

1 Title: Oxygen and hydrogen isotopic evidence that Kama'ehuakanaloa (Lō'ihi) Seamount
2 hydrothermal systems are recharged by deep Pacific seawater

3 Authors: Eric W. Chan^{1*†}, Brianna. A. Alanis¹, Christopher R. German², Darlene S. S. Lim³,
4 John. A. Breier¹

5 ¹ School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande
6 Valley, Edinburg, Texas, 78539, USA.

7 ² Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA.

8 ³ Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field,
9 California, 94035, USA

10 *Corresponding author: Eric Chan (erik.w.chan@gmail.com)

11 †Present address: Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, California 95054, USA.

12 **Highlights:**

- 13 • $\delta^{18}\text{O}$ and $\delta^2\text{H}$ isotopic ratios indicate Kama'ehuakanaloa hydrothermal recharge entrains
14 Pacific Bottom Water.
- 15 • Crater floor vent fluids exhibit isotopic values most similar to seawater from >4500 m.
- 16 • Data indicate multiple subsurface transport paths and thermal histories.
- 17 • Data suggest additional diffuse flow or water/mineral reactions in Pele's Pit.

18 **Abstract**

19 We observed negative and positive $\delta^{18}\text{O}$ and $\delta^2\text{H}$ deviations from fluids collected at
20 Kama'ehuakanaloa (previously known as Lō'ihi) seamount relative to Pacific seawater from the
21 same depth. Hydrothermal vents on the crater floor of Pele's Pit at Kama'ehuakanaloa, at a
22 depth of 1320 m, had $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values as low as -0.19‰ and -0.3‰, respectively. Seawater
23 collected within the caldera, within a zone 45 m above the crater floor, had $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values
24 as high as 1.15‰ and 6.5‰, respectively. In comparison, Pacific seawater at 1200 m and 1400
25 m at nearby station ALOHA exhibit intermediate $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of 0.2‰ and 0.34‰. The
26 high $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values observed in the caldera water-column may be explained by isotopic
27 modification processes, including water-rock reactions. However, we did not observe a vent
28 source with similar isotopic composition; this suggests that substantial hydrothermal flow is
29 entering the caldera through unidentified sources, potentially individually small but collectively
30 important. Further, the low $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of the crater floor vents cannot be readily
31 explained by isotopic modification processes alone. We conclude the crater floor vents
32 predominantly reflect the isotopic composition of the Pacific seawater entrained into the
33 hydrothermal system. Our observations suggest recharging seawater is entrained from below
34 >4500 m, in the zone of Pacific Bottom Water. These findings illustrate the heterogeneity of
35 hydrothermal transport processes at a volcanic seamount and how seamount hydrothermal
36 convection can provide a mechanism that may contribute to vertical ocean mixing by
37 transporting deep bottom waters to intermediate ocean depths.

38 **Key Words:** Stable isotopes in water, $\delta^{18}\text{O}$, $\delta^2\text{H}$, Kama'ehuakanaloa, Lō'ihi, hydrothermal

39 **1. Introduction**

40 Hydrothermal discharge to the ocean has long been recognized as an important biogeochemical
41 process that influences numerous biogeochemical cycles, fuels chemosynthetic seafloor
42 ecosystems, and may have played an important role in the development of our biosphere
43 (Canfield et al., 2008; Edwards et al., 2005; Elderfield and Schultz, 1996). Hydrothermal
44 discharge involves a complex set of coupled physical, chemical, and biological processes that
45 are still not completely understood (Anantharaman et al., 2016; Breier et al., 2012; German and
46 Seyfried, 2014). Notwithstanding, evidence is mounting that hydrothermal discharge represents
47 an important component of the marine iron cycle and contributes to this micronutrient's oceanic
48 distribution (Tagliabue et al., 2017).

49
50 Submarine hydrothermal discharge results from the thermally driven flow of seawater through
51 the seafloor. Hydrothermal recharge arises wherever seawater is entrained into the sub-seafloor
52 convection cell. Subsurface water-rock reactions and magmatic inputs can highly alter the initial
53 seawater chemistry. Hydrothermal discharge is challenging to study, particularly over the full
54 range of length and time scales over which important processes occur. However, hydrothermal
55 discharge does produce observable effects in the water-column, and on that basis,
56 investigations have been able to proceed. Hydrothermal recharge is much more challenging to
57 observe and quantify because all gradients and related processes occur below the seafloor and
58 are likely dispersed over much greater length scales than those associated with hydrothermal
59 discharge (Johnson et al., 2010). Accordingly, much less is known about hydrothermal recharge
60 than about hydrothermal discharge.

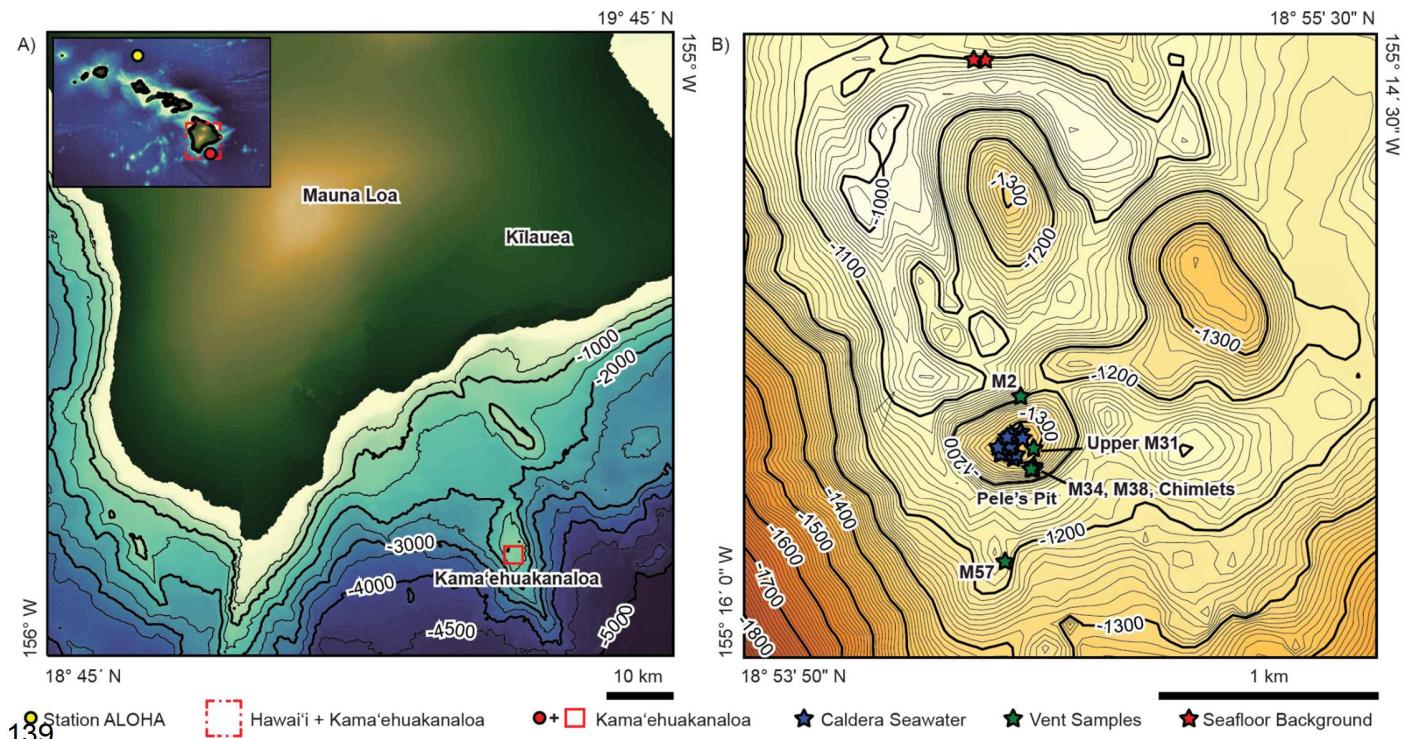
61
62 What has been determined about hydrothermal recharge, to date, results from a combination of
63 seismic studies, ocean drilling, heat flow measurements, and theoretical modeling (e.g., Lowell
64 and Yao, 2002; Fisher et al., 2003; Tsuji et al., 2012). While some aspects of fluid history can be
65 deduced from the geochemistry of vent fluids at the point that they exit the seafloor, in most
66 cases, information related to where recharge occurs is very difficult to constrain. The non-
67 conservative chemical constituents of recharging seawater are, consequently, also difficult to
68 constrain.

69
70 Even the O and H isotopic compositions of recharging seawater can be modified by
71 geochemical reactions and modifications that can occur if hydrothermal systems reach
72 sufficiently high temperatures (Böhlke and Shanks, 1994; Bowers and Taylor, 1985; Jean-
73 Baptiste et al., 1997). Measurements from numerous mid-ocean ridge systems globally have
74 shown that high-temperature vent fluids are typically enriched in ^{18}O relative to ambient
75 seawater and that these fluids are a source of ^{18}O to the oceans (Jean-Baptiste et al., 1997).
76 While less widely reported, measurements of ^2H also show enrichments relative to seawater in
77 most cases of high-temperature venting that have been investigated (Shanks et al., 1995).

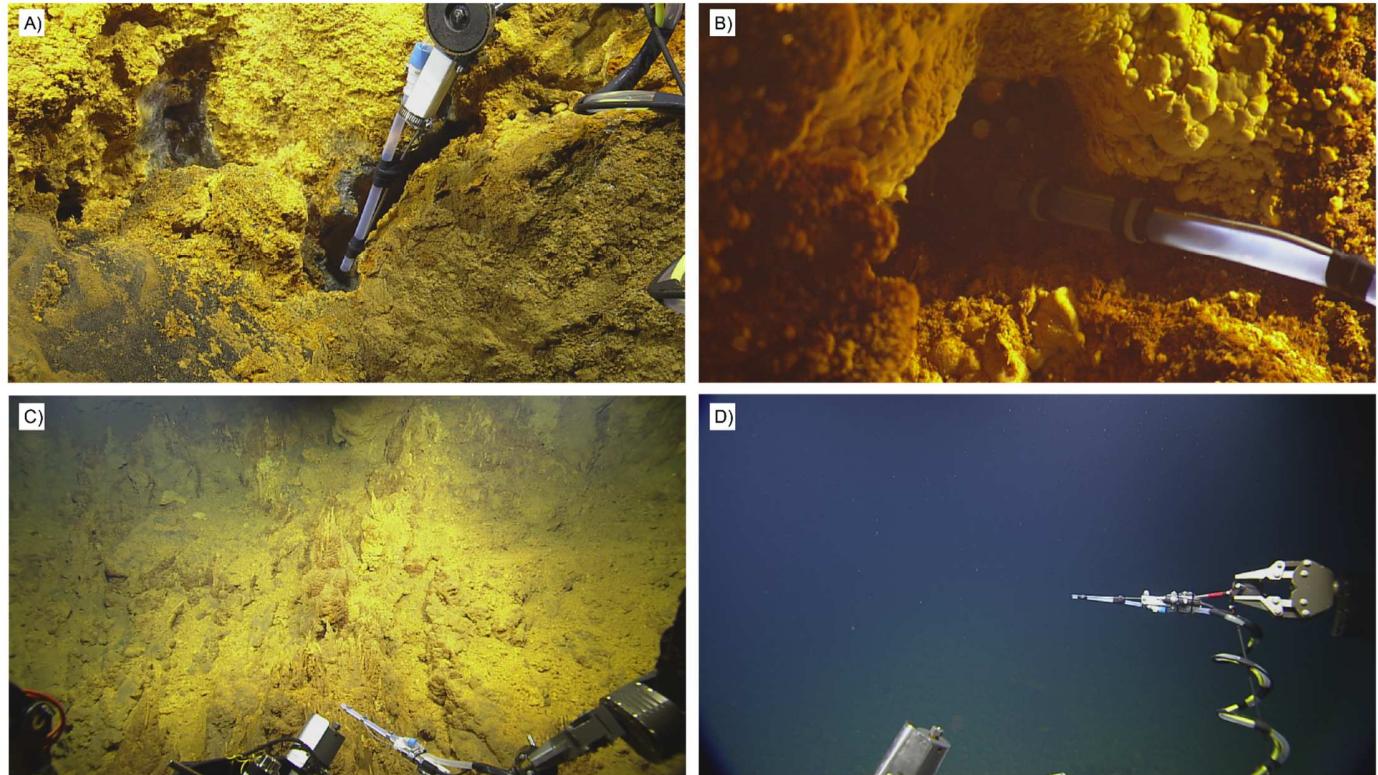
78
79 Nevertheless, the O and H isotopic compositions of seawater are inherent properties indicative
80 of source and process history; and $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values can provide deep insight into fluid
81 transport and mixing processes in some situations. While the O and H isotopic composition of

82 hydrothermal fluids at mid-ocean ridges have been well studied, the isotopic composition of
83 hydrothermal fluids at hotspot volcanoes is less well-known. In this study, we measured $\delta^{18}\text{O}$
84 and $\delta^2\text{H}$ values of fluids from Kama'ehuakanaloa (previously known as Lō'ihi) seamount and the
85 background Pacific Ocean to better understand the origin of hydrothermal recharge at this
86 active hotspot volcano. Kama'ehuakanaloa presents an opportunity to better understand the
87 processes that entrain and modify seawater within hydrothermal systems and represents a
88 unique contrast to better studied mid-ocean ridge systems.

89 Kama'ehuakanaloa Seamount ($18^\circ 54' 24.1056''$ N, $155^\circ 15' 27.09''$ W), is a young seismically
90 active intraplate underwater hotspot volcano that rises ~4 km above the Pacific abyssal plain
91 (Glazer and Rouxel, 2009; Karl et al., 1989). The last known eruption at Kama'ehuakanaloa was
92 in 1996 (Garcia et al., 1998); however, an eruption was ongoing at Kīlauea during this study
93 (Neal et al., 2019). Focused and diffuse hydrothermal venting is known to occur in the most
94 southwest of three calderas, referred to as Pele's Pit (Fig. 1) (Duennenbier et al. 1997).
95 Kama'ehuakanaloa is of particular interest because its low sulfide, high iron vent chemistry
96 discharges into low dissolved oxygen ambient seawater, which inhibits iron precipitation and
97 promotes retention of dissolved iron in the plume (Sedwick et al. 1992; Paulmier and Ruiz-Pino,
98 2009; Toner et al., 2012; Rouxel et al., 2018). As a result, Kama'ehuakanaloa dissolved iron can
99 travel far: Jenkins et al., (2020) observed the Kama'ehuakanaloa iron signal as far as 1000 km
100 from the seamount and their modeling suggests Kama'ehuakanaloa iron may be transported so
101 far as to influence the primary productivity in the shallow waters of the northwest Pacific. Thus,
102 hydrothermal processes at this submarine volcano may influence ocean chemistry over a wide
103 region of the Pacific, and in this study, we seek to better understand how seawater flows
104 through this hydrothermal system as a precursor to better quantifying the export fluxes of water
105 and solutes from this seamount to the ocean.


106 **2 Methods**

107 *2.1 Sample Collection*


108 During 23 August to 11 September 2018, we collected samples from low temperature
109 hydrothermal vents and the water-column at Kama'ehuakanaloa Seamount ($18^\circ 54-55'$ N, 155°
110 $15-16'$ W) during E/V *Nautilus* cruise NA100. The samples were from (i) vent sites within and
111 around Pele's Pit (e.g., Fig. 2a-c), (ii) the water-column within the caldera overlying the vents
112 (e.g., Fig. 2d), and (iii) a background seawater sample to the north of the Summit removed from
113 any known hydrothermal sources (Figure 1). The vent sites sampled were at Markers 31, 34,
114 and 38 (Fig. 2a, referred to collectively in this paper as Crater Floor Vents), and Markers 2 and
115 57 (Fig. 2b, referred to as Crater Rim Vents) from Davis and Clague, (1998) and Glazer and
116 Rouxel, (2009), and an area of discharge from a cluster of smaller vent structures that we refer
117 to as "Chimlets" (Fig. 2c) that are near the *Spillway* referred to in Glazer and Rouxel, (2009).
118 The samples collected within the caldera water-column (e.g., Fig 2d) were all within 210 m of
119 the caldera floor, which sits at a depth of 1320 m. Samples were collected using an *in-situ* water
120 and particulate sampling system mounted on ROV *Hercules*. This sample collection system
121 consists of a multiport valve, water and filter holders, a flowmeter, and a pump connected to an
122 intake wand held in the ROV manipulator (Breier et al., 2014); this tool enables targeted

123 sampling at seafloor vents and seeps as well as in the overlying water-column. The sampler
124 was used to collect duplicate water samples for $\delta^{18}\text{O}$ and $\delta^2\text{H}$ analyses. The sampling system
125 was prefilled with distilled/deionized (DI) water prior to deployment to prevent implosion. This DI
126 water was purged during sample collection by flushing with seven times the sample volume
127 (Breier et al., 2014); to verify this occurred, operational DI water blanks were collected for
128 analysis. Fluid temperature measurement readings for Crater Floor, Crater Rim, and Chimlet
129 samples were taken with a high-temperature thermocouple probe mounted on the sampler
130 intake wand (Fornari et al., 1997). Temperature measurement readings for “Caldera seawater”
131 samples, and temperature and salinity measurements for background seawater samples, were
132 taken with a Seabird Scientific 49 FastCat CTD.

133 During January 2020, we collected a full ocean depth set of Pacific water-column samples from
134 a site 513 km to the northwest, at station ALOHA (A Long-Term Oligotrophic Habitat
135 Assessment; $22^{\circ} 45'\text{N}$, $158^{\circ} 00'\text{W}$) during Hawaii Ocean Time-Series (HOT) cruise 318.
136 Duplicate samples were collected between 5 and 4800 m during multiple hydrocasts using a 24-
137 bottle CTD water sampling rosette.

140 **Fig. 1. Maps of Kama'ehuakanaloa Seamount.** A.) Regional map showing the Island of
141 Hawai'i and the Kama'ehuakanaloa Seamount summit (enclosed in a solid red rectangle) with
142 bathymetry contours at 500 m intervals, and an inset map showing the location of
143 Kama'ehuakanaloa Seamount (red circle) and Station ALOHA (yellow circle). B.)
144 Kama'ehuakanaloa summit map showing Pele's Pit caldera and the location of caldera
145 seawater samples (blue stars), vent fluid samples (green stars), and seafloor background
146 seawater samples (red stars). Bathymetry contours at 10 m intervals and marked at 100 m
147 intervals. Bathymetry is from (Ryan et al., 2009).

148 [Color image intended for double column width 190 mm, shown at 100% scale]

149 **Fig. 2. Images of Vent Sites and Sampling.** A.) Crater Floor and B.) Crater Rim vent sampling
 150 with SUPR sampler intake and temperature probe positioned within vent orifice by ROV
 151 manipulator. C.) The cluster of vent structures in the Chimlet vent area were too small and
 152 fragile to sample directly so the sampler intake and temperature probe were positioned
 153 immediately above the point of fluid outflow from these structures. D.) Samples were also taken
 154 from multiple locations within the caldera water column and outside the caldera near the surface
 155 of the seamount using these same tools.

156 [Color image intended for double column width 190 mm, shown at 100% scale]

157
 158 *2.2 Sample Analysis*

159 We analyzed samples for $\delta^{18}\text{O}$ and $\delta^2\text{H}$ of water on a Picarro G2410-i cavity ring-down
 160 spectrometer with a water vaporizer module and autosampler (Walker et al., 2016). Our
 161 measurements are reported as δ values, in per mil (‰) units, where $\delta = 10^3[(R/R_{\text{VSMOW2}})-1]$ and
 162 R is the isotopic ratio of $^{18}\text{O}/^{16}\text{O}$ or $^2\text{H}/^1\text{H}$, respectively. We calibrated these measurements
 163 using VSMOW2 and SLAP2 isotopic standards: VSMOW2 ($\delta^{18}\text{O} = 0\text{‰} \pm 0.02\text{‰}$, $\delta^2\text{H} = 0\text{‰} \pm$
 164 0.3‰) and SLAP2 ($\delta^{18}\text{O} = -55.50\text{‰} \pm 0.02\text{‰}$, $\delta^2\text{H} = -427.5\text{‰} \pm 0.03\text{‰}$) (Lin et al., 2010). We
 165 used Picarro's Chemcorrect software to identify and quantify spectral interferences from
 166 contaminants including trace hydrocarbons (Walker et al., 2016). To avoid memory effects
 167 within the spectrometer, we measured each sample at least seven times and determined the

168 $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values as the average of the last three measurements. We use the term "lighter"
169 to describe lower δ values representing samples depleted in ^{18}O or ^2H , and "heavier" to describe
170 higher δ values representing samples enriched in ^{18}O or ^2H .

171 *2.3 Analysis & Calculations*

172 K-means clustering analysis of sample data from Station ALOHA was carried out with Python
173 and several supporting packages. K-means is a Bayesian algorithm that forms clusters based
174 on data similarity from the Scikit-Learn Python package (Pedregosa et al., 2011). K is the
175 hyperparameter that determines how many clusters are generated by the algorithm and is the
176 only user-input parameter for this method. The cluster assignments are graded by the sum of
177 squared error (SSE) of the Euclidean distances between the data instance and the centroid.
178 Since the SSE is a measure of variance, the purpose of K-means is to minimize this value to
179 obtain the best clustering.

180 The isotopic composition of mixtures of seawater and vent fluid is estimated assuming simple
181 conservative mixing between seawater and vent fluid using the following equation with $\delta^{18}\text{O}$
182 values as examples:

183 Equation 1:

$$VFF = \frac{(\delta^{18}\text{O}_{\text{mix}} - \delta^{18}\text{O}_{\text{sw}})}{(\delta^{18}\text{O}_{\text{vf}} - \delta^{18}\text{O}_{\text{sw}})}$$

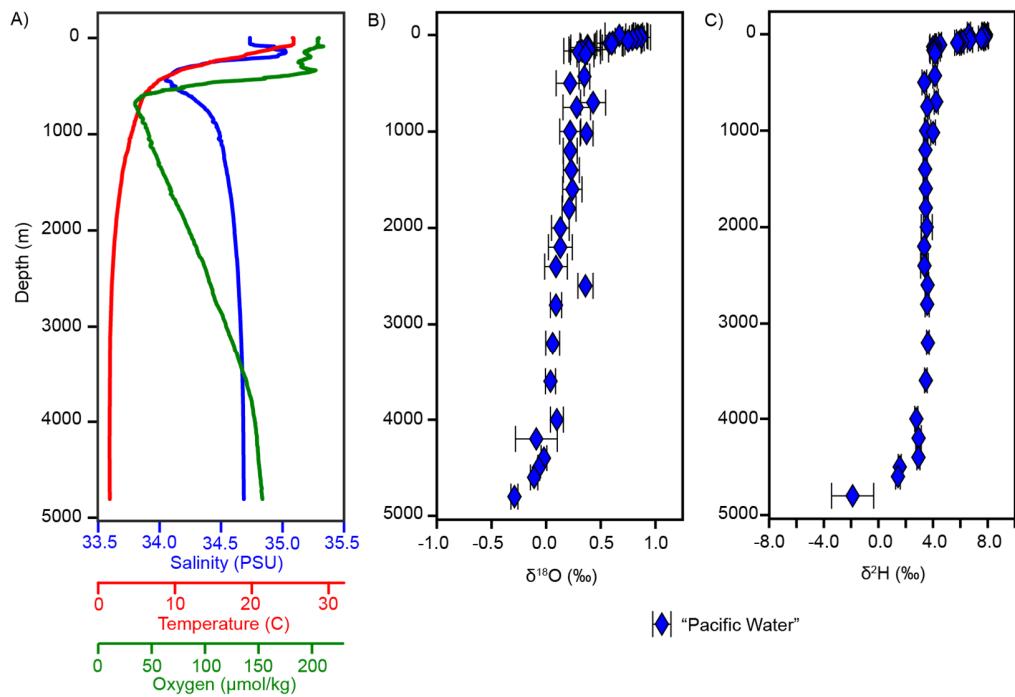
185 where VFF represents the vent fluid fraction in a sample mixture, $\delta^{18}\text{O}_{\text{mix}}$ is the δ value of the
186 sample mixture, $\delta^{18}\text{O}_{\text{sw}}$ is the δ value of seawater, and $\delta^{18}\text{O}_{\text{vf}}$ is the δ value of the vent fluid.

187 **3. Results**

188 All measurement values for station ALOHA samples are reported in Table 1 and all values for
189 Kama'ehuakanaloa samples are reported in Table 2. All Kama'ehuakanaloa samples were
190 isotopically heavier than the average of the operational blanks, which were $-0.76\text{\textperthousand}$ for $\delta^{18}\text{O}$ and
191 $-4.1\text{\textperthousand}$ for $\delta^2\text{H}$. The operational blanks consisted of the distilled/deionized water from the ship
192 used to pre-fill the sampling system. The fact that all samples were heavier than the operational
193 blanks confirms that sample collection worked as intended.

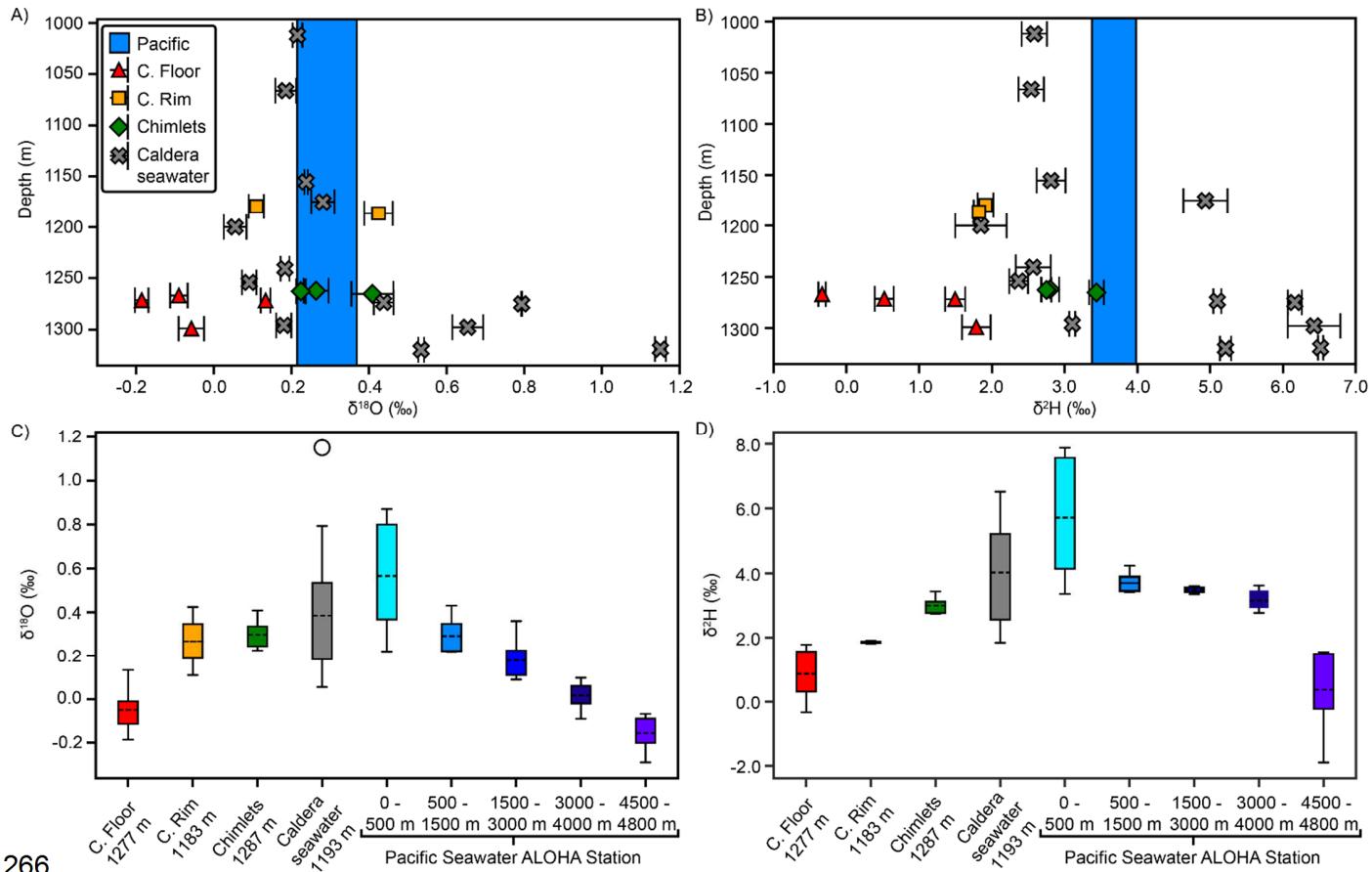
194 Measured $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values for all samples collected at Station ALOHA are shown in Figure
195 3. These measurements illustrate the isotopic structure of the Pacific Ocean in this region,
196 including the trend to lighter isotopic $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values with depth. Specifically, both $\delta^{18}\text{O}$ and
197 $\delta^2\text{H}$ decrease sharply from the surface to 500 m, decrease relatively little from 500 m to 4500 m
198 and decrease sharply again from 4500 to the bottom. $\delta^{18}\text{O}$ values range from $+0.87\text{\textperthousand}$ in the
199 surface ocean to $-0.29\text{\textperthousand}$ at 4800 m, the deepest depth measured. $\delta^2\text{H}$ values range from
200 $+7.9\text{\textperthousand}$ in the surface layer to $-1.9\text{\textperthousand}$ at 4800 m. The one exception to this trend is the sample
201 collected from 2600 m, which has a $\delta^{18}\text{O}$ value of $+3.7\text{\textperthousand}$ and is notably heavier than the
202 prevailing trend. For both isotopic ratios, the shallowest samples are isotopically the heaviest
203 but exhibit steep gradients to lighter values with increasing depth to 500 m. Between water

204 depths of 500 m to 4000 m there is comparatively little variation in either isotopic ratio, with $\delta^{18}\text{O}$
205 values trending slightly lighter with increasing depth, while $\delta^2\text{H}$ values remain relatively
206 constant. For both isotopic ratios, the deepest samples from below 4000 m are isotopically the
207 lightest with notably steep gradients below 4500 m to the lightest values at the deepest depths.
208 In both isotope systems, negative ratios are only observed below 4000m.


209 Measured $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values for all samples collected at Kama'ehuakanaloa are shown in
210 Figure 4, along with summary boxplots of the values for the Pacific water-column profile (panels
211 C & D). We can identify four different groups within the Kama'ehuakanaloa samples based on
212 their proximity to venting, location, depth in the water-column, and $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values. The
213 seawater samples collected within the caldera of Pele's pit, but not in close proximity to a vent,
214 are referred to as "Caldera seawater" samples. Samples collected from vents at or beyond the
215 rim of the caldera, at marker 2 to the north and marker 57 to the south, are referred to as "Crater
216 Rim" samples. Samples collected from vents on the floor of the caldera, at markers 31, 34, and
217 38, are referred to as "Crater Floor" samples. Samples collected approximately 1 m above the
218 "Chimlets," which had active discharge but were individually too small to sample from directly,
219 are referred to as "Chimlet" samples.

220 "Caldera seawater" samples have $\delta^{18}\text{O}$ values between +0.06‰ and +1.15‰ with an average of
221 +0.38‰, and $\delta^2\text{H}$ values between +1.8‰ and +6.5‰ with an average of +4.0‰ (Fig. 4). The
222 "Caldera seawater" samples include the heaviest $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values observed at
223 Kama'ehuakanaloa seamount in this study, these samples are from the bottom depths of the
224 caldera below the crater rim (Fig. 4C & D). The temperatures of the "Caldera seawater" samples
225 are indistinguishable from background seawater at this same depth at Station ALOHA in the
226 North Pacific open ocean (Tables 1 and 2). By contrast, the two "Crater Rim" vent-samples have
227 $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values that are skewed to the lighter end of the "Caldera seawater" samples
228 isotopic range and intermediate between ALOHA samples from the same depth and
229 hydrothermal samples from the Pele's Pit crater floor (Fig. 4D). The temperatures of the "Crater
230 Rim" vent-samples were 11.0°C and 11.5°C, respectively, which is ~ 7.5°C above background
231 seawater (Table 2). The three "Chimlet" area samples have $\delta^{18}\text{O}$ values similar to the "Crater
232 Rim" vent-fluids and $\delta^2\text{H}$ values somewhat heavier than the "Crater Rim" samples but still
233 intermediate between station ALOHA at the same depth and the "Crater Floor" vents. The
234 temperatures of the "Chimlet" samples range from that of background seawater to 15°C. The
235 four "Crater Floor" samples have $\delta^{18}\text{O}$ values between -0.19‰ and +0.13‰ with an average of -
236 0.05‰, and $\delta^2\text{H}$ values from -0.3‰ to +1.8‰ with an average of +0.9‰. The "Crater Floor"
237 samples include the lightest $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values observed at Kama'ehuakanaloa seamount in
238 this study (Fig. 4C & D). The temperatures of the "Crater Floor" fluid samples were between
239 23.0°C and 40.4°C. A seafloor background sample collected away from any known areas of
240 venting and outside of Pele's Pit caldera, 1.9 km to the north and at a depth of 1086 m, had a
241 $\delta^{18}\text{O}$ value of +0.29‰, and $\delta^2\text{H}$ value of +3.7‰. These seafloor background samples at
242 Kama'ehuakanaloa are isotopically indistinguishable (within error) from Station Aloha samples
243 at the same depth.

244 Kama'ehuakanaloa "Caldera seawater" samples include those with $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values that
245 are isotopically heavier and lighter than Pacific Ocean seawater at the same depth as Pele's Pit


246 in direct contrast to the background samples collected to the north of the crater; the mean $\delta^{18}\text{O}$
247 and $\delta^2\text{H}$ values within the caldera are isotopically heavier than Pacific Ocean seawater at the
248 same depth. This can be seen in Fig. 4C by comparing "Caldera seawater" samples to Pacific
249 500 - 1500m depth seawater. For Kama'ehuakanaloa "Crater Rim" and "Chimlet" samples, the
250 $\delta^{18}\text{O}$ values are isotopically similar to Pacific Ocean seawater at the same depth as Pele's Pit.
251 However, the mean $\delta^2\text{H}$ values of Kama'ehuakanaloa "Crater Rim" and "Chimlet" samples (Fig.
252 4D) are isotopically lighter than Pacific Ocean seawater at the same depth as Pele's Pit. For
253 Kama'ehuakanaloa "Crater Floor" samples, neither the $\delta^{18}\text{O}$ nor the $\delta^2\text{H}$ values correspond to
254 the isotopic composition of Pacific seawater at the depth of Pele's Pit. Rather, the $\delta^{18}\text{O}$ and the
255 $\delta^2\text{H}$ values of Kama'ehuakanaloa "Crater Floor" samples are most similar to the deepest Pacific
256 seawater from >4500 m (Figs. 3C & D, 4A, B, & C). "Crater Rim" $\delta^2\text{H}$ values are also most
257 similar to these deep Pacific seawater samples.

258

261 **Fig. 3. Background Pacific Hydrography and Isotopic Composition.** A.) Salinity (blue),
 262 temperature (red), and oxygen (green) profiles at Station ALOHA where "Pacific" samples were
 263 collected. B.) $\delta^{18}\text{O}$ profile of seawater samples taken at ALOHA station (blue diamonds). C.) $\delta^2\text{H}$
 264 profile at station ALOHA (blue diamonds).

265 [Color image intended for 1.5 column width 140 mm, shown at 100% scale]

Depth (m)	$\delta^{18}\text{O}$ ‰	$\delta^{18}\text{O}$ σ	$\delta^2\text{H}$ ‰	$\delta^2\text{H}$ σ	Temperature (°C)	Salinity (PSU)	Dissolved O ₂ (μM)
5	0.67	0.13	6.6	0.12	25.437	34.74	206.3
5	0.87	0.05	7.9	0.12	25.437	34.74	206.3
5	0.84	0.04	7.7	0.08	25.437	34.74	206.3
15	0.83	0.10	7.8	0.26	25.442	34.74	205.4
25	0.87	0.09	7.9	0.18	25.448	34.74	205.4
35	0.83	0.07	7.8	0.09	25.450	34.74	205.4
45	0.79	0.09	7.5	0.20	25.451	34.74	205.6
60	0.75	0.12	6.7	0.20	25.454	34.74	205.2
75	0.61	0.11	6.2	0.11	25.243	34.77	204.9
85	0.58	0.12	5.9	0.18	24.652	34.90	208.4
90	0.60	0.11	5.8	0.19	24.223	34.93	209.8
110	0.38	0.07	4.5	0.11	22.818	34.91	201.8
125	0.38	0.06	4.2	0.05	22.249	34.98	197.1
130	0.37	0.14	4.0	0.23	21.837	35.02	197.2
150	0.39	0.18	4.1	0.39	20.581	35.03	193.0
165	0.33	0.17	4.0	0.26	19.652	34.99	194.5
175	0.30	0.08	4.1	0.29	19.186	34.97	195.9
200	0.36	0.08	4.2	0.17	18.452	34.91	197.7
430	0.35	0.05	4.1	0.15	8.119	34.05	148.8
500	0.22	0.13	3.4	0.17	7.188	34.13	84.3
700	0.43	0.11	4.2	0.15	5.439	34.34	34.7
750	0.28	0.13	3.6	0.15	5.282	34.38	37.1
1000	0.22	0.10	3.5	0.12	4.316	34.49	47.1
1020	0.37	0.06	4.0	0.17	4.253	34.49	47.9
1200	0.22	0.06	3.4	0.14	3.711	34.52	53.5
1400	0.23	0.07	3.4	0.15	3.167	34.55	60.6
1600	0.24	0.09	3.5	0.11	2.834	34.57	68.5
1800	0.21	0.06	3.5	0.18	2.486	34.60	77.2
2000	0.13	0.08	3.5	0.41	2.270	34.61	85.0
2200	0.13	0.11	3.4	0.20	2.040	34.62	92.3
2400	0.09	0.10	3.4	0.28	1.870	34.64	100.4
2600	0.36	0.07	3.6	0.08	1.756	34.64	106.3
2800	0.09	0.05	3.6	0.15	1.676	34.65	112.4
3200	0.06	0.06	3.6	0.09	1.542	34.67	127.1
3600	0.04	0.05	3.5	0.09	1.482	34.68	139.1
4000	0.10	0.06	2.8	0.11	1.467	34.68	146.6
4200	-0.09	0.19	2.9	0.20	1.479	34.68	148.7
4400	-0.02	0.03	2.9	0.11	1.494	34.68	149.9
4500	-0.07	0.01	1.6	0.11	1.498	34.68	150.9
4600	-0.11	0.03	1.4	0.17	1.503	34.68	152.0
4800	-0.29	0.03	-1.9	1.55	1.513	34.69	153.7

Table 1. Background Pacific Isotopic Measurements and Hydrographic Data. $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values from station ALOHA along with standard hydrographic data collected via CTD. Data collected from HOT cruise 318.

Type	Sample ID	Depth (m)	Latitude	Longitude	$\delta^{18}\text{O}$ ‰	$\delta^{18}\text{O}$ σ	$\delta^2\text{H}$ ‰	$\delta^2\text{H}$ σ	Fluid T. ^{1,2} (°C)	Background Seawater ^{2,3}			Sample Notes
										T. (°C)	Salinity (PSU)	Diss. O ₂ (μM)	
Crater Floor Vents	NA100-089	1267	18.90555	-155.25698	-0.09	0.02	-0.3	0.05	38.7	4.203	34.48	51.4	M38
	NA100-022	1271	18.90559	-155.25694	-0.19	0.02	0.5	0.13	39.0	3.861	34.53	50.8	M34
	NA100-088	1272	18.90562	-155.25688	0.13	0.01	1.5	0.10	40.4	4.008	34.49	51.7	M34
	NA100-021	1299	18.90644	-155.25691	-0.06	0.03	1.8	0.20	23.0	3.850	34.52	50.5	M31 Upper
Crater Rim Vents	NA100-055	1179	18.90876	-155.25746	0.11	0.02	1.9	0.11	11.0	3.729	34.52	52.6	M2 Lower
	NA100-062	1186	18.90132	-155.25811	0.42	0.04	1.8	0.07	11.5	3.708	34.51	53.8	M57
Chimlet Area	NA100-091	1262	18.90555	-155.25698	0.26	0.03	2.8	0.10	3.8	3.769	34.50	51.8	
	NA100-092	1263	18.90555	-155.25697	0.22	0.01	2.7	0.07	3.8	3.784	34.50	51.7	
	NA100-090	1265	18.90555	-155.25698	0.41	0.05	3.4	0.10	15.0	3.819	34.50	51.5	
Caldera seawater	NA100-012	1012	18.90601	-155.25778	0.22	0.01	2.6	0.17	4.211	4.211	34.51	51.1	Above caldera
	NA100-047	1066	18.90619	-155.25765	0.19	0.03	2.5	0.17	4.059	4.059	34.50	47.4	Inside caldera
	NA100-048	1155	18.90697	-155.25807	0.24	0.01	2.8	0.20	3.849	3.849	34.51	49.7	Inside caldera
	NA100-013	1175	18.90655	-155.25846	0.28	0.03	4.9	0.30	3.836	3.836	34.54	51.5	Inside caldera
	NA100-014	1200	18.90621	-155.25825	0.06	0.03	1.8	0.35	3.834	3.834	34.53	45.7	Inside caldera
	NA100-049	1241	18.90698	-155.25806	0.18	0.01	2.6	0.20	3.805	3.805	34.52	50.7	Inside caldera
	NA100-015	1254	18.90621	-155.25834	0.09	0.02	2.4	0.13	3.830	3.830	34.53	50.4	Inside caldera
	NA100-050	1274	18.90695	-155.25804	0.44	0.03	5.1	0.05	3.814	3.814	34.52	50.8	Inside caldera
	NA100-016	1275	18.90650	-155.25786	0.79	0.00	6.2	0.10	3.881	3.881	34.53	50.5	Inside caldera
	NA100-051	1296	18.90711	-155.25788	0.18	0.02	3.1	0.04	3.828	3.828	34.52	51.8	Inside caldera
	NA100-017	1298	18.90654	-155.25784	0.65	0.04	6.4	0.40	3.843	3.843	34.53	50.5	Inside caldera
	NA100-018	1319	18.90691	-155.25737	1.15	0.01	6.5	0.03	3.841	3.841	34.53	50.5	Inside caldera
	NA100-052	1320	18.90722	-155.25745	0.53	0.01	5.2	0.08	3.851	3.851	34.52	51.7	Inside caldera
Background	NA100-058	1086	18.92385	-155.25903	0.29	0.038	3.7	0.08	4.041	4.041	34.50	48.5	Outside caldera

¹Fluid temperature measurements reading for Crater Floor, Crater Rim, and Chimlet samples were taken with a high temperature thermocouple probe (Fornari et al., 1997).

²Temperature measurements readings for "Caldera seawater" samples and temperature and salinity measurements for background seawater samples were taken with a Seabird Scientific 49 FastCat CTD.

³Dissolved oxygen measurements were made with an Aanderaa 3830 optode.

Table 2. Isotopic Measurements of Kama'ehuakanaloa Fluids and Hydrographic Data. $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of Kama'ehuakanaloa fluid samples with corresponding fluid temperature measurements and local background hydrography data collected with ROV mounted sensors. For "Crater Floor", "Crater Rim", and "Chimlet" samples the fluid temperatures were measured at the inlet of the sampling system and represent temperatures of hydrothermal fluid exiting the vent. "Caldera seawater" water-column fluid temperatures were measured with a Sea-Bird FastCAT 39 mounted to the ROV. Sample notes identify focused vent names and for the "Caldera seawater" samples whether the samples were collected inside the caldera or above the caldera rim. In the case of focused vent sampling, the background seawater hydrography measurements represent the seawater the vent fluid is discharged into. In the case of the water-column measurements, the background hydrography measurements and fluid measurements are synonymous.

Type	Vent Sample	T. (°C)	Mg (mmol/kg)	Cl (mmol/kg)
Crater Floor Vents	M38	38	52.1	544
	M34	41	51.5	545
	M34	41	51.5	545
	M31 Upper	31	52.2	544
Crater Rim Vents	M2 Lower	22	52.7	542
	M57	17	54.5	539
Pele's Pit Seawater			52.7 ¹	539

¹Pele's Pit bottom seawater Mg concentration (Rouxel et al., 2018).

Table 3. Kama'ehuakanaloa Fluid Magnesium and Chloride Concentrations. Mg and Cl concentrations of Kama'ehuakanaloa fluid samples with corresponding fluid temperature measurements (Milesi et al., 2023). These values are based on samples and data collected during the same cruise (NA100) as the $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values in this study. Synoptic bottom seawater Mg from Pele's Pit were not available, and instead is referenced from measurements made on samples collected in 2007 (Rouxel et al., 2018).

287 4. Discussion

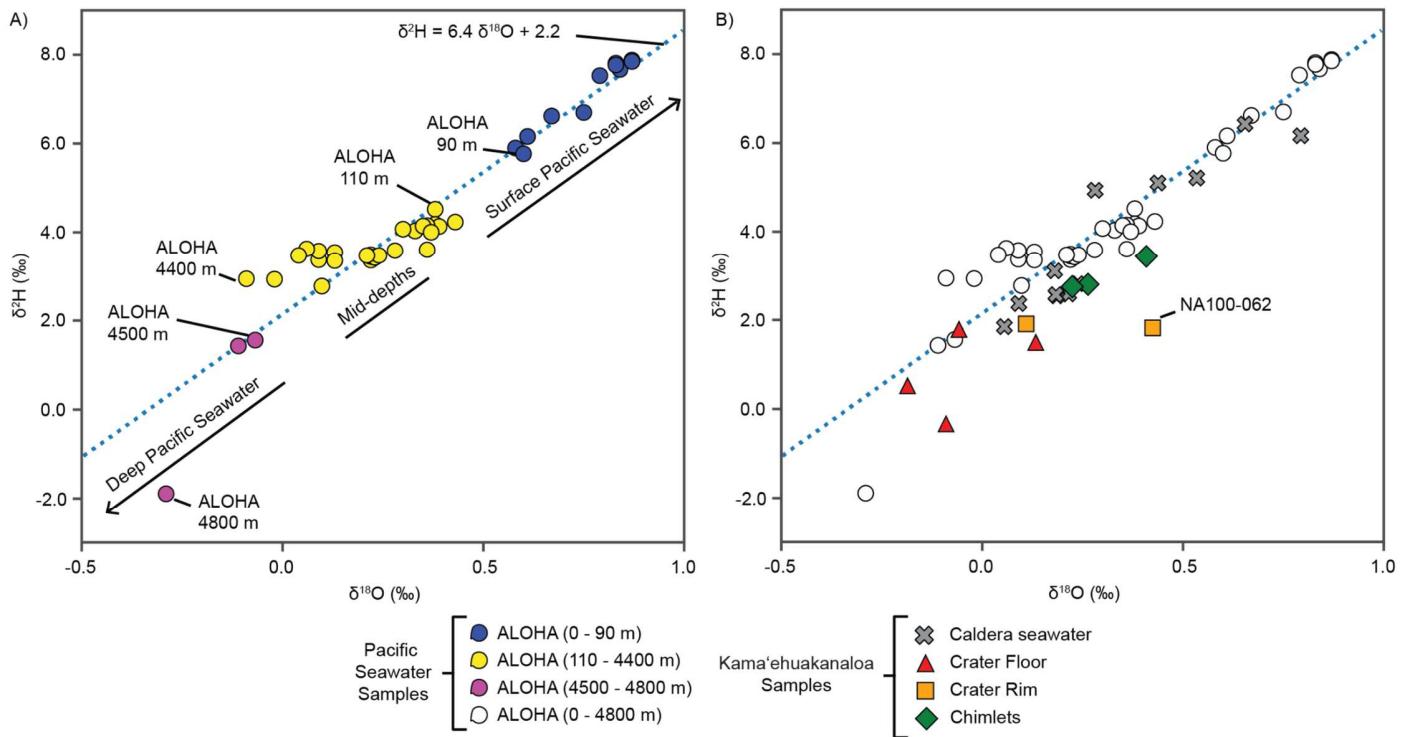
288 The stable isotopes of oxygen and hydrogen in water are fractionated as a result of processes
 289 occurring throughout the hydrosphere including phase changes and water-rock reactions
 290 (Bowers and Taylor, 1985; Chase and Perry, 1972; Craig, 1961). The isotopic structure we
 291 observe in the Pacific water-column is an illustration of the cumulative effect of these
 292 fractionation processes on the ocean (Fig. 3 & Fig. 5a). Measurements from numerous mid-
 293 ocean ridge systems globally have shown that high-temperature vent fluids are typically
 294 enriched in ^{18}O relative to ambient seawater and that these fluids are a source of ^{18}O to the
 295 oceans (Jean-Baptiste et al., 1997). Less widely reported, measurements of ^2H in high-
 296 temperature hydrothermal systems also show enrichments relative to seawater in most cases
 297 (Campbell et al., 1988; Jean-Baptiste et al., 1997; Shanks et al., 1995). For these reasons, we
 298 anticipated that Kama'ehuakanaloa vent fluid samples would exhibit isotopically enriched values
 299 relative to ambient seawater at the depth of Pele's Pit. Instead, the opposite was observed - the
 300 Caldera Floor vents were isotopically lighter in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than ambient Pacific
 301 seawater at the same depth. Notably, however, the hydrothermal system at Kama'ehuakanaloa
 302 seamount is quite distinct from the hydrothermal systems that have been investigated more
 303 frequently at mid-ocean ridges. First, the Kama'ehuakanaloa hydrothermal vent fluid
 304 temperatures observed in this study are low, 40°C or less, and representative of a decades long
 305 trend to cooler vent fluids from the maximum of 200°C observed soon after the most recent
 306 volcanic eruptions at Kama'ehuakanaloa in 1996 (Wheat et al., 2000). Second, the Mg, Cl, Na,
 307 sulfate, and K of Kama'ehuakanaloa vent samples are close to that of seawater (Karl et al.
 308 1988; Rouxel et al. 2018; Milesi et al., 2023); vent fluid chemistries from samples collected at

309 the time of this study are reported in Milesi et al. (2023) and the Mg and Cl values are included
310 in Table 3 for reference. Third, Kama'ehuakanaloa, as an intraplate seamount, has a far steeper
311 bathymetric profile across its subsurface hydrothermal flow path than is the case for mid-ocean
312 ridge systems. Mid-ocean ridge systems, therefore, do not necessarily provide suitable analog
313 systems for understanding $\delta^{18}\text{O}$ and $\delta^2\text{H}$ compositions of vent fluids at Kama'ehuakanaloa.

314 Among the four groups of fluids, we observed at Kama'ehuakanaloa, six of the “Caldera
315 seawater” samples (Table 2. NA100-013, NA100-016, NA100-017, NA100-018, NA100-050,
316 NA100-052) stand out for being isotopically heavier in either or both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than
317 ambient Pacific seawater at the depth of Pele's Pit; while the “Crater Floor” vent samples stand
318 out for being isotopically lighter in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than ambient Pacific seawater at
319 the same depth. Taken at face value, the heaviest “Caldera seawater” samples appear
320 consistent with what observations and models predict for high-temperature mid-ocean ridge
321 vent fluid $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values (Bowers and Taylor, 1985). However, when also compared to
322 high-temperature vent fluids, the “Crater Floor” samples exhibit $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values that are
323 lighter than expected. So our results indicate multiple subsurface fluid transport pathways and
324 histories. In one set of samples, the “Crater Floor” vents, we observe isotopic compositions well
325 below what we expect from previous models. In another, the heavy “Caldera seawater”
326 samples, we observe isotopic compositions more consistent with Mid-Ocean Ridge models but
327 located in the water-column at 8 m to 37 m above the caldera floor and not clearly attributable to
328 any currently known seafloor sources. In other sets of samples, the “Crater Rim” and “Chimlet”
329 vents, we observe compositions indicative of subsurface mixing of the “Crater Floor” and
330 “Caldera seawater” fluid types or representative of only partial modification by subsurface
331 processes that proceed further in other systems, or modification by subsurface processes where
332 the initial recharging seawater is isotopically lighter in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than ambient
333 Pacific seawater at the depth of Pele's Pit. In fact, the isotopic composition of the “Caldera
334 Floor”, “Caldera Rim”, “Chimlet”, and “Caldera seawater” samples stand out more in comparison
335 to that of Pacific Ocean seawater at the same depth (Fig. 4a&b) than they do to the general
336 relationship between seawater $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values in this region (Fig. 5b). Figure 5 shows that
337 the isotopic composition of “Crater Floor”, “Crater Rim”, “Chimlet” and “Caldera seawater”
338 samples generally follow the Pacific seawater $\delta^{18}\text{O}$ and $\delta^2\text{H}$ trend line, except that for all the
339 “Crater Floor”, “Crater Rim”, and “Chimlet” samples, there is a consistent offset toward lower
340 $\delta^2\text{H}/\text{higher } \delta^{18}\text{O}$ values. “Crater Rim” sample NA100-062 falls furthest away from the general
341 trend line. Collectively, these observations suggest that Kama'ehuakanaloa differs from mid-
342 ocean ridge systems in either or both of the following: (A) processes occurring within the
343 hydrothermal system modify the isotopic composition of entrained seawater, and/or (B) the
344 initial isotopic composition of the entrained seawater. Below, we discuss the water-rock
345 reactions, mantle contributions, and water-microbial mat reactions that may explain our
346 observations (*section 4.1*); and then provide our assessment of the relative importance of these
347 processes at Kama'ehuakanaloa (*section 4.2*). Section 4.3 will discuss the isotopic sources that
348 constrain our samples.

349

350 *4.1. Hydrothermal processes that can influence oxygen and hydrogen isotopic ratios in*
351 *seawater*


352 *Water-rock reactions:* The isotopic composition of seawater entrained into hydrothermal flow
353 systems are modified by water-rock reactions therein, but the temperatures within the flow
354 system are a key control on the result. Bowers and Taylor, (1985) developed a detailed
355 thermodynamic model of the reactions between seawater and basalt and their influence on the
356 isotopic composition of vent fluids at 21°N East Pacific Rise (EPR). The temperatures that occur
357 along the hydrothermal flow path are important controlling parameters that determine the
358 isotopic results of the process. In the case of $\delta^{18}\text{O}$, the model results indicate that temperatures
359 must be sustained $>300^\circ\text{C}$ for much of the hydrothermal flow path for water-rock reactions to
360 result in ^{18}O enrichment of the fluid. Moreover, if temperatures in the hydrothermal flow path are
361 $<250^\circ\text{C}$, alteration minerals may instead become enriched in ^{18}O while the fluid becomes
362 depleted. In the case of $\delta^2\text{H}$, the model results indicate that ^2H enrichment of the fluid occurs at
363 all temperatures. However, Bowers and Taylor, (1985) only explicitly modeled reaction paths
364 with temperatures $>100^\circ\text{C}$. At lower reaction temperatures the kinetics of the water-rock
365 reactions become progressively slower and their influence less pronounced. Bowers and Taylor,
366 (1985) also concluded that the water-rock ratio is an important related factor influencing the
367 resulting isotopic composition of the fluid, where lower water-rock ratios, typically associated
368 with higher temperatures, increase water-rock reactions and result in greater enrichments in
369 both isotopic ratios. If subsurface temperatures in the hydrothermal flow path are great enough
370 for phase separation, then the isotopic composition of the hydrothermal fluid may be further
371 fractionated between vapor and liquid phases (e.g., Von Damm et al., 1997). However, there is
372 no indication of phase separation currently occurring at Kama'ehuakanaloa; vent temperatures
373 are low and vent fluid chloride concentrations are typical of seawater (Table 3; Karl et al. 1988;
374 Rouxel et al. 2018; Milesi et al., 2023). At Kama'ehuakanaloa, lower temperatures over the
375 course of the hydrothermal flow system could significantly reduce the enrichment of both ^{18}O
376 and ^2H relative to that observed at typical mid-ocean ridge systems. Lo'ihi, being a low
377 water:rock system, i.e. ≥ 1 (Milesi et al., 2023), then water-basalt reactions could have a
378 negligible effect on the isotopic composition of fluids at Kama'ehuakanaloa. Further, if the
379 temperature of the flow system is $<250^\circ\text{C}$ then the $\delta^{18}\text{O}$ of the fluid could actually be reduced
380 relative to the entrained seawater, even while the $\delta^2\text{H}$ is enriched (Bowers and Taylor, 1985).
381 An analogous modeling approach by Böhlke and Shanks, (1994) reached similar conclusions to
382 Bowers and Taylor, (1985) regarding the influence of seawater-basalt reactions on vent fluid
383 isotopic composition.

384 *Mantle Contributions:* The isotopic composition of fluid within hydrothermal flow systems can
385 also be modified by the addition of magmatic water with distinct isotopic compositions.
386 Boettcher and O'Neil, (1980) estimated the isotopic composition of deep mantle-derived water
387 to have $\delta^{18}\text{O}$ values between $+5\text{‰}$ and $+5.9\text{‰}$ and $\delta^2\text{H}$ values between -58‰ and -79‰ based
388 on an analysis of kimberlites and xenoliths. The addition of magmatic water to seawater
389 circulating through a hydrothermal flow system would, therefore, tend to increase $\delta^{18}\text{O}$ values
390 while simultaneously decreasing $\delta^2\text{H}$ values from the initial seawater isotopic composition
391 (Shanks et al., 1995). As shown in Fig.5b there is no evidence of any such trend in the Lo'ihi

392 samples, with the possible exception of “Crater Rim” sample NA100-062. This may seem
393 surprising since recent GEOTRACES investigations have revealed, Kama‘ehuakanaloa to be a
394 significant source of mantle-derived ${}^3\text{He}$ to the Pacific Ocean (Jenkins et al., 2020 and refs
395 therein). This apparent dichotomy may be explained by the observation of Dixon and Clague
396 (2001) that while Kama‘ehuakanaloa basalts exhibit some of the highest known ${}^3\text{He}/{}^4\text{He}$
397 anomalies globally, their water content is relatively low. Further, the solubility, in basalt, of water
398 is greater than that of He to the extent that the input of He is likely dominated by degassing
399 deep below the seafloor, while water in seafloor basalt lavas at the summit of
400 Kama‘ehuakanaloa is still undersaturated at that depth (Dixon and Clague, 2001).

401 *Water-Microbial interactions:* Kama‘ehuakanaloa is sufficiently different from other hydrothermal
402 systems that other less characterized processes may also influence the isotopic composition of
403 its fluids. In particular, Kama‘ehuakanaloa’s caldera is notable for pronounced microbially
404 mediated iron-oxide deposits associated with the Fe-rich vent fluids surrounding rocky
405 hydrothermal orifices (Breier et al., 2012; Edwards et al., 2011; Emerson and Moyer, 2002;
406 Glazer and Rouxel, 2009; Rouxel et al., 2018). Another possibility, therefore, is that these biotic
407 iron mineral forming mats, or analogous subsurface deposits, may influence the isotopic
408 composition of waters at Kama‘ehuakanaloa. Ferrihydrite is the primary iron mineral in
409 Kama‘ehuakanaloa mats (Toner et al., 2012). While we did not find ${}^{18}\text{O}$ and ${}^2\text{H}$ isotope
410 fractionation factors specific to ferrihydrite in our review of the literature, we did for laboratory-
411 derived isotope fractionation factors for other iron-oxides. Specifically, evidence from laboratory-
412 abiotic synthesis experiments for hematite, akaganeite, and goethite precipitates indicate the
413 ${}^{18}\text{O}$ isotope fractionation factor for iron minerals is inversely related to temperature, and typically
414 results in a ${}^{18}\text{O}$ enrichment of the fluid, of 1‰ to 2‰, over a studied temperature range of 35°C
415 to 140°C, and can transition to a decrease in fluid ${}^{18}\text{O}$ values at temperatures $< 35^\circ\text{C}$ (Bao and
416 Koch, 1999). The ${}^2\text{H}$ fractionation factor for goethite has been found to be 0.9 and invariant with
417 temperature indicating ${}^2\text{H}$ enrichment in the fluid phase (Yapp, 2001; Yapp and Pedley, 1985).
418 The fluid temperatures at the “Crater Floor” and “Crater Rim” vents (~11 to 40°C) suggest that
419 iron mineral-fluid isotopic exchange could occur at a range of temperatures for which fluid ${}^{18}\text{O}$
420 values could either be reduced or enriched, but that fluid ${}^2\text{H}$ values may only be enriched. There
421 is, however, insufficient information to quantify this potential influence. It has not been observed
422 in a natural setting to our knowledge; and the differences between the chemistry, kinetics,
423 microbiology, and physical environment at Kama‘ehuakanaloa and the laboratory experiments
424 just described are substantial. In addition, the laboratory experiments are conducted in sterile
425 environments to not accommodate for microbial fractionation, further contrasting to
426 Kama‘ehuakanaloa where Fe-oxides are a product of microbial interactions. This is a point that
427 deserves further study and perhaps specifically at Kama‘ehuakanaloa.

428

431 **Fig. 5. Trends in Pacific Seawater Composition Compared to Kama'ehuakanaloa**

432 **Samples.** A.) The isotopic composition of Pacific seawater at station ALOHA follows a linear
 433 trend (dashed blue line) with lighter isotopic $\delta^{18\text{O}}$ and $\delta^{2\text{H}}$ values as depth increases. B.) The
 434 isotopic composition of “Crater Floor”, “Crater Rim”, “Chimlet” and “Caldera seawater” samples
 435 generally follow this same trend, with the caveats that (i) all “Crater Floor”, “Crater Rim”, and
 436 “Chimlet” samples fall on or below the Pacific seawater trend line, and (ii) they typically differ in
 437 composition of Pacific seawater from the same depth.

438 [Color image intended for double column width 190 mm, shown at 100% scale]

440 *4.2. Processes that influence oxygen and hydrogen isotopic ratios in seawater at*
 441 *Kama'ehuakanaloa*

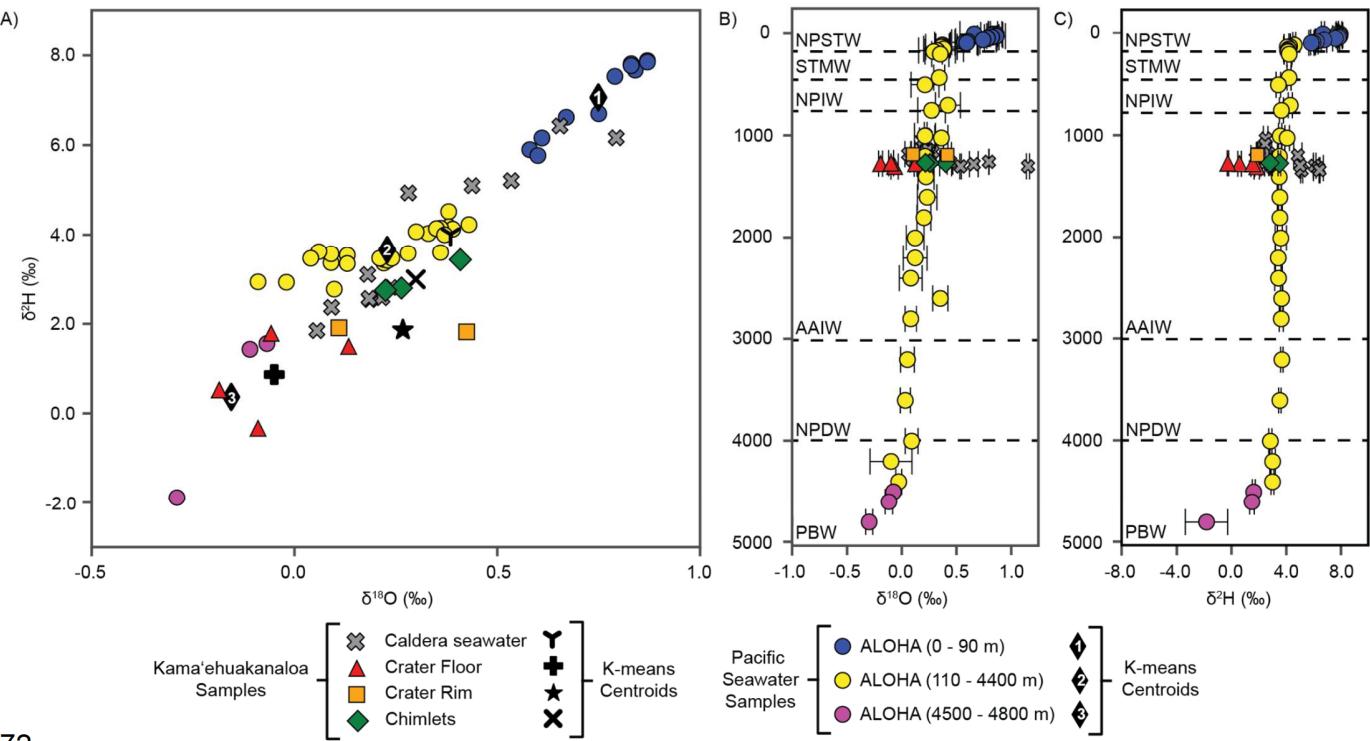
442 The observation that at least six “Caldera seawater” samples from within Pele’s Pit are
 443 isotopically heavier than ambient seawater from the same depth initially appears consistent with
 444 previous observations at high-temperature hydrothermal systems. However, such an
 445 interpretation appears to conflict with the measurements we have made from the vent-fluids
 446 collected from the vent-sites that we have identified and sampled to date, located at the base of
 447 the caldera wall in the SE corner of Pele’s Pit and also from vents associated with the north and
 448 south rims of the crater (Table 2, Fig. 4). Specifically, the isotopically heavy “Caldera seawater”

449 samples cannot be explained by simple mixing between these *known* vent-site samples and
450 Pacific seawater from depths of 500-1500 m, all of which are isotopically lighter. What we do
451 note, however, is that these heavy "Caldera seawater" samples were collected from above the
452 seafloor toward the deepest central portion of the Pele's Pit crater, at heights of 8-45m off-
453 bottom and at lateral distances of ≥ 70 m inward, away from the base of the crater wall where the
454 crater-floor vent-sites are located and were sampled. As such, they would not be expected to be
455 entrained into any plume that rises above the more focused venting seen in the vicinity of the
456 Spillway region and could, instead, reflect separate inputs from the central crater floor, whether
457 from additional vents, yet to be located, that lie more directly above the underlying magmatic
458 chamber or akin to the ultra-diffuse venting observed percolating through microbial mat
459 deposits on the deep outer flanks of Kama'ehuakanaloa seamount (Edwards et al., 2011; Rouxel
460 et al., 2018). To produce such an isotopic anomaly at these elevations above the seafloor, at
461 least one of the end-member isotopic values of the fluids, or the net fluid flux, or both, would
462 have to be large relative to the fluxes of the isotopically lighter vent fluid samples. Moreover,
463 the discharge temperatures would also presumably be relatively low. For perspective on the
464 implications, we can establish some constraints on the potential fraction of vent fluid in these
465 samples with a simple mixing model between seawater, using a value of $\delta^{18}\text{O} = 0.2\text{\textperthousand}$ for Pacific
466 seawater between 1300 m and 1200 m (Table 2), the $\delta^{18}\text{O}$ values of these "Caldera seawater"
467 samples, and an assumed source vent fluid. For this, we will start with the assumption that
468 "Caldera seawater" sample NA100-018, with the heaviest $\delta^{18}\text{O}$ value of $1.15\text{\textperthousand}$, taken at a depth
469 of 1319 m within 1 m of the caldera floor, is most reflective of the unknown vent fluid $\delta^{18}\text{O}$
470 composition. With that assumption, then "Caldera seawater" sample NA100-016, with a $\delta^{18}\text{O}$
471 value of $0.79\text{\textperthousand}$, taken at a depth of 1275 m and elevation of 45 m above the caldera floor,
472 would include a vent fluid fraction of 62% using equation 1, where $\delta^{18}\text{O}_{\text{mix}} = 0.79\text{\textperthousand}$, $\delta^{18}\text{O}_{\text{sw}} =$
473 $0.20\text{\textperthousand}$, and $\delta^{18}\text{O}_{\text{vf}} = 1.15\text{\textperthousand}$. More likely, the vent fluid $\delta^{18}\text{O}$ value would be greater than that of
474 NA100-018, already 1 m above the seafloor; if double that of NA100-018, then the vent fluid
475 fraction present in sample NA100-016 would reduce to 28%. Regardless, if these heavy
476 "Caldera seawater" samples are the result of mixing with vent fluid then these would be very
477 high vent fluid fractions at such elevations above the seafloor when compared to the buoyant
478 plumes of mid-ocean ridge "black smokers" and would, instead, be more consistent with large,
479 distributed flows of water exiting the seafloor and heterogeneous mixing. High flows of this
480 nature would be reminiscent of the discharge from the meters wide orifice at the spire of the Von
481 Damm hydrothermal mound on the Mid-Cayman rise, the plume of which undergoes relatively
482 little dilution in the first 8 m (e.g., $77\text{ }^{\circ}\text{C}$ at 1 m plume elevation, $18\text{ }^{\circ}\text{C}$ at 8 m plume elevation:
483 Breier et al. 2014). Alternatively, these heavy isotopic values may reflect the influence of water-
484 mineral reactions such as those just discussed, which may be most detectable in the deepest
485 part of Pele's Pit where limited mixing and the influence of iron-oxide formation may be most
486 pronounced. More data from the water-column and microbial mat interstitial waters within and

487 around Pele's Pit is needed to better understand what produces the isotopically heavy "Caldera
488 seawater" samples.

489 The isotopic exchange processes that may occur at Kama'ehuakanaloa tend to enrich one or
490 both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ relative to the recharge source. However, the Kama'ehuakanaloa "Crater Floor"
491 samples are isotopically lighter in both $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values than ambient Pacific seawater at
492 the depth of Pele's Pit. We cannot rule out that a combination of the isotopic exchange
493 processes just discussed could produce these fluids, but that would seem to require an unlikely
494 scenario of (i) magmatic volatile contributions large enough to cause a light $\delta^2\text{H}$ anomaly,
495 coupled with (ii) a thermal history sufficiently low in temperature that water-rock reactions
496 negate the otherwise positive $\delta^{18}\text{O}$ magmatic volatile influence. We have insufficient information
497 to constrain whether this could quantitatively result in the observed "Crater Floor" isotopic
498 values. However, those values *can* be readily explained by a Pacific Deepwater recharge
499 source only slightly modified in isotopic composition, if at all. Given the observed Pacific Ocean
500 isotopic structure, only deep Pacific seawater (>4500m) would be sufficiently light in both $\delta^{18}\text{O}$
501 and $\delta^2\text{H}$ to account for the "Crater Floor" vent-fluid isotopic compositions reported here. In this
502 case, isotopic exchange processes may well occur to some extent during hydrothermal
503 circulation, and this would be in keeping with the downward shift of most Kama'ehuakanaloa
504 samples relative to the Pacific Ocean $\delta^{18}\text{O}$ vs $\delta^2\text{H}$ trend shown in Fig. 5b. This could also
505 suggest that the low fluid temperatures observed in the "Crater Floor" vents, which were all
506 40°C or less, reflect a fluid thermal history where neither subseafloor residence times, nor
507 temperatures were ever sufficient to strongly modify the isotopic composition of the
508 hydrothermal fluid. More specifically, the model of Bowers and Taylor (1985) suggests the fluids
509 discharged from the "Crater Floor" vents may not have exceeded 300°C. However, if the
510 recharge source lies at the greatest depths sampled here (4800 m) with $\delta^{18}\text{O} = -0.29\text{\textperthousand}$ and $\delta\text{H} = -1.9\text{\textperthousand}$, then the isotopic composition could be modified by hydrothermal processes and still
512 result in the "Crater Floor" vent isotopic compositions.

513 Milesi et al. (2023) reported a fuller geochemical analysis of the vent fluids sampled during this
514 same cruise and reaction path modeling of the subsurface reactions influencing the "Crater
515 Floor" vent fluids. The findings of Milesi et al. (2023) are also consistent with multiple flow paths.
516 Given the multiple isotopic groupings observed in this study, we recommend that future studies
517 treat each vent grouping as distinct, perform a full chemical intercomparison and analysis of the
518 fluids, and further investigate the extent of diffuse flow venting within the caldera. We also note
519 that our observations represent only an instance in time. Geologically active submarine hotspots
520 may exhibit volcanic eruptive cycles on timescales that are as short as decades (e.g., German
521 et al., 2020; Staudigel et al., 2006; Wheat et al., 2000). It would be very interesting to know the
522 short- and long-term variability of the isotopic composition of the vent fluid and the water within
523 the caldera. Over the eruptive cycles of the volcano, the relative importance of the processes
524 controlling the isotopic composition of the vent fluid are sure to vary and may provide some
525 indication of changes within the system. For now, we will focus on the conclusion that the
526 isotopic composition of Kama'ehuakanaloa "Crater Floor" samples predominantly reflects the
527 $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values of recharging seawater sourced from the deep Pacific.


528 For the remainder of the discussion, we assume that the “Crater Floor” isotopic values are the
529 result of deep Pacific seawater recharge. In that case, then the fact that these
530 Kama’ehuakanaloa vent fluids are isotopically light relative to ambient seawater, in contrast to
531 mid-ocean ridge vent fluids that are typically isotopically heavy, is a consequence of a recharge
532 path that is influenced by the much steeper bathymetry of this intraplate volcano relative to mid-
533 ocean ridges. From the caldera floor in Pele’s Pit at a depth of 1320 m, Kama’ehuakanaloa’s
534 flank descends to abyssal plain depths of 5000 m over a lateral distance of just 20 kilometers. In
535 comparison, starting from the 9° 50' N EPR axial ridge axis (2,500 m deep), seafloor depths of
536 5000m are not reached until distances of several hundred kilometers off-axis, at a minimum. It is
537 much further until the EPR ridge flank broadly transitions to depths of 5,000 m. From recharge
538 to discharge, a hydrothermal subsurface flow cell that is on the order of 20 kilometers in lateral
539 offset is entirely consistent with findings from previous studies of subseafloor hydrogeologic
540 processes associated with seafloor venting (e.g., Fisher et al., 2003; Wheat and Fisher, 2008;
541 Tsuji et al., 2012); but in most mid-ocean ridge settings the distance to recharge depths that are
542 significantly deeper and isotopically distinct from discharge depths is likely prohibitive.

543 *4.3. Isotopic source constraints on hydrothermal recharge*

544 Figure 4 shows the linear relationship between $\delta^{18}\text{O}$ and $\delta^2\text{H}$ for the ALOHA station samples.
545 Figure 4 also illustrates how these samples group with the depth of known water masses in this
546 region of the Pacific, specifically: North Pacific Subtropical Water (NPSTW), Subtropical Mode
547 Water (STMW), North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW),
548 North Pacific Deep Water (NPDW), and Pacific Bottom Water (PBW). NPSTW extends from the
549 surface to 200 m and STMW from 200 m to 500 m (Cannon, 1966; Masuzawa, 1972;
550 McCartney, 1982). In the intermediate depths, NPIW extends from 500 m to 800 m and then
551 transitions to AAIW which extends to 3000 m (Sverdrup et al., 1942; Talley, 1993; Tsuchiya,
552 1991). In the deepest depths of the Pacific, Lukas and Santiago-Mandujano, (1996) concluded
553 that North Pacific Deep Water (NPDW) occupies a narrower depth range between 3000 m to
554 4000 m. The water mass below 4000 m is described as Pacific Bottom Water (PBW) (Lukas and
555 Santiago-Mandujano, 1996). When grouped by the depth boundaries of these water masses
556 there is relatively little isotopic overlap between the ALOHA station samples because they
557 become monotonically lighter with depth with the exception of one $\delta^{18}\text{O}$ measurement at a
558 depth of 2600 m (Fig. 6, Table 1). The boxplots in Figures 3C & D representing the ALOHA
559 station samples are also grouped by these depth bands.

560 As noted, the $\delta^{18}\text{O}$ and the $\delta^2\text{H}$ values of Kama’ehuakanaloa “Crater Floor” samples are closest
561 in value to the deepest Pacific seawater from >4500 m. We carried out a K-means clustering
562 analysis using the ALOHA dataset and “Crater Floor” samples to show the relationship between
563 the hydrothermal fluid isotopic composition and Pacific water-column isotopic composition. In
564 this analysis, the K-means algorithm grouped the ALOHA station samples into clusters based
565 on the Euclidean distance between individual samples and each cluster centroid in the variable
566 space of $\delta^{18}\text{O}$ and the $\delta^2\text{H}$. Depth was excluded as an explicit variable in the cluster
567 assignments. Three clusters (K=3) were used to group the ALOHA water-column data, because
568 the use of any higher number of clusters resulted in the deepest cluster containing only one
569 sample (Fig. 6). We also calculated the centroid for the “Crater Floor” samples and determined

570 the Euclidean distances between the “Crater Floor” centroid and the three ALOHA cluster
 571 centroids. In Fig. 6,

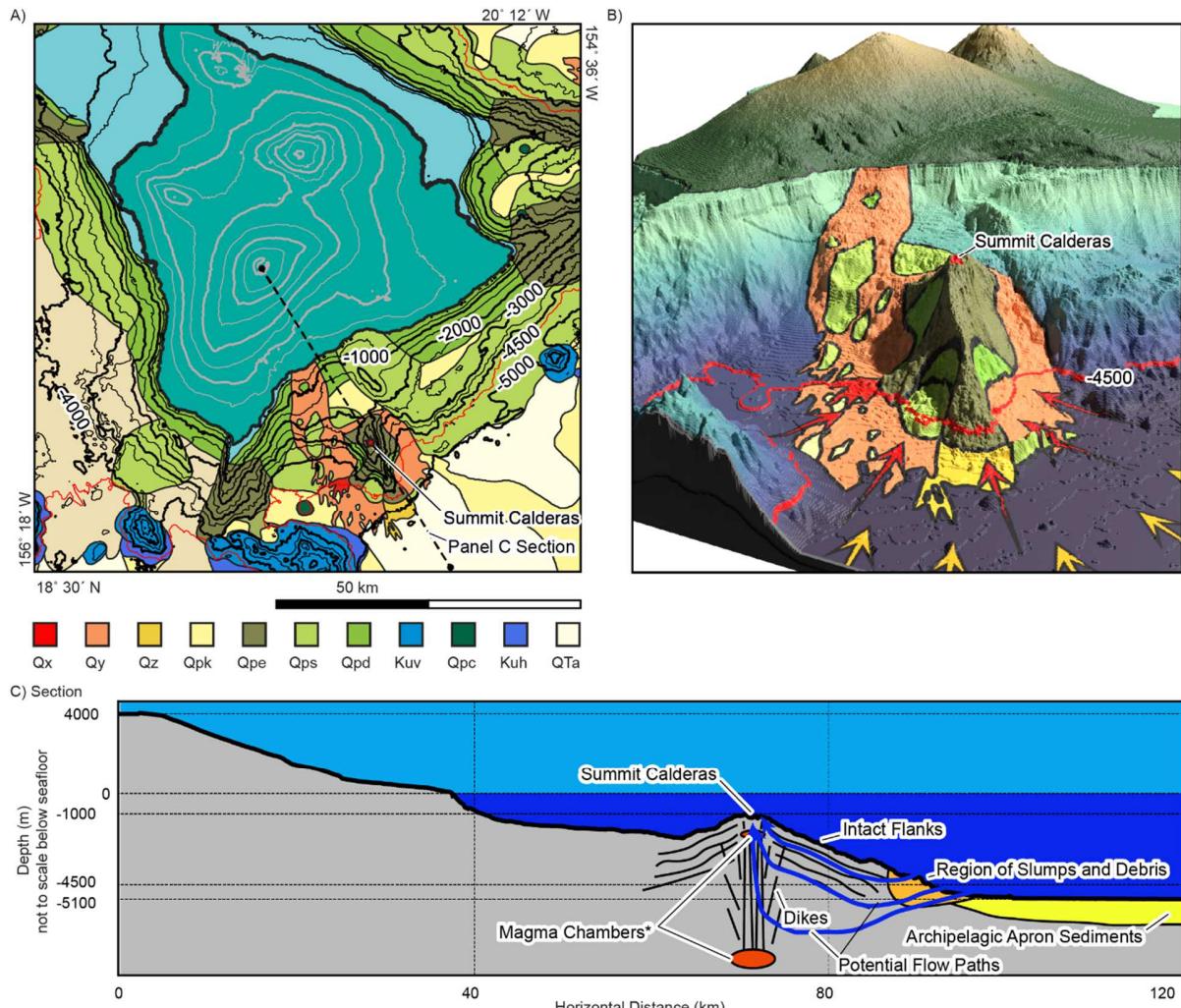
572

573 **Fig. 6. Isotopic Clusters within Kama'ehuakanaloa Fluids and Pacific Seawater. A.)**
 574 Results of K-Means clustering analysis of $\delta^{18}\text{O}$ and $\delta^2\text{H}$ from ALOHA data with a
 575 parameterization of 3 clusters. The “Crater Floor”, “Crater Rim”, and “Chimlet” samples are
 576 superimposed on the ALOHA data to compare the similarity of ^{18}O and ^2H content to ALOHA
 577 samples. B.) The $\delta^{18}\text{O}$ of Kama'ehuakanaloa samples are represented at the corresponding
 578 depths of Pacific water-column samples. “Crater Floor” samples show a negative deviation from
 579 the background Pacific water-column but show similar $\delta^{18}\text{O}$ to the deepest Pacific
 580 measurements. The “Caldera seawater” samples exhibit more enriched $\delta^{18}\text{O}$ than Pacific water-
 581 column samples. C.) The $\delta^2\text{H}$ of Kama'ehuakanaloa samples are shown at corresponding
 582 depths of Pacific water-column $\delta^2\text{H}$ measurements. Compared to the Pacific water-column
 583 samples, “Crater Floor” samples trend to lighter values while “Caldera seawater” samples trend
 584 to heavier values. B. and C.) Horizontal dashed lines show regional water mass delineations.

585 [Color image intended for double column width 190 mm, shown at 100% scale]

586

587 the “Crater Floor” samples are shown superimposed on the ALOHA dataset, illustrating that the
 588 “Crater Floor” centroid falls closest to the deepest ALOHA cluster centroid with a Euclidean
 589 distance of 0.5, as opposed to the next closest ALOHA station cluster centroid with a Euclidean
 590 distance of 2.8. This suggests that the “Crater Floor” hydrothermal fluid samples are most
 591 similar to the deepest (>4500 m) Pacific water samples from ALOHA Station. Therefore, we


592 conclude that seawater discharging from the Kama'ehuakanaloa "Crater Floor" vents originates
593 as Pacific Bottom Water (PBW) from an ocean depth >4500 m that is then discharged ~3500 m
594 shallower at the summit of Kama'ehuakanaloa seamount. Further, based on our isotopic data,
595 this deep Pacific seawater appears undiluted by mixing with any shallower Pacific Ocean water
596 prior to discharge from the Kama'ehuakanaloa vent-sites.

597 The "Crater Rim" and "Chimlet" vents, and some "Caldera seawater" samples, have isotopic
598 values heavier than the "Crater Floor" vents. These samples do not cluster with the isotopic
599 composition of deep Pacific seawater (Fig. 4). This may reflect the influence of isotopic
600 modification processes, including water-rock reactions, on the composition of the same deep
601 Pacific seawater. It may also reflect an overall shallower depth of recharge for these fluids or
602 subsurface mixing of seawater from different depths along the seamount flank. In the case of
603 the heavy "Caldera seawater" samples isotopic modification processes do appear to be
604 necessary to explain the isotopic values, which would otherwise only be similar to Pacific
605 seawater from depths too shallow to mix with these samples.

606 We expected individual vent fluid isotopic compositions to indicate some combination of
607 subsurface isotopic modification, and entrainment and mixing of seawater through the seamount
608 flank over a greater depth range. And this may be the case for the "Crater Rim", "Chimlet", and
609 some of the "Caldera seawater" samples. However, for the "Crater Floor" samples, that does not
610 appear to be the case. These samples appear to illustrate how the seamount provides a natural
611 conduit that siphons Pacific Bottom Water up from the base of the seamount through its
612 hydrothermal flow system and discharges that water at the depth of Pele's Pit into the much
613 shallower depth range of Pacific intermediate waters. This interpretation appears to be
614 consistent with the bathymetry of the seamount and the nature of the seafloor comprising it. The
615 base of the seamount is in the depth range of 4500 to 5000 m and the geologic interpretation of
616 sidescan sonar by Holcomb et al., (2004) indicates that the base of Kama'ehuakanaloa in this
617 depth range consists of lava fields and slumps as opposed to intact flanks. Figure 7 illustrates
618 both the regional geological context and the distribution of lava fields, intact flanks, slumps, and
619 areas of debris around Kama'ehuakanaloa in detail. Any recharge through seafloor deeper than
620 4500 m would entrain isotopically light seawater. However, away from the immediate base of
621 the seamount the seafloor transitions to sedimented abyssal seafloor at all depths >5000m,
622 covered by fine debris, the archipelagic apron, and ultimately marine sediments. The potential
623 flow-path for recharge through this distal zone is depicted in Figure 7 using yellow arrows. Flow
624 through this path is anticipated to be low, due to low hydraulic conductivity controlled by the
625 sediment cover unless cross-cutting faulting is present (e.g., Tsuji et al. 2012). In contrast, the
626 lava fields and slumps that comprise the base of Kama'ehuakanaloa's flanks are expected to
627 contain a high concentration of fractures and conduits resulting in areas of relatively high
628 hydraulic conductivity where seawater can more readily recharge the hydrothermal flow
629 network. This potential flow-path is depicted in Figure 7 using red arrows. Such recharge could
630 represent the start of a family of flow paths that pass through the Kama'ehuakanaloa subsurface
631 hydrothermal flow network and thereby produce the diverse range of fluids observed at the
632 summit. One of these flow paths appears to rise through the volcano with relatively little isotopic
633 alteration to be discharged at the "Crater Floor" vents.

634 Thus, our studies present a novel mechanism for vertical ocean mixing in which lithospheric
635 thermal energy has the potential to transport seawater upwards of 3200 m in the ocean. This
636 could represent a hydrothermally driven short-circuit in ocean mixing that could not occur at
637 mid-ocean ridges, but may be common to all intra-plate seamounts, not just those associated
638 with hot-spot systems of the kind investigated here. The speciation of Fe in the
639 Kama'ehuakanaloa plume, which allows it to be dispersed over long distances, is an active area
640 of research. This study helps inform the processes that must contribute to setting the export flux
641 from Lo'ihi to the surrounding ocean. As noted, Kama'ehuakanaloa's flank descends to 5000 m
642 in 20 km, whereas the shallow slopes of mid-ocean ridges, away from transform faults, require
643 100s to 1000s of km to reach similar depths. Hydrothermal flow through inactive seamounts,
644 driven by lithospheric heat, has been proposed previously based on heat flow and sediment
645 porewater observations (Wheat et al., 2019). Our data illustrates a lithospheric heat-driven
646 hydrothermal flow system in an active volcano, based on a different and independent set of
647 parameters: the isotopic composition of the vent fluid and seawater.

648 Kama'ehuakanaloa is an active hot-spot related volcano with sufficient heat and hydrothermal
649 discharge to distribute helium-3 and iron across long spatial scales within the Pacific (Jenkins et
650 al., 2020; Lupton, 1996). In fact, the modeling results of Jenkins et al. (2020) predict the
651 dispersal and circulation of Kama'ehuakanaloa hydrothermal iron through the upper layers of
652 the north Pacific, even into the shallow northwest Pacific. While the number of similar active hot-
653 spot volcanoes is limited, the thermal power of these submarine volcanoes and the shallow
654 depths at which their hydrothermal systems discharge give them the potential to influence
655 marine geochemical budgets in a particularly effective manner. Our results provide particular
656 insights into where seawater is entrained into the Kama'ehuakanaloa hydrothermal circulation
657 system but may also be relevant to numerous other topographic basement features across the
658 ocean floor including island arc and intra-plate seamounts, not just ocean island hotspots.

659
660 **Fig. 7. Geological Context of Kama'ehuakanaloa Seamount with Potential Recharge**
661 **Zones.** A.) Regional geological interpretation from Holcomb et al., (2004): Qx, Qy, and Qz are
662 lava fields of strong, intermediate, and weak sonar backscatter; QpK are fine debris avalanche
663 areas; Qpe are intact flanks; Qps are slumps; Qpd are debris flanks; Kuv and Qpc are large and
664 small volcanoes; Kuh is volcanic terrain; and QTa is archipelagic apron. Bathymetry is from
665 Ryan et al., (2009); contours are at 500 m intervals. B.) Our results suggest recharge to the
666 Kama'ehuakanaloa hydrothermal system is primarily occurring below 4500 m (indicated by the
667 red line of bathymetry), which intersects the base of Kama'ehuakanaloa where it is surrounded
668 by lava fields (Qx, Qy, and Qz) and slumps (Qps). This potentially creates a region of higher
669 hydraulic conductivity where recharge is more probable, and that possibility is depicted here
670 with red arrows. Recharge through deeper seafloor is also possible and is depicted by yellow
671 arrows. C.) This section through Kama'ehuakanaloa (corresponding to section line shown in
672 panel A) illustrates how recharge to the hydrothermal flow system may be preferentially guided
673 through the zone of slumps and debris at the base of the seamount and follow different flow
674 paths through the volcano. *Note depth, size, and number of magma chambers and locations of

675 dikes and flank layers are for conceptual illustration only actual internal details are not known to
676 this degree and may differ.

677 [Color image intended for double column width 190 mm, shown at 100% scale]

678 **5.0 Conclusions**

679 Our observations suggest that hydrothermal fluids at Kama'ehuakanaloa follow multiple different
680 subsurface transport pathways that span a range of thermal trajectories. In particular, the (i)
681 isotopically heavy "Caldera seawater" samples and the (ii) isotopically light "Crater Floor"
682 samples stand out with respect to ambient Pacific seawater at the depth of Pele's Pit. The
683 isotopically heavy "Caldera seawater" samples are predominantly from the caldera's deepest
684 depths, but no seafloor endmember with similar isotopic composition was found. Therefore, we
685 infer there may be additional sources of hydrothermal discharge within the caldera, potentially
686 diffuse, that represent the primary hydrothermal component within those samples. In contrast,
687 isotopic exchange processes do not appear sufficient to explain the light $\delta^{18}\text{O}$ and $\delta^2\text{H}$ isotopic
688 values of the "Crater Floor" fluids. Instead, we conclude that the isotopic composition of the
689 "Crater Floor" fluids primarily reflects the isotopic composition of the recharge source, which
690 appears to be Pacific Bottom Water from depths below 4500 m. Flow of this kind would
691 represent a previously unrecognized, hydrothermally driven, mechanism driving vertical mixing
692 in the deep ocean that may be repeated wherever similarly pronounced basement topographic
693 features arise.

694

695 **Acknowledgments**

696 This work was supported by NASA Planetary Science and Technology Through Analog
697 Research (PSTAR) Program (NNH16ZDA001N-PSTAR) grant (16-PSTAR16_2-0011) to DSSL
698 and NOAA-OER grant #NA17OAR0110336 with additional support to JAB from NSF grants
699 OCE-1636510, OCE-1851208, and OCE-1924508 and to CRG from NASA Astrobiology grant
700 #80NSSC19K1427. The NOAA Educational Partnership Program with Minority-Serving
701 Institutions Cooperative Agreement Award #NA16SEC4810009 also provided support to JAB
702 and BAA; the contents of this article are solely the responsibility of the authors and do not
703 necessarily represent the official views of the U.S. Department of Commerce, National Oceanic
704 and Atmospheric Administration. This research used samples provided by the Ocean
705 Exploration Trust's Nautilus Exploration Program, Cruise NA100. We would like to thank the
706 cruise expedition Leader N. Raineault, the ROV Hercules/Argus team, and the crew of the E/V
707 Nautilus for their assistance while at sea. This publication is based upon preliminary Hawaii
708 Ocean Time-series observations supported by NSF grant OCE-1756517. We would like to thank
709 the cruise leader C. Funkey and crew of the R/V Kilo Moana for their assistance while at sea.
710 We would also like to thank an anonymous reviewer, and the Editor for their constructive
711 suggestions. This is SUBSEA publication SUBSEA-2020-003.

712

713

714 **Author Contributions**

715 EC: Methodology, Formal Analysis, Investigation, Data Curation, Writing - Original Draft, Writing
716 - Review & Editing, Visualization; BA: Investigation CG: Field Program implementation,
717 Investigation, Writing - Review & Editing, Funding acquisition; DL: Investigation, Writing -
718 Review & Editing, Project Administration, Funding acquisition; JB: Conceptualization,
719 Methodology, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision,
720 Project administration, Funding acquisition

721 **Declaration of Competing Interests**

722 The authors declare they have no competing interests.

723

724 **References**

725 Anantharaman, K., Breier, J.A., Dick, G.J., 2016. Metagenomic resolution of microbial functions
726 in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. *ISME J.* 10,
727 225–239. <https://doi.org/10.1038/ismej.2015.81>

728 Bao, H., Koch, P.L., 1999. Oxygen isotope fractionation in ferric oxide-water systems: low
729 temperature synthesis. *Geochim. Cosmochim. Acta* 63, 599–613.
730 [https://doi.org/10.1016/S0016-7037\(99\)00005-8](https://doi.org/10.1016/S0016-7037(99)00005-8)

731 Boettcher, A.L., O'Neil, J.R., 1980. Stable isotope, chemical, and petrographic studies of high-
732 pressure amphiboles and micas: evidence for metasomatism in the mantle source regions
733 of alkali basalts and kimberlites. *Am. J. Sci.* 280, 594–621.

734 Böhlke, J.K., Shanks, W.C., III, 1994. Stable isotope study of hydrothermal vents at Escanaba
735 Trough: Observed and calculated effects of sediment-seawater interaction. In: J.L. Morton,
736 R.A. Zierenberg, C.A. Reiss (Eds.), *Geologic, Hydrothermal, and Biologic Studies at*
737 *Escanaba Trough, Gorda Ridge, Offshore Northern California*, U.S. Geological Survey
738 *Bulletin 2022*, pp. 223–240.

739 Bowers, T.S., Taylor, H.P., 1985. An integrated chemical and stable-isotope model of the origin
740 of Mid-ocean Ridge Hot Spring Systems. *Journal of Geophysical Research*.
741 <https://doi.org/10.1029/jb090ib14p12583>

742 Breier, J.A., Sheik, C.S., Gomez-Ibanez, D., Sayre-McCord, R.T., Sanger, R., Rauch, C.,
743 Coleman, M., Bennett, S.A., Cron, B.R., Li, M., German, C.R., Toner, B.M., Dick, G.J.,
744 2014. A large volume particulate and water multi-sampler with in situ preservation for
745 microbial and biogeochemical studies. *Deep Sea Res. Part I* 94, 195–206.
746 <https://doi.org/10.1016/j.dsr.2014.08.008>

747 Breier, J.A., Toner, B.M., Fakra, S.C., Marcus, M.A., White, S.N., Thurnherr, A.M., German,
748 C.R., 2012. Sulfur, sulfides, oxides and organic matter aggregated in submarine
749 hydrothermal plumes at 9°50'N East Pacific Rise. *Geochimica et Cosmochimica Acta*.
750 <https://doi.org/10.1016/j.gca.2012.04.003>

751 Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., Bowers, T.S., Edmond, J.M., Lawrence,
752 J.R., Casey, J.F., Thompson, G., Humphris, S., Rona, P., Others, 1988. Chemistry of hot
753 springs on the Mid-Atlantic Ridge. *Nature* 335, 514–519.

754 Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T., Strauss, H.,
755 2008. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.
756 *Science*. <https://doi.org/10.1126/science.1154499>

757 Cannon, G.A., 1966, December. Tropical waters in the western Pacific Ocean, August–
758 September 1957. In: *Deep Sea Research and Oceanographic Abstracts*, 13(6): 1139–
759 1148, doi: [https://doi.org/10.1016/0011-7471\(66\)90705-4](https://doi.org/10.1016/0011-7471(66)90705-4)

760 Chase, C.G., Perry, E.C., Jr, 1972. The oceans: growth and oxygen isotope evolution. *Science*
761 177, 992–994. <https://doi.org/10.1126/science.177.4053.992>

762 Craig, H., 1961. Isotopic variations in meteoric waters. *Science* 133, 1702–1703.
763 <https://doi.org/10.1126/science.133.3465.1702>

764 Davis, A.S., Clague, D.A., 1998. Changes in the hydrothermal system at Loihi Seamount after
765 the formation of Pele's pit in 1996. *Geology* 26, 399–402.
766 [https://doi.org/10.1130/0091-7613\(1998\)026<0399:CITHSA>2.3.CO;2](https://doi.org/10.1130/0091-7613(1998)026<0399:CITHSA>2.3.CO;2)

767 Dixon, J.E., Clague, D.A., 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. *J. Petrol.* 42, 627–654.
768 <https://doi.org/10.1093/petrology/42.3.627>

769 Duennenbier, F.K., Becker, N.C., Caplan-Auerbach, J., Clague, D.A., Cowen, J., Cremer, M., Garcia, M., Goff, F., Malahoff, A., McMurtry, G.M. and Midson, B.P., 1997. Researchers rapidly respond to submarine activity at Loihi volcano, Hawaii. *Eos*, 78(22), p.229.

770 Edwards, K.J., Bach, W., McCollom, T.M., 2005. Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. *Trends Microbiol.* 13, 449–456.
771 <https://doi.org/10.1016/j.tim.2005.07.005>

772 Edwards, K.J., Glazer, B.T., Rouxel, O.J., Bach, W., Emerson, D., Davis, R.E., Toner, B.M., Chan, C.S., Tebo, B.M., Staudigel, H., Moyer, C.L., 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. *ISME J.* 5, 1748–1758. <https://doi.org/10.1038/ismej.2011.48>

773 Elderfield, H., Schultz, A., 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. *Annual Review of Earth and Planetary Sciences*.
774 <https://doi.org/10.1146/annurev.earth.24.1.191>

775 Emerson, D., Moyer, C.L., 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. *Appl. Environ. Microbiol.* 68, 3085–3093. <https://doi.org/10.1128/aem.68.6.3085-3093.2002>

776 Emery, W.J., 2001. Water types and water masses. In: H. Steele, K.K. Turekian, S.A. Thorpe (Eds.), *Encyclopedia of Ocean Sciences*, Academic Press (2001), pp. 3179–3187

777 Fisher, A.T., Davis, E.E., Hutnak, M., Spiess, V., Zühlendorff, L., Cherkaoui, A., Christiansen, L., Edwards, K., Macdonald, R., Villinger, H., Mottl, M.J., Wheat, C.G., Becker, K., 2003. Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. *Nature* 421, 618–621. <https://doi.org/10.1038/nature01352>

778 Garcia, M.O., Rubin, K.H., Norman, M.D., Michael Rhodes, J., Graham, D.W., Muenow, D.W., Spencer, K., 1998. Petrology and geochronology of basalt breccia from the 1996 earthquake swarm of Loihi seamount, Hawaii: magmatic history of its 1996 eruption. *Bulletin of Volcanology*. <https://doi.org/10.1007/s004450050211>

779 German, C.R., Resing, J.A., Xu, G., Yeo, I.A., Walker, S.L., Devey, C.W., Moffett, J.W., Cutter, G.A., Hyvernaud, O., Reymond, D., 2020. Hydrothermal activity and seismicity at Teahitia Seamount: reactivation of the Society Islands hotspot? *Frontiers in Marine Science* 7, 73. <https://doi.org/10.3389/fmars.2020.00073>

780 German, C.R., Seyfried, W.E., 2014. Hydrothermal Processes. In: H. Elderfield (Ed.), *Treatise on Geochemistry: The Oceans and Marine Geochemistry*, Elsevier/Pergamon, Oxford, <https://doi.org/10.1016/b978-0-08-095975-7.00607-0>

781 Glazer, B.T., Rouxel, O.J., 2009. Redox speciation and distribution within diverse iron-dominated microbial habitats at Loihi Seamount. *Geomicrobiol. J.* 26, 606–622.
782 <https://doi.org/10.1080/01490450903263392>

783 Robinson, J.E., Hamer, M.R., Stevenson, A.J., Lucky, H., Degnan, C.H., Wong, F.L., Holcomb, R.T., 2004. Digital data for maps of Hawaiian Islands exclusive economic zone interpreted from GLORIA sidescan-sonar imagery. *U.S. Geological Survey Scientific Investigations Map 2824*

810 Jaffrés, J.B.D., Shields, G.A., Wallmann, K., 2007. The oxygen isotope evolution of seawater: A
811 critical review of a long-standing controversy and an improved geological water cycle model
812 for the past 3.4 billion years. *Earth-Sci. Rev.* 83, 83–122.
813 <https://doi.org/10.1016/j.earscirev.2007.04.002>

814 Jean-Baptiste, P., Dapoigny, A., Stievenard, M., Charlou, J.L., Fouquet, Y., Donval, J.P.,
815 Auzende, J.M., 1997. Helium and oxygen isotope analyses of hydrothermal fluids from the
816 East Pacific Rise between 17°S and 19°S. *Geo-Marine Letters.*
817 <https://doi.org/10.1007/s003670050029>

818 Jenkins, W.J., Hatta, M., Fitzsimmons, J.N., Schlitzer, R., Lanning, N.T., Shiller, A., Buckley,
819 N.R., German, C.R., Lott, D.E., Weiss, G., Whitmore, L., Casciotti, K., Lam, P.J., Cutter,
820 G.A., Cahill, K.L., 2020. An intermediate-depth source of hydrothermal ^{3}He and dissolved
821 iron in the North Pacific. *Earth Planet. Sci. Lett.* 539, 116223.
822 <https://doi.org/10.1016/j.epsl.2020.116223>

823 Johnson, G.C., Toole, J.M., 1993. Flow of deep and bottom waters in the Pacific at 10 N. *Deep*
824 *Sea Res.* Part I 40, 371–394.

825 Johnson, H.P., Tivey, M.A., Bjorklund, T.A., Salmi, M.S., 2010. Hydrothermal circulation within
826 the Endeavour segment, Juan de Fuca Ridge. *Geochem. Geophys. Geosyst.* 11.

827 Karl, D.M., Brittain, A.M., Tilbrook, B.D., 1989. Hydrothermal and microbial processes at Loihi
828 Seamount, a mid-plate hot-spot volcano. *Deep Sea Res. A* 36, 1655–1673.
829 [https://doi.org/10.1016/0198-0149\(89\)90065-4](https://doi.org/10.1016/0198-0149(89)90065-4)

830 Karl, D.M., McMurtry, G.M., Malahoff, A. and Garcia, M.O., 1988. Loihi Seamount, Hawaii: a
831 mid-plate volcano with a distinctive hydrothermal system. *Nature*, 335(6190), pp.532-535.
832 <https://doi.org/10.1038/335532a0>

833 Kuroda, Y., Suzuoki, T., Matsuo, S., 1977. Hydrogen isotope composition of deep-seated water.
834 *Contrib. Mineral. Petrol.* 60, 311–315.

835 Lin, Y., Clayton, R.N., Gröning, M., 2010. Calibration of $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ of international
836 measurement standards--VSMOW, VSMOW2, SLAP, and SLAP2. *Rapid Commun. Mass*
837 *Spectrom.* 24, 773–776.

838 Lukas, R., Santiago-Mandujano, F., 1996. Interannual variability of Pacific deep- and bottom-
839 waters observed in the Hawaii Ocean Time-series. *Deep Sea Res. Part 2 Top. Stud.*
840 *Oceanogr.* 43, 243–255. [https://doi.org/10.1016/0967-0645\(95\)00103-4](https://doi.org/10.1016/0967-0645(95)00103-4)

841 Lupton, J.E., 1996. A far-field hydrothermal plume from Loihi Seamount. *Science* 272, 976–979.
842 <https://doi.org/10.1126/science.272.5264.976>

843 Masuzawa, J., 1972. Water characteristics of the North Pacific central region. *Kuroshio-Its*
844 *Physical Aspects*, pp.95-127.

845 McCartney, M.S., 1982. The subtropical recirculation of mode waters. *J. Mar. Res.* 40(436),
846 pp.427-464.

847 Milesi, V., Shock, E., Seewald, J., Trembath-Reichert, E., Sylva, S.P., Huber, J.A., Lim, D.S.S.,
848 German, C.R. 2023 Multiple parameters enable deconvolution of water-rock reaction paths
849 in low-temperature vent fluids of the Kama'ehuakanaloa (Lō'ihi) seamount. *Geochim.*
850 *Cosmochim. Acta*, <https://doi.org/10.1016/j.gca.2023.03.013>

851 Neal, C.A., Brantley, S.R., Antolik, L., Babb, J.L., Burgess, M., Calles, K., Cappos, M., Chang,
852 J.C., Conway, S., Desmither, L., Dotray, P., Elias, T., Fukunaga, P., Fuke, S., Johanson,
853 I.A., Kamibayashi, K., Kauahikaua, J., Lee, R.L., Pekalib, S., Miklius, A., Million, W., Moniz,

854 C.J., Nadeau, P.A., Okubo, P., Parcheta, C., Patrick, M.R., Shiro, B., Swanson, D.A.,
855 Tollett, W., Trusdell, F., Younger, E.F., Zoeller, M.H., Montgomery-Brown, E.K., Anderson,
856 K.R., Poland, M.P., Ball, J.L., Bard, J., Coombs, M., Dietterich, H.R., Kern, C., Thelen,
857 W.A., Cervelli, P.F., Orr, T., Houghton, B.F., Gansecki, C., Hazlett, R., Lundgren, P.,
858 Diefenbach, A.K., Lerner, A.H., Waite, G., Kelly, P., Clor, L., Werner, C., Mulliken, K.,
859 Fisher, G., Damby, D., 2019. The 2018 rift eruption and summit collapse of Kīlauea
860 Volcano. *Science* 363, 367–374. <https://doi.org/10.1126/science.aav7046>

861 Paulmier, A., Ruiz-Pino, D., 2009. Oxygen minimum zones (OMZs) in the modern ocean.
862 *Progress in Oceanography*, 80(3-4), pp.113-128.
863 <https://doi.org/10.1016/j.pocean.2008.08.001>

864 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
865 Prettenhofer, P., Weiss, R., Dubourg, V., Others, 2011. Scikit-learn: Machine learning in
866 Python. *The Journal of Machine Learning Research* 12, 2825–2830.

867 Rison, W., Craig, H., 1983. Helium isotopes and mantle volatiles in Loihi Seamount and
868 Hawaiian Island basalts and xenoliths. *Earth Planet. Sci. Lett.* 66, 407–426.
869 [https://doi.org/10.1016/0012-821X\(83\)90155-3](https://doi.org/10.1016/0012-821X(83)90155-3)

870 Rouxel, O., Toner, B., Germain, Y., Glazer, B., 2018. Geochemical and iron isotopic insights
871 into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. *Geochim.
872 Cosmochim. Acta* 220, 449–482. <https://doi.org/10.1016/j.gca.2017.09.050>

873 Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.A.,
874 Ferrini, V., Goodwillie, A., Nitsche, F., Others, 2009. Global multi-resolution topography
875 synthesis. *Geochem. Geophys. Geosyst.* 10.

876 Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment; the stable
877 isotope perspective. *Econ. Geol.* 88, 733–752.

878 Sedwick, P.N., McMurtry, G.M. and Macdougall, J.D., 1992. Chemistry of hydrothermal
879 solutions from Pele's vents, Loihi Seamount, Hawaii. *Geochimica et Cosmochimica Acta*,
880 56(10), pp.3643-3667. [https://doi.org/10.1016/0016-7037\(92\)90159-G](https://doi.org/10.1016/0016-7037(92)90159-G)

881 Shanks, W.C., Boehlke, J.K., Seal, R.R., Humphris, S.E., 1995. Stable isotopes in mid-ocean
882 ridge hydrothermal systems: Interactions between fluids, minerals, and organisms.
883 *Geophysical Monograph-American Geophysical Union* 91, 194–194.

884 Staudigel, H., Hart, S.R., Pile, A., Bailey, B.E., Baker, E.T., Brooke, S., Connelly, D.P., Haucke,
885 L., German, C.R., Hudson, I., Jones, D., Koppers, A.A.P., Konter, J., Lee, R., Pietsch,
886 T.W., Tebo, B.M., Templeton, A.S., Zierenberg, R., Young, C.M., 2006. Vailulu'u
887 Seamount, Samoa: Life and death on an active submarine volcano. *Proceedings of the
888 National Academy of Sciences*. <https://doi.org/10.1073/pnas.0600830103>

889 Sverdrup, H.U., Johnson, M.W. and Fleming, R.H., 1942. *The Oceans: Their physics, chemistry,
890 and general biology* (Vol. 1087). New York: Prentice-Hall.

891 Tagliabue, A., Bowie, A.R., Boyd, P.W., Buck, K.N., Johnson, K.S., Saito, M.A., 2017. The
892 integral role of iron in ocean biogeochemistry. *Nature* 543, 51–59.
893 <https://doi.org/10.1038/nature21058>

894 Talley, L.D., 1993. Distribution and formation of North Pacific intermediate water. *Journal of
895 Physical Oceanography*, 23, pp.517-517.

896 Toner, B.M., Berquo, T.S., Michel, F.M., Sorensen, J.V., Templeton, A.S., Edwards, K.J., 2012.
897 Mineralogy of iron microbial mats from Loihi seamount. *Front. Microbiol.* 3, 118.
898 <https://doi.org/10.3389/fmicb.2012.00118>

899 Tsuchiya, M., 1991. Flow path of the Antarctic Intermediate Water in the western equatorial
900 South Pacific Ocean. *Deep Sea Research Part A. Oceanographic Research Papers*, 38,
901 pp.S273-S279.

902 Walker, S.A., Azetsu-Scott, K., Normandeau, C., Kelley, D.E., Friedrich, R., Newton, R.,
903 Schlosser, P., McKay, J.L., Abdi, W., Kerrigan, E., Craig, S.E., Wallace, D.W.R., 2016.
904 Oxygen isotope measurements of seawater (H218O/ H216O): A comparison of cavity ring-
905 down spectroscopy (CRDS) and isotope ratio mass spectrometry (IRMS). *Limnology and
906 Oceanography: Methods*. <https://doi.org/10.1002/lom3.10067>

907 Wheat, C.G., Fisher, A.T., 2008. Massive, low-temperature hydrothermal flow from a basaltic
908 outcrop on 23 Ma seafloor of the Cocos Plate: Chemical constraints and implications.
909 *Geochem. Geophys. Geosyst.* 9.

910 Wheat, C.G., Hartwell, A.M., McManus, J., 2019. Geology and fluid discharge at Dorado
911 Outcrop, a low temperature ridge flank hydrothermal system. *Geochem. Explor. Environ.
912 Anal.*

913 Wheat, C.G., Jannasch, H.W., Plant, J.N., Moyer, C.L., Sansone, F.J., McMurtry, G.M., 2000.
914 Continuous sampling of hydrothermal fluids from Loihi Seamount after the 1996 event. *J.
915 Geophys. Res., Geophys. Monogr. Ser.* 105, 19353–19367.
916 <https://doi.org/10.1029/2000JB900088>

917 Yapp, C., 2001. Rusty relics of Earth history: Iron (III) oxides, isotopes, and surficial
918 environments. *Annu. Rev. Earth Planet. Sci.* 29, 165–199.

919 Yapp, C.J., Pedley, M.D., 1985. Stable hydrogen isotopes in iron oxides—II. DH variations
920 among natural goethites. *Geochim. Cosmochim. Acta* 49, 487–495.
921 [https://doi.org/10.1016/0016-7037\(85\)90040-7](https://doi.org/10.1016/0016-7037(85)90040-7)

922