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Abstract

The Modern-Era Retrospective Analysis for Research and Application version 2 (MERRA-2) is a well-established reanaly-
sis dataset and is widely used for driving global-scale hydrological models. However, owing to its relatively coarse spatial
resolution (0.5°), the capability of MERRA-2 is repeatedly challenged in regional-scale studies, especially for smaller areas
of interest. In addition, the availability of in situ observation data is a pressing issue for generating meteorological forcing.
We developed a grid-based high spatial (0.125°) and temporal (hourly) resolution meteorological forcing dataset, which can
evaluate hydrological processes in South Korea using state-of-the-art meteorological observations from 1980 to 2020. The
forcing dataset was created by combining Automated Synoptic Observing System (ASOS) in situ measurement data from
the Korean Meteorological Administration and MERRA-2 reanalysis datasets. Five meteorological variables were provided
in the ASOS-MERRA? (precipitation, air temperature, surface pressure, specific humidity, and wind speed). The study
demonstrates that the region-based and high spatial resolution of ASOS-MERRA? is superior to the existing MERRA-2
with improvements of all five weather variables, for example, from 5.6 to 2.8 mm root mean square error of precipitation.
The ASOS-MERRA?2 was more capable of reducing the biases and root mean squared error by improving the coefficient of
determination compared with MERRA-2 for all five variables. The newly developed ASOS-MERRA?2 provides an oppor-
tunity to drive land surface models to evaluate the hydroclimatic conditions in South Korea.

1 Introduction

Comprehensive and reliable meteorological datasets are
essential for driving land surface hydrological models (Fang
et al. 2015; Guo et al. 2018; Raimonet et al. 2017). In addi-
tion, the availability of large-scale, long-term datasets of land
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surface water and energy states is critical for understanding
the global environmental system and water cycle variables
(Chun-Lin and Xin 2011; Moradkhani 2008). The Global
Land Data Assimilation System and the Famine Early Warn-
ing Systems Network Land Data Assimilation System provide
a suite of multi-model and multi weather forcing estimates
of hydro-climate conditions for data-sparse, food-insecure
regions (McNally et al. 2019, 2017; Rodell et al. 2004). As
a continuing effort, the North American Land Data Assimi-
lation System has been implemented to produce substantial
estimates of land surface hydrology (Mitchell et al. 2004). Spe-
cifically, high-quality forcing datasets can be used to identify
the onset and demise of droughts and floods (Dong et al. 2011)
using the land surface model (LSM). Such datasets can also
evaluate historical extreme events and prevent record-setting

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-023-04457-6&domain=pdf

156

K. Lee etal.

disasters in advance by combining effective water resource
management measures with model simulation (Lee
et al. 2017a). However, consistent observations of land sur-
face water and energy budgets are frequently unavailable over
large scales (Sheffield et al. 2006). Thus, the significance of
accurate forcing for large-scale land surface modeling efforts
was established (Berg et al. 2003; Fekete et al. 2004; Nijssen
and Lettenmaier 2004; Sheffield et al. 2004).

Globally, many studies have created several decadal
time series of forcing data, including the variables of
precipitation, temperature, humidity, and radiation at
daily to sub-daily timescales. Most of these products
have been based on reanalysis data such as those pro-
vided by the National Centers for Environmental Predic-
tion—National Center for Atmospheric Research (Kalnay
et al. 1996; Kistler et al. 2001), the European Center for
Medium-Range Weather Forecasts ERA-40 and ERA-15
(Gibson et al. 1997; Uppala et al. 2005), the National
Centers for Environmental Prediction—Department of
Energy (Kanamitsu and Saha 1996), and the National
Aeronautics and Space Administration Global Modeling
and Assimilation Office (Schubert et al. 1993) reanaly-
sis. In addition to these global datasets, a few datasets
have been developed to improve the accuracy of mete-
orological data on a regional scale, such as the Canadian
Land Data Assimilation System (Carrera et al. 2015),
the European Land Data Assimilation System (Jacobs
et al. 2005, 2008), and the China Meteorological Forcing
Dataset (He et al. 2020).

In South Korea, few studies have attempted to develop
reliable meteorological forcings. However, high-resolu-
tion precipitation and temperature data are necessary to
identify detailed spatial drought and flood conditions at a
regional scale. The necessity of the development of forc-
ing datasets and hydrologic model was highlighted to meet
the full potential of regional land surface modeling as
flood and drought monitoring system to provide continu-
ous high-resolution water and energy balance variables in
South Korea (Jung et al. 2019). Korea Land Data Assimila-
tion System (KLDAS) has been established for agricultural
drought (i.e., soil moisture deficit) monitoring in South
Korea (Jung 2021). Soil moisture and evapotranspiration
were calculated throughout South Korea using the KLDAS
of the Korea-Land Surface Information System to monitor
drought (PARK et al. 2021). For instance, the Modern-Era
Retrospective Analysis for Research and Application version
2 (MERRA-2) products can represent most inland areas in
South Korea with an intermediate spatial resolution of 0.5°.
Most recently, Lim et al. (2012) developed meteorologi-
cal forcing data to drive the LSM at each grid point using
analysis-based and observation-based data. The forcing data
consisted of temperature, relative humidity, wind speed, sur-
face pressure, and longwave radiation. They were obtained
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from the 0.5625° Global Data Assimilation and Prediction
System (GDAPS) analysis fields of the Korea Meteorologi-
cal Administration at 6-h intervals. All variables were inter-
polated from the GDAPS grid to 10 km for South Korea. For
example, precipitation was generated using 6-h accumulated
precipitation reports from the World Meteorological Organi-
zation Global Telecommunication System and hourly precip-
itation from the Automatic Weather System over the Korean
Peninsula. Precipitation data were then spatially interpolated
using Shepard’s distance-weighting method (Shepard 1968;
Willmott et al. 1985) for South Korea. However, the forcing
dataset in South Korea is only available for the 5-year period
from 2004 to 2008.

Berg et al. (2003), Ngo-Duc et al. (2005), and Sheffield
et al. (2004) showed that there was great potential and
advantages for using hybrid datasets that combine reanaly-
sis with observation-based datasets to remove biases. This
hybrid approach preserves the consistency and continuity
of the reanalysis. Many studies have developed large-scale,
long-term datasets using a similar hybrid method (Nijssen
et al. 2001; Maurer et al. 2002; Nijssen and Lettenmaier
2004; Livneh et al. 2013). To overcome the current restric-
tion of forcing data availability for South Korea, this study
adopted a hybrid dataset of observations and reanalysis
data.

This paper aimed to create a 41-year (1980—2020)
near-surface meteorological dataset (hereafter called
ASOS-MERRA2) with hourly time scales at 0.125° spatial
resolution. The ASOS-MERRAZ? represents an improve-
ment of the reanalysis dataset (i.e., MERRA-2) in South
Korea. An expected advantage of these newly created forc-
ing data is that they should contain temporal and spatial
characteristics similar to ground-truth meteorological
observations. This study describes the process of creat-
ing ASOS-MERRA? and its validation, including bias and
correlation improvements from the existing MERRA-2.
In addition, comparison statistics are presented, such as
annual, monthly, and daily statistics of precipitation, tem-
perature, pressure, specific humidity, and wind speed from
hourly data. The evaluation was carried out in four major
river basins in South Korea to explore basin-wide charac-
teristics. The key features of the ASOS-MERRA? are its
long period, reliability, high resolution, and continuity of
weather data development.

The remainder of this paper is organized as follows.
Section 2 describes the observation data, and Section 3
explains a method to merge MERRA-2 and ASOS. Sec-
tions 4 and 5 demonstrate the improvement and com-
parison statistics of the ASOS-MERRA?2 in spatial and
temporal scales using the independent stations approach
(He et al. 2020). Finally, Sect. 6 concludes with the
newly developed, locally available forcing dataset and
its potential use for hydrologic modeling.
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2 Data

This section includes the study area, local weather obser-
vations, base meteorological forcing dataset, and a method
to merge the observational and reanalysis datasets to create
a new forcing dataset for South Korea.

2.1 Study area

The study area covers the southern part of the Korean Pen-
insula between 34-38.5°N and 126-130°E. Over 60% of the
domain consists of mixed forests, deciduous broadleaf for-
ests, and woody savannas, whereas 30% is cropland, mainly
in the western and southwestern regions. Urbanized areas
accounted for 5.2% of the domain (Jung et al. 2020; Sur
et al. 2015). This study focused on four major river basins
in South Korea. The national water management framework
has been mainly oriented to the Han River basin (26,000
km?) in the north, Geum River basin (10,000 km?) in the
west, Nakdong River basin (24,000 km?) in the southeast,
and Seomjin-Yeongsan River basin (8,000 km?) in the
southwest of South Korea (Lee and Kim 2007). The geo-
graphical regions of the four major river basins are shown
in Fig. 1. In Section 5, each forcing was analyzed in the dif-
ferent river basins. Figure 1 shows the spatial distribution of
the Automated Synoptic Observing System (ASOS) stations
and the availability of data at each station in South Korea.

2.1.1 ASOS

Automated Surface Observing System units (Gang et al.
2016; In et al. 2014; Kim et al. 2020, 2018; Lee et al.
2017b) are automated sensors designed to serve meteoro-
logical and aviation observational needs (www.weather.
gov/media/asos/). Ninety-four ASOS stations are oper-
ated over the four major river basins by the Korea Mete-
orological Administration in South Korea. Precipitation,
temperature, pressure, relative humidity, and wind speed
observations were collected to generate a forcing dataset,
as described in Section 3. The advantage of the automation
of the surface observations is the reduction or elimination
of direct human involvement in collecting, processing, and
disseminating (transmitting, displaying, and broadcast-
ing) the surface observations. Even though the ASOS is a
highly automated and reliable product, quality control has
been implemented to ensure the automated product is of
a high standard. There are three levels of quality control
for ASOS at different temporal and spatial scales. Level
1 is performed on site in real time before an observation
is transmitted. Level 2 is completed for a designated area,

usually within 2 h of the scheduled observation transmis-
sion time. Level 3 is performed centrally on all aviation
routine weather reports nationwide in South Korea.

2.2 MERRA-2

The MERRA-2 (Gelaro et al. 2017) datasets were used to
provide the underlying dataset for ASOS-MERRA2. The
MERRA-2 is available globally at an hourly and horizontal
resolutions of 2/3° longitude by 1/2° latitude. It was intended
as an intermediate reanalysis dataset, which influences recent
developments at the National Aeronautics and Space Admin-
istration Global Modeling and Assimilation Office (GMAO)
in modeling and data assimilation to provide a milestone for
GMAQO'’s longer-term goal of developing an Integrated Earth
System Analysis. Specifically, the MERRA-2 data product
was used to fill the unmeasured station data from the ASOS.
The detailed process of combining the data of ASOS and
MERRA-2 is described in Section 3.

3 Method of generating ASOS-MERRA2

Even though most ASOS stations have continuous and auto-
mated observations, some data were missing due to opera-
tional issues such as initiation, partial malfunction, and
potential maintenance. About 28% (11.5 out of 41 years on
average) of the data were neither unmeasured nor unavail-
able from ASOS stations, and the corresponding MERRA-2
product was used to fill the missing data gaps. Each grid
cell of ASOS-MERRAZ2 at 0.125° and the contained within
the MERRA-2 cell at 0.5° are the identical. For example,
MERRA-2 cell (38.5N and 129.5E) has value of 1.58 m
of precipitation; the corresponding 16 ASOS-MERRA?2
cells (the combination of 38.3125N, 38.4375N, 38.5625N,
38.6875N and 129.3125E, 129.4375E, 129.5625E,
129.6875E) are also 1.58 m.

The algorithm for creating the new forcing dataset is
shown in Fig. 2. For example, the ASOS station has a 3-h
time series of precipitation from January 1985 to Decem-
ber 2020 (the available period). No data were available
between January 1980 and December 1984 (the missing
period). The first step was to divide the 3-h data into
hourly time series. The next step was to find the corre-
sponding MERRA-2 grid precipitation data for the miss-
ing period. We then combined the missing period with
MERRA-2 and the available period with ASOS in the
continuous time series from January 1980 to December
2020. The output time series from this combination is
referred to as ASOS-MERRAZ2. Once we had a continu-
ous 41-year-long time series at each station, these point
data were spatially interpolated using the inverse distance
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Fig. 1 Four major river basins and 94 Automated Surface Observing System (ASOS) stations (yellow dots) with ASOS availability (blue dots) in
South Korea

weighting method (Shepard 1968) at a grid size of 0.125°.  (RH), the newly developed ASOS-MERRA?2 temperature
The same procedure was applied to the temperature, pres- (T), and pressure (PS). Once we had a continuous time
sure, and wind speed data to generate ASOS-MERRAZ2. series of RH, T, and PS, the calculation of SH by Bolton’s
Exceptionally, the specific humidity (SH) was calculated = method (Bolton 1980) was applied using the following
from both the ASOS and MERRA-2 relative humidity  equations:
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Fig.2 Algorithm for creating the Automated Synoptic Observing System-Modern-Era Retrospective Analysis for Research and Application ver-

sion 2 (ASOS-MERRA?2)
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RH = relative humidity(%)
SH = specific humidity(g/kg)

PS = surface pressure(hPa)

Again, the SH point data were spatially interpolated using
the inverse distance weighting method at a grid size of 0.125°.
The final product of ASOS-MERRA?2 was a gridded dataset
from January 1980 to December 2020 with hourly temporal
resolution. There were 721 ASOS-MERRA?2 grids (0.125°)
that covered the southern part of the Korean Peninsula, while
MERRA-2 only had 65 grids (0.5°) across the same area. The
physical definitions of the variables used are given in Table 1.

4 Validation of ASOS-MERRA2

The most important question is whether the newly generated
ASOS-MERRA? is better than the existing MERRA-2
datasets, which are widely used globally. To test the robustness
of the ASOS-MERRAZ2, the observational data of nine
stations of the 94 stations (about 9.6% of total stations) in
South Korea originally used to create ASOS-MERRA?2 were
intentionally removed, and then the ASOS-MERRA?2 forcing
was regenerated (Fig. 3). These nine stations were selected
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Table 1 Definitions of the variables used in the Automated Synoptic Observing System-Modern-Era Retrospective Analysis for Research and
Application version 2 (ASOS-MERRA?2) forcing data set

Variables Variable name Unit Source

Precipitation P mm ASOS precipitation and MERRA-2 PRECTOTCORR

Temperature T K ASOS temperature and MERRA-2 TLML

Pressure PS hPa ASOS pressure and MERRA-2 PS

Specific Humidity SH g/kg ASOS relative humidity, temperature, pressure, and MERRA-2 QLML
Bolton’s equation

Wind speed u-direction WS, m/s ASOS wind speed, u-direction angle, and MERRA-2 ULML

Wind speed v-direction WS, m/s ASOS wind speed, v-direction angle, and MERRA-2 VLML

Wind speed WS m/s (WSM)Z + (st)z

Fig. 3 Validation of the Auto-

mated Synoptic Observing

System-Modern-Era Retrospec-

tive Analysis for Research and r\
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based on two criteria: (1) at least two stations were selected
within each basin, and (2) those selected stations were at
least 80 km apart to avoid overlapping with other validation-
purpose stations. This validation method was adopted
from the China Meteorological Forcing Dataset (He et al.
2020) and gave us another version of ASOS-MERRAZ2.
Hereafter, the altered version is referred to as ASOS-
MERRA2*, where * stands for the distinction from ASOS-
MERRAZ2. It should also be noted that ASOS-MERRA2*
is not the released version of ASOS-MERRA?2 and is
for validation purposes only. Because the observational
data from the nine removed stations were not involved in
creating the gridded ASOS-MERRAZ2*, they could be used
as independent observations to evaluate the result of the
algorithm of ASOS-MERRAZ2*. The statistical error metrics
of MERRA-2 and ASOS-MERRA2* were calculated on a
daily scale against local observations from the nine stations,
and the results are summarized in Fig. 4. The statistical error
metrics of the ASOS-MERRA2* based on the evaluation at
the nine excluded stations were compared with the gridded
background (MERRA-2) dataset for 1980-2020. To test
whether these two mean values (between MERRA-2 and
ASOS-MERRA-2 data for each variable: precipitation,
air temperature, surface pressure, specific humidity, and
wind speed) were statistically different, two-sample #-test
(Snedecor and Cochran 1989) was implemented with
the null hypothesis that the population mean values were
equal for the two samples. Then we did not reject the null
hypothesis and concluded that the two-population means
were not significantly different at the 0.05 significance level.

For precipitation and temperature, the coefficient of
determination (R?) results for ASOS-MERRA2* were only
slightly improved compared with MERRA-2 data from 1980
to 2020. The mean absolute error (MAE) and root mean
square error (RMSE) of ASOS-MERRAZ2* precipitation
and temperature were lower than the MERRA-2 results.
Although the R? of pressure was somewhat improved from
MERRA-2 to ASOS-MERRA2%*, the MAE and RMSE
were significantly enhanced with closer-to-zero errors. For
specific humidity and wind speed, the overall statistical
error metrics (Rz, MAE, and RMSE) were improved for
ASOS-MERRA2#. The R? of wind speed was the lowest
for both MERRA-2 and ASOS-MERRA2* among the five
forcings. Because the wind speed value in this comparison
was a combination of the wind direction and its magnitude
in both the u- and v-directions, the lower daily R> may be due
to this compound and sensitive estimation. In conclusion,
the algorithm for creating ASOS-MERRA?2 can reduce
biases and improve correlations in the input gridded data
from observations against MERRA-2. Although one
validation set may not be enough to say that this sample
data and results are valid. To support this idea, we have
tested ‘two’ additional sets of validation. A total number

of three different sample datasets was tested in the same
validation method. However, two additional validation sets
showed nearly the same results in comparison against ASOS
ground observation. Since the results were not improved
(or changed), the additional validation comparison was not
included in this chapter.

5 MERRA-2 and ASOS-MERRA2 comparison
5.1 Precipitation

The spatial distribution of precipitation from MERRA-2,
ASOS-MERRA2, and their differences are compared in
Fig. 5. Each grid cell in the top panel indicated a mean
annual total precipitation over 41 years (1980-2020).
The overall amount of ASOS-MERRA?2 precipitation
was greater than that of MERRA-2. The annual total
precipitation (ATP) ranged from 993 to 1631 mm in
ASOS-MERRA2 and 881 to 1583 mm in MERRA-2.
Wetter conditions were found in the Seomjin-Yeongsan
River basin, while the Nakdong River Basin had relatively
dry conditions for both forcings, indicating a recent severe
drought in this basin (Ryu et al. 2002; Yang and Kim
2013). Most regions had more precipitation in the ASOS-
MERRAZ2, except the northern and eastern parts of the
Han River Basin, which had less precipitation. The bottom
panel of Fig. 5 shows the number of rain days (more than
2 mm precipitation per day) per year for each grid cell. The
ASOS-MERRA? forcing had more rain days in the Geum
and Seomjin-Yeongsan River basins, while MERRA-2 had
more rain days in the Nakdong River Basin and the northern
part of the Han River Basin. The ATP and rain days showed
a similar spatial pattern in MERRA-2 and ASOS-MERRA?2,
yet ASOS-MERRA?2 provided more spatially distinctive
patterns with the observation-driven data.

The ATP, monthly mean precipitation, and number of rain
days were calculated for South Korea and the four basins
as a time series (Fig. 6). For the ATP, ASOS-MERRA2
generally had more precipitation than MERRA-2, and
the difference between the two forcings was evident in
the Geum River Basin. In addition to the difference in the
ATP in the Geum River Basin, this basin also did not show
good agreement of the rain days between the two forcings.
Recent reports have addressed the climatic complexity of
the Geum River Basin (Ahn et al. 2018, 2016; Lee et al.
2018), and it appears that ASOS-MERRA?2 successfully
captures the dynamics of precipitation in this basin. South
Korea had high precipitation in summer, which peaked in
July. The four basins had nearly identical monthly cycles of
precipitation. The number of rain days also showed similar
fluctuations and ranges (80-140 days) between MERRA-2
and ASOS-MERRA2.
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Fig.5 Spatial analysis of precipitation using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research
and Application version 2 (ASOS-MERRA2) and MERRA-2, and the

5.2 Temperature

The spatial distribution of the daily mean temperature
from MERRA-2, ASOS-MERRAZ2, and their differences
are compared in Fig. 7. For the top panel, the December-
January-February (DJF) daily mean temperature (ASOS-
MERRA?2) was relatively high along the coastline. The
inland and northern parts of the Han River Basin had cooler
conditions than other areas. This spatial pattern was simi-
lar to the MERRA-2 results. The overall DJF temperature
from MERRA-2 was slightly higher than that of ASOS-
MERRAZ2. The difference in daily temperature between the
two forcings was exceptionally large in the Han River Basin.
The bottom panel shows the June-July—August (JJA) daily
mean temperature. The spatial pattern of the MERRA-2
results from DJF and JJA were similar, while the ASOS-
MERRAZ2 results from winter and summer were clearly dif-
ferent. The higher spatial resolution of the ASOS-MERRA?2
product provided a more detailed spatial pattern of tempera-
ture. Unlike the winter temperature, the overall temperature
in summer was higher in the ASOS-MERRA?2 results.

The annual mean, monthly mean temperature, and diurnal
temperature range (DTR) were calculated for South Korea
and the four basins (Fig. 8). The DTR was calculated from the
difference between the daily maximum and minimum tem-
peratures. This difference was averaged for each month. The

difference between these. To calculate the difference, MERRA-2 grid
(0.5°) was evenly downscaled to match ASOS-MERRA?2 grid resolu-
tion (0.125°)

ASOS-MERRA?2 annual mean temperature was generally
higher than that of MERRA-2, and the difference was primarily
observed in the Han River Basin. However, the difference was
only up to 1.8 K in this basin, and the temperature fluctuations
from both forcings were analogous to each other. The monthly
mean temperatures were nearly identical for ASOS-MERRA?2
and MERRA-2. There were temperature peaks in July and
August in all four basins. The DTR of ASOS-MERRA?2 was
mostly larger than that of MERRA-2 except in summer (JJA).
The ASOS-MERRA? hourly temperature was a more precise
record, while the DTR of MERRA-2 did not demonstrate the
actual range of hourly temperatures. The overall temperature
results were comparable for both forcings within a feasible range.

5.3 Pressure

The comparison of the pressure results was calculated for
monthly and daily time steps (Fig. 9). The spatially averaged
time series of the mean pressure (41 years X 12 months =492)
from MERRA-2 and ASOS-MERRA?2 were compared in a
scatter plot. The least squares line indicated that both forcings
were systematically well matched, but the ASOS-MERRA?2
results were 22.3 hPa (2.24%) higher than MERRA-2 in
South Korea. The Han River Basin had the most consider-
able pressure difference (34.81 hPa; 3.55%) in the monthly
mean pressure and its annual cycle. The winter season had a
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Fig.6 Temporal analysis of precipitation using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research
and Application version 2 (ASOS-MERRA2) and MERRA-2 for all

slightly higher pressure than the summer months. However,
the monthly mean pressure throughout the year ranged up
to 15 hPa in most basins.

The diurnal pressure range (DPR) was calculated from the
difference between the daily maximum and minimum pres-
sures from the hourly pressure data. This difference was aver-
aged for each month. Both forcings had nearly identical DPRs,
and the summer season had a low DPR in all basins. The
pressures from MERRA-2 and ASOS-MERRA?2 were system-
atically biased against each other, but the overall diurnal char-
acteristics from the hourly results were similar. The spatial
analysis of pressure between ASOS-MERRA?2 and MERRA-2
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South Korea and four river basins. The blue line indicates ASOS-
MERRAZ? and the red line indicates MERRA-2

is described in the Appendix fig. 12. The eastern part of South
Korea is a primarily mountainous area (covering Han and
Nakdong Rivers). The surface pressure of the two rivers is
relatively small 981.39 to 995.61 hPa, while other two rivers
(Geum and Seonjin-Youngsan) are 1001.64 to 1003.15 hPa.

5.4 Specific humidity

The specific humidity results were compared for monthly and
daily time steps (Fig. 10). The scatter plot was the spatially
averaged time series of the mean humidity from MERRA-2
and ASOS-MERRA2. Compared with the pressure results,
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Fig.7 Spatial analysis of temperature using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research
and Application version 2 (ASOS-MERRA2) and MERRA-2, and

MERRA-2 and ASOS-MERRAZ2 were close but slightly off from
the least square line. This is because the specific humidity was
calculated from multiple sources (relative humidity, temperature,
and pressure), and Bolton’s equation was not a linear relationship
among the different sources. The ASOS-MERRAZ2 results were
0.99 g/kg (13.45%) higher than those of MERRA-2 in South
Korea. However, unlike the pressure results, both forcings of the
specific humidity were within the same range of 0 to 20 g/kg.
The monthly mean humidity from ASOS-MERRA?2 was
overestimated from January to June in most basins. However,
both forcings had similar annual cycle patterns throughout
the year, with humid summers and relatively dry winters.
For example, the mean humidity in August (15.0 g/kg) was
six times larger than that in January (2.5 g/kg). The diurnal
humidity range (DHR) was calculated from the difference
between the daily maximum and minimum hourly humidity.
In all basins, the DHR from ASOS-MERRA?2 was larger than
that from MERRA-2 every month. The difference in DHR
was captured mainly from April to October when the humid-
ity increased. As a result, the DHR of MERRA-2 flattened
throughout the year. The ASOS-MERRA?2 specific humid-
ity, as a function of the ASOS-MERRA? temperature, was
affected by the more extensive diurnal range of the ASOS-
MERRA?2 temperature. As a result, the specific humidity
from MERRA-2 and ASOS-MERRA?2 was more biased than
the results from pressure, and the overall diurnal features

the difference between these. DJF, December-January—February; JJA,
June-July—August

were different for both forcings. ASOS was site-specific
result; however, MERRA-2 was downscaled from spatially
wide regions. Therefore, ASOS-MERRAZ2 (containing ASOS
results) could provide more sensitive and detailed results of
DHR (Diurnal Humidity Range) than MERRA-2 could. The
existing bias between MERRA-2 and ASOS-MERRA?2 tells
us the importance of site-specific forcing development. The
spatial analysis of humidity between ASOS-MERRA?2 and
MERRA-2 is described in the Appendix fig. 12.

5.5 Wind speed

The wind speed was calculated from the u- and v- directions.
The magnitude of the wind speed in both directions was com-
pared at monthly and daily time steps. The wind speeds from
MERRA-2 and ASOS-MERRA?2 were compared in terms of
the monthly mean using a scatter plot (Fig. 11). The overall
wind speed from MERRA-2 (5.67 m/s) was faster than ASOS-
MERRAZ? (3.21 m/s). Both forcings did not have a good agree-
ment, and the difference was most prominent among different
forcings (pressure and specific humidity). The annual cycle
of the monthly mean wind speed did not vary noticeably
throughout the year. Winter (December and January) wind
speeds were slightly faster than in other months. The diur-
nal wind speed range (DWR) was calculated from the differ-
ence between the daily maximum and minimum wind speeds
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(a) Annual Mean Temperature

(b) Monthly Mean Temperature

(c) Diurnal Temperature Range
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Fig.8 Temporal analysis of temperature using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research
and Application version 2 (ASOS-MERRA?2) and MERRA-2 for all

from the hourly data. Unlike the diurnal range of temperature
and humidity, the DWR of MERRA-2 was larger than that of
ASOS-MERRA2. The DWR was relatively low during the
warmer months (from June to August). The spatial analysis
of wind speed between ASOS-MERRA?2 and MERRA-2 is
described in the Appendix fig. 12.

6 Conclusion
This study describes long-term (41 years) and high-resolu-

tion (hourly and 0.125°) meteorological datasets that can
be used to drive hydrologic models of land surface water
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South Korea and four river basins. The blue line indicates ASOS-
MERRA? and the red line indicates MERRA-2

and energy budgets for South Korea. As the necessity for
accurate estimates of the spatial and temporal variation
in surface hydrology and energy balance is evident, this
regional scale dataset was developed for South Korea,
including, for the first time, recent observations with
quantitative validation. This study is intended to provide
a benchmark weather forcing dataset that combines state-
of-the-art reanalysis products (MERRA-2) with the most
recent meteorological observation-based datasets (ASOS).
This hybrid method has potential applications in record-
lacking regions, such as South East Asia and Africa, where
weather observations are available but for insufficient peri-
ods. Below are point-by-point findings from our analysis:
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Fig.9 Temporal analysis of pressure using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research
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MERRAZ? and the red line indicates MERRA-2

Validations against measured observations show that the
region-based and high spatial resolution data of ASOS-
MERRAZ? are superior (i.e., improved errors and corre-
lations for all five variables) to the existing MERRA-2
data.

ASOS-MERRA? precipitation successfully capture
the recent drought in the Geum River Basin (Ahn et al.
2016; Jung et al. 2020; Ryu et al. 2004) and the precipi-
tation effect due to annual typhoons in the headwaters of

the Han River and Seomjin-Yeongsan River basins (Bae
et al. 2008; Kim et al. 2015).

The diurnal temperature range in ASOS-MERRA?2 was
more sensitive than that of MERRA-2. This is because
ASOS-MERRA?2 avoids the statistical smoothing of
MERRA-2 using locally available meteorological obser-
vations.

The pressure from ASOS-MERRA?2 was slightly higher
(2.24%) than that from MERRA-2, whereas the specific
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Fig. 10 Temporal analysis of specific humidity using Automated
Synoptic  Observing System-Modern-Era Retrospective Analy-
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sis for Research and Application version 2 (ASOS-MERRA?2) and

humidity showed good agreement between the two forc-
ing datasets within the same range of results.

5. Among the five forcing components, wind speed had
the most significant bias, possibly because of the com-
plexity and sensitivity of data collection from the ASOS

network.

Another advantage of ASOS-MERRA?2 is the expecta-
tion of future extensions from the current status. The final

@ Springer

JFMAMJ JASOND
month

MERRA-2 for all South Korea and four river basins. The blue line
indicates ASOS-MERRA2 and the red line indicates MERRA-2

product of the ASOS-MERRAZ2 forcings was a ground
observation-based gridded dataset that can provide more
detailed spatial patterns and diurnal ranges of results. This
new dataset significantly improves the original reanalysis
product (MERRA-2) and can be used for applications and

analytical studies in the hydrological and climatological
sciences in South Korea.

The hydrologic model outputs (i.e., soil moisture and
evapotranspiration) driven by ASOS-MERRA?2 can be used
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Fig. 11 Temporal analysis of wind speed using Automated Synoptic
Observing System-Modern-Era Retrospective Analysis for Research

(b) Monthly Mean Windspeed
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as agricultural drought monitoring tools to improve mete-
orological forcing. The standardized soil moisture index
and standardized precipitation evapotranspiration index
approaches can be applied using the updated meteorologi-
cal inputs and hydrologic variables from the LSM simulated
by ASOS-MERRAZ2. In addition to enhanced agricultural
drought monitoring, the simulated hydrologic model is

(c) Diurnal Windspeed Range
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South Korea and four river basins. The blue line indicates ASOS-
MERRAZ? and the red line indicates MERRA-2

expected to provide valuable information about heat waves
(i.e., temperature and humidity), which directly affect mor-
tality (Kim et al. 2014; Lee et al. 2016; Yeh et al. 2018).
Thus, the LSM simulated by the newly developed ASOS-
MERRA? is expected to produce more reliable long-term
and high spatial-temporal resolution land surface hydrologi-
cal outputs in South Korea.
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Appendix

The spatial distribution of the annual mean pressure,
humidity, and wind speed using the difference between
MERRA-2 and ASOS-MERRA?2 was compared in Fig. 12
in the Appendix. [Pressure] The spatial mean pressure of
ASOS-MERAZ2 was generally higher (22.3 hPa; 2.24%)
than MERRA-2 in South Korea. The difference was sig-
nificantly captured in the inland of the Korean Peninsula.
The Han River Basin had the most considerable pressure
difference (maximum of 65.74 hPa) in the annual mean
pressure. On the other hand, the pressure difference was
not considerable along the coast line. [Humidity] The

spatial mean humidity of ASOS-MERA?2 was generally
higher (0.99 g/kg; 13.45%) than MERRA-2 in South
Korea. The spatial distribution of humidity difference
is likewise in the pressure difference map. The overall
inland had more humid condition for ASOS-MERRA2
than MERRA-2. The maximum humidity differences
(2.01 g/kg) were found in the Han River and the Nakdong
River Basins. [Wind speed] The spatial mean wind speed
of ASOS-MERA2 was generally slower (2.46 m/s) than
MERRA-2 in South Korea. The eastern part showed the
extensive difference, while the southern part of South
Korea had fairly good agreement of wind speed values
between two forcings.
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Fig. 12 Spatial analysis of pressure, humidity, and wind speed using
the difference between Automated Synoptic Observing System-
Modern-Era Retrospective Analysis for Research and Application

version 2 (ASOS-MERRA?2) and MERRA-2. To calculate the differ-
ence, MERRA-2 grid (0.5°) was evenly downscaled to match ASOS-
MERRA2? grid resolution (0.125°)
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