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Abstract Accurately estimating basin-wide snow water equivalent (SWE) is the most important unsolved
problem in mountain hydrology. Models that rely on remotely sensed inputs are especially needed in
ranges with few surface measurements. The NASA Airborne Snow Observatory (ASO) provides estimates of
SWE at 50 m spatial resolution in several basins across the Western U.S. during the melt season. Primarily,
water managers use this information to forecast snowmelt runoff into reservoirs; another impactful use of
ASO measurements lies in validating and improving satellite-based snow estimates or models that can scale
to whole mountain ranges, even those without ground-based measurements. We compare ASO
measurements from 2013 to 2015 to four methods that estimate spatially distributed SWE: two versions of a
SWE reconstruction method, spatial interpolation from snow pillows and courses, and NOAA’s Snow Data
Assimilation System (SNODAS). SWE reconstruction downscales energy forcings to compute potential melt,
then multiplies those values by satellite-derived estimates of fractional snow-covered area to calculate
snowmelt. The snowpack is then built in reverse from the date the snow is observed to disappear. The two
SWE reconstruction models tested include one that employs an energy balance calculation of snowmelt,
and one that combines net radiation and degree-day approaches to estimate melt. Our full energy balance
model, without ground observations, performed slightly better than spatial interpolation from snow pillows,
having no systematic bias and 26% mean absolute error when compared to SWE from ASO. Both
reconstruction models and interpolation were more accurate than SNODAS.

1. Introduction

Accurately estimating basin-wide snow water equivalent (SWE) is the most important unsolved problem in
mountain hydrology [Dozier et al., 2016]. Worldwide, mountain snowmelt supports at least a billion people,
and in the mountains themselves, snowmelt provides soil moisture late into the melt season. The need for
methods that rely on remotely sensed inputs is especially prevalent over the world’s biggest mountain
ranges, where rugged topography and deep snow make extant methods of directly sensing SWE unreliable
[Lettenmaier et al., 2015] and where the heterogeneous distribution of snow causes measurements from sur-
face networks to sometimes misrepresent the surrounding area [Molotch and Bales, 2005]. The need arises,
therefore, to validate measurements and models of spatially distributed SWE with independent estimates of
spatially distributed SWE. The goals of this paper are to construct such a validation chain.

1. The new NASA Airborne Snow Observatory (ASO) provides measurements of snow depth at fine spatial
resolution, and SWE can be derived by multiplying depth by measured or modeled snow density [Painter
et al., 2016]. However, ASO can acquire data only over areas accessible to aircraft, and with spatial cover-
age and temporal frequency limited logistically.

2. SWE reconstruction [Martinec and Rango, 1981] is a promising technique for estimating snow water
equivalent over large basins and whole mountain ranges. It involves building a snowpack in reverse,
from melt-out back to peak accumulation, from estimates of melt energy and snow-covered area. With
improvements in measuring snow-covered area and modeling snowmelt, we show that SWE reconstruc-
tion compares well with measurements from ASO.

Key Points:
� Reconstructed snow water equivalent

is verified with spatial snow
measurements from the Airborne
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� Reconstruction relies only on
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outperformed SNODAS and spatial
interpolation from snow pillows
� Two reconstruction models tested

comprise a full energy balance model
and a net radiation plus degree-day
model
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3. Two other methods of estimating spatially distributed SWE—spatial interpolation from snow pillows
combined with snow-covered area [Fassnacht et al., 2003] and NOAA’s Snow Data Assimilation System
[SNODAS, Barrett, 2003]—are less accurate than reconstruction. Among these two methods, SNODAS is
less accurate than interpolation.

In this study, we validate two versions of a SWE reconstruction model with ASO data acquired from 2013
through 2015 in the upper Tuolumne River Basin in California’s Sierra Nevada. We also validate ASO’s accu-
racy in mapping snow by comparison with WorldView-3 imagery acquired on the same day as an ASO flight
over the Kings River Basin. One reconstruction model uses a full energy balance model to calculate snow-
melt; it uses remotely sensed snow albedo adjusted for light absorbing impurities, it uses accurate daily
MODIS fractional snow-covered area fSCAð Þ from a time-space smoothing method, it accounts for ephemeral
(appears and disappears) snow, and it solves the energy balance for snow surface temperature. The second
reconstruction model implements a net radiation/restricted degree-day approach [Brubaker et al., 1996].

Given the needs outlined, we utilize ASO validation data to illustrate that a model with explicit treatment of
energy balance terms—i.e., snow albedo, fSCA, snow surface temperature—yields accurate basin-wide SWE
estimates. Such reconstructions can be implemented over large areas, with the caveat that the SWE can be
calculated only from the end of the snow season back to the time of peak accumulation.

2. Background

2.1. Airborne Snow Observatory
A new project from NASA’s Jet Propulsion Laboratory, the Airborne Snow Observatory (ASO) provides
basin-wide estimates of snow water equivalent [Painter et al., 2016]. From an airplane with a scanning lidar
altimeter, snow depths are measured as the differences between elevations of snow-free land in the sum-
mer and snow-covered land in the winter and spring. The snow’s spectral properties are concurrently mea-
sured with an imaging spectrometer on the same platform. Using modeled and manually measured snow
density, SWE is modeled as the product of depth 3 density. As standard products, ASO provides snow
depth, SWE, and snow albedo at 3–50 m spatial resolution. These SWE retrievals have been used to provide
operational runoff forecasts that are more accurate than from ground-based measurements alone [McGurk
and Painter, 2014].

Another impactful use of ASO SWE measurements lies in validating and improving satellite-based SWE esti-
mates, which can be used over whole mountain ranges and in austere regions with no ground-based snow
or water data. Further, the ASO data address deficiencies of previously used verification data by offering
SWE at fine spatial resolution. The main source of uncertainty in SWE has been reduced to only snow densi-
ty, which varies 33 less than depth spatially [L�opez-Moreno et al., 2013], but does vary in systematic ways
that may affect the calculation of SWE. Generally, densities are lower at higher elevations and on slopes that
receive less radiation [Wetlaufer et al., 2016].

2.2. SWE Reconstruction
Investigators have employed reconstruction to model SWE in large basins in ranges including the Rocky
Mountains [Molotch and Margulis, 2008; Molotch, 2009; Jepsen et al., 2012] and the Sierra Nevada [Cline et al.,
1998; Guan et al., 2013; Girotto et al., 2014; Rittger et al., 2016]. The main advantage of reconstruction is that
it provides spatially resolved SWE estimates without the need for extensive ground-based observations.
With advances in modern computing, reconstruction can be performed over whole mountain ranges at
high-resolution spanning decades of time. For example, reconstructed estimates of peak SWE for the entire
Sierra Nevada USA at 100 m resolution from 2000 to 2011 are now available [Rittger et al., 2016]. The disad-
vantages are that reconstruction can only be calculated retroactively after snow disappears, that it is only
valid for the melt season, that persistent cloud cover can obscure the snow’s date of disappearance, and
that it is only suitable for areas with little accumulation during the melt season.

Reconstruction models range in spatial resolution from 30 m to 1 km. The tradeoff in spatial resolution is
temporal resolution. For instance, accurate fSCA values at 30 m from Landsat [e.g., Rosenthal and Dozier,
1996] are only available every 16 days, and those days may be cloudy, thereby protracting gaps between
clear acquisitions and increasing model error [Girotto et al., 2014]. In contrast, the Moderate Resolution
Imaging Spectrometer (MODIS) provides global daily coverage, but at �500 m resolution, which is
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inherently less accurate than fSCA at
30 m from Landsat [Rittger et al.,
2013]. Attempts have been made to
harness the strengths of both MODIS
and Landsat with significant improve-
ments in accuracy with inclusion of
the daily MODIS fSCA [Durand et al.,
2008]. Also, with MODIS measure-
ments, snow cover on cloudy days can
be interpolated [Dozier et al., 2008]
and date of melt-out can be deter-
mined more precisely, thereby reduc-
ing a source of error in reconstructed
SWE [Slater et al., 2013].

2.3. Snow Temperature
The snowpack’s loss of energy through
longwave emission depends on its sur-
face temperature. Simple approxima-
tions for the snow surface temperature
are often used [Cline et al., 1998; Jepsen
et al., 2012; Guan et al., 2013; Girotto
et al., 2014]. For example, Molotch
[2009] assumes that the snow surface
temperature equals the average daily
air temperature but constrained to

be no greater than 08C. This questionable assumption leads to incorrect calculations of outgoing long-
wave radiation and imputing melt when the snow is frozen. Analysis of the hourly air and snow surface
temperatures at the Senator Beck Study Plot from 2005 through 2014 [Landry et al., 2014] (data avail-
able at http://www.snowstudies.org/data/] for the months of April through June with snow depth
�0.30 m shows the snow temperature by Molotch’s [2009] method to be too warm by an average of
13.98C, with an average emitted longwave radiation error of 117 W m22. On the other hand, Raleigh
et al. [2013a] recommend using the dew point temperature as the approximation for snow surface tem-
perature. Comparisons with the same data set show that their method yields snow temperatures that
are too cold by an average of 23.78C, with an emitted longwave radiation error of 216 W m22. Our
snowmelt model solves for the snow surface temperature as the equilibrium temperature that balances
the energy exchanges, similarly to validated point energy balance models [Outcalt et al., 1975; Davis
et al., 2001].

2.4. Validation
A goal for this study was to verify the SWE reconstruction in a location where spatially distributed SWE was
estimated by ASO. Verification is a problem with all spatial snow models. Previous reconstruction models
have been verified with point measurements [Guan et al., 2013; Rittger et al., 2016], or interpolated spatially
using regression trees [Cline et al., 1998; Molotch and Margulis, 2008; Molotch, 2009; Girotto et al., 2014]. Veri-
fication using point measurements suffers from scale issues, exacerbated by complex terrain because snow
courses and pillows located on flat ground may not represent snow on the surrounding terrain [Dozier et al.,
2016]. Likewise, regression tree estimates of SWE, which use point data as input, explain only 50% of the
variance in snow accumulation [Molotch and Bales, 2005].

3. Study Areas

3.1. Upper Tuolumne River Basin
The upper Tuolumne River Basin (labeled in Figure 1) is a 1182 km2 basin in Yosemite National Park, Califor-
nia. Elevations range from 1134 m to the summit of Mt. Lyell at 3997 m. Land cover ranges from shrubs and
coniferous forest at the lower elevations to large areas of bare rock at the higher elevations [Homer et al.,
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Figure 1. Elevation of the central and southern Sierra Nevada, with the upper
Tuolumne River Basin, upper Kings River Basin, and CUES labeled.
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2015]. Runoff, primarily from snowmelt, feeds the Hetch Hetchy Reservoir, which provides municipal water
and hydropower for 2.4 million people [Bay Area Water Supply and Conservation Agency, 2015]. We chose
the upper Tuolumne River Basin for the SWE reconstructions because it was the first basin flown by ASO, in
2013, and it has the longest record of ASO measurements.

3.2. Upper Kings River Basin
The snowmelt-dominated upper Kings River Basin (also labeled in Figure 1), with area 1097 km2, lies in the
southern Sierra Nevada. Elevations range from 1552 to 4343 m at the summit of North Palisade. Like the upper
Tuolumne, the basin land cover also ranges from shrubs and coniferous forest at the lower elevations to large
areas of bare rock at the higher elevations [Homer et al., 2015]. This basin feeds the Kings River, a source of
hydropower and agricultural water that serves 750,000 people in California’s Central Valley and generates $3
billion in agriculture revenues [Kings River Conservation District, 2009]. We chose the upper Kings River Basin
because an ASO flight coincided with acquisition of WorldView-3 imagery on 31 May 2015, thereby providing
data to validate ASO’s ability to identify snow. We note that on this date, SWE was at record low levels through-
out the Sierra Nevada, so snow persisted only in the highest elevations, almost all above the tree line.

3.3. The CRREL/UCSB Energy Site (CUES)
The CRREL UCSB Energy Site (CUES in Figure 1) is located 23 km southeast of the most southern and highest
point in the upper Tuolumne basin. At 2940 m in elevation, CUES represents the higher elevations of the
upper Tuolumne basin. CUES was chosen because of its proximity to the upper Tuolumne and its extensive
suite of quality-controlled and calibrated measurements at a temporal resolution of one minute [Bair et al.,
2015] (data available at http://www.snow.ucsb.edu/). Since the 2013–2015 ASO measurements show almost
no snow below 2000 m, we also examined other weather stations in the upper Tuolumne above 2000 m.
These data are available from the California Data Exchange Center (http://cdec.water.ca.gov/); database
identifiers and elevations are given in parentheses: Tuolumne Meadows (TUM, 2631 m); Dana Meadows
(DAN, 2987 m); Paradise Meadow (PDS, 2332 m); Horse Meadow (HRS, 2560 m); and Slide Canyon (SLI,
2804 m). Of these stations, only TUM and DAN had continuous measurements of incoming shortwave radia-
tion since the first ASO flight on 13 April 2013. However, these measurements do not distinguish between
direct and diffuse radiation, which are needed to calculate solar irradiance on slopes, and they are aggregat-
ed over an hour (as averages, minima, or maxima) and thus not directly comparable to the instantaneous
estimates from the National Land Data Assimilation System 2 (NLDAS-2) [Cosgrove et al., 2003; Xia et al.,
2012], which we use for downscaling. Also, none of these stations provide measurements of incoming long-
wave or reflected radiation. DAN provides net solar radiation, from which snow albedo could be computed
(without a terrain correction), but the measurements include large negative or constant values for extended
time periods. In addition, calibration and maintenance records for instruments at TUM and DAN are not
accessible so their accuracies are not known. Likewise, TUM and DAN are located in wilderness areas that
are not accessible by vehicles during the winter, so instrument failures are only fixed in the summer. At
CUES, maintenance is performed year round, with a documented overhaul each fall. For these reasons, we
use CUES alone for validation of our energy balance model.

4. Methods

The comparison operates on the premise that ASO provides the best estimate of spatially distributed SWE,
to which independent estimates from SWE reconstruction, spatial interpolation from ground measure-
ments, and SNODAS can be compared. We also verified inputs to the reconstruction models using several
validation sources. For inputs to the reconstruction models, we tested several alternatives: (i) snow albedo
using a remotely sensed grain size and two other age-based models; (ii) fSCA using different adjustments to
account for snow obscured by canopy cover; and (iii) downscaled NLDAS-2 forcings against measurements
from an energy balance site. Optimal inputs were then selected and used in two different reconstruction
models, a full energy balance and a net radiation plus degree-day model. Additionally, we compared meas-
urements of derived fSCA from ASO to those independently measured from a WorldView-3 scene.

4.1. Reconstruction
At time j, the energy to melt snow, in W m22, is the product of the possible energy Mp;j and the fractional
snow cover fSCA;j [Molotch and Bales, 2005]:
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Mj5fSCA;j3Mp;j (1)

To estimate hourly (the model time step) SWE in mm at time j, Mj is summed during contiguous periods
when fSCA;j > 0.

SWEj5mf

XN

0

Mj jfSCA;j>0 (2)

with mf as the melt factor

mf 5
3600 s

h 31000 mm
m

kf qw
� 0:0108

mm
W m22 h

(3)

kf 53:343105 J kg21 is the enthalpy of fusion for water, and qw51000 kg m23 is the density of water. The
maximum value of SWE is then the seasonal maximum accumulation. The constraint that fSCA > 0 accounts
for ephemeral snow, i.e., that appears and disappears. Reconstruction cannot provide SWE estimates earlier
than the maximum, i.e., during the accumulation season. Theoretically, the peak SWE date can be estimated
from the earliest date when Mj � 0 for an extended period of time. In practice, ancillary information on the
date of peak SWE (such as from snow pillows) is used to define valid dates for reconstruction when such
data are available [Rittger, 2012]. For this study, peak SWE dates for the basin come from basin-wide ASO
SWE estimates.

We used fSCA from the MODIS Snow-Covered Area and Grain Size algorithm (MODSCAG) [Painter et al., 2009]
smoothed over time and space to eliminate noisy data and interpolate across cloudy days, in a way that pla-
ces less weight on pixels further off nadir [Dozier et al., 2008]. Discrimination between snow and clouds uses
a radiative transfer model [Dozier, 1989] and a persistence filter. The fSCA was further adjusted for viewable
gap fraction between trees using a static canopy cover adjustment [Molotch and Margulis, 2008; Raleigh
et al., 2013b]:

fSCA5min
fSCA; raw

12cc
; 1

� �
(4)

fSCA; raw is the smoothed fractional snow cover end-member from MODSCAG, and cc is the fractional canopy
cover from the 2011 National Land Cover Database (NLCD) [Homer et al., 2015]. Values for fSCA exceeding 1.0
were set to 1.0. Likewise, for pixels with cc51, equation (4) goes to infinity, so no adjustment was applied

fSCA5fSCA; raw
� �

. A dynamic adjustment using the MODSCAG vegetation fraction (fveg) was also tried, i.e.,
12fveg in the denominator of equation (4), but yielded higher bias than the static canopy adjustment
(section 5.4), thus it was not used. For the fSCA and all other spatial data in reconstruction, we projected
the data at 500 m to the Albers equaconic projection centered on California (hereafter called the Cali-
fornia Albers projection).

Calculation of potential melt is from energy balance components

Mp;j5Rj1Hj1Lj1Gj (5)

where R is net radiation, H and L are sensible and latent heat exchanges, and G is heat flow in/out of the
snowpack, all at time step j. We assume the snowpack is either melting or heat flow into the pack is small
compared to the other fluxes, so G � 0. Moreover, melt is set to zero when the calculation would be nega-
tive. Thus, equation (5) becomes

Mp5max R1H1L; 0ð Þ (6)

Other reconstruction models have used a degree-day coefficient to model turbulent fluxes [e.g., Molotch,
2009]. For comparison, we also implemented the SWE reconstruction model with a restricted degree-day
approach [Kustas et al., 1994; Brubaker et al., 1996]:

H1Lð Þdd5
ar

mf
max 0�C; Tað Þ (7)

Ta is the air temperature above 08C and ar50:14 mm d21 K21 is an empirical melt factor relating air tem-
perature to the convective contributions to melt, calculated using 2013–2015 March–May averages at CUES
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[Brubaker et al., 1996, equation A10]. Thus, ar=mf 50:54 W m22 K21 d21. This ar value is significantly lower
than values in other studies [e.g. 0.90–2.00 mm day21 K21, Brubaker et al., 1996; Molotch and Bales, 2006].
For this degree-day version of the model, the snow surface temperature Ts is set the as the lesser of 0�C or
Ta, following Molotch and Margulis [2008]. Note that the treatment of the turbulent fluxes and the solution
for surface temperature are the only differences between the full energy balance, EB, equation (6), and the
restricted degree-day, DD, equation (7), reconstruction models. In both models, using either equation (6) or
(7), melt does not occur when Ts < 0 �C.

Net radiation R is expressed as

R5S# 12að Þ1I#1I" (8)

S# is incoming solar radiation, a is the broadband snow albedo, I# is incoming longwave radiation, and I" is
outgoing longwave radiation. The energy balance model is sensitive to snow albedo. The broadband albe-
do a is computed from the smoothed remotely sensed grain radius from MODSCAG and the local solar
zenith angle [Gardner and Sharp, 2010]. These albedo estimates were further reduced by half the smoothed
Dvis term from the MODIS Dust and Radiative Forcing in Snow [MODDRFS, Painter et al., 2012] to account for
light absorbing impurities,

a5aclean2 Dvis=2 (9)

aclean is the modeled clean snow albedo and Dvis is an estimate of the difference between the dirty and the
clean snow albedo in the visible spectrum (0.350–0.876 mm), where light absorbing impurities in snow
decrease the spectral reflectance. Since a is a broadband albedo and about half the sun’s energy is in the
visible spectrum [Gueymard, 2004], we use half the Dvis estimate.

For comparison, we also compute net radiation with two other snow albedo models: the Biosphere-
Atmosphere Transfer Scheme (BATS) [Dickinson et al., 1993; Liang et al., 1994] and a simple aging model
based on the time since the last snowfall [Walter et al., 2005]. Both albedo models require estimates of
when the last snowfall occurred, which we obtained from Mammoth Mountain Ski Patrol daily weather
observations, using the threshold of 10 mm of new SWE to reset the snow albedo [Dickinson et al., 1993].
The simple model based on aging requires a new snow albedo, which we set at 0.86, based on the CUES
measurements. The BATS model requires the snow surface temperature Ts, the lesser of 0�C or Ta; and the
cosine of the solar zenith angle (section A1).

All energy balance terms, with the exception of those used to calculate ar ; are modeled using downscaled
forcings from the 1=8� NLDAS data. The downscaling process involves a bicubic resampling of the 1=8�

forcings and elevation model to the model scale. In this study, the model scale is 500 m, the size of a
MODIS pixel in the ‘‘land’’ spectral bands 1 through 7. For terms that depend on elevation, we used the dif-
ference between the DEM from the Shuttle Radar Topography Mission [Farr et al., 2007] and the NLDAS
DEM, both resampled to 500 m resolution. Canopy data came from the National Land Cover Dataset
resampled using Gaussian pyramid reduction [Burt and Adelson, 1983] (implemented in MATLAB as impyra-
mid) to 500 m.

4.2. Interpolation From Snow Pillows
For comparison to the reconstructed SWE measurements, we interpolated the SWE values from snow pil-
lows and courses in three dimensions [Okabe et al., 2000] (implemented in MATLAB as scatteredInterpolant),
constrained by snow-covered area. Daily SWE values from 119 snow pillows and 249 snow courses from
2013 to 2015 were downloaded from the California Data Exchange Center and manually cleaned for errors,
such as spikes and spurious summer values. A 3-D convex hull (x, y, elevation) was created for each day
using fSCA at 500 m resolution from the same smoothed time-space fSCA cubes used for reconstruction. Out-
side the hull, fSCA50: Then, for each day, a 3-D bilinear interpolation of SWE was applied to the volume
enclosed by the hull, using the SWE values from snow pillows and snow courses. SWE from snow pillows
are available daily, but each snow course is only sampled a few times a year; thus, the interpolation relies
more on pillow measurements. For elevations within the hull, but above/below the highest/lowest
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elevations covered by the pillows and courses, SWE was extrapolated using nearest neighbors. Finally, these
raw SWE values SWEinterp; raw were multiplied by fSCA to account for each pixel’s varying snow cover:

SWEinterp5SWEinterp; raw3fSCA (10)

4.3. Snow Data Assimilation System (SNODAS)
For another model comparison, we included SWE from SNODAS [Barrett, 2003], NOAA’s modeling and data
assimilation system from the National Operational Hydrologic Remote Sensing Center. SNODAS ingests and
downscales daily output from numerical weather models, an energy-balance and mass balance snow mod-
el, and airborne and ground-based snow measurements. Each day, analysts choose whether to use modeled
or observed snow measurements. SNODAS daily estimates were downloaded from the National Snow and
Ice Data Center [NSIDC, 2016]. The SNODAS spatial grid covers the US and parts of southern Canada in a
geographic projection at 30 arc sec. The SNODAS SWE data were reprojected to the 500 m target resolution
in the California Albers projection.

4.4. Validation Data
4.4.1. Data From the Airborne Snow Observatory
Snow depth at 3 m resolution and SWE at 50 m resolution in a Universal Transverse Mercator projection
were obtained from ASO for the upper Tuolumne River Basin over the 2013–2015 water years, comprising
27 dates. Snow depths at 3 m resolution were also obtained for the upper Kings River Basin for 31 May
2015. Accuracy assessments using point measurements show a depth uncertainty of 8 cm at 3 m spatial res-
olution, average depth uncertainty of less than 0.5 cm at 50 m resolution, and 1–10 cm of uncertainty for
SWE at 50 m resolution, depending on absolute SWE [Painter et al., 2016].

The 3 m ASO snow depth was converted to a binary mask (1 for snow depth> 0; 0 otherwise). This mask
overestimates snow-covered area slightly, as mixed 3 m pixels with snow are assumed to be 100% snow
covered. The mask was then upscaled, and reprojected to a California Albers projection to match the fSCA.
The upscaling occurred in multiple steps using Gaussian pyramid reduction. The final step to the 500 m tar-
get resolution used bilinear interpolation [Glassner, 1993] (implemented in MATLAB as imresize), yielding
ASO-derived fSCA at 500 m. Snow depth and albedo were also upscaled to the California Albers projection.
4.4.2. Energy Balance Forcings
Modeled energy balance forcings were compared with measurements from CUES during the 2013–2015
water years, except for snow albedo where measurements from 2016 at CUES were used. These included
direct and diffuse shortwave radiation, wind speed, incoming longwave, and air temperature. Modeled val-
ues were only corrected for elevation, not for terrain or canopy cover, to match the values recorded by the
level, unobstructed instruments at CUES. CUES does not have thermal infrared thermometers for measuring
snow surface temperature.

Ideally, measurements from 2013 to 2015 would have been used for snow albedo. However, given the shal-
low snow depths for 2013–2015, measurements from the downlooking radiometers at CUES, which are
installed 6 m above the ground, were unreliable for measuring snow albedo during that period. Essentially,
snow albedo measurements were too low because the downlooking radiometers’ field of view contains
trees and other dark objects when snow depths are low. In September 2015, we installed an adjustable
downlooking radiometer boom to remedy this problem. There are now limited (N 5 116) but reliable daily
measurements of ground-based snow albedo at CUES, with the caveat that these albedo measurements
only cover the 2016 water year. Because of frequent storms in December, we only compared measurements
from January through May 2016. These albedo measurements were corrected for slope and aspect of the
snow surface using an automated scanning terrestrial lidar [Bair et al., 2015] (describe these corrections).
ASO offers broadband snow albedo estimates, but these are not reliable because the ASO Itres CASI-1500
spectrometer only covers a spectral range from 0.365 to 1.050 mm. To model broadband snow albedo using
this spectrometer, the rest of the shortwave infrared solar spectrum, where most of the absorption depends
on grain size, must be extrapolated.
4.4.3. WorldView Imagery
To validate ASO’s ability to identify snow, we compared WorldView-3 imagery to the 3 m snow mask creat-
ed from the ASO snow depth. The WorldView images were acquired on 31 May 2015 over the upper Kings
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River Basin and coincided with an ASO flight. Uncalibrated red-green-blue (RGB) WorldView imagery was
upscaled from 0.3 to 3 m resolution to match the snow mask. The RGB imagery was then classified using
k-means clustering [Hastie et al., 2009] (implemented in MATLAB as kmeans), with five classes. The resulting
snow classifications were checked manually for accuracy by comparison with the visible imagery. The
WorldView scenes were acquired near midday, with solar zenith angles �208, so few areas were shadowed.
The uncertainty for pixel location (RMSE 5 3.9 m, provided as metadata with the WorldView imagery) is sig-
nificantly greater than the image resolution. The uncertainty in location for the ASO snow depth at 3 m res-
olution is about 1.5 m [Painter et al., 2016]. To account for these uncertainties, a best of 3 3 3 pixel
neighborhood (9 m2) was used for the comparison.

5. Comparisons and Discussion

5.1. Snow Water Equivalent
Figure 2 compares the ASO SWE, averaged over the upper Tuolumne River Basin in years 2013 through
2015, to four methods of estimating the same variable that can apply over whole mountain ranges: recon-
struction using energy balance and degree-day methods to calculate snowmelt, spatial interpolation from
snow pillows, and SNODAS (the Snow Data Assimilation System). Table 1 shows the error statistics: bias and
mean absolute error (MAE), as described in Appendix B.
5.1.1. Reconstructed Snow Water Equivalent
Since reconstruction only provides valid SWE estimates back to the last peak SWE date, we computed
error statistics only back to the peak SWE date for the basin, obtained from ASO measurements. The first
ASO measurement date occurred before the peak in 2014 and 2015 but may have been after the peak
SWE in 2013, thus error statistics were computed starting at the first ASO measurement date in 2013.
Also, ASO measurements showed two peak SWE values for the basin in 2015, 112 mm on 9 April 2015
and 114 mm on 5 March 2015; error statistics were only computed back to the later peak, on 9 April
2015.

The EB and DD versions of reconstruction had similar MAE values for all years, 26% and 28%, respectively
(Figures 2a–2c and Table 1), ranging from 20 to 31% for the EB model and 18 to 38% for the DD model. The
EB model had a 0% bias on average, with a range from 211% to 110%, whereas the DD model had a 5%
bias on average, ranging from 27% to 114%. Analysis of the energy balance components for both models
shows large differences in longwave radiation emitted from the snowpack (I";eb and I";dd in Figures 3a–3c)
with small differences in the net turbulent transfer terms (H1L in Figures 3a–3c). Since emitted longwave
radiation is proportional to T 4

s , the differences in both terms can be explained by colder snow surface tem-
peratures in the EB model. All else being equal, less emitted longwave radiation would cause more melt,
but the colder Ts reduces melt by limiting the times when the snowpack is at 0�C.
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It is possible that the EB model Ts

is too cold at night, since there is
no conduction between snow-
pack layers built into the model.
Conversely, the Ts from the DD
model is likely too warm. As not-
ed, we do not have snowpack sur-
face temperatures at CUES for
comparison. Inversion of I";eb and
I";ddusing the Stefan-Boltzmann
equation over the time periods
shown in Figure 3a gives a Ts of
212.58C for the EB model and
20.88C for the DD model.

The slightly lower SWE values for
the EB model also resulted from
a negative net turbulent transfer

H1Lð Þ; whereas equation (7)
constrains H1L in the DD model
to be nonnegative. The effect on
melt is small but not negligible.
For instance, the mean H1Lð Þeb

and H1Lð Þdd values (Figure 3a) are 24 W m22 and 12 W m22, affecting melt values by 21.0 and
10.5 mm/d.

The EB and DD reconstruction models compare favorably with other reconstruction models using MODIS
fSCA. Guan et al. [2013] report 240% bias and an MAE of 47% for a reconstruction model driven with MOD-
SCAG fSCA (but smoothed differently) and validated using manual snow surveys in California’s Sierra Nevada.
Molotch and Margulis [2008] report an MAE of 50% for a reconstruction model run in Colorado using fSCA

from the NASA MOD10A1 product [Hall et al., 2006] and validated with field campaigns. The same simula-
tion was then run with MODSCAG fSCA, resulting in a lower MAE (24%), highlighting the model’s sensitivity
to fSCA [Molotch et al., 2010].

Our reconstruction models also compare favorably with reconstruction models run with finer resolution fSCA

from Landsat, which offers improvements in accuracy at the expense of coarse 16 day temporal resolution.
Molotch and Margulis [2008] report an MAE of 23% using a reconstruction model driven with fSCA from Land-
sat and verified with SWE modeled by regression trees. Girotto et al. [2014] report a bias of 7%, verified with

Table 1. Errors for Each Method at Peak SWE and For All Dates After, With ASO
Considered the Standarda

Method
Bias

(mm)
Bias
(%)

Mean Absolute
Error (mm)

Mean Absolute
Error (%)

2013 ASO 0 0 0 0
EB model 234 211 34 26
DD model 222 27 24 18
Interpolation 22 21 52 39
SNODAS 71 24 71 53

2014 ASO 0 0 0 0
EB model 11 0 22 20
DD model 115 17 30 27
Interpolation 210 24 24 22
SNODAS 129 113 40 36

2015 ASO 0 0 0 0
EB model 111 110 20 31
DD model 116 114 24 38
Interpolation 22 22 14 22
SNODAS 168 161 68 107

Averages ASO 0 0 0 0
EB model 27 0 25 26
DD model 13 15 26 28
Interpolation 25 22 30 28
SNODAS 156 133 60 65

aThe percent errors are calculated relative to the mean ASO mean values for the
same dates.
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field campaigns in the Tokopah Basin in the Sierra Nevada, although the verification data comprised mod-
eled SWE from regression trees, which have their own errors.
5.1.2. Spatial Interpolation From Snow Pillows and Courses
The EB model narrowly outperformed interpolation from snow pillows. For the 2013–2015 mean, snow pil-
low interpolation had a bias and MAE of 22% and 28%, ranging from 21% to 24% and 22% to 39%. Since
the reconstruction models and snow pillow interpolation used the same fSCA inputs, which were shown to
be very accurate using the ASO-derived fSCA for validation (section 5.4), our findings show that fSCA is critical-
ly important for accurate results from both models.
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Figure 4. ASO SWE for the upper Tuolumne River Basin compared with reconstruction (EB), snow pillow interpolation, and SNODAS for
(a, d, g, j) 3 April 2013; (b, e, h, k) 3 May 2013; and (c, f, i, l) 8 June 2013. Images show SWE, in millimeters, at 500 m resolution, the
reconstruction model resolution.
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5.1.3. SNODAS, the Snow Data Assimilation System
Both reconstruction models vastly outperformed SNODAS, which overpredicted SWE in every year, with a
mean bias of 133% and MAE of 65%, and annual biases ranging from 113% to 161% and MAE values
from 36% to 107%.

It is unclear why SNODAS overestimated SWE in every year. Other comparisons show problematic results
from SNODAS, both underestimates and overestimates [Dozier, 2011; Rittger, 2012; Dozier et al., 2016]. No
peer-reviewed publications explain the details of the SNODAS model structure, so it is difficult to trace the
source of errors, either in the calculations of orographic enhancement to precipitation or in the choice of
surface observations to assimilate. The model resolution for SNODAS is 30 arc sec, about 1 km, which is 23

that of the reconstruction and snow pillow interpolation models, but this coarser resolution is an unlikely
cause of the high bias and MAE. Because SNODAS assimilates many publicly available snow measurements,
validation studies from independent observations for comparison have been scarce. Clow et al. [2012]
report an RMSE of 120 mm (48% of mean) for sites in Colorado and suggest that SNODAS could be substan-
tially improved by accounting for wind-redistributed snow.
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Figure 5. SWE binned by (a) elevation and (b) canopy cover for all methods for mean peak SWE values for 2013–2015.

Table 2. SWE Bias (Using ASO for Verification) for Each Method at Mean Peak SWE From 2013 to 2015

Bias by Elevation (mm) 2000–2500 m 2500–3000 m 3000–3500 m 3500–4000 m

EB 211 (215%) 22 (10%) 57 (18%) 17 (6%)
DD 27 (29%) 54 (24%) 103 (32%) 109 (37%)
SNODAS 23 (33%) 136 (61%) 119 (37%) 211 (24%)
Interpolation 47 (66%) 90 (40%) 20 (6%) 216 (26%)
Bias by Canopy Cover (mm) 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8

EB 33 (12%) 19 (14%) 0 (0%) 2 (2%)
DD 61 (23%) 49 (35%) 36 (31%) 23 (36%)
SNODAS 80 (30%) 98 (70%) 160 (140%) 164 (255%)
Interpolation 33 (12%) 71 (51%) 89 (78%) 69 (107%)
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5.2. Spatial Variability
Visual examination of the spatial distribution of SWE from the EB model and ASO for three dates in the
2013 melt season (Figures 4a–4f) shows that the EB model reproduced the spatial SWE patterns well. Some
of the finer spatial patterns (Figure 4b compared to Figure 4e) are lost and some of the late season SWE is

Figure 6. Modeled versus measured density scatter plots of hourly: (a) global shortwave; (b) incoming longwave; (c) air temperature;
(d) wind speed; and (e) air pressure. All measurements made at the CRREL UCSB Energy Site (CUES) on Mammoth Mountain during the
2013–2015 water years. Shortwave values at night are excluded. The colors scale linearly with the number of measurements N. The model
results are for the 500 m pixel containing CUES.
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not detected (Figure 4c compared to
Figure 4f), probably because of the
0.10 fSCA detection limit set for MOD-
SCAG [Painter et al., 2009]. Visual com-
parison of the spatial distribution of
SWE for the same dates for snow pil-
low interpolation and SNODAS (Fig-
ures 4g–4l) shows more SWE
throughout the basin for the first date
(Figures 4g and 4j) and a failure to
identify the one area with perennial
snow, the Lyell glacier at the southern
end of the basin (Figures 4h, 4i, 4k,
and 4l). The EB model identifies this
area as covered by snow throughout
the melt season (Figures 4e and 4f).

Figures 5a and 5b and Table 2 com-
pare SWE binned by elevation and
canopy cover, at the dates of mean
peak SWE. The EB model has lower
SWE bias in three of four elevation
bins and all of the canopy cover bins
when compared to the DD model. The
EB model SWE bias ranges from 215%
to 118% for the elevation bins and 0
to 12% for the canopy cover bins, with
almost no bias for the 0.4–0.6 and 0.6–

0.8 bins. The DD model SWE bias for elevation ranges from 29% to 132% with the largest error at the high-
est elevations (3500–4000 m). In comparison, the SWE bias for the EB model was only 16% for the 3500–
4000 m bin. For canopy cover, the DD model SWE bias ranged from 123% to 136%. SNODAS and snow pil-
low interpolation showed much larger biases than either reconstruction model. The SWE bias by elevation
for SNODAS ranged from 24% to 161%. For canopy cover, the SWE bias for SNODAS ranged from 130%
to 1255%, with the biggest value (at 0.6–0.8 canopy cover fraction) representing the worst bias of any mod-
el. For interpolation, the SWE bias by elevation ranged from 26% to 166%; the SWE bias by canopy cover
ranged from 112% to 1107%.

SWE results were also binned by slope and aspect, but these analyses did not provide insightful results,
with different bins showing little variation. We hypothesize that the complex terrain of the upper Tuolumne
basin flattens slopes when upscaled to the 500 m model resolution. At 500 m resolution, 5% of pixels have
slopes greater than 258 and 0.6% have slopes greater than 358, whereas at 50 m resolution, 31% of pixels
have slopes greater than 258 and 12% have slopes greater than 358. Thus, SWE comparisons with slope and
aspect at the 500 m model resolution result in misleading interpretations. For instance, ASO measurements
upscaled to 500 m show slightly more SWE on south-facing slopes than on those that face north. At 50 m
resolution, the opposite is true, and visual observations usually show more snow on north-facing slopes.

5.3. Energy Balance Components
Figure 6 compares values of the components of the surface energy balance derived from NLDAS-2 with
measurements at CUES (described in sections 3.3 and 4.4.2).
5.3.1. Incoming Solar Radiation
Incoming solar radiation from NLDAS was a major source of error. The modeled RMSE and bias were 231
W m22 and 1133 W m22, respectively (Figure 6a). It appears that the high bias resulted when NLDAS-2 mis-
identified cloudy periods as cloud free, as Hinkelman et al. [2015] also identify (we filter CUES radiation
measurements to remove values when the uplooking radiometers are covered by snow, so this is not the
source of the overestimates). Combining equation (3) with a broadband snow albedo of 0.75, the bias equa-
tes to an overestimated potential melt of 8.6 mm/d. We note that for this error analysis, unlike in other
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reconstruction studies [e.g., Jepsen
et al., 2012; Rittger et al., 2016], we
exclude values of zero at night, given
that these are easy to model. Also, we
compare hourly rather than daily val-
ues. Both factors increase the apparent
sizes of errors. For instance, inclusion
of the zero values at night using mod-
eled and measured daily values
reduces the RMSE and bias to 77 W
m22 and 157 W m22. These values are
within ranges reported by Rittger et al.
[2016], who examined daily average
errors for downscaled NLDAS-2 short-
wave radiation across the Sierra Neva-
da using the same downscaling
techniques and report RMSE values
ranging from 32 to 79 W m22 and bias
ranging from 241 to 165 W m22.
CUES is a difficult place to accurately
downscale 1/88 NLDAS-2 radiation. The
site is often cloudy while areas only a
few kilometers to the east are clear. On
the other hand, the site represents
much of the snow-covered region of
the Central Sierra Nevada.
5.3.2. Incoming Longwave Radiation
The modeled incoming hourly long-
wave values (Figure 6b) have an RMSE
of 34 W m22 and a bias of 224 W m22.
Again, the negative bias is likely related
to cloud issues. Clouds increase incom-
ing longwave radiation. When NLDAS
fails to identify clouds when they are
present, one would expect a negative
bias in the incoming longwave radia-
tion and a positive bias in the solar radi-
ation. The longwave bias equates to
26.0 mm/d underestimate of potential
melt. These RMSE values compare with
those measured by Rittger et al. [2016],
who report RMSE and bias values of 38
W m22 and 230 W m22, respectively,
for two Sierra Nevada stations.

5.3.3. Air Temperature
The modeled hourly air temperatures (Figure 6c) have an RMSE of 2.88C and a bias of 21.28C. For the DD
model, this bias can be converted to melt by multiplying by ar in equation (7). Doing so shows a bias in
melt of 20.17 mm/d. These values fall within the error ranges reported by Rittger et al. [2016], who show
RMSE values of 1.3–3.78C and biases of 22.4 to 12.38C.
5.3.4. Wind Speed
The modeled hourly wind speeds (Figure 6d) have an RMSE of 3.3 m s21 and a bias of 10.4 m s21. The RMSE
and bias are higher than previous studies that used the same wind model forced with point observations. Liston
and Elder [2006] and Musselman et al. [2015] report RMSE less than 1.5 m s21 and bias less than 10.3 m s21,
again pointing to errors in the NLDAS data as the source of inaccuracies. Wind speed is used in calculating the
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Figure 8. Time-space smoothed fSCA compared to ASO-derived fSCA for water
years: (a) 2013, (b) 2014, and (c) 2015. The three curves show three corrections:
uncorrected (fSCA;raw ); corrected by vegetation fraction (fSCA;fveg adj ); corrected by
static canopy cover (fSCA;cc adj ) which was chosen for the reconstructions because
of its low bias and MAE. Model resolution is 500 m.
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exchange coefficient Dh;k in equation
(A20), which is used in the sensible
and latent heat flux calculations. How-
ever, sensible and latent heat fluxes
tend to be similar in magnitude and
opposite in sign [Marks and Dozier,
1992]; thus, errors in sensible and
latent heat flux caused by incorrect
wind speed often cancel each other in
the energy balance calculations.
5.3.5. Air Pressure
Air pressures (Figure 6e) have an
RMSE of 0.1 kPa and bias of 10.1
kPa, both very low, suggesting that
the modeled temperature lapse rate

of 26.5 K/km is a reasonable value to use in the hydrostatic equation to calculate the elevation dependence
of air pressure.

5.4. Snow Albedo
Compared to our measurements at CUES, all albedo models underestimated, but the MODSCAG/MODDRFS
remotely sensed albedo was the most accurate, with an RMSE of 0.06 and a bias of 20.01 (Figures 7a and
7b). In comparison, BATS had an RMSE of 0.09 with a bias of 20.06 and the simple aging model had an
RMSE of 0.17 and a bias of 20.14. Given an average incoming shortwave radiation of 250 W m22, the MOD-
SCAG/MODRFS bias of 20.01 would cause a 0.7 mm overestimate of potential melt per day, whereas the
20.06 bias from BATS would cause a 3.9 mm/d overestimate of potential melt and the 20.14 bias from the
simple aging model would cause a 9.1 mm overestimate. We caution that our verification data set is limited
(116 measurements) and does not include very dirty snow with low albedos. The lowest measured albedo
at CUES in the verification data set is 0.57. Very dusty old snow can have albedos as low as 0.33, but while
this magnitude of contamination is common in the mountains of the Colorado River Basin [Painter et al.,
2013], such contamination seldom occurs in the Sierra Nevada. Further verification of the MODSCAG/
MODDRFS remotely sensed albedo is needed.

5.5. Vegetation Adjustments to Fractional Snow-Covered Area
Figures 8a–8c and Table 3 compare the ASO measurements of snow-covered area fSCAð Þ to three adjust-
ments to the MODSCAG fSCA in equation (4) over the 3 year period, 2013–2015 water years. The mean biases
are 211% for unadjusted MODSCAG, 110% for MODSCAG adjusted by fVEG, and 15% for MODSCAG adjust-
ed by static cc. The corresponding MAE values are 16%, 22%, and 15%. Because the static cc adjustment has
the lowest combined bias and MAE, we chose it for the reconstructions. Other research has proposed that
fSCA at resolutions of more than a few meters requires an adjustment for viewable gap fraction of the cano-
py [Raleigh et al., 2013b; Rittger et al., 2013], thus it is not surprising that the unadjusted MODSCAG fSCA had
the highest bias. It is unclear why the dynamic MODSCAG fSCA adjustment did not perform as well as the
static adjustment. Perhaps shadows from trees caused a mapping error. Note that the spikes in the curves in
Figures 8a–8c for the three different adjustments to MODSCAG fSCA in between ASO flights resulted from
storms during the melt season. ASO cannot fly during storms; therefore, these increases in fSCA were not
verified.

5.6. Snow-Covered Area Derived by ASO
and WorldView
Table 4, comparing scalar metrics of the
snow-covered areas derived by ASO and
WorldView-3 over a best of 3 3 3 neigh-
borhood, shows excellent agreement with
Recall, Precision, Accuracy, and F score all
no less than 0.99 (definitions of these met-
rics are in Appendix B, equations B4–B7).

Table 3. Error Table for fSCA at 500 m Resolution, Adjusted Using Different
Methods (Section 4.1) Validated With ASO-Derived fSCA

Method Bias (%)
Mean Absolute

Error (%)

2013 fSCA, raw 215 20
fSCA, fveg adj 23 20
fSCA, cc adj 22 16

2014 fSCA, raw 215 17
fSCA, fveg adj 8 19
fSCA, cc adj 0 12

2015 fSCA, raw 22 12
fSCA, fveg adj 25 26
fSCA, cc adj 16 16

Mean fSCA, raw 211 16
fSCA, fveg adj 10 22
fSCA, cc adj 5 15

Table 4. Statistics for ASO/WorldView Snow Cover Comparison in the
Kings River Basin for 31 May 2015 Using WorldView for Verification

N 88,469,081

Recall 0.992
Precision 0.990
Accuracy 0.998
F 0.991
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Figures 9a–9d show one of the few areas where they do not agree. WorldView shows snow that ASO missed
under and on the north and northwest facing steep rocky areas (false negatives, Figure 9c). This area was
covered by snow during the summer 2014 ASO flight, but the following extremely dry year resulted in less
snow on the ground in spring 2015 than during the previous summer, giving a negative SWE value; thus it
was mapped as snow free. This error is indicative of problems with the ASO altimetry approach in areas
with semipermanent snow fields or glaciers.

Careful visual inspection of both methods (Figures 9a and 9b) shows that snow was missed by both meth-
ods in the shadows. False positives (Figure 9d) for snow are on a partially ice-covered lake and at the edges
of areas with continuous snow cover, both of which present challenges to classify at any resolution. Allow-
ing for the locational uncertainty of the WorldView imagery, the comparison done here suggests that the
snow cover measurements from ASO are accurate.

6. Conclusion

Two SWE reconstruction models, a full energy balance (EB) and net radiation/degree-day (DD) model, were
verified with ASO measurements, a novel data set of fine-resolution snow measurements in the upper Tuol-
umne River Basin, in water years 2013–2015. SWE estimates from snow pillow interpolation and SNODAS
were also compared with ASO. On average, our EB reconstruction model had no bias (0%) and low (26%)
mean absolute error. The DD reconstruction model was slightly less accurate (15% bias and 28% MAE).
Large differences in the models in longwave radiation emitted from the snowpack resulted from lower
modeled snow surface temperature in the EB model and slight differences in the net turbulent transfer
energy. Further verification of the snowpack surface temperatures produced by the EB model is needed.

< 1 3 6
snow depth, m

(a) (b)

(c) (d)

Figure 9. ASO snow cover compared to WorldView-3 imagery on 31 May 2015 in a selected area of the Kings River Basin. Shown are:
(a) WorldView positives for snow in yellow; (b) ASO snow depth; (c) ASO false negatives for snow using best of a 3 3 3 neighborhood,
blue; and (d) ASO false positives for snow, red. The background image is the upscaled RGB WorldView imagery.
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The EB reconstruction model performed slightly better than interpolation from snow pillows, and both
reconstruction models performed far better than SNODAS, which overestimated SWE every year. The major
advantage of the EB reconstruction model is that it relies on remotely sensed information only; it can run
without ground-based measurements outside the U.S. using the Global Data Assimilation System (GLDAS)
[Rodell et al., 2004] instead of NLDAS forcings. In comparison, SNODAS and interpolation from snow pillows
rely on ground-based observations. Analysis of errors in the EB reconstruction model indicates they arise
from errors in the NLDAS forcing data, signifying that other forcing data sets should be evaluated, for exam-
ple CERES SYN [Hinkelman et al., 2015]. The remotely sensed MODSCAG/MODDRFS albedo estimates
showed a near zero bias (20.01) when compared with limited in situ measurements and were more accu-
rate than the age-based models, which require knowledge of each snowfall. Further verification of the
remotely sensed albedo estimates is needed.

Appendix A: Full Melt Model Equations

A1. Shortwave Radiation
We model downscaled shortwave radiation similarly to methods that Rittger et al. [2016] use, with a few dif-
ferences. Incoming solar S# is by separated into beam B# and diffuse components D#

S#5 B#1D# (A1)

using empirical relationships [Erbs et al., 1982; Olyphant, 1984] based on transmittance T ,

T5
S#

l0S0
(A2)

l0 is the cosine of the exoatmospheric (unrefracted) solar zenith angle and S0 is exoatmospheric irradiance.
The direct solar radiation is then scaled by elevation z

B# zð Þ5l0;r S0e2sz m (A3)

where l0;r is the cosine of the solar zenith angle at the surface corrected for refraction, m is the air mass
[Kasten and Young, 1989], and sz is the optical depth at elevation z,

sz5
Pz

P
s (A4)

P is the reference (NLDAS) atmospheric pressure, Pz the reference pressure adjusted using a standard tem-
perature lapse rate (26.5 K/km) [Lundquist and Cayan, 2007] and the elevation difference between the refer-
ence and the fine scale elevation model. The optical depth s is

s5
2ln T

m
(A5)

Then, the terrain-corrected direct solar radiation Bt# is computed using an elevation correction. B# zð Þ is
scaled by the cosine of the local solar zenith angle l, along with a binary shadowing mask d computed
from local horizon angles:

Bt#5 dlB# zð Þ (A6)

Terrain-corrected diffuse radiation Dt# is also corrected by elevation using an empirical formula [Dubayah
and Loechel, 1997] and scaled by the view factor Vd , the fraction of the overlying hemisphere that is not
obstructed by terrain [Dozier and Frew, 1990]:

Dt#5 D# zð ÞVd (A7)

The terrain-corrected beam and diffuse radiation are then further adjusted for the tree-covered fractions of
each pixel, i.e., cc, using a canopy extinction uc and transmissivity sc [Marks et al., 1999; Garen and Marks,
2005]:

Bc#5 ccBt#e2uc h=l0;r 1 12ccð ÞBt# (A8)
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Bc# is the canopy-corrected direct radiation and h is the canopy height. Values for h, sc , and uc were set
according the predominant NLCD tree type, with deciduous trees having h512 m, sc50:60, and uc50:016
m21 and coniferous trees having h516 m, sc50:30, and uc50:033 m21 [Garen and Marks, 2005]. The
canopy-corrected diffuse radiation is

Dc#5 ccDt;r#sc1 12ccð ÞDt;r# (A9)

Dt;r# is the terrain and reflection-corrected diffuse radiation

Dt;r#5Dt#1Dr# (A10)

Dr# is reflected radiation from adjacent terrain

Dr#5 Cta Dt# 12Vdð Þ1Bt#
� �

(A11)

Ct is a terrain configuration factor [Dozier and Frew, 1990]

Ct5
11cos#

2
2Vd; (A12)

# is the slope of the local terrain.

Using snow albedo a in equation (A11) assumes that surrounding terrain is covered by snow, which is obvi-
ously not always true. In any case, terrain-reflected solar radiation is usually small (<20 W m22). At the
500 m scale, 90% of Vd values are above 0.9, but occasional values go as low as 0.4. Given that the mixed-
pixel albedo is unknown, we suggest using a provides an upper bound for terrain-reflected radiation.

A2. Longwave Radiation
Incoming longwave I# is modeled as the sum of incoming longwave from the atmosphere Ia# and from sur-
rounding terrain It#:

I#5 Ia#1It# (A13)

with

Ia#5VdearT 4
a (A14)

ea is the atmospheric emissivity downscaled from reference estimates (NLDAS), r is the Stefan-Boltzmann
constant 5:670431028 W m22 K24, and Ta is the air temperature in Kelvin, which like Pz , was computed
using a standard temperature lapse rate and the difference between the reference and the fine scale eleva-
tion model. Further

It#5CtesrT 4
s (A15)

eS is the emissivity of snow, assumed to be 0.99 [Dozier and Warren, 1982], and Ts is the snow surface tem-
perature. The incoming longwave is then adjusted for the canopy using an empirical approach [Garen and
Marks, 2005] based on canopy cover:

Ic#5cc scIt#1 12scð ÞecrT 4
s

� �
1 12ccð ÞIt# (A16)

Ic# is the vegetation-adjusted incoming longwave radiation, and ec50:98 is the emissivity of the canopy.
Outgoing longwave radiation is the sum of the Stefan-Boltzmann radiation for snow plus the small fraction
of the incoming longwave radiation that is reflected:

I"5esrT 4
s 1 12esð ÞI# (A17)

A3. Sensible and Latent Heat
Fluxes of sensible heat H and latent heat L are [Liston, 1995]

H5qaCpDhf Ta2Tsð Þ (A18)

and
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L5qakv;sDkf h
ea2es

Pz

� �
(A19)

qa is the density of air; Cp is the specific heat of air at constant pressure; Dh;k are exchange coefficients for
sensible and latent heat, respectively; f is a nondimensional stability function; h50:622 is the ratio of the
molecular weights of water to air, and ea;s are the vapor pressures of air and the saturation vapor pressure
at the snow surface, respectively. The enthalpy of vaporization or sublimation of water/ice kv;s depends on
ea and es. For es < ea; the enthalpy of vaporization is used; otherwise, the enthalpy of sublimation is used.
The exchange coefficients Dh;e are

Dh;k5
j2ur

ln zr=z0

� 	h i2 (A20)

with j50:4 as Von Karman’s constant, ur as the wind speed at reference height zr , and z0 as the roughness
height. In this study, zr510 m, based on NLDAS wind speeds, and z050:5 mm, a reasonable approximation
for snow [Brock et al., 2006]. Wind speeds were downscaled using resampled NLDAS estimates, adjusted for
terrain curvature, wind slope, and the canopy [Liston and Elder, 2006; Liston et al., 2007]. The curvature
length scale, wind curvature and slope weighting factors were set at 2000 m (consistent with the 500 m pix-
el size), 0.58, and 0.42, respectively [Liston and Elder, 2006]. The saturation vapor pressure over ice es Tsð Þ is
from an empirical approximation [Bohren and Albrecht, 1998]. The air vapor pressure ea is given as [Peixoto
and Oort, 1996]:

ea5q
Pz

h
(A21)

with q as the specific humidity from NLDAS. For unstable atmospheric conditions Ts > Tað Þ, the stability
function f is

f512
gRi

11c
ffiffiffiffiffiffiffi
jRi j

p (A22)

Ri is the Richardson number, given by

Ri5
gzr Ta2Tsð Þ

Tau2
r

(A23)

where g is gravity and c is

c5ug
Dh;e

ur

ffiffiffiffi
zr

z0

r
(A24)

with g59:4 and u55:3. For stable atmospheric conditions Ts < Tað Þ, the stability function f is

f5 11g�Rið Þ (A25)

where g�5g=2. For neutral conditions Ts5Tað Þ, f51:

A4. Snowpack Surface Temperature
The model solves the energy balance at each time step for snow surface Ts using the Newton-Raphson
method. Equation (6) is arranged as

R Tsð Þ1H Tsð Þ1L Tsð Þ50 (A26)

and solved iteratively for Ts. Solutions with Ts > 273:15 K indicate Mp > 0. For that case, Ts is set to 273:15
K and Mp is computed; otherwise Mp 5 0.
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Appendix B: Error Statistics

Error statistics used include the Root-Mean-Squared Error RMSE,

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51

ŷ i2yið Þ2
vuut (B1)

Bias,

Bias5
1
N

XN

i51

ŷ i2yið Þ (B2)

and the mean absolute error (MAE),

MAE5
1
N

XN

i51

jŷ i2yij (B3)

ŷ is the modeled variable and y is the variable used for verification. These metrics were then normalized to
the ASO basin-wide measured SWE for each date and reported as percentages. RMSE and bias were used to
evaluate energy balance forcings while MAE and bias were used to evaluate modeled fSCA and SWE. RMSE
weights model values that are further from the measured values more heavily than MAE. Thus, we suggest
RMSE is more appropriate for diagnosing errors in forcings, where errors can propagate and verification
data are directly measured, while MAE is more appropriate for the fSCA and SWE values, where verification is
from modeled values, i.e., ASO SWE is modeled, not directly measured.

For binary comparisons, a 2 3 2 contingency table was created. The scalar metrics [Doswell et al., 1990;
Olson and Delen, 2008] computed from this contingency table are based on the correct and erroneous
detections of snow or its absence. TP is a true positive (snow detected in a snow-covered pixel); FP is a false
positive (snow detected in a pixel with no snow); TN is a true negative (snow not detected in a pixel with no
snow); and FN is a false negative (snow not detected in a snow-covered pixel). The Precision, also called
probability of detection, is

Precision5
TP

TP1FP
(B4)

Recall, also called frequency of hits, is

Recall5
TP

TP1FN
(B5)

Accuracy is

Accuracy5
TP1TN

TP1TN1FP1FN
(B6)

The F score equally weights Precision and Recall:

F52
Precision3Recall
Precision1Recall

(B7)

Notation

ar degree-day factor, mm d21 �C21.
B# incoming direct solar radiation, W

m2.
B# zð Þ elevation-adjusted direct solar radiation, W

m2.
Bc# canopy-corrected direct solar radiation, W

m2.
Bt# terrain-corrected direct solar radiation, W

m2.
cc static fractional canopy cover, dimensionless.
Cp specific heat of air, J

kg deg.
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Ct terrain configuration factor, dimensionless.
D# incoming diffuse solar radiation, W

m2.
D# zð Þ elevation-corrected diffuse solar radiation, W

m2.
Dh sensible heat exchange coefficient, m

s .
Dc# canopy-corrected diffuse solar radiation, W

m2.
Dt# terrain-corrected diffuse solar radiation, W

m2.
Dk latent heat exchange coefficient, m

s .
ea vapor pressure of air, Pa.
es vapor pressure at snow surface, Pa.
fSCA; raw fractional snow-covered area, unadjusted, dimensionless.
fSCA fractional snow-covered area, adjusted for static canopy cover, dimensionless.
g acceleration due to gravity, m

s2.
G heat flux in/out of the snowpack, assumed �0, W

m2.
h canopy height, m.
H sensible heat flux, W

m2.
I" outgoing longwave radiation, W

m2.
I# incoming longwave radiation, W

m2.
Ia# incoming longwave radiation from the atmosphere, W

m2.
Ic# canopy-corrected incoming longwave radiation, W

m2.
It# incoming longwave radiation from surrounding terrain, W

m2.
L latent heat flux, W

m2.
m relative optical air mass, dimensionless.
mf melt factor, mm water= W

m2.
M melt, mm.
Mp potential melt, mm.
P atmospheric pressure, Pa.
Pz elevation-adjusted atmospheric pressure, Pa.
q specific humidity, dimensionless.
R radiative heat flux, W

m2.
Ri Richardson number, dimensionless.
S# broadband incoming solar radiation, W

m2.
S0 exoatmospheric solar radiation, W

m2.
T atmospheric transmittance, dimensionless.
Ta air temperature, K.
uc canopy extinction coefficient, m21.
ur wind speed at reference height, m

s .
Vd view factor, dimensionless.
z0 roughness length for snow, m.
zr reference height, m.
a snow albedo, corrected for light absorbing impurities, dimensionless.
aclean clean snow albedo, dimensionless.
d binary shadow mask, dimensionless.
Dvis visible wavelength snow albedo reduction from light absorbing impurities, dimensionless.
ea atmospheric emissivity, dimensionless.
ec emissivity of the canopy, dimensionless.
es snow emissivity, dimensionless.
f nondimensional stability function, dimensionless.
h ratio, molecular weight of water to dry air, dimensionless.
j Von Karman constant, dimensionless.
kv;s enthalpy of vaporization or sublimation of water/ice, J

kg.
l terrain-corrected cosine of the illumination angle, dimensionless.
l0 cosine of the exoatmospheric solar zenith angle.
l0;r cosine of the solar zenith angle, refracted by the atmosphere.
qa density of air, kg

m3.
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qw density of water, kg
m3.

r Stefan-Boltzmann constant, W m22 K24.
sc canopy transmittance, dimensionless.
sz elevation-adjusted optical depth, dimensionless.
sz optical depth, corrected for elevation, dimensionless.
# slope angle, 8.
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