groundfish stock status and catch advice (Brooks & Legault, 2016;
105 Wiedenmann & Jensen, 2018). Mohn's rho (Mohn, 1999) is used to measure the magnitude of
106 retrospective patterns, and a value higher than 0.2 or lower than -0.15 indicates considerable
107 retrospective patterns for long-lived species (Hurtado-Ferro et al., 2015). Mohn's rho for SSB
108 was 0.52 in the 2019 stock assessment of GOM cod when M was assumed constant at 0.2 and
109 0.69 in the 2019 stock assessment of GB haddock (NEFSC, 2022). Some of the candidate causes
110 of retrospective patterns relevant to Northeast groundfish stocks include misreporting of catch,
111 changes in survey or fishery catchability and/or selectivity, and, more generally, directional
112 ecosystem change such as the impact of ocean warming on population dynamics that may impact
113 those processes. Kerr et al. (2020) found that catch misreporting impacts stock trajectories,
114 assessment, and management performance of GOM cod. Retrospective patterns appeared when
115 catch bias changed overtime.

116 Given the documented impacts of climate change on New England groundfish population
117 dynamics and significant retrospective patterns in New England groundfish stock assessments,
118 there is a need to evaluate the impacts of stock assessment misspecifications due to climate

119 change. The objectives of this study are: 1) to evaluate the consequences of ignoring historical
120 climate change impacts on New England groundfish stock dynamics and how this affects current
121 stock assessment and management performance, and 2) test robustness of fisheries management
122 alternatives to stock assessment misspecifications. A stock assessment misspecification is when
123 the assessment assumptions are not consistent with true system dynamics, which, if the
124 misspecification varies over time, can lead to retrospective patterns. To address these objectives,
125 we applied management strategy evaluation (MSE), which involves simulating the natural and
126 human aspects of the managed fishery system under different scenarios and evaluating
127 performance for meeting management objectives. We simulated groundfish population dynamics
128 impacted by climate change, stock assessment specifications, and HCRs. The performance of the
129 current New England groundfish management procedure and possible alternatives have not yet
130 been simulation tested. MSE is valuable for identifying HCRs that are robust to natural variation
131 in the system and to uncertainty and error (ICES, 2020). The better uncertainty is represented in
132 an MSE, the more informative such model frameworks are for fisheries management (Punt et al.,
133 2016).

134
135 **2. Methods**

136 *2.1. Model framework overview*

137 In the MSE framework we used to evaluate the impacts of stock assessment
138 misspecifications on groundfish fisheries (<https://github.com/lkerr/groundfish-MSE>), the
139 operating model (OM) represented the true fish population dynamics and was the basis for
140 evaluating performance relative to the ‘true’ values for the stock and fishery (1; Fig. 1). Through
141 an observation model (2; Fig. 1), simulated trawl survey and catch data were generated with
142 random error to represent the information available for groundfish assessment and management.
143 The simulated survey and catch data informed a statistical catch-at-age stock assessment model
144 (3; Fig. 1) used to estimate stock and fishery metrics. This study emulated current groundfish
145 stock assessment methods and applied the Age Structured Assessment Program (ASAP; Legault
146 & Restrepo, 1998) as the estimation model, which is used for the majority of analytical
147 groundfish stock assessments in the region. Biological reference points (4; Fig.1) were then
148 calculated. The stock assessment output and estimated BRPs were compared to produce
149 estimated stock status. A HCR (5; Fig. 1) then determined a prescribed F based on the estimated
150 stock status. Both the F from the HCR (5) and output from the stock assessment (3) were used in
151 projections (6; Fig. 1) to determine catch advice. Catch advice was generated from projected
152 catch with F determined from the HCR for two years. This catch advice was then applied to
153 simulate harvest in the OM (7; Fig. 1). The advised catch was assumed to be caught in the OM
154 (i.e., there was no bias or uncertainty in catch). Quantities necessary to develop the performance
155 metrics were compiled at each timestep (8; Fig. 1). One hundred iterations were simulated for
156 each scenario. Further description of the MSE components can be found on the Github repository
157 Wiki page (<https://github.com/lkerr/groundfish-MSE/wiki>).

158 New England groundfish stock assessments are updated every two years and use data up
159 to the year before the assessment year unless there are unforeseeable circumstances (i.e. a

160 pandemic). This simulated process was designed to be consistent with current New England
161 groundfish management procedure whereby the stock assessment performed in year t had a
162 terminal year of $t-1$, and the resulting catch advice was for year $t+1$ and $t+2$. Thus, there was a
163 lag in information that informed the catch advice. This simulated fishery resource, management,
164 and harvest feedback loop continued until the end of the management procedure period (2019 -
165 2040). The MSE approach used in this study was not a full participatory MSE because
166 management objectives were not identified and prioritized by stakeholders. Operating model
167 parameters and stock assessment misspecifications described below were specified in the
168 respective R script in the stockParameters folder on the Github
169 (<https://github.com/lkerr/groundfish-MSE/tree/master/modelParameters/stockParameters>).
170 Biological reference points and HCRs described below were specified in the csv file for
171 management procedure specifications (<https://github.com/lkerr/groundfish-MSE/blob/master/modelParameters/mproc.csv>).
172

173 2.2. *Operating models*

174 We focused OM development on two groundfish stocks: GOM cod and GB haddock to
175 typify a range of conditions experienced by groundfish stocks. The current stock status of GOM
176 cod is overfished and undergoing overfishing, whereas GB haddock is not overfished and not
177 undergoing overfishing (NEFSC, 2021, 2022). GB haddock exemplifies a groundfish stock with
178 a recently increasing stock size. Throughout the manuscript, GOM cod represents an overfished
179 stock and GB haddock represents a not overfished stock, because GOM cod and GB haddock
180 have similar characteristics to other overfished and not overfished New England groundfish
181 stocks, respectively.

182 The OMs for groundfish stocks in this framework were single species, stochastic, age-
183 structured models designed to emulate population dynamics. The GOM cod and GB haddock
184 historical trajectories were reconstructed by incorporating recruitment and F time series (1982-
185 2018 for cod, 1931-2018 for haddock) from the 2019 stock assessments (NEFSC, 2022) and
186 calculating SSB and catch as emergent properties. Abundance-at-age was calculated using
187 exponential survival. Haddock growth and maturity in the management procedure period were
188 modeled using the average weight-at-age and maturity-at-age from the last five years of the stock
189 assessment. Cod growth and maturity used the weight-at-age and maturity-at-age used in the
190 2019 projections. The purpose of the historical period was to emulate reality, as it was perceived
191 by groundfish stock assessments. The management procedure period began in 2019. A
192 description of how to modify operating models in the MSE framework can be found at
193 https://github.com/lkerr/groundfish-MSE/blob/master/documentation/Operating_models.pdf.

194 2.3. *Simulating impacts of climate change on groundfish dynamics*

195 We simulated climate and ecosystem change on stock dynamics, specifically changes in
196 recruitment, natural survival, and growth. GB haddock exhibit periodic high recruitment events
197 that are not explained by a theoretical stock-recruitment relationship (SRR), but have been linked
198 to ocean conditions (i.e., autumn bloom; Leaf and Friedland, 2014; Friedland et al., 2015).
199 However, recent abnormally high recruitment events were not explained by ocean conditions. As
200 a result, for GB haddock, recruitment was modeled using empirical cumulative distribution
201 functions based on historical estimated recruitment. Previous studies have documented evidence
202 of the negative impacts of warming water temperatures on GOM cod recruitment (Fogarty et al.,

203 2008, Pershing et al., 2015). For GOM cod, recruitment was modeled using a Beverton-Holt
204 stock recruitment model that included the effect of projected temperature increase on recruitment
205 in the management procedure period. The stock-recruitment model was fit to recruitment and
206 SSB output from the 2019 stock assessment (M=M-ramp; NEFSC, 2022) and annual mean SST
207 anomalies for the GOM. Sea surface temperature anomalies were derived from GOM Optimum
208 Interpolation SST (OISST) data (Huang et al., 2020), which were used to downscale Northeast
209 LME CMIP5 projections. This relationship showed a negative impact of temperature on cod
210 recruitment.

211 Natural mortality, a highly uncertain parameter for most fish populations, is often
212 assumed to be constant over time, and this assumption is likely not true (Vetter, 1988; Lorenzen,
213 2022). The survival of GOM cod is negatively impacted by warming waters (Fogarty et al. 2008;
214 Pershing et al. 2015), and including a specified time-varying M in the GOM cod stock
215 assessment model improved model diagnostics and performance (Pershing et al., 2016; NEFSC,
216 2022). For these reasons, we simulated an increase in M for GOM cod over time in the OM.
217 Natural mortality increased from 0.2 to 0.4 based on the parameterization of increasing M in the
218 GOM cod stock assessment (i.e., M-ramp scenario). In this scenario, M started increasing from
219 0.2 in 1988 to 0.4 in 2003 where it remained at 0.4 through the rest of the historical period and
220 into the management procedure period (NEFSC, 2022). This OM specification was designed to
221 capture the shift in M to a higher state.

222 Haddock weight-at-age has decreased over time. This change in growth is explained by
223 density-dependent factors but also temperature (Wang et al., 2021). Warm temperatures at the
224 larval stage for haddock negatively impact adult growth (Brodziak and Link, 2008). For these
225 reasons, we simulated a decrease in weight-at-age over time for haddock during the historical
226 period, based on the parameterization from the GB haddock stock assessment (NEFSC, 2022).
227 During the management procedure period, haddock weight-at-age was constant over time.
228 Values for weight-at-age during the management procedure period were the average of the last
229 five years of the most recent haddock stock assessment (NEFSC, 2022).

230 *2.4. Stock assessment specifications*

231 We simulated scenarios in which the stock assessment accounts and does not account for
232 the historical impacts of a changing climate. For GOM cod, three stock assessment assumptions
233 were simulated; M was assumed constant at 0.2 or 0.3 or correctly assumed to be increasing from
234 0.2 to 0.4. Constant M assumptions were consistent throughout the historical and management
235 procedure period. The projections had the same assumptions as the final period of the stock
236 assessment. Both true and estimated BRPs were estimated with M at 0.2, even though M
237 increased to 0.4 in the OM, because the stock was at a lower productivity (Legault and Palmer,
238 2016). Another reason we chose to calculate true and estimated reference points with M=0.2 was
239 to be able to provide insights to other overfished stocks. Additionally, the BRP estimation and
240 projections do not account for the negative impact of temperature on recruitment. BRP
241 estimation and projections assume recruitment to be the mean of the previous 20 years of
242 estimated recruitment.

243 For haddock, three stock assessment assumptions were simulated; weight-at-age assumed
244 to be high and constant, intermediate and constant, and decreasing as in the OM, based on the
245 parameterization from the GB haddock stock assessment (NEFSC, 2022; Table 1). In the high
246 and constant assumption, weight-at-age was assumed to be the average weight-at-age from the
247 OM from 2000 to 2005. In the intermediate and constant assumption, weight-at-age was assumed
248 to be the weight-at-age from the OM from 2010 to 2015. In the decreasing the same as the OM
249 assumption, the stock assessment correctly assumed time-varying weight-at-age. The projections
250 and BRP estimations had the same assumptions as in the final five years of the stock assessment
251 model to account for the decreased weight-at-age when correctly specified. In both the cod and
252 haddock scenarios, retrospective adjustments were not applied to the estimated values from the
253 stock assessment. A description of how to specify the stock assessment methods in the MSE
254 framework can be found at https://github.com/lkerr/groundfish-MSE/blob/master/documentation/MSEFramework_StockAssessmentMethods.pdf.
255

256 *2.5. Biological reference points*

257 The F associated with the maximum sustainable yield (F_{MSY}) proxy used in these HCRs
258 was $F_{40\%}$, or the F expected to maintain 40% of the unfished SSB per recruit, which was
259 determined with spawner per recruit (SPR) analysis and is the current overfishing definition for
260 GOM cod, GB haddock and other groundfish. The F_{MSY} proxy $F_{40\%}$ will hereafter be referred to
261 as F_{MSY} . The SSB_{MSY} proxy was the long-term equilibrium SSB that corresponded to F_{MSY} (i.e.,
262 $SSBF_{40\%}$) and is the current BMSY proxy for GOM cod, GB haddock and other groundfish in the
263 northeast US. For the estimated and true (OM) SSB_{MSY} proxies, recruitment used in the
264 equilibrium calculation was the mean of the previous 20 years of estimated or true (OM)
265 recruitment values. These recruitment values were dynamic and changed with the addition of
266 years in the simulation. The SSB_{MSY} proxy $SSBF_{40\%}$ will hereafter be referred to as SSB_{MSY} . The
267 SSB threshold used in alternative HCRs was 50% SSB_{MSY} ; when SSB is estimated to be below
268 this level the stock is deemed overfished. True reference points were re-calculated every year
269 and are dynamic. A description of how to specify BRPs in the MSE framework can be found at
270 https://github.com/lkerr/groundfish-MSE/blob/master/documentation/MSE_ReferencePoints.pdf.

271 *2.6. Alternative harvest control rules*

272 Three HCRs were evaluated: ramp, F-step, and constrained ramp HCRs. All HCR
273 alternatives included a constraint on catch advice so that it would not be higher than the
274 estimated catch that corresponds to the estimated overfishing limit (OFL) from the stock
275 assessment (i.e., catch at F_{MSY}) to emulate the current in-season quota monitoring system.
276 However, in misspecified scenarios, the true catch could be larger than the catch that corresponds
277 to the true OFL in the OM when there was biased estimation from the stock assessment. All
278 these alternatives also had a minimum catch limit (i.e., the minimum bycatch of the last ten years
279 in the historical period), which would prevent F from declining to zero.
280

281 The ramp HCR is intended to promote rebuilding and optimal yield when the stock is not
282 overfished (Fig. 2a). When stock status was greater than 50% SSB_{MSY} (i.e., the ‘overfished’
283 threshold), the target F was 75% F_{MSY} . When stock status was perceived to be less than 50%
284 SSB_{MSY} , the target F linearly decreased towards zero as SSB decreased. This HCR is modeled

285 after the current groundfish harvest strategy employed by the NEFMC which allows for fishing
286 at 75% F_{MSY}, but requires a lower fishing mortality if the stock is overfished and fishing at 75%
287 of F_{MSY} does not achieve the mandated rebuilding requirements.

If the SSB decreased below the biomass threshold (50% SSB_{MSY}), the F-step HCR used a target F of 70% F_{MSY} , which has recently been applied to some New England groundfish, such as SNE/MA yellowtail flounder and GB winter flounder, as the $F_{rebuild}$ (Fig. 2b). If the SSB never decreased below the biomass threshold or increased to over SSB_{MSY} (rebuilt) after dropping below the biomass threshold, this HCR used a target F of 75% F_{MSY} . This HCR has been applied after National Standard Guidelines were amended in 2016 (NOAA, 2016). These revisions reduced the need to identify an incidental bycatch ABC for overfished stocks.

295 In some instances, groundfish catch advice has been characterized by large year-to-year
296 changes that have presented challenges to the fishery. The aim of the constrained ramp HCR was
297 to promote rebuilding, optimal yield, and to provide catch stability if stock biomass were to
298 substantially change from year to year (Fig. 2c). This differed from the ramp HCR in that there
299 was a constraint on variation in target catch from year to year, meaning that the current year's
300 catch limit would not change more than 20% from the previous year's catch limit. The threshold
301 of 20% change in catch was in the middle of the range of change in catch thresholds used in
302 HCRs in other fisheries (Apostolaki and Hillary, 2009; Dankel et al., 2016; IOTC, 2016). Further
303 description of HCRs in the MSE framework can be found at https://github.com/lkerr/groundfish-MSE/blob/master/documentation/MSEFramework_HCRs.pdf.
304

305 *2.7. Performance Metrics*

We evaluated tradeoffs among HCRs by comparing performance metrics. Performance metrics included stock, stock assessment, and management performance metrics. Stock performance metrics included OM catch stability, and SSB, F, catch, and recruitment trajectories. Catch stability was measured as interannual variation in catch (IAV; A'Mar et al. 2009). Stock assessment performance metrics included accuracy (measured as relative error; REE) and Mohn's Rho trajectories for SSB and F and accuracy of estimated reference points (F_{MSY} and SSB_{MSY}). REE for SSB and F was the relative error of the terminal estimated assessment values at each year. REE at each year was calculated as:

$$REE = \frac{SSB_{est} - SSB_{true}}{SSB_{true}} * 100$$

315 with SSB as an example, where $\square\square\square\square\square$ is estimated terminal SSB from the stock
 316 assessment, and $\square\square\square\square\square\square$ is true or simulated SSB corresponding to the terminal year of the
 317 stock assessment. Mohn's Rho values were calculated with a 7-year peel each year in the
 318 management procedure period and plotted over time. Mohn's Rho, which provides measures of
 319 retrospective inconsistencies, was calculated as:

$$\hat{p}_T = \frac{\sum_{n=1}^x SSB_{est=T-n,T-n} - SSB_{est=T-n,T}}{SSB_{est=T-n,T}}$$

321 with SSB as an example, where $\hat{\rho}_T$ is Mohn's Rho at year T, x is the desired number of
 322 assessments with different terminal years to be used in estimating Mohn's Rho (i.e. the number
 323 of "peels"), $\hat{SSB}_{y1, y2}$ is estimated SSB from the stock assessment at year y1 and year
 324 y2. Management performance metrics included true or OM stock status trajectories, the true

325 frequency of overfishing, and the true frequency of being overfished. Metrics were characterized
326 in the short-term (1-5 years), medium-term (6-10 years), and long-term (11-21 years). Code for
327 more complex stock assessment performance metrics can be found at
328 https://github.com/lkerr/groundfish-MSE/tree/master/functions/performance_metrics.

329
330

3. Results

331 *3.1. Performance with no misspecification*

332 When there was no misspecification, the ramp and F-step HCRs were most responsive in
333 adjusting catch advice to changes in SSB, whereas the constrained ramp HCR with limited scope
334 for change in year-to-year catch advice responded more slowly to increasing biomass and
335 consequently conserved a higher SSB regardless of the initial status of the stock (Fig. 4). The
336 constrained ramp HCR tended to produce the lowest catch and F in the short-term. The initial
337 status of the stock led to differences in HCR performance with no stock assessment
338 misspecification. For GOM cod, the ramp and constrained ramp HCRs resulted in less time
339 overfished, while the F-step HCR produced the highest catch and F in the short-term and more
340 time overfished (Figs. 3-5). However, in the medium- and long-term, the ramp HCR led to
341 higher catch and more time overfished. For GB haddock (i.e., not overfished), the constrained
342 ramp HCR produced the lowest catch in the short- and medium- term and resulted in a stock that
343 was always rebuilt (Figs. 3-5). As a result, the constrained ramp HCR produced the highest catch
344 in the long-term. The ramp and F-step HCRs resulted in the highest catch and F in the short-
345 term. In the long-term, the stock fluctuated around SSB_{MSY} under the ramp and F-step HCRs.

346 *3.2. Stock assessment performance with a misspecification*

347 Ignoring climate impacts in the stock assessment led to error and retrospective patterns in
348 the assessment (Figs. 6-8). The M and weight-at-age misspecifications resulted in an
349 overestimation of SSB, underestimation of F, and retrospective patterns. For GB haddock, the
350 large REE values in the beginning of the management procedure period (Fig. 6) may be due to a
351 large recruitment event in 2014. With a misspecification, the stock assessment model had
352 difficulty estimating the increase in biomass that results from that large recruitment event. The
353 stock assessment model assumed a weight-at-age that was higher than the true weight-at-age,
354 which in combination with a large recruitment event, resulted in a large overestimation of SSB
355 and underestimation of F. For both GOM cod and GB haddock, there was no error in F_{MSY} with
356 or without a misspecification. However, SSB_{MSY} was consistently underestimated with a
357 misspecification in the case of GOM cod. For GB haddock, SSB_{MSY} was overestimated in the
358 short-term with a small misspecification, and in the medium- and long-term, the constrained
359 ramp HCR resulted in overestimation of SSB_{MSY}. For GB haddock, estimated SSB_{MSY} was
360 higher in the medium- and long-term under the constrained ramp HCR than under the other
361 HCRs, because estimates of recruitment were higher under the constrained ramp HCR. Mean
362 estimated recruitment from the last 20 years was used in the SSB_{MSY} estimations. Assessment
363 performance interacted and was influenced by the performance of alternative HCRs. Under the
364 constrained ramp HCR with a misspecification, error in SSB tended to be the highest regardless
365 of the initial stock status. For GOM cod, the constrained ramp HCR resulted in the highest

366 absolute values of Mohn's Rho. Also, the ramp and F-step HCRs resulted in the highest absolute
367 values of Mohn's Rho for GB haddock. As the misspecification increased, stock assessment
368 performance changed (Figs. 6-8). For GOM cod, SSB_{MSY} was increasingly underestimated as the
369 magnitude of the M misspecification increased. For GB haddock with an increased
370 misspecification, SSB_{MSY} was underestimated under all HCRs. For GOM cod in the long-term,
371 SSB was underestimated, and error in F was near zero. Mohn's Rho values also increased.

372 *3.3. Overall stock and management performance with a misspecification*

373 Ignoring climate impacts in the stock assessment led to changes in performance of HCRs.
374 An overestimation of SSB and underestimation of SSB_{MSY} resulted in overly optimistic estimated
375 stock status. As a result, the prescribed F from the HCR was higher than it should have been,
376 which resulted in catch advice that was also higher. The catch advice was impacted by the
377 prescribed F as well as the estimates of abundance used in the projections, which were overly
378 optimistic. Through prescribed F and projections, the impact of stock assessment error increased
379 throughout the simulation loop. Consequently, the overly optimistic catch advice resulted in
380 more time overfished and overfishing and a lack of rebuilt status in the OM (Figs. 4 and 5). This
381 corresponded with lower SSB and higher Fs (Fig. 3).

382 As the misspecification increased, stocks experienced more time overfished and with
383 overfishing (Figs. 5). For GOM cod, SSB decreased and F increased with a greater
384 misspecification (Fig. 3). For GB haddock, with an increase in the misspecification, F increased
385 and SSB decreased even more with SSB hovering around the overfished threshold in the long-
386 term.

387 *3.4. Relative stock and management performance with a misspecification*

388 When a misspecification was introduced, relative performance of HCRs was similar
389 compared to the performance with no misspecification (Figs. 3 and 4). For example, regardless
390 of the initial stock status, the constrained ramp HCR tended to result in the highest SSB, which
391 also occurred with no misspecification. For GOM cod, the F-step HCR resulted in the highest
392 catch in the short-term and highest catch stability in the short- and medium-term with and
393 without a misspecification. The constrained ramp HCR resulted in the lowest F and catch in the
394 medium-term and the highest catch stability in the short-term, which occurred with no
395 misspecification as well. For GB haddock, the constrained ramp HCR resulted in the lowest F
396 and catch and highest catch stability in the short-term, which also occurred with no
397 misspecification. Also, the F-step and ramp HCRs produced the highest catch in the medium-
398 term, and the constrained ramp HCR resulted in the highest catch in the long-term with and
399 without a misspecification.

400 However, the error introduced by the misspecifications led to a few notable differences in
401 relative performance (Fig. 4). For GOM cod, the constrained ramp HCR resulted in the highest
402 catch in the long-term, which did not occur without a misspecification. Also, the ramp HCR
403 resulted in the highest catch in the medium-term.

404 The error also caused overfishing and overfished status for the ‘true’ stock, with the
405 frequencies differing among HCRs (Figs. 4 and 5). The constrained ramp HCR also resulted in
406 the least overfishing. For GB haddock, the constrained ramp HCR resulted in the most time
407 above SSB_{MSY} . The constrained ramp HCR also resulted in the most time overfishing in the
408 long-term but the least time overfishing in the short- and medium-term.

409 Relative performance of HCRs also changed slightly when the misspecification level
410 increased (Figs. 3-5). For GOM cod, F did not get as high under the constrained ramp HCR with
411 an increased misspecification. For GB haddock with an increased misspecification, the ramp
412 HCR led to more time overfished and overfishing in the short-term, and the F-step HCR led to
413 more time overfished in the long-term. Also, more overfishing occurred in the long-term with an
414 increased misspecification for GB haddock.

415 4. Discussion

416 Emulating the impacts of climate on stock assessment and fishery management can be
417 challenging for simulation testing, because the mechanisms and processes of climate impacts are
418 uncertain. However, the conditioning of our OMs and misspecification of estimation models
419 produced similar diagnostic problems as experienced for New England groundfish. For example,
420 the magnitude of retrospective inconsistencies was similar to those from recent stock
421 assessments (NEFSC, 2022). The simulations showed that ignoring climate impacts in stock
422 assessment models led to assessment error, that impacted management performance.

423 4.2. Management performance with a correctly specified stock assessment

424 With a correctly specified stock assessment (i.e. perfect knowledge of climate impacts on
425 stock dynamics), there were tradeoffs among management alternatives. The constrained ramp
426 HCR can help meet conservation objectives, because the constraint on year-to-year changes in
427 catch maintains greater SSB. The constrained ramp HCR can also help meet economic
428 objectives, because stability in catch can be beneficial for markets. However, the constrained
429 ramp HCR can also have negative impacts on catch in the short-term. If stock size increases
430 substantially, the constrained ramp HCR produces lower catch in the short-term but the highest
431 catch in the long-term relative to the other HCRs due to slow pace of increase in catch advice.
432 However, if the stock were to collapse, we could expect a different response. In this case, the
433 constrained ramp would result in a slow decrease in catch advice, which may not be
434 conservative. In cases where the stock size was above the overfished threshold, the ramp and F-
435 step HCRs typically performed similarly.

436 For GOM cod (i.e., the overfished stock), responsive HCRs, such as the ramp HCR and
437 the constrained ramp HCR, were able to increase stock size above the overfished threshold at the
438 fastest rate. Responsive HCRs, in which F changes as a function of biomass, can mitigate
439 negative impacts of climate change (Kritzer et al., 2019). Responsive HCRs are necessary to
440 effectively manage highly variable fisheries (Plagányi et al., 2018). When environmental effects
441 are negligible or beneficial, a fixed F HCR can be effective (Kritzer et al., 2019). However, the
442 environmental effects simulated in the GOM cod OM in this study reduced productivity and
443 were not negligible.

444 4.3. *Consequences of ignoring climate impacts on management performance*

445 Comparing correctly specified scenarios to those with stock assessment misspecifications
446 allowed us to understand how unaccounted changes in population dynamics and resulting stock
447 assessment bias can impact HCR performance. Natural mortality and weight-at-age
448 misspecifications resulted in stock assessment error and retrospective patterns. Stock size was
449 overestimated, and F was underestimated in both cases, which led to overly optimistic stock
450 status estimates. With these misspecifications, simulated Mohn's Rho values were as large as
451 they are for some of the current groundfish assessments (NEFSC, 2022). In the 2019
452 assessments, GOM cod Mohn's rho was 0.52 for SSB and -0.29 for F under the M=0.2
453 assumption and 0.29 for SSB and -0.16 for F under the increasing M assumption. Georges Bank
454 haddock Mohn's Rho was 0.69 for SSB and -0.44 for F (NEFSC, 2022). Interestingly, the
455 Mohn's Rho values became larger in absolute value as the M misspecification increased but not
456 as the weight-at-age misspecification increased. The degree of bias in the stock assessment
457 performance and retrospective inconsistencies varied among HCRs and misspecifications and did
458 not always coincide in direction. This is similar to other findings that the direction and
459 magnitude of retrospective patterns are not related to true bias (Hurtado-Ferro et al., 2015).
460 Additionally, Kerr et al. (2020) found that relative errors in SSB were sometimes in the opposite
461 direction of the retrospective bias (i.e. relative error was negative while retrospective bias was
462 positive). The difference in error and retrospective patterns among HCRs suggests that error is
463 not only dependent upon whether the stock assessment is correctly specified but also the trends
464 in stock dynamics. Indeed, a lack of retrospective patterns does not mean that there is no data or
465 model inconsistency (Legault, 2009).

466 Although HCRs affect stock and management performance, stock assessment
467 misspecifications can alter stock assessment performance, which also impacts stock and
468 management performance. Relative HCR performance was generally similar with and without a
469 misspecification. However, there were a few differences. For example, the constrained ramp
470 HCR met the fishery objective of higher catch even more than the other HCRs in the long-term
471 with a misspecification than without a misspecification for GOM cod. Nevertheless, the
472 constrained ramp HCR consistently conserved SSB regardless of the initial stock status and stock
473 assessment specifications. The F-step HCR also met fishery objectives more than the other HCRs
474 in the short- and medium-term regardless of stock assessment specifications.

475 Although there were some relative differences in HCR performance, HCRs did not
476 compensate for the impact of a stock assessment misspecification. The demand for fisheries
477 management to implement a precautionary approach has led to the development of HCRs
478 (Kvamsdal et al., 2016), and HCRs are supposed to allow for fisheries management to be
479 effective in the face of uncertainty (Walters and Hilborn, 1976). However, although the
480 precautionary target (e.g., 75%F_{MSY}) may help to mitigate imprecision in stock assessment, these
481 HCRs were not robust to the stock assessment bias created by climate impacts. In these
482 simulations, when the stationary assumptions were violated, fisheries management was
483 negatively affected. Stock assessment misspecifications had a larger impact on stock status in the
484 long-term than HCRs. The impact of stock assessment error influences the catch advice through

485 an overly optimistic F prescribed from the HCR and overly optimistic abundance estimates used
486 in the projections. At the end of the management procedure period with a misspecification, SSB
487 was below the overfished threshold and undergoing overfishing for GOM cod and below the
488 rebuilt threshold or fluctuating around the overfished threshold for GB haddock regardless of the
489 control rule. However, even with no misspecification for GOM cod, the stock was under the
490 overfished threshold in the long-term, and under the F -step HCR, the stock did not increase over
491 the overfished threshold at all during the management procedure period. For GOM cod, the
492 increase in M has decreased productivity for the stock, which no longer has the capacity to
493 rebuild, even when near perfect knowledge of stock dynamics is provided to the stock
494 assessment.

495 *4.4. Future studies*

496 Our results suggest that correctly specifying stock assessments should be a priority,
497 especially for stock assessments that exhibit retrospective patterns. However, it is difficult to
498 identify the source of retrospective patterns, although determining the timing of a
499 misspecification that led to retrospective patterns may be possible (Legault, 2009, Kerr et al.
500 2022). Findings from research that analyzes the relationship between life history parameters and
501 environmental conditions would be helpful for parameterizing stock assessment models.
502 Population dynamics of the focus stock unit should be understood as well as possible so the stock
503 assessment can be updated with assumptions that are more likely to be correct, resulting in a
504 more accurate stock status determination. Waters in the GOM are continuing to warm (NOAA
505 Fisheries, 2021) with impacts on aspects of groundfish population dynamics; therefore, it is
506 important to continue groundfish research. Previous and ongoing research have focused on
507 groundfish population dynamics. For example, Runge et al. (2010) found that forecasts of
508 environmental conditions for recruitment for GOM cod can be developed with coupled physical-
509 biological models. Buckley et al. (2004) found that Atlantic cod and haddock growth increased
510 with temperature until 7°C and then decreased. However, there are still knowledge gaps in our
511 understanding of the impacts of environmental factors, aside from temperature, on New England
512 groundfish (Klein et al., 2017). As our understanding of groundfish population dynamics
513 improves, stock assessment parameters may need to be updated and other stock assessment
514 models may need to be considered. In a changing climate, time-varying parameters are often
515 needed. Our results also suggest that the HCRs evaluated in this study are not robust to stock
516 assessment model misspecifications, and there is a need for identification of HCRs that are
517 robust to stock assessment model misspecifications that drive retrospective patterns.

518 This MSE framework can also be used for other groundfish fisheries. The simulation
519 framework used in this study is flexible with the capacity to customize OMs for specific
520 groundfish stocks and evaluate relative performance of all aspects of the management procedure:
521 consideration of alternative monitoring systems (e.g., Kerr et al., 2020), the ability to integrate
522 new stock assessment methods, and alternative HCRs.

523 *4.5. Limitations*

524 Although our simulations represent New England groundfish dynamics and issues with
525 stock, stock assessment, and management performance, there are some limitations that should be
526 noted. Other factors may be causing retrospective patterns that were not explored in this study.
527 Also, BRPs can impact how HCRs perform. In this study, BRPs were calculated to be consistent
528 with the current groundfish stock assessments (NEFSC, 2021; 2022). GOM cod BRPs were
529 calculated with M assumed at 0.2. Even though M increased in the GOM cod OM, both true and
530 estimated BRPs were calculated/estimated with a lower M . However, because M remains at 0.4,
531 the GOM cod stock cannot rebuild even with a correctly specified stock assessment. This
532 fundamental shift in resource productivity due to climate caused the stock to no longer have the
533 capacity to rebuild, even with a precautionary approach (NRC, 2016). Additionally, simulated
534 recruitment was similar among HCRs for GB haddock. Recruitment was drawn from empirical
535 distribution functions, so there was no assumed relationship between recruitment and SSB. By
536 simulating no SRR, the stock would be less impacted by HCRs than with a SRR. However, a
537 traditional stock-recruitment model does not explain GB haddock recruitment, which is impacted
538 by other factors other than SSB. Large GB haddock recruitment events could be explained by
539 autumn phytoplankton blooms the year prior to spawning (Leaf and Friedland, 2014; Friedland et
540 al., 2015). Forecasts of autumn blooms are not available, so a SRR that includes autumn blooms
541 could not be used in the simulations in the management procedure period. However, recruitment
542 was related to SSB and temperature in the GOM cod simulations.

543 There are also additional HCR forms and adjustments to the features of the HCRs
544 evaluated in this study that could be worthwhile exploring in the future based on the desired
545 outcomes of groundfish fishery management (i.e., management objectives). For example, a
546 constant F HCR was not explored in this analysis. Kerr et al. (2020) did simulate a constant F
547 HCR in the context of catch misreporting scenarios that could be informative for decision
548 making regarding this HCR's performance. Another limitation of this analysis was that technical
549 interactions were not simulated. For some stocks, the groundfish fishery harvests considerably
550 less than the annual catch limit (ACL) due to technical interactions of the mixed-stock fishery
551 (i.e. choke species issues; Cadrin, 2016). However, if technical interactions were included in the
552 haddock scenarios, HCR performance would be difficult to evaluate if the catch was a small
553 percentage of the ACL. Additionally, the constrained ramp HCR may perform differently if the
554 stock was collapsing. Since the constrained ramp HCR has a 20% limit in change in catch, the
555 catch advice from this HCR could be aggressive if the stock were rapidly and consistently
556 declining. The simulations in this study do not include a stock where the biomass is rapidly and
557 consistently declining in the management procedure period. Also, there is no depensation or
558 strong autocorrelative recruitment simulated, which may result in a collapsed stock.

559 In addition, the OM s are flexible and can be further tuned to represent additional
560 complexity and variability in groundfish dynamics and operation of groundfish fisheries. For
561 example, declining weight-at-age and density-dependent growth are evident for GB haddock
562 (NEFSC, 2022; Wang et al., 2021), but this was not included during the management procedure
563 period for haddock scenarios. Declining weight-at-age was only included during the historical
564 period. While cod M was constant at 0.4 in the management procedure period, recruitment was
565 negatively impacted by increasing temperatures. However, we can expect similar climate

566 impacts on natural mortality of cod and haddock size in the future. The warming and predation
567 trends in the region are expected to continue. Cod natural mortality and haddock size are
568 positively and negatively related to temperature, respectively (Pershing et al. 2015; Brodziak and
569 Link 2008). Seal predation is also expected to continue, because seal populations are being
570 maintained by the marine mammal protection act. Given these relationships, we could expect cod
571 natural mortality to continue to increase and haddock size to continue to decrease. As a result,
572 the management impacts measured in the current study could likely be a conservative assessment
573 of the long-term management performance. However, since species will occupy habitats that
574 maximize their fitness, cod and haddock spatial distributions are expected to change. Cod natural
575 mortality cannot increase infinitely, and haddock size cannot decrease to zero. Indeed, GOM cod
576 have shifted to greater depths but no significant change in haddock distribution off the Northeast
577 shelf has been observed (Nye et al. 2009). However, haddock size is not only impacted by
578 temperature but also density-dependent mechanisms (Brodziak and Link 2008). Nevertheless,
579 including climate impacts in stock assessments will be increasingly important.

580 Additionally, unbiased implementation of HCRs was assumed (i.e., no bias in catch
581 observations but some random error), however there is some evidence of an observer effect in
582 catch reporting in the groundfish fishery that could introduce bias (Demarest, 2019; McNamee et
583 al., 2019; Nitschke, 2019). Also, catchability may be changing due to changing species
584 distributions, which may move out of current survey areas. In this study, catchability was
585 assumed constant in the OMs and stock assessment models. However, ASAP has the ability to
586 assume a varying catchability.

587 *4.6. Management implications*

588 Poor stock assessment performance caused by ignoring climate impacts can have
589 negative impacts on management. Tradeoffs among HCRs exist, but addressing stock assessment
590 bias may be the more immediate and important task compared to identifying an optimal HCR in
591 meeting management objectives. If stock assessment models with misspecifications that have a
592 large impact are not able to be corrected or corrected in a timely manner, there is likely to be
593 adverse impacts on management. This study suggests that no commonly applied HCRs, even
594 precautionary HCRs, perform well with large misspecifications. If significant retrospective
595 patterns exist, the stock status determination is likely to be biased. The resulting F from the HCR
596 will then be inappropriate. However, certain HCRs can help mitigate some of the impacts of bias
597 and help to implement a precautionary approach. However, typical HCRs employed for
598 groundfish stock are not sufficiently robust to overcome the level of bias in many of the current
599 stock assessments. Large retrospective patterns can lead to inappropriate fishery management,
600 possibly causing a depleted stock even though stock assessments suggest that the stock is above
601 target levels (Legault, 2009). Legault (2009) recommends that if strong retrospective patterns are
602 present, the stock assessment model as the basis for management advice should be rejected. In
603 this case, an index-based method may perform better. Additionally, future research could
604 identify an HCR that is robust to stock assessment misspecifications. In the short term,
605 improvements in the accuracy of stock assessments and stock status determinations will provide
606 the greatest scope for improvement in New England groundfish management..

607 **Acknowledgements**

608 We thank the Groundfish Plan Development Team, Groundfish Advisory Panel,
609 Recreational Advisory Panel, Groundfish Committee, Scientific and Statistical Committee, MSE
610 experts at the Northeast Fisheries Science Center, and the New England Fisheries Management
611 Council for providing feedback regarding the plan for HCR testing, particularly Jamie Cournane,
612 Robin Frede, and Paul Nitschke. Funding: the New England Fishery Management Council and
613 the NOAA Coastal and Ocean Climate Applications Program. We also thank Andy Pershing,
614 Ashley Weston, Gavin Fay, Jonathan Cummings, Sarah Gaichas, Min-Yang Lee, and Anna
615 Birkenbach for development of the MSE modeling architecture, which was supported by the
616 NOAA COCA program and the NOAA SK program.

617 **References**

618 A'mar, Z. T., Punt, A. E., Dorn, M. W., 2009. The impact of regime shifts on the performance of
619 management strategies for the Gulf of Alaska walleye pollock (*Theragra chalcogramma*)
620 fishery. Canadian Journal of Fisheries and Aquatic Sciences, 66(12), 2222-2242.

621 Apostolaki, P., Hillary, R., 2009. Harvest control rules in the context of fishery-independent
622 management of fish stocks. Aquatic Living Resources, 22(2), 217-224.
623 <https://doi.org/10.1051/alar/2009022>

624 Brodziak, J., Cadrin, S. X., Legault, C. M., Murawski, S. A., 2008. Goals and strategies for
625 rebuilding New England groundfish stocks. Fisheries Research, 94(3), 355-366.
626 <https://doi.org/10.1016/j.fishres.2008.03.008>

627 Brodziak, J., Link, J., 2008. The incredible shrinking Georges Bank haddock
628 (*Melanogrammus aeglefinus*). In 24th Wakefield Symposium Resiliency of Gadid Stocks
629 to Fishing and Climate Change, AK-SG-08-01, pp. 141-160.
630 <https://doi.org/10.4027/rgsfcc.2008.08>

631 Brooks, E. N., Legault, C. M., 2016. Retrospective forecasting—evaluating performance of
632 stock projections for New England groundfish stocks. Canadian Journal of Fisheries and
633 Aquatic Sciences, 73(6), 935-950. <https://doi.org/10.1139/cjfas-2015-0163>

634 Buckley, L. J., Caldarone, E. M., Lough, R.G., 2004. Optimum temperature and
635 food-limited growth of larval Atlantic cod (*Gadus morhua*) and haddock
636 (*Melanogrammus aeglefinus*) on Georges Bank. Fisheries Oceanography, 13(2), 134-140.
637 <https://doi.org/10.1046/j.1365-2419.2003.00278.x>

638 Cadrin, S.X., 2016. Management Strategies for Mixed-Species Commercial, Recreational, 01
639 and Subsistence Fisheries, in: Quinn II, T.J., Armstrong, J.L., Baker, M., Heifetz, J.D.,
640 Witherell, D. (Eds.), Assessing and Managing Data-Limited Fish Stocks. Alaska Sea
641 Grant, University of Alaska Fairbanks. <http://doi.org/10.4027/amdlfs.2016.01>

642 D'Abramo, L. R., 1979. Dietary fatty acid and temperature effects on the productivity of the
643 cladoceran, *Moina macrocopa*. Biological Bulletin, 157, 234–248.
644 <https://doi.org/10.2307/1541051>

645 Dankel, D. J., Vølstad, J. H., Aanes, S., 2016. Communicating uncertainty in quota advice:
646 A case for confidence interval harvest control rules (CI-HCRs) for fisheries. Canadian
647 Journal of Fisheries and Aquatic Sciences, 73(2), 309-317.
648 <https://doi.org/10.1139/cjfas-2015-0078>

649 Demarest, C., 2019. Evaluating the Observer Effect for the Northeast U.S. Groundfish Fishery.
650 Groundfish Plan Development Team Document. 27 pp.

651 Deroba, J.J., 2014. Evaluating the consequences of adjusting fish stock assessment estimates of

653 biomass for retrospective patterns using Mohn's Rho. North American Journal of
654 Fisheries Management, 34, 380-390. <https://doi.org/10.1080/02755947.2014.882452>

655 Dichmont, C. M., Deng, A., Punt, A. E., Ellis, N., Venables, W. N., Kompas, T., Ye, Y., Zhou,
656 S.,

657 Bishop, J., 2008. Beyond biological performance measures in management strategy
658 evaluation: bringing in economics and the effects of trawling on the benthos. Fisheries
659 Research, 94(3), 238-250. <https://doi.org/10.1016/j.fishres.2008.05.007>

660 Drinkwater, K. F., Beaugrand, G., Kaeriyama, M., Kim, S., Ottersen, G., Perry, R. I., Pörtner,
661 H.O., Polovina, J.J., Takasuka, A., 2009. On the processes linking climate to ecosystem
662 changes. Journal of Marine Systems, 79(3-4), 374-388.
<https://doi.org/10.1016/j.jmarsys.2008.12.014>

663 Indian Ocean Tuna Commission (IOTC), 2016. Resolution 16/02 on
664 harvest control rules for skipjack tuna in the IOTC area of competence. Food and
665 Agriculture Organization of the United Nations. 6 pp.

666 Fogarty, M., Incze, L., Hayhoe, K., Mountain, D., Manning, J., 2008. Potential climate
667 change impacts on Atlantic cod (*Gadus morhua*) off the northeastern USA. Mitigation
668 and Adaptation Strategies for Global Change, 13(5), 453-466.
<https://doi.org/10.1007/s11027-007-9131-4>

669 Friedland, K. D., Leaf, R. T., Kristiansen, T., Large, S. I., 2015. Layered effects of parental
670 condition and larval survival on the recruitment of neighboring haddock stocks.
671 Canadian Journal of Fisheries and Aquatic Sciences, 72(11), 1672-1681.
<https://doi.org/10.1139/cjfas-2015-0084>

672 Hare, J.A., Morrison, W.E., Nelson, M.W., Stachura, M.M., Teeters, E.J., Griffis, R.B.,
673 Alexander, M.A., Scott, J.D., Alade, L., Bell, R.J., Chute, A.S., Curti, K.L., Curtis, T.H.,
674 Kircheis, D., Kocik, J.F., Lucey, S.M., McCandless, C.T., Milke, L.M., Richardson, D.E.,
675 Robillard, E., Walsh, H.J., McManus, C., Marancik, K.E., Griswold, C.A., 2016. A
676 vulnerability assessment of fish and invertebrates to climate change on the Northeast US
677 Continental Shelf. PloS One, 11, e0146756. <https://doi.org/10.1371/journal.pone.0146756>

678 Hamazaki, T., Zheng, J., 2012. Norton sound red king crab stock assessment for the fishing
679 year 2012/13. Stock Assessment and Fishery Evaluation Report for the King and Tanner
680 Crab Fisheries of the Bering Sea and Aleutian Islands Regions. North
681 Pacific Fishery Management Council, Anchorage, AK, USA. 108 pp.

682 [dataset] Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T.,
683 Zhang, H.M., 2020. Improvements of the Daily Optimum Interpolation Sea Surface
684 Temperature (DOISST) Version 2.1. Journal of Climate, 34, 2923-2939.
<https://doi.org/10.1175/JCLI-D-20-0166.1>

685 Hurtado-Ferro, F., Szuwalski, C. S., Valero, J. L., Anderson, S. C., Cunningham, C. J., Johnson,
686 K. F., Licandeo, R., McGilliard, C.R., Monnahan, C.C., Muradian, M.L., Ono, K.,
687 Vert-Pre, K.A., Whitten, A.R., Punt, A. E., 2015. Looking in the rear-view mirror: bias
688 and retrospective patterns in integrated, age-structured stock assessment models. ICES
689 Journal of Marine Science, 72(1), 99-110. <https://doi.org/10.1093/icesjms/fsu198>

690 International Council for Exploration of the Seas (ICES), 2020. Workshop on Catch Forecast
691 from Biased Assessments (WKFORBIAS; outputs from 2019 meeting). ICES Scientific
692 Reports. 2:28. 38 pp. <https://doi.org/10.17895/ices.pub.5997>

693 Kavanaugh, M. T., Rheuban, J. E., Luis, K. M. A., Doney, S. C., 2017. Thirty-three years of
694 ocean benthic warming along the U.S. northeast continental shelf and slope: Patterns,
695

699 drivers, and ecological consequences. *Journal of Geophysical Research*, 122, 9399–9414.
700 <https://doi.org/10.1002/2017JC012953>

701 Kerr, L.A., Barajas, M., Wiedenmann, J., 2022. Coherence and potential drivers of stock
702 assessment uncertainty in Northeast US groundfish stocks. *ICES Journal of Marine
703 Science*, fsac140. <https://doi.org/10.1093/icesjms/fsac140>

704 Kerr, L.A., Weston, A.E., Mazur, M.D., Cadrin, S.X., 2020. Evaluating the impact of
705 inaccurate catch information on New England groundfish management. Technical report.
706 62 pp.

707 Klein, E. S., Smith, S. L., Kritzer, J. P., 2017. Effects of climate change on four New England
708 groundfish species. *Reviews in Fish Biology and Fisheries*, 27(2), 317-338.
709 <https://doi.org/10.1007/s11160-016-9444-z>

710 Kritzer, J. P., Costello, C., Mangin, T., Smith, S. L., 2019. Responsive harvest control rules
711 provide inherent resilience to adverse effects of climate change and scientific uncertainty.
712 *ICES Journal of Marine Science*, 76(6), 1424-1435.
713 <https://doi.org/10.1093/icesjms/fsz038>

714 Kvamsdal, S. F., Eide, A., Ekerhovd, N. A., Enberg, K., Gudmundsdottir, A., Hoel, A. H., Mills,
715 K.E., Mueter, F.J., Ravn-Jonsen, L., Sandal, L.K., Stiansen, J.E., Vestergaard, N., 2016.
716 Harvest control rules in modern fisheries management. *Elementa: Science of the
717 Anthropocene*, 4: 000114. <https://doi.org/10.12952/journal.elementa.000114>

718 Leaf, R. T., Friedland, K. D., 2014. Autumn bloom phenology and magnitude influence
719 haddock recruitment on Georges Bank. *ICES Journal of Marine Science*, 71(8),
720 2017-2025. <https://doi.org/10.1093/icesjms/fsu076>

721 Legault, C.M.. 2009. Report of the Retrospective Working Group, January 14-16, 2008,
722 Woods Hole, Massachusetts. US Department of Commerce, Northeast Fisheries Science
723 Center Reference Document. 09-01. 30 pp.

724 Legault, C. M., Palmer, M. C., 2016. In what direction should the fishing mortality target
725 change when natural mortality increases within an assessment? *Canadian Journal of
726 Fisheries and Aquatic Sciences*, 73(3), 349-357. <https://doi.org/10.1139/cjfas-2015-0232>

727 Legault, C. M., Restrepo, V. R., 1998. A Flexible Forward Age-Structured Assessment
728 Program. *ICCAT Working Document Scrs/98/58*, January 1999. 15 pp.

729 Lorenzen, K., 2022. Size- and age-dependent natural mortality in fish populations: Biology,
730 models, implications, and a generalized length-inverse mortality paradigm. *Fisheries
731 Research*, 255, 106454. <https://doi.org/10.1016/j.fishres.2022.106454>

732 McNamee, J., Holland, D., Kerr, L., Uchida, H., 2019. Peer Review Report for the Groundfish
733 Plan Development Team Analyses of Groundfish Monitoring. New England Fishery
734 Management Council, Providence, Rhode Island. 24 pp.

735 Mid Atlantic Fishery Management Council (MAFMC), 2020. Mid-Atlantic Fishery Management
736 Council Scientific and Statistical Committee OFL CV guidance document. MAFMC. 11
737 pp.

738 Mohn, R., 1999. The retrospective problem in sequential population analysis: An investigation
739 using cod fishery and simulated data. *ICES Journal of Marine Science*, 56(4), 473-488.
740 <https://doi.org/10.1006/jmsc.1999.0481>

741 New England Fisheries Management Council (NEFMC), 2009. Final Amendment 16 to the
742 Northeast Multispecies Fishery Management Plan including a Environmental Impact

743 Statement and regulatory flexibility analysis. NEFMC. 931 pp. Northeast Fisheries Science
744 Center (NEFSC), 2020. 2020 Management Track Peer Review
745 Panel Report. NEFSC. 32 pp.

746 Northeast Fisheries Science Center (NEFSC), 2021. Gulf of Maine Atlantic Cod 2021 Update
747 Assessment Report. NEFSC Ref. Doc. 10 pp.

748 Northeast Fisheries Science Center (NEFSC), 2022. Operational Assessment of 14 Northeast
749 Groundfish Stocks, Updated Through 2018. NEFSC Ref. Doc. 217 pp.

750 Nitschke, P., 2019. Comparison of sector vessel landings effort ratios between observed and
751 unobserved trips by gear and broad stock area. Groundfish Plan Development Team
752 Document. 10 pp.

753 National Oceanographic and Atmospheric Administration (NOAA) Fisheries, 2016.
754 Magnuson-Stevens Act Provisions; National Standard Guidelines. Federal Register,
755 81(201), 71858-71904.

756 National Oceanographic and Atmospheric Administration (NOAA) Fisheries, 2021. 2021 State
757 of the Ecosystem New England. NOAA. 43 pp.

758 National Research Council (NRC), 2016. Evaluating the Effectiveness of Fish Stock Rebuilding
759 Plans in the United States. National Academies Press, Washington, DC.
760 <https://doi.org/10.17226/18488>

761 Nye, J.A., Link, J.S., Hare, J.A., Overholtz, W.J. 2009. Changing spatial distribution of fish
762 stocks in relation to climate and population size on the Northeast United States
763 continental shelf. *Marine Ecology Progress Series*, 393, 111-129.

764 Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., Nye,
765 J.A., Record, N.R., Scannell, H.A., Scott, J.D., Sherwood, G.D., Thomas, A. C., 2015.
766 Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod
767 fishery. *Science*, 350(6262), 809–812. <https://doi.org/10.1126/science.aac9819>

768 Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., Nye,
769 J.A., Record, N.R., Scannell, H.A., Scott, J.D., Sherwood, G.D., Thomas, A. C., 2016.
770 Response to Comments on “Slow adaptation in the face of rapid warming leads to
771 collapse of the Gulf of Maine cod fishery”. *Science*, 352(6284), 423-423.
772 <https://doi.org/10.1126/science.aae0463>

773 Plagányi, É., Deng, R. A., Campbell, R. A., Dennis, D., Hutton, T., Haywood, M., Tonks, M.,
774 2018. Evaluating an empirical harvest control rule for the Torres Strait *Panulirus*
775 *ornatus* tropical rock lobster fishery. *Bulletin of Marine Science*, 94(3), 1095-1120.
776 <https://doi.org/10.5343/bms.2017.1101>

777 Pörtner, H. O., Peck, M. A., 2010. Climate change effects on fishes and fisheries: towards a
778 cause-and-effect understanding. *Journal of fish biology*, 77(8), 1745-1779.
779 <https://doi.org/10.1111/j.1095-8649.2010.02783.x>

780 Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A., Haddon, M., 2016.
781 Management strategy evaluation: best practices. *Fish and Fisheries*, 17(2), 303-334.
782 <https://doi.org/10.1111/faf.12104>

783 Runge, J. A., Kovach, A. I., Churchill, J. H., Kerr, L. A., Morrison, J. R., Beardsley, R. C.,

784 Berlinsky, D.L., Chen, C., Cadrian, S.X., Davis, C.S., Ford, K.H., Grabowski, J.H.,
785 Howell, W.H., Ji, R., Jones, R.J., Pershing, A.J., Record, N.R., Thomas, A.C., Sherwood,
786 G.D., Tallack, S.M.L., Townsend, D. W., 2010. Understanding climate impacts on
787 recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: Integration of
788 observations and modeling. *Progress in Oceanography*, 87(1-4), 251-263.
789 <https://doi.org/10.1016/j.pocean.2010.09.016>

790 Skern-Mauritzen, M., Ottersen, G., Handegard, N. O., Huse, G., Dingsør, G. E., Stenseth, N. C.,
791 Kjesbu, O. S., 2016. Ecosystem processes are rarely included in tactical fisheries
792 management. *Fish and Fisheries*, 17(1), 165-175. <https://doi.org/10.1111/faf.12111>

793 Vetter, E. F., 1988. Estimation of natural mortality in fish stocks: a review. *Fishery Bulletin*,
794 86(1), 25-43.

795 Walters, C. J., Hilborn, R. 1976. Adaptive control of fishing systems. *Journal of the*
796 *Fisheries Board of Canada*, 33(1), 145-159. <https://doi.org/10.1139/f76-017>

797 Wang, Y., Gharouni, A., Friedland, K. D., Melrose, D. C., 2021. Effect of environmental
798 factors and density-dependence on somatic growth of Eastern Georges Bank haddock
799 (*Melanogrammus aeglefinus*). *Fisheries Research*, 240, 105954.
800 <https://doi.org/10.1016/j.fishres.2021.105954>

801 Wiedenmann, J., Jensen, O. P., 2018. Uncertainty in stock assessment estimates for New
802 England groundfish and its impact on achieving target harvest rates. *Canadian Journal of*
803 *Fisheries and Aquatic Sciences*, 75(3), 342-356. <https://doi.org/10.1139/cjfas-2016-0484>

804 Whiteley, N. M., Robertson, R. F., Meagor, J., El Haj, A. J., Taylor, E. W., 2001. Protein
805 synthesis and specific dynamic action in crustaceans: effects of temperature. *Comparative*
806 *Biochemistry and Physiology Part A*, 128, 595–606.
807 [https://doi.org/10.1016/s1095-6433\(00\)00337-8](https://doi.org/10.1016/s1095-6433(00)00337-8)

808

809 **Figure Captions**

810 **Figure 1. The management strategy evaluation framework used in this project.**

811 **Figure 2. Alternative harvest control rules (HCRs): a) ramp, b) F-step, and c) constrained**
812 **ramp harvest control rules. The constrained ramp HCR (c) is the ramp HCR (a) but with a**
813 **20% constraint on change in catch from year to year.**

814 **Figure 3. True operating model median spawning stock biomass (SSB), fishing mortality**
815 **(F), and catch with 95% confidence intervals for a) Gulf of Maine cod and b) Georges Bank**
816 **haddock with no stock assessment model misspecification (none), a small misspecification**
817 **(intermediate), and a large misspecification (high) from 2019 to 2040.**

818 *Color should be used for Figure 3 in print.*

819 **Figure 4. Harvest control rule (HCR) performance for a) Gulf of Maine cod and b) Georges**
820 **Bank haddock with no stock assessment model misspecification (none), a small**
821 **misspecification (intermediate), and a large misspecification (large) in the short- (1-5**
822 **years), and long-term (11-21 years). Some metrics (SSB, catch stability and catch) are**

823 **standardized to the maximum value for each metric attained by the different HCRs by**
824 **dividing the values by the maximum value across HCRs. Frequency not overfished and**
825 **frequency not overfishing are automatically on a scale from 0 to 1. Metrics are also equally**
826 **weighted. Spawning stock biomass (SSB) and catch are median SSB and catch for the time**
827 **period. Black, orange, and blue lines and points represent the ramp, F-step, and**
828 **constrained ramp harvest control rules, respectively. Sometimes the black and orange lines**
829 **do not appear due to overlap.**

830 *Color should be used for Figure 4 in print.*

831 **Figure 5. True stock status trajectories (ratio of fishing mortality to the fishing mortality**
832 **reference point (F/F_{MSY}) versus ratio of spawning stock biomass to the spawning stock**
833 **biomass reference point (SSB/SSB_{MSY})) for a) Gulf of Maine cod with no stock assessment**
834 **model misspecification (none), natural mortality incorrectly assumed constant at 0.3**
835 **(intermediate), and natural mortality incorrectly assumed constant at 0.2 (high) and b)**
836 **Georges Bank haddock with no stock assessment model misspecification (none), a small**
837 **weight-at-age stock assessment misspecification (intermediate), and a large weight-at-age**
838 **stock assessment misspecification (high). The dashed line represents the overfished**
839 **threshold. Black, orange, and blue lines and points represent the ramp, F-step, and**
840 **constrained ramp harvest control rules, respectively. In the red quadrant, the stock is not**
841 **rebuilt and undergoing overfishing. In the lower left yellow quadrant, the stock is not**
842 **rebuilt. In the upper right yellow quadrant, overfishing is occurring. In the green**
843 **quadrant, the stock is in good status.**

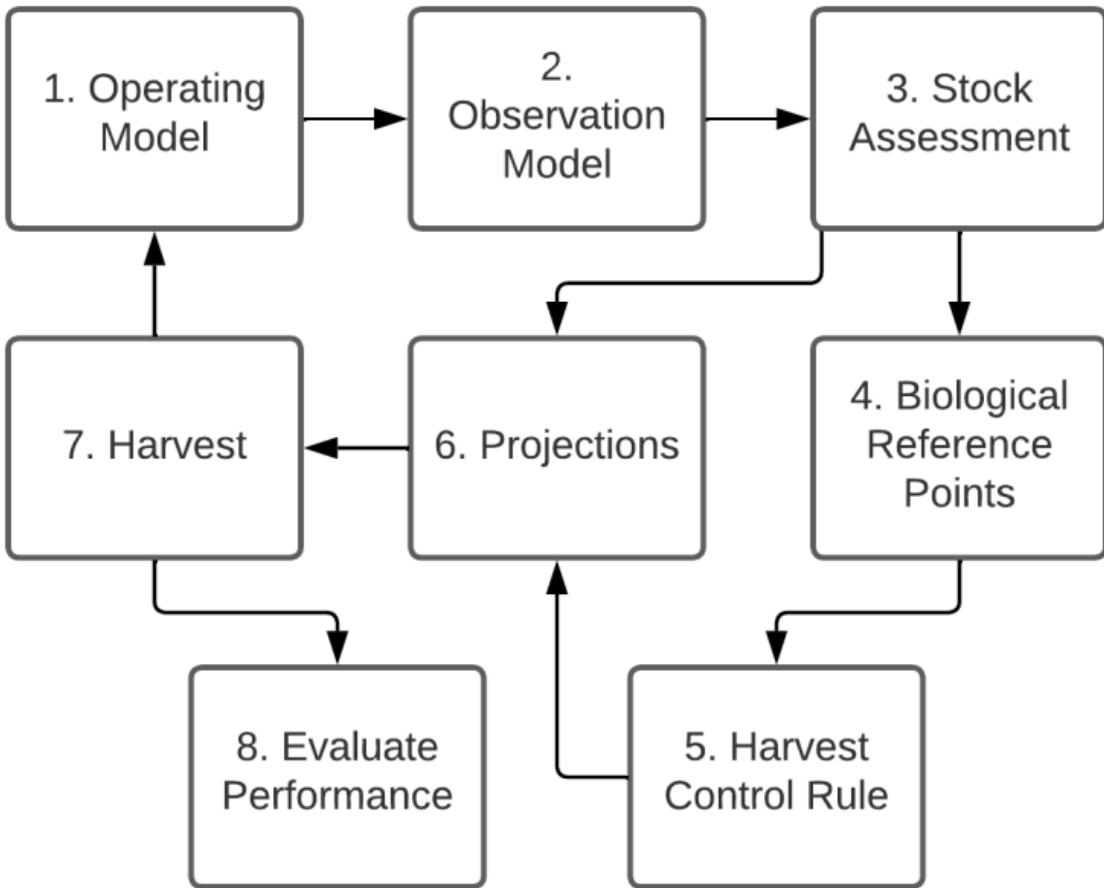
844 *Color should be used for Figure 5 in print.*

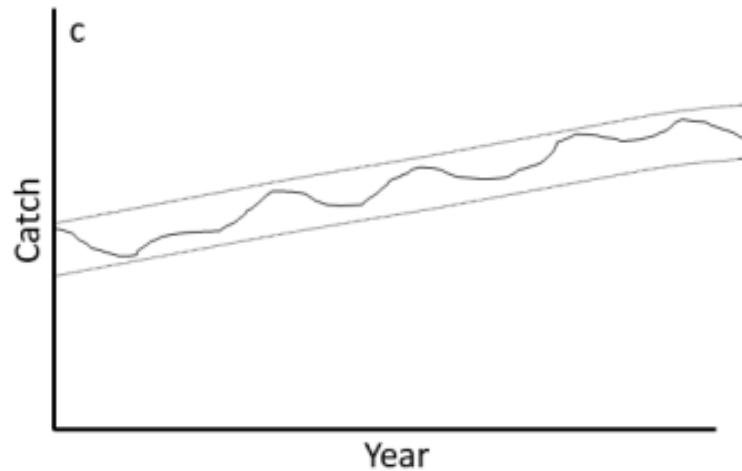
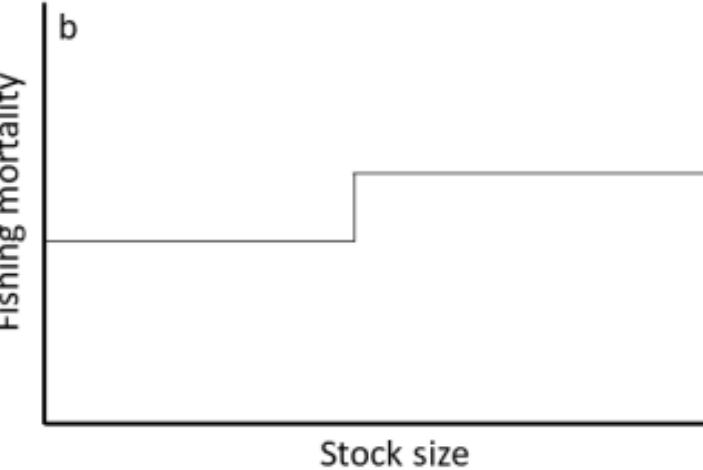
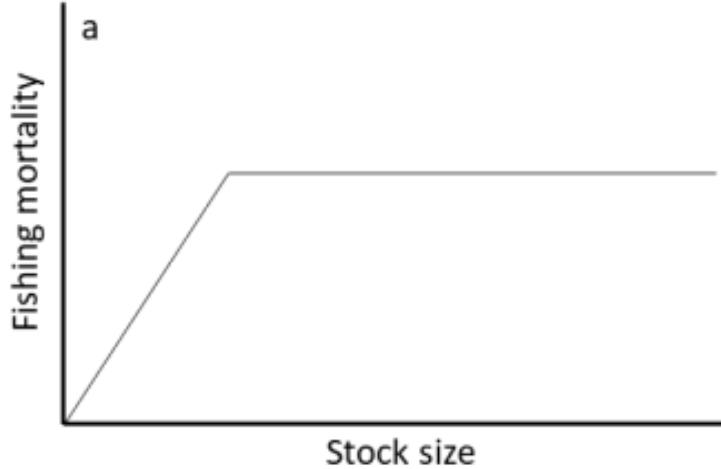
845 **Figure 6. Median percent relative error (REE) in terminal estimated spawning stock**
846 **biomass (SSB) and fishing mortality (F) with 95% confidence intervals for a) Gulf of Maine**
847 **cod with no stock assessment model misspecification (none), natural mortality incorrectly**
848 **assumed constant at 0.3 (intermediate; smaller misspecification), and natural mortality**
849 **incorrectly assumed constant at 0.2 (high; larger misspecification) and b) Georges Bank**
850 **haddock with no stock assessment model misspecification (none), a small weight-at-age**
851 **stock assessment misspecification (intermediate), and a large weight-at-age stock**
852 **assessment misspecification (high). Black, orange, and blue lines represent the ramp, F-**
853 **step, and constrained ramp harvest control rules, respectively.**

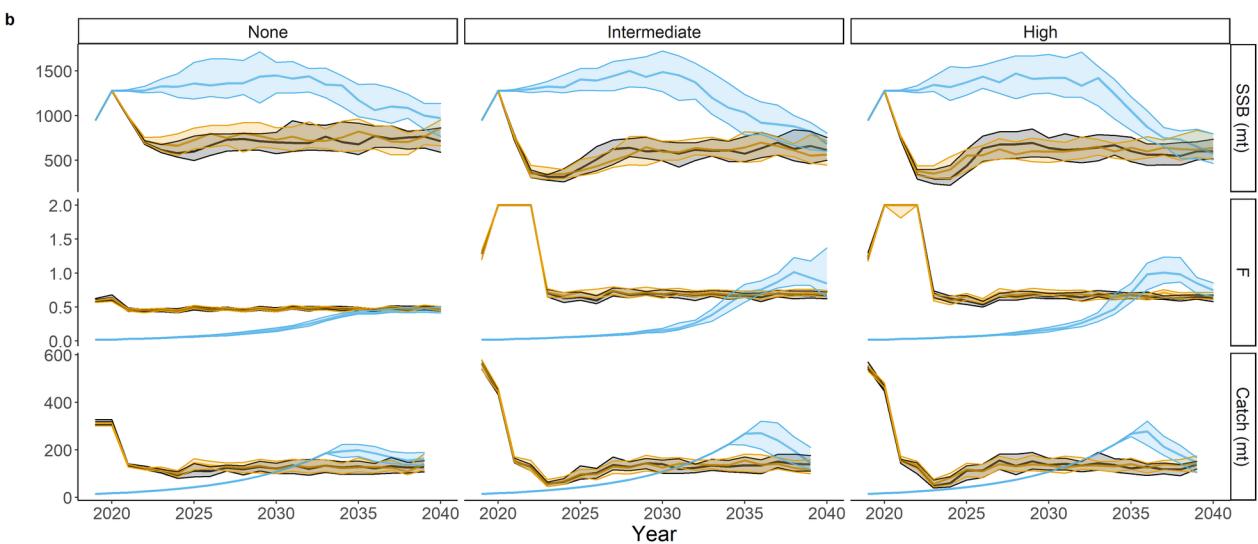
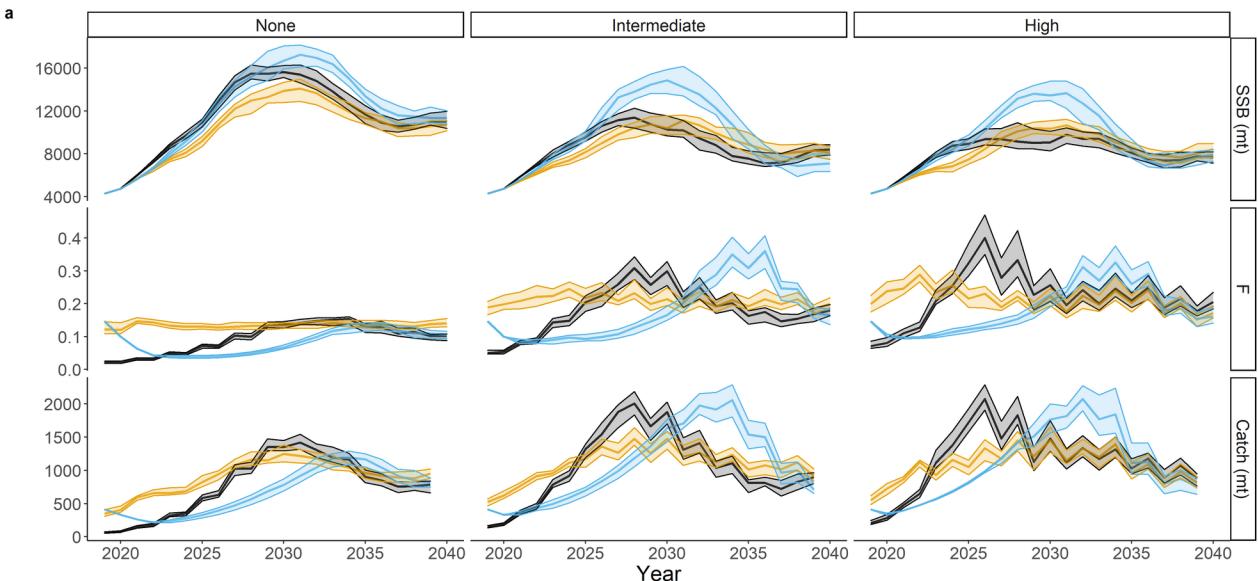
854 *Color should be used for Figure 6 in print.*

855 **Figure 7. Median Mohn's Rho values for spawning stock biomass (SSB) and fishing**
856 **mortality (F) with 95% confidence intervals for a) Gulf of Maine cod with no stock**
857 **assessment model misspecification (none), natural mortality incorrectly assumed constant**
858 **and 0.3 (intermediate), and natural mortality incorrectly assumed constant at 0.2 (high)**
859 **and b) Georges Bank haddock with no stock assessment model misspecification (none), a**
860 **small weight-at-age misspecification (intermediate), and a large weight-at-age**
861 **misspecification (high). Black, orange, and blue lines represent the ramp, F-step, and**
862 **constrained ramp harvest control rules, respectively.**

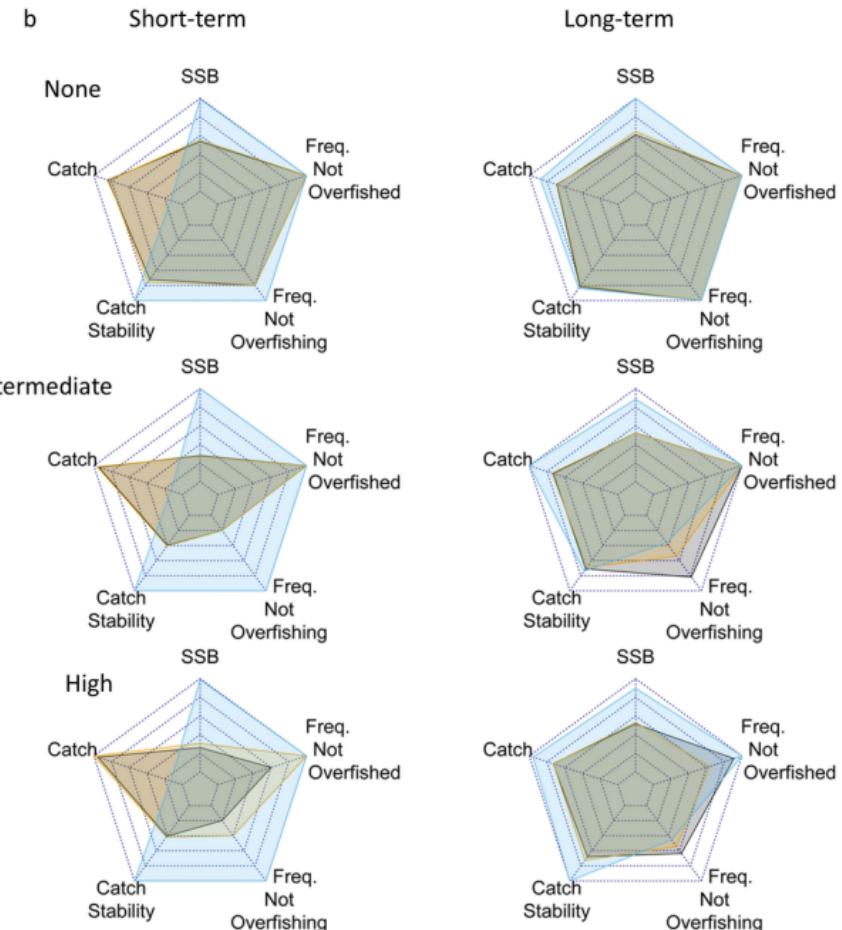
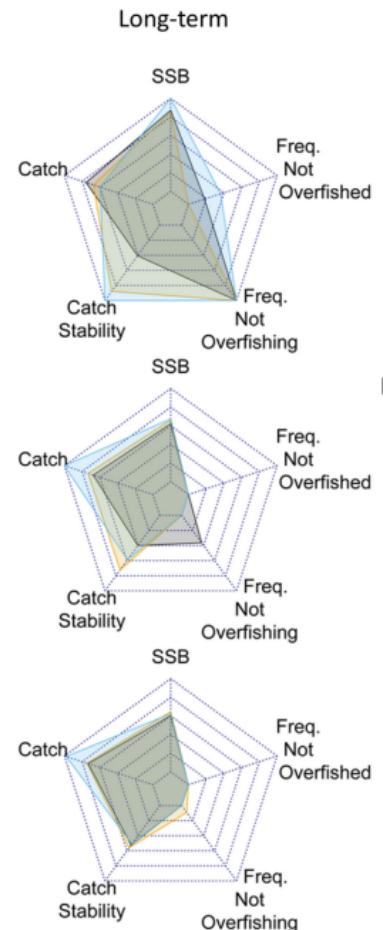
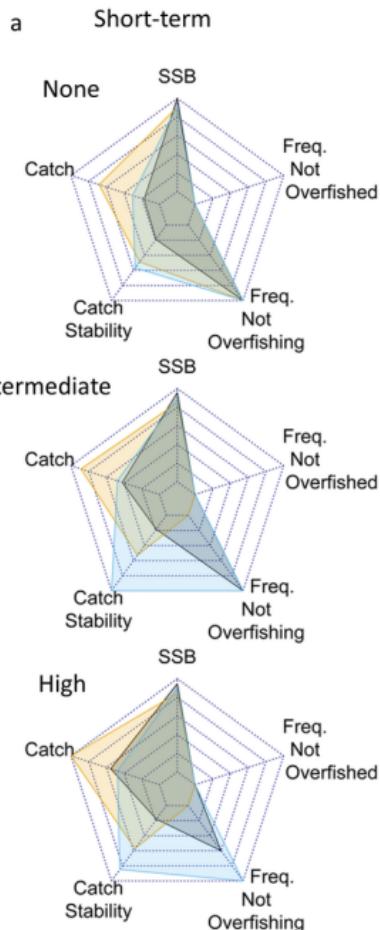
863 *Color should be used for Figure 7 in print.*

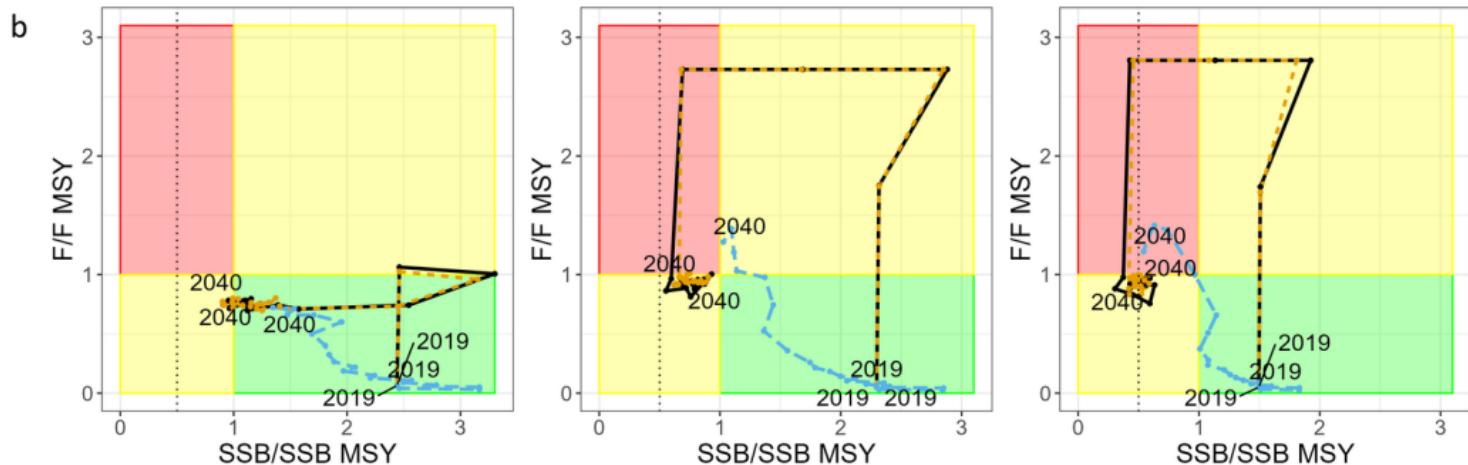
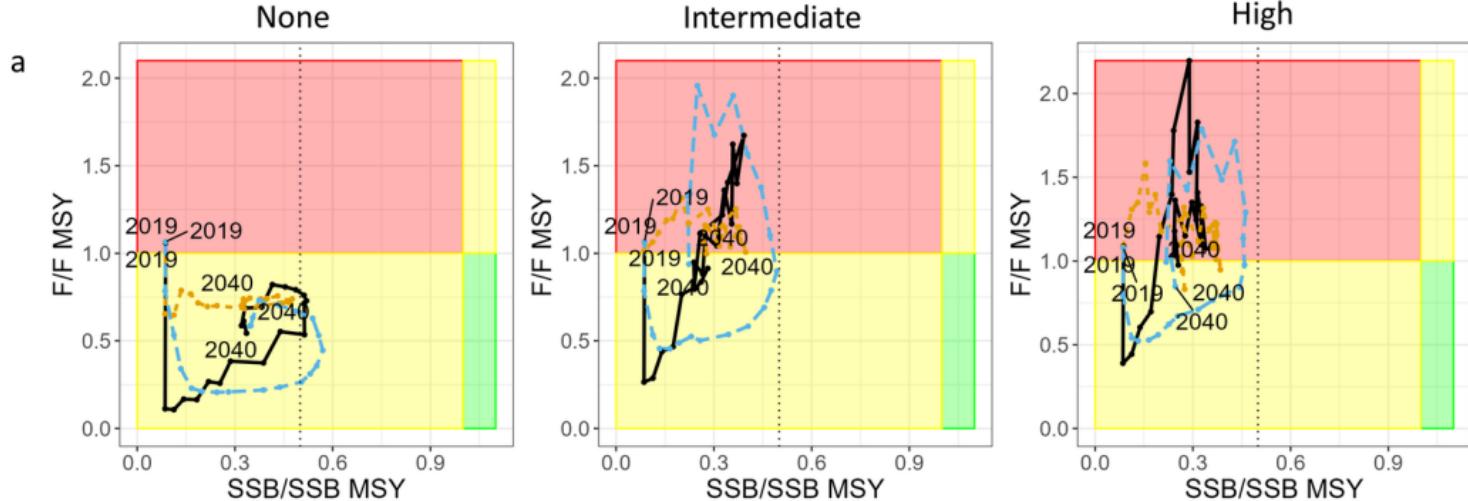

864 **Figure 8. Median ratios of estimated to true stock biomass reference point (SSB_{MSY}) for a)**
865 **Gulf of Maine cod with no stock assessment model misspecification (none), natural**
866 **mortality incorrectly assumed constant at 0.3 (intermediate), and natural mortality**
867 **incorrectly assumed constant at 0.2 (high) and b) Georges Bank haddock with no stock**
868 **assessment model misspecification (none), a small weight-at-age stock assessment**
869 **misspecification (intermediate), and a large weight-at-age stock assessment misspecification**
870 **(high) in the short- (1-5 years), medium- (6-10 years), and long-term (11-21 years).**

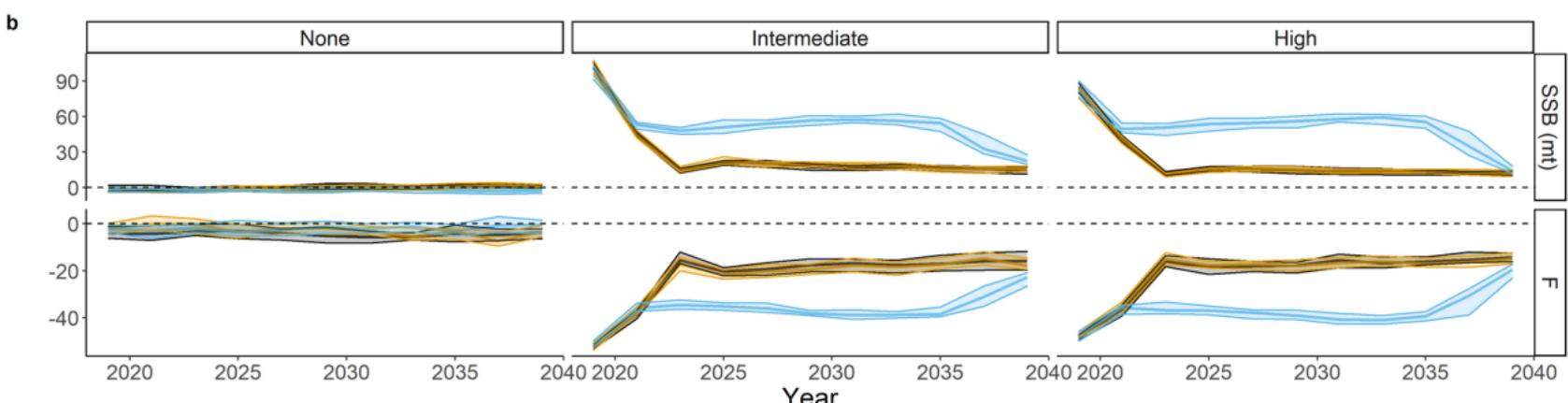
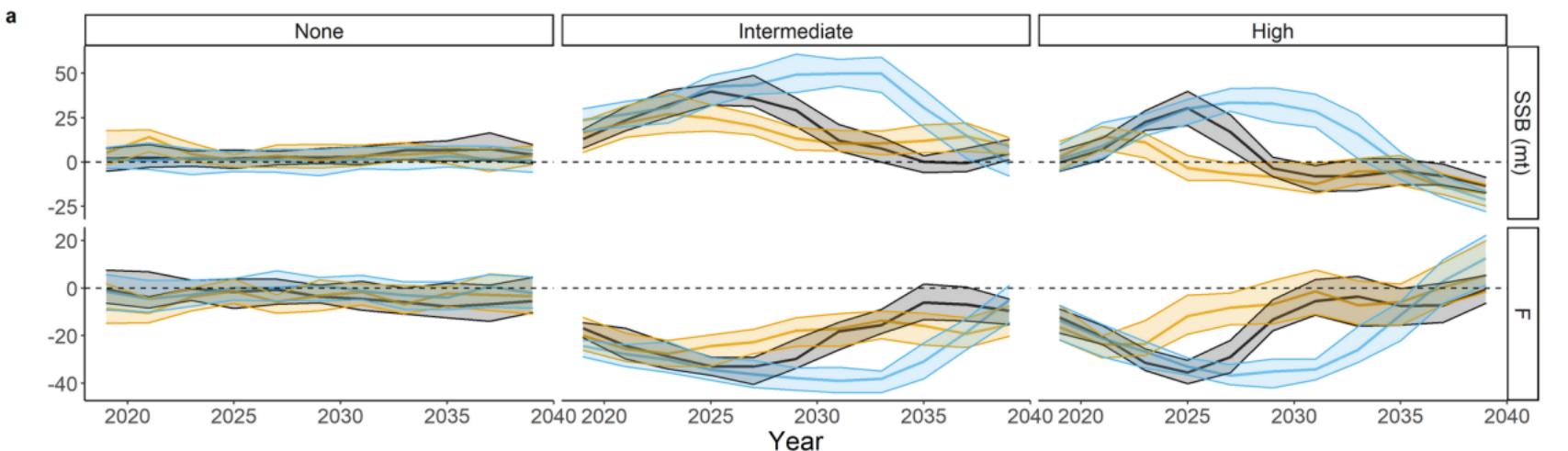



871 *Color should be used for Figure 8 in print.*

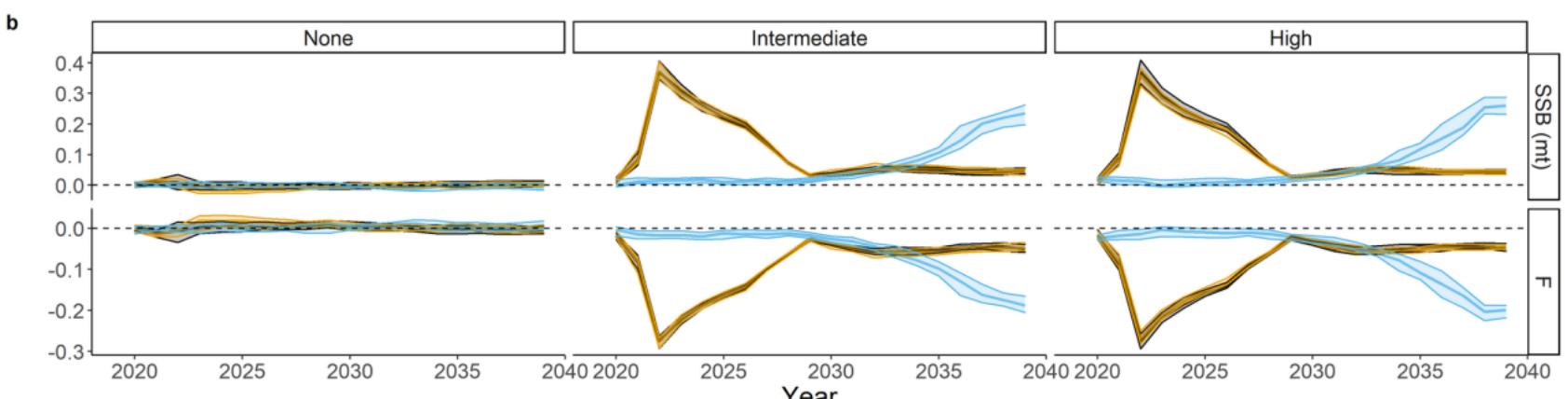
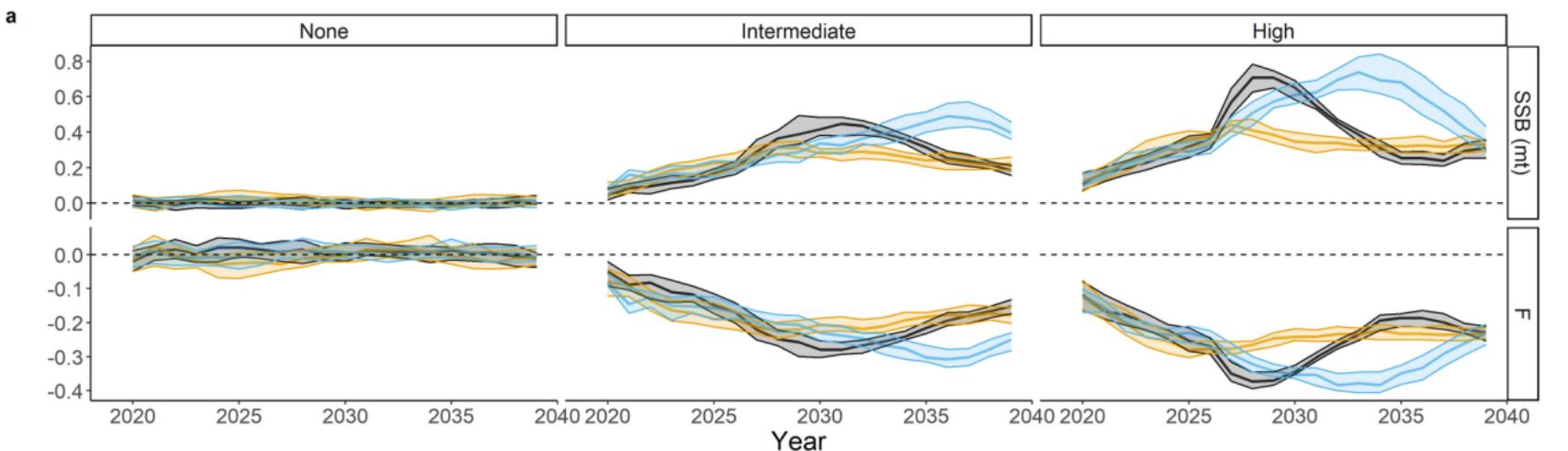


872

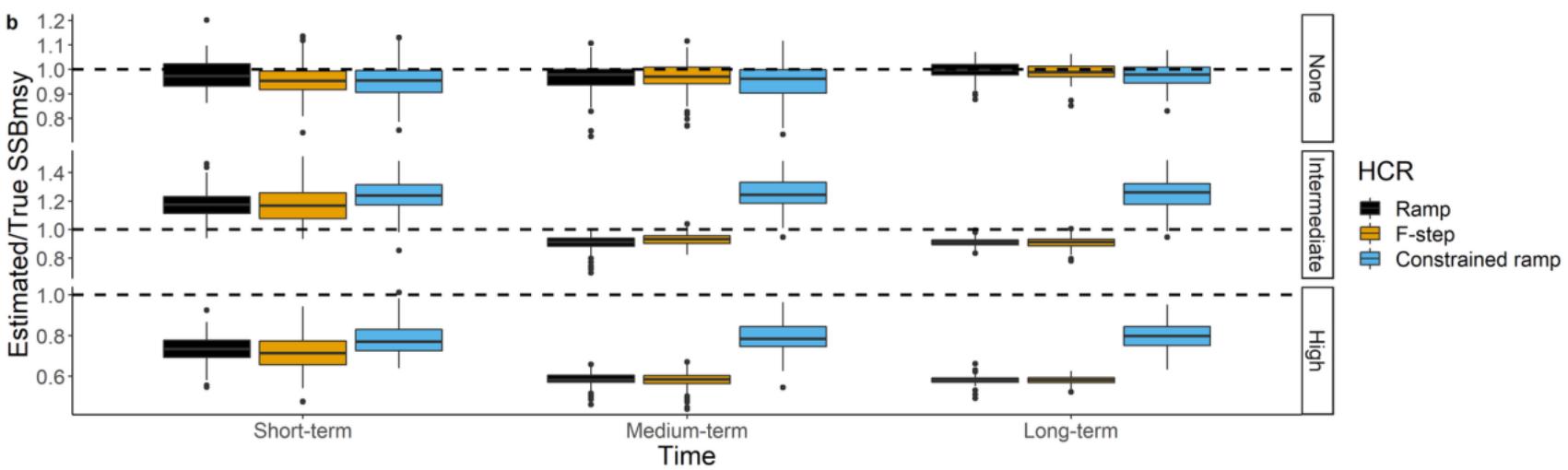
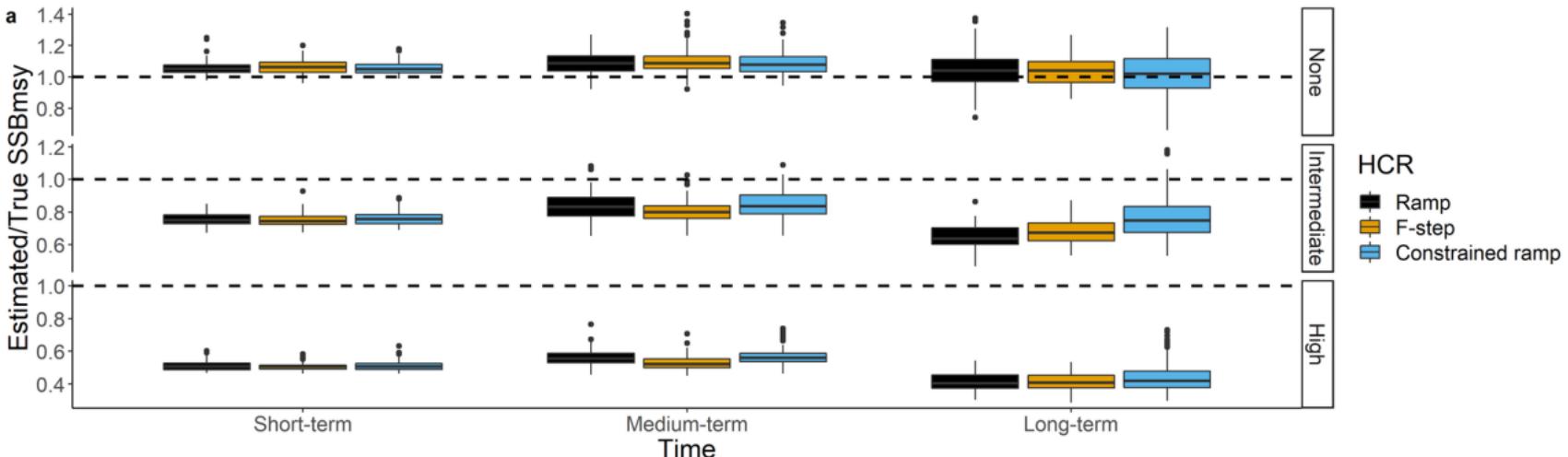
873 **Data availability statement**




874 All code and instructions for the management strategy evaluation framework used in this study
875 can be found at the following Github repository: <https://github.com/lkerr/groundfish-MSE>.
876 Instructions on how to specify the operating models (OMs) and management procedures can be
877 found on the Wiki page: <https://github.com/lkerr/groundfish-MSE/wiki>. This study was
878 conducted using the 'MDM_Misspecifications' branch. Each scenario uses different
879 specifications of OMs and/or management procedures. Parameters and historical time series from
880 the Gulf of Maine cod and Georges Bank haddock assessments can be found at the Northeast
881 Fisheries Science Center Stock Assessment Support Information: https://apps-nefsc.fisheries.noaa.gov/saw/sasi/sasi_report_options.php. Gulf of Maine sea surface
882 temperature data can be found at the Optimum Interpolation Sea Surface Temperature (OISST)
883 database: <https://www.ncei.noaa.gov/products/optimum-interpolation-sst>.



HCR Ramp F-step Constrained ramp

HCR Ramp F-step Constrained ramp

HCR Ramp F-step Constrained ramp

Table 1. Georges Bank haddock weight-at-ages used in the operating model and stock assessments.

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9+
Weight-at-age in the operating model (2019- 2040)	0.00018	0.00043	0.00069	0.00089	0.00109	0.00125	0.00149	0.00158	0.00178
Weight-at-age in stock assessment (high and constant scenario)	0.00033	0.00080	0.00128	0.00166	0.00192	0.00220	0.00252	0.00275	0.00313
Weight-at-age in stock assessment (intermediate and constant scenario)	0.00019	0.00055	0.00090	0.00114	0.00126	0.00137	0.00152	0.00164	0.00188