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Abstract: Exposure to extreme heat is a known risk factor that is associated with increased heat-
related illness (HRI) outcomes. The relevance of heat wave definitions (HWDs) could change across
health conditions and geographies due to the heterogenous climate profile. This study compared
the sensitivity of 28 HWDs associated with HRI emergency department visits over five summer
seasons (2011-2016), stratified by two physiographic regions (Coastal and Piedmont) in North
Carolina. The HRI rate ratios associated with heat waves were estimated using the generalized
linear regression framework assuming a negative binomial distribution. We compared the Akaike
Information Criterion (AIC) values across the HWDs to identify an optimal HWD. In the Coastal
region, HWDs based on daily maximum temperature with a threshold > 90th percentile for two or
more consecutive days had the optimal model fit. In the Piedmont region, HWD based on the daily
minimum temperature with a threshold value > 90th percentile for two or more consecutive days was
optimal. The HWDs with optimal model performance included in this study captured moderate and
frequent heat episodes compared to the National Weather Service (NWS) heat products. This study
compared the HRI morbidity risk associated with epidemiologic-based HWDs and with NWS heat
products. Our findings could be used for public health education and suggest recalibrating NWS
heat products.

Keywords: heat wave; heat-related illness; early heat—health warning systems

1. Introduction

A heat wave is often described as an acute episode of one or more consecutive days
with temperatures or heat indices exceeding a threshold value [1]. However, no standard
definition exists to identify heat waves [2]. Heat waves are typically classified using a
synoptic (e.g., air mass, temperature-humidity index), physiologic (e.g., Environmental
Stress Index, Wet Bulb Global Temperature), or epidemiologic approach [3]. Hajat et al.
(2010) reported that epidemiologic-based algorithms (temperature—mortality relationship)
identified the days with higher heat-related mortality.

Heat waves are associated with an increased risk of HRI outcomes [4]. In the United
States (US), roughly 700 heat-related deaths per year are attributable to ambient temperature
exposure [5]. The frequency and intensity of heat waves have been on the rise since the
industrial revolution and are likely to increase in the future due to climate change [6,7]. In
Philadelphia, heat-related risk communication, along with the NWS warnings, played a
crucial role in minimizing up to three heat-related deaths per day that are associated with
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extreme heat exposure [8,9]. In the US, public health departments rely on heat products (e.g.,
excessive heat watch, heat advisory, and excessive heat warning) from the local National
Weather Service Weather Forecast Office (NWS-WFQO) to communicate heat—health risks.
According to Weinberger et al. (2018), the NWS heat products moderately reduced the
impact of extreme heat on human health, but the human health risk associated with ambient
temperature is not a resolved issue [10].

Despite the early heat warnings, the average annual percentage of HRI emergency
department visits in North Carolina has increased by 19% over the past decade [11,12].
The rise in HRI risk could be due to population vulnerabilities (age, economic status, and
occupation) and higher thresholds for temperature and humidity set by NWS for issuing
heat alerts [13]. Multiple researchers attempted to characterize human health risks asso-
ciated with HWDs [3,14-17]. Epidemiologic studies evaluating the association between
outdoor temperature exposure (e.g., heat waves or ambient temperature) and human health
are generally focused on extreme events, where the human health outcome is typically
measured as cause-specific or all-cause mortality [17,18]. A meta-analysis on the HWD
evaluation studies summarized that the researchers included in this review generalized the
warnings to a larger geographic area, such as a state or a group of states [17]. Generalizing
heat warning systems over larger geography may not be ideal due to heterogeneity in ex-
posures, population vulnerability, and exposure—outcome associations [19]. Physiographic
or sub-regional-scale heat warning systems that account for meteorological heterogeneity
and are specific to health conditions were found to play a role in minimizing the human
health risks associated with heat waves [8,16,20,21].

In this study, we assessed the association between multiple HWDs and HRI emer-
gencies in North Carolina physiographic regions. We then compared the statistical model
performance across the HWDs included in this study and assessed their association with
HRI emergency visits in North Carolina. Additionally, we aimed to compare the HWD
with the best model performance from our study with the NWS extreme heat alerts.

2. Materials and Methods

This study is focused on five summer seasons (1 May-30 September) from 2011 to
2016 among the three physiographic regions (Coastal, Piedmont, and Mountain) in North
Carolina. The year 2013 was excluded in this study due to data availability constraints.
Additionally, the Mountain region was excluded from the analysis as 50.13% of the data
were censored due to low HRI visits.

2.1. Data
2.1.1. Heat Metrics

Daily mean, minimum, and maximum temperatures were obtained from the Global
Historical Climate Network-Daily (GHCN-D) database [7,22]. Dew point data were ob-
tained from the Parameter-elevation Regression on Independent Slopes Model (PRISM)
database [23]. The station-based temperature measurements and gridded dew point data
were aggregated by physiographic region. The daily maximum apparent temperature and
relative humidity were estimated using daily maximum temperature and dew point using
heat.index.function and dewpoint.to.humidity functions available from the weathermetrics
package in R [24].

2.1.2. Heat Wave Definitions

Twenty-eight HWDs (Table 1) associated with human health outcomes were adopted
from the existing literature and were included in this study [14,15,25,26]. These HWDs were
classified based on four factors: (1) a heat metric (daily mean, minimum, maximum, and ap-
parent temperatures), (2) duration (number of days), (3) threshold type (relative/absolute),
and (4) threshold intensity. Among the two threshold types, relative threshold-based defi-
nitions account for cumulative heat exposure (2+ or 3+ consecutive days), and definitions
based on absolute threshold are based on single heat day exposure. The HWDs based on
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daily temperature as a metric and a relative threshold were classified using four percentile
values (99, 98, 95, 90) as threshold intensity. The percentile threshold values were calculated
using historical observations over the summer season from 1895 to 2016. The definitions
based on the apparent temperature as metric and a relative threshold were classified using
three percentile threshold values (95, 90, 85) as threshold intensity.

Table 1. Description of the heat wave definitions.

. Coastal Piedmont
Definition Heat Duration Threshold Threshold
Metric  (No. of Days) Type Intensity Threshold HW AIC Threshold ~ HW AIC
(@) Days (@] Days
HW_01 2+ Relative >99th 33 44757 2840 29 48179
consecutive percentile 29.16
HW_02 3t Relative ~_>20W 25 44807 21 48430
consecutive percentile
HW_03 2+ Relative >98th 58 43629  27.66 61 47784
] consecutive percentile 28.57
3
HW_04 I 3+ Relative >98th 46 4396.7 49 47969
g consecutive percentile
HW_05 g 2+ Relative >95th 105 42873 2670 136 4629.7
-; consecutive percentile 27.65
HW_06 g 3+ . Relative >95th. 97 4293.5 118  4656.9
= consecutive percentile
HW_07 2+ . Relative >9Oth. 217 42162  25.63 241 4547.9
consecutive percentile 26.65
HW_08 3t Relative >90th 195 42118 227 45518
consecutive percentile
HW_09 2+ Relative >99th 22 44754 3552 20 48426
consecutive percentile 35.04
HW_10 3t Relative >99th 16 44797 14 48524
consecutive percentile
HW 11 2t Relative > o0mn 38 44137 3469 38 4799.8
g consecutive percentile 34.31
HW_12 g 3+ Relative >98th 30 44353 32 48132
a, consecutive percentile
g
HW.13 & - Relative >95th 98 42835 3330 109 46659
£ consecutive percentile 33.13
HW_ 14 2 3t Relative >95th 80 43180 85 47160
g consecutive percentile
S 2+ . >90th
HW_15 p= . Relative . 190 41926  31.94 194 45834
consecutive percentile 31.97
HW_16 3t Relative >90th 168 42344 180 46159
consecutive percentile
HW_17 1-day Absolute >35°C 35.00 26 4423.1  35.00 34 4801
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Table 1. Cont.

X Coastal Piedmont
Definition Heat Duration Threshold Threshold
Metric  (No. of Days) Type Intensity Threshold HW arc Threshold  HW 0
(@) Days (@) Days
HW_18 - Relative >99th 29 44881 2186 45 48103
consecutive percentile 23.86
HW_19 3t Relative >99th 25 44791 31 48319
consecutive percentile
]
HW_20 E 2+ Relative >98th 56 44011 21.40 83 47836
S consecutive percentile 23.36
)]
HW_21 =% 3t Relative >98th 46 44335 65 47995
g consecutive percentile
£ 2+ >95th
HW_22 g . Relative . 108 43520  20.63 156 4722.0
g consecutive percentile 22.57
HW23 3%t Relative 0N 04 43530 136 47226
§ consecutive percentile
2+ . >90th
HW_24 . Relative . 223 43055 19.72 265  4670.3
consecutive percentile 21.64
HW_25 3+ Relative >90th 199 43030 235 46937
consecutive percentile
o >95th
HW_26 g = E 1-day Absolute . 37.21 36 42540 35.26 27 4659.0
St 2 percentile
£ 58 >90th
Hw27 3 8 & 1-day Absolute . 36.20 71 43199 3592 58 4749.8
S alf percentile
HW 28 = © 9] 1-day Absolute >85th 35.47 106 44157  36.95 98 4799.1

HW (heat wave) days per Coastal and Piedmont region represent the cumulative number of days during the
study period that are categorized as heat wave days corresponding to the heat wave definitions.

Among the 28 HWDs (HW_01 to HW_28) included in this study, 24 are based on
relative threshold values, and four HWDs are based on the absolute threshold value.
Three of the 27 HWDs using relative threshold values were based on maximum apparent
temperature as the heat metric. The remaining 24 HWDs were based on the daily mean
(HW_01-HW_08), maximum (HW_09-HW_16), and minimum (HW_18-HW_25) tempera-
ture values as the heat metric. Additionally, one HWD using an absolute threshold value is
based on daily maximum temperature as the heat metric (Table 1). Using the 28 HWDs, we
categorized the summer days during the study period as a heat wave and non-heat wave
days using a binary variable to indicate heat waves.

2.1.3. National Weather Service—Heat Products

The heat products released by the NWS during the study period were retrieved from
the Iowa Environmental Mesonet [27]. During the study period, the NWS heat products
(heat advisories and excessive heat warnings) were released by the three NWS-WFOs
(ILM—Wilmington, MHX—Newport/Morehead city, and RAH—Raleigh) located in North
Carolina, which were included in this study. The WFOs ILM and MHX cover most of the
Coastal region, and RAH covers the Piedmont region [28]. Among the three WFOs, heat
products released by the ILM and MHX follow the NWS procedural directive. The RAH
WEO is the only center in North Carolina that collaborated with health partners to revise
the heat products [29]. The heat products from RAH are based on local conditions such
as maximum temperature, sunlight, nighttime temperature, heterogeneity between rural
and urban temperatures, and knowledge from historical weather conditions [29]. The heat
products used in the three WFOs in North Carolina are based on the following criteria. A
heat advisory is released during the days when the daytime heat index value is between
100 and 105 °F [30]. An excessive heat warning is released if the daytime heat index forecast
value is between 105 and 110 °F [30].
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We extracted the start and end dates and County information from the lowa Environ-
mental Mesonet heat product archives. The County information was aggregated to the North
Carolina physiographic region scale to match the spatial resolution of the health data included
in this study. We considered NWS heat wave days among physiographic regions if one
or more counties by WFOs within the physiographic regions had heat warning /advisories
(Figure S1). The NWS heat products were represented using a binary variable (NWS_HW) to
identify the days with NWS alerts on a daily scale by physiographic region.

2.1.4. Heat-Related Illness

Daily HRI-related emergency department visit data were obtained as an aggregate
count per day per physiographic region from the North Carolina Disease Event Tracking
and Epidemiologic Collection Tool (NC DETECT) surveillance program maintained by
the North Carolina Division of Public Health (NC DPH) [31]. Heat-related illnesses were
defined using ICD-9 CM codes with E992/E900.0/E900.0/E900; ICD-10 CM codes within
T67/X30/X32; and various keywords from the chief complaint/triage notes [31,32]. The
days with HRI emergency department visits fewer than five were censored, amounting
to 28.81% (219) of observations from the Coastal and 28.94% (220) in the Piedmont region.
The days with censored HRI emergency visits in the Coastal and Piedmont regions were
imputed by the median value of 3 visits per day.

2.2. Statistical Analysis

The sensitivity of 28 HWDs were compared using the Akaike Information Criterion
(AIC) value corresponding to the model fit [33,34] evaluating the HRI morbidity rate
associated with heatwaves included in this study. AIC is a metric that is a balance between
model accuracy and penalty due to complexity, commonly used to measure the optimal
model fit (Equation (1)) [35]. A smaller AIC value (close to —c0) represents an optimal
fit [36].

AIC = goodness of fit + penalty 1)

The HRI rate ratios corresponding to the 28 HWDs included in this study were
estimated using the Generalized Linear Model (GLM) and assuming negative binomial
distribution to account for outcome overdispersion. To compare the HRI risk across
physiographic regions, the regression model was adjusted for population density by using
the 2010 decennial population by region as an offset term [37]. To estimate the direct effect
of HWDs, the statistical models using HWDs based on temperature as a heat metric were
adjusted for relative humidity, and NWS heat wave alert days were added as covariates to
adjust for potential confounding effects and effect modification. Similarly, the statistical
models with HWDs using apparent temperature as a heat metric were adjusted for NWS
heat alerts. Additionally, to account for temporal autocorrelation, we adjusted the statistical
models mentioned above for the day of the week (weekday/weekend (binary)), month
(factor), and year (factor) (Figure 1 and Equation (2)). In Equation (2), HW is a binary
variable that represents HWDs, RH represents relative humidity, NWS-HW represents
NWS heat wave alerts, and TS represents the time series variables (day of week, month,
and year).

o <E(HRI count)

population > = Bo + Brw + Bre + Brnws mw + Brs + € )
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o[ NWS Heat )
> products
L (Binary) J
Temperature Heat wave HRI ED visits
(Exposure) definition (Outcome)
Continuous (Binary) (count)

Relative humidity teﬁ'i\);)::tztre
(Continuous) (Continuous)

Figure 1. Conceptualization of evaluating the direct effect of temperature or apparent temperature on

HRI ED visits. We assumed that the association between temperature and HRI is mediated through
NWS heat products. Additionally, relative humidity is influenced by temperature. To evaluate the
association between HWDs based on temperature and HRI, we adjusted for relative humidity and
NWS heat products. We adjusted for NWS heat products while evaluating the association between
HWDs based on apparent temperature and HRI ED visits.

We processed 28 statistical models stratified by physiographic region to obtain the
rate ratio (RR) and 95% confidence intervals. The sensitivity of HWDs was evaluated by
comparing the AIC values across HWDs by physiographic region that were generated from
the GLM output. The statistical model with the lowest AIC value among the 28 HWDs was
considered the optimal HWD (Coastal: HW_15 and Piedmont: HW_07). We then compared
the overlap between the days considered as heat waves from this study and the NWS heat
products using the Chi-Square test [38]. The analysis was conducted using R version 4.0.3
and MASS package version 7.3 [39].

3. Results
3.1. Heat Wave Definition—Sensitivity

Among the 28-heat metrics included in this study, the HWD using maximum tempera-
ture had the best fit with HRI morbidity in the Coastal region and mean temperature for the
Piedmont region. The HWDs based on a moderate (90th) percentile threshold for Coastal
and Piedmont regions had a more optimal model fit than the HWDs based on extreme
threshold (99th, 98th, and 95th percentile) values.

In the Coastal region, the HWD based on daily maximum temperature as a heat metric
with a threshold value >90th percentile for two or more consecutive days (HW_15) had
the optimal model fit (lowest AIC value) to estimate the HRI morbidity compared to the
HWDs included in this study. We did not observe a similar result for the Piedmont region.
In the Piedmont region, the HWD based on daily mean temperature as a heat metric with
a threshold value >90th percentile for two or more consecutive days (HW_07) had the
optimal model fit to estimate the HRI morbidity. In the Coastal region, the HWD HW_15 is
associated with a 2.75 (95% CI 2.40-3.08) times higher HRI morbidity rate during heat wave
days than the non-heat wave days. In the Piedmont region, the HWD HW_07 is associated
with a 2.72 (95% CI 2.46-3.01) times higher HRI morbidity rate compared to the non-heat
wave days (Figure 2).
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Figure 2. HRI rate ratio corresponding to heat wave definitions. The rate ratios and the corresponding
95% confidence intervals were generated using the generalized linear model (GLM), assuming a
negative binomial distribution. The X-axis represents distinct heat wave definitions, stratified by
North Carolina physiographic regions and grouped by metric and threshold type. The Y-axis
represents the HRI morbidity rate ratio, which could be interpreted as an increase/decrease in HRI
morbidity rate during a heat wave day compared to a non-heat wave day.

Using the HW_15 definition, 27% (190/704) of the days in the Coastal and using the
HW_07 HWD, 34% (241/719) of the days in the Piedmont region were flagged as heat
wave days during the study period (Table 2). There are an average of six HRI ED visits per
day in the Coastal region during the heat wave days based on HW_15 and an average of
eight HRI ED visits per day during the heat wave days based on HW_07 in the Piedmont
region (Table 2). The frequency of heat wave days in the Piedmont region using the HW_07
definition was 24% higher than in the Coastal region using the HW_15 definition. About
72% of the heat wave days from the Coastal region matched with the Piedmont region.
During the study period, we observed a lower number of heat wave days during the
summer of 2014. The frequency of heat wave days was higher in July than in other summer
months, based on the epidemiologic relationship based HWD (Coastal: HW_15; Piedmont:
HW_07).
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Table 2. Frequency of heat wave days and HRI ED visits in North Carolina physiographic regions.

Month

May June July August September

a b a b a b a b a b

= HW 3 1 21 14 22 25 10 15 0 0

& ED 65 37 309 334 225 417 195 302 0 0

o HW 0 0 5 6 23 27 0 8 2 6
Q ED 0 0 45 95 306 520 0 112 35 52

] HW 0 0 6 7 7 11 0 5 5 6
& ED 0 0 101 141 103 149 0 55 68 92

1 HW 0 0 15 16 14 19 5 9 2 3
& ED 0 0 817 897 306 569 117 177 25 54

© HW 0 0 5 8 24 26 19 24 2 5
Q ED 0 0 80 204 721 950 366 499 30 106

a—Coastal; b—Piedmont; HW—number of heat wave days using the definition from this study (Coastal: HW_15;
Piedmont: HW_07) and excluding the days that overlapped with the heat wave days flagged by the NWS;
ED—number of HRI emergency department visits corresponding to the heat wave days.

3.2. Comparing Epidemiologic-Based Heat Wave Definition and NWS Heat Products

During the study period, NWS flagged 26 days in the Coastal and 18 days in the
Piedmont regions as heat waves. The NWS heat wave days overlapped with the optimal
HWD identified in this study (HW_15 for Coastal and HW_07 for Piedmont). In the Coastal
region, there was a significantly higher (six-times) number of heat wave days based on
HW_15 than the NWS heat alerts (McNemar x%2 =158.15,df = 1; p < 0.05). Similarly, the
Piedmont region had a significantly higher (13 times) number of heat waves based on
HW_07 than the NWS heat alerts (McNemar x? = 219.04, df = 1, p < 0.05) (Figure 3).

4.0 Heat_wave . A
@ Hw 15 HWNWS HW
3.5 @ HW 15 HWNWS NHW
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8 [
S 3.0 .
=
o
— L ]
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Figure 3. Cont.
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Figure 3. Comparison of the effective heat wave definition with the NWS-Heat alerts. The X-axis
represents daily temperature in degrees Celsius (Coastal: maximum temperature and Piedmont:
minimum temperature). The Y-axis represents the daily rate of heat-related illness morbidity per
100,000 population members. Each dot represents an observation corresponding to daily temperature
and the rate of HRI morbidity during the study period. Panel (A) represents the Coastal region and
panel (B) represents the Piedmont region. The dots in the scatter plot are color-coded with three
possible combinations: (1) Red: Categorized as heat wave day from our results (HW_15 or HW_07)
and the NWS; (2) Blue: Categorized as heat wave day only based on our result; (3) Beige: Not flagged
as a heat wave day from our results nor the NWS.

4. Discussion

This study compared the optimal model fit using AIC values across the 28 HWDs.
Additionally, it compared the heat wave days flagged using the optimal definition identified
from this study to the NWS heat products. We observed that the HWD based on the
maximum temperature (HW_15) had an optimal performance for the Coastal region and the
mean temperature based HWD (HW_07) for the Piedmont region. The HWDs mentioned
above were associated with a 2.75 (95% CI 2.40-3.08) times higher rate of HRI morbidity
in the Coastal region and a 2.72 (95% CI 2.46-3.01) times higher HRI morbidity rate in
Piedmont than the non-heat wave days. During the study period, our results suggest an
excess of 33 heat wave days per summer season in the Coastal and 45 in the Piedmont
region based on the HWDs HW_15 for Coastal and HW_07 for Piedmont. During the
summer, most days in July were flagged as vulnerable to heat-related emergencies while
using the HWDs from this study.

Heterogeneity while evaluating the HWDs across the US climate regions or sub-regions
was well established in the literature [15,16,21]. To address the meteorological heterogeneity
within North Carolina, we evaluated the heat waves stratified by physiographic delin-
eations by clustering the administrative boundaries into physiographic regions. In North
Carolina, there are two Weather Forecast Offices (WFOs) covering the Coastal region and a
WEFO covering the Piedmont region. The WFO covering the Piedmont region collaborated
with the regional health partners to revise the heat thresholds. The WFO that overlaps the
Piedmont region considered revising its heat threshold based on the local conditions for
optimization [29]. Independent WFOs setting heat product thresholds at a sub-regional
scale would be beneficial for the climate-related heterogeneity across the administrative
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boundaries. However, a study discussing the heat products across the US reported that the
three WEOs across the Coastal and Piedmont regions follow the same threshold value and
criteria to release heat products [29]. In contrast to the homogenous heat product thresholds
across the physiographic regions, our results suggest heterogeneity of the HWDs between
the Coastal and Piedmont regions.

The results from our study overlapped with the observations from a previous study
that compared the sensitivity of HWDs across San Diego climate zones, using heat-related
hospitalizations as an outcome [21]. McElroy et al. (2020) reported using daily maximum
temperature above the 90th percentile (29.11 °C) in a day as a criterion for HWDs in the
Coastal region to be most efficient, using heat-related hospitalizations as an outcome. In
this study, we observed that the HWD based on daily maximum temperatures above the
90th percentile (31.97 °C) for two or more days had an optimal fit with HRI morbidity in the
Coastal region. Additionally, we observed that the HWD based on daily mean temperature
was optimal for the Piedmont region. In contrast, McElroy et al. (2020) reported that HWDs
based on daily maximum and the minimum temperature had the most impact on the Inland
and Desert regions of San Diego. The major difference between our findings and McElroy
et al. (2020) is focused on the duration criterion for defining heat waves. We observed that
the HWDs using two or more days as a duration criterion had an optimal fit, compared to
McElroy et al. (2020), who reported that absolute thresholds were most efficient.

Early heat—health warning systems play a crucial role in systematically minimizing
the risks associated with outdoor temperature exposure [8]. Multiple studies attempted to
characterize a gold standard HWD, where most of these studies compared the sensitivity
of the HWDs in the context of mortality [14,15,17]. Vaidyanathan et al. (2016) evaluated the
sensitivity of several HWDs and their association with heat-related deaths by comparing
the effect estimates (extreme heat effect). Similarly, Anderson and Bell (2009) evaluated
the sensitivity of HWDs based on the percent increase in relative risk associated with heat-
related mortality. McElroy et al. (2020) evaluated heat waves by climate zones, using the
attributable risk associated with heat-related hospitalizations. These studies assessed the
optimal HWD by comparing the effect estimates/relative or attributable risks associated
with health outcomes. We compared and identified an optimal HWD per North Carolina
physiographic regions using the model fit metric of the lowest AIC value (model fit) instead
of the effect estimates (strength of association).

Using AIC as a metric, we compared 28 HWDs and identified an HWD with an
optimal model fit. The HWD (HW_15) using daily maximum temperature with a > 90th
percentile value for two or more consecutive days had an optimal fit for the Coastal region.
Similarly, using daily mean temperature with a threshold > 90th percentile value for two
or more consecutive days was optimal for the Piedmont region compared to the HWDs
included in this study. During the study period, 27% of the summer days in the Coastal
and 34% in the Piedmont region were flagged as vulnerable to HRI emergencies by our
definition. In contrast, the NWS released heat products during ~2.5% of the summer days.
During the study period, there were an average of 783 (6 per day) HRI emergency visits per
summer season during the days flagged as vulnerable based on the HW_15 definition in the
Coastal region and 1152 (8 per day) HRI emergencies per summer season in the Piedmont
region during the days flagged as vulnerable to heat-related emergencies using the HW_07
definition. Abasilim and Friedman (2021) reported about 16 heat-related hospitalizations
per day during the summer days without NWS excess heat warnings in Illinois [40].

Our results could be influenced by the interaction between vulnerability factors and
risk perception. Additionally, our results are subjective to a variety of unmeasured biases
driven by human vulnerabilities such as co-existing medical conditions, occupational vul-
nerabilities, demographics (age, gender, race, education, urbanicity), and socioeconomic
factors (wealth, employment, housing) that were identified to exacerbate the risk of heat-
related illnesses [41-47]. Additionally, our results could be influenced by effect modifiers
such as human behavioral factors that include knowledge on heat risk sensitivity, external
locus of control, and emotional and cognitive factors that heavily alter the risk perception
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of heat warnings [48-50]. Further studies evaluating HWDs using mixed methods by con-
sidering quantitative information from human vulnerability characteristics and qualitative
information from heat risk perception could strengthen the heat—health risk ascertainment.

5. Conclusions

Our results showed heterogeneity of the optimal HWDs among the Coastal and
Piedmont regions in North Carolina. Additionally, the threshold values associated with
the optimal HWDs were smaller compared to the NWS thresholds for the North Carolina
physiographic regions. Our results suggest recalibrating the HWDs used by the NWS
WFOs in North Carolina.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article /10
.3390/ijerph191610108/s1. Figure S1. North Carolina physiographic regions. (A) Counties clustered
by physiographic region. (B) WFOs within physiographic regions included in this study. (C) Total
population per North Carolina counties.

Author Contributions: Conceptualization, J.P. and J.E.B.; methodology, J.P. and J.E.B.; software, J.P;
validation, J.E.B. and K.C.C.; formal analysis, J.P; resources, ].J.R., AM.A. and ].E.B.; data curation,
JJR., AM.A. and ].P; writing—original draft preparation, ].P; writing—review and editing, J.P,, J.E.B.,
K.C.C,, AM.A. and H]J,; visualization, J.P.; supervision, ].E.B.; project administration, J.E.B.; funding
acquisition, J.E.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Society of Actuaries.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and Ethical review and approval were waived for this study due to the use
of data aggregation at the physiographic level.

Informed Consent Statement: Not applicable.

Data Availability Statement: Temperature data are available the Global Historical Climatology Net-
work daily (GHCNd) database, [Dataset]. Available at: https://www.ncei.noaa.gov/products/land-
based-station/global-historical-climatology-network-daily (accessed on 12 April 2019); Precipitation
and dew point data is available at the PRISM Climate Group database, [Dataset]. Available at:
https:/ /www.prism.oregonstate.edu/recent/ (accessed on 3 September 2019); Heat-related emer-
gency department visit data could be requested from the North Carolina Department of Health and
Human Services, Available at: https://ncdetect.org/data/ (accessed on 26 February 2019).

Acknowledgments: We would like to acknowledge the Society of Actuaries, Climate Central, the
Claire M. Hubbard Foundation, and the Robert B. Daugherty Water for Food Global Institute at the
University of Nebraska for supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Mazdiyasni, O.; AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl.
Acad. Sci. USA 2015, 112, 11484-11489. [CrossRef]

2. USGCRP. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Crimmins, A., Balbus, J.,
Gamble, J.L., Beard, C.B., Bell, ].E., Dodgen, D., Eisen, R.J., Fann, N., Hawkins, M.D., Herring, S.C., et al., Eds.; U.S Global Change
Research Program: Washington, DC, USA, 2016.

3. Hajat, S.; Sheridan, S.C.; Allen, M.].; Pascal, M.; Laaidi, K.; Yagouti, A.; Bickis, U.; Tobias, A.; Bourque, D.; Armstrong, B.G.; et al.
Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot
days. Am. . Public Health 2010, 100, 1137-1144. [CrossRef] [PubMed]

4. Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California
heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 2009, 117, 61-67. [CrossRef]
[PubMed]

5. Vaidyanathan, A.; Malilay, ].; Schramm, P.; Saha, S. Heat-Related Deaths—United States, 2004—2018. MMWR Morb. Mortal. Wkly.
Rep. 2020, 69, 729-734. [CrossRef]

6. IPCC. (Intergovernmental Panel on Climate Change) 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth

Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P, Pirani, A., Connors, S.L., Péan,


https://www.mdpi.com/article/10.3390/ijerph191610108/s1
https://www.mdpi.com/article/10.3390/ijerph191610108/s1
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.prism.oregonstate.edu/recent/
https://ncdetect.org/data/
http://doi.org/10.1073/pnas.1422945112
http://doi.org/10.2105/AJPH.2009.169748
http://www.ncbi.nlm.nih.gov/pubmed/20395585
http://doi.org/10.1289/ehp.11594
http://www.ncbi.nlm.nih.gov/pubmed/19165388
http://doi.org/10.15585/mmwr.mm6924a1

Int. |. Environ. Res. Public Health 2022, 19, 10108 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.L, et al., Eds.; Cambridge University Press: Cambridge, UK; New York,
NY, USA, 2021.

Rennie, J.; Bell, ].E.; Kunkel, K.E.; Herring, S.; Cullen, H.; Abadi, A.M. Development of a Sub-monthly Temperature Product to
Monitor Near-Real-Time Climate Conditions and Assess Long-Term Heat Events in the United States. J. Appl. Meteorol. Clim.
2019, 58, 2653-2674. [CrossRef]

Ebi, K.L.; Teisberg, T.J.; Kalkstein, L.S.; Robinson, L.; Weiher, R.F. Heat Watch/Warning Systems Save Lives: Estimated Costs and
Benefits for Philadelphia 1995-98. Bull. Am. Meteorol. Soc. 2004, 85, 1067-1074. [CrossRef]

Kalkstein, S.L.; Jamason, F.P.; Greene, S.J. Philadelphia Hot Weather Health Watch Warning System. 1995. Available online:
https:/ /wwwl.udel.edu/SynClim/phl.html (accessed on 28 March 2022).

Weinberger, K.R.; Zanobetti, A.; Schwartz, ].; Wellenius, G.A. Effectiveness of National Weather Service heat alerts in preventing
mortality in 20 US cities. Environ. Int. 2018, 116, 30-38. [CrossRef]

CDC (Center for Disease Control and Prevention). National Environmental Public Health Tracking Network. Available online:
https:/ /ephtracking.cdc.gov (accessed on 5 March 2020).

NCDHHS (North Carolina Department of Health and Human Services) Heat Data and Prevention. Available online: https:
/ /publichealth.nc.gov/chronicdiseaseandinjury /heat.htm (accessed on 11 September 2020).

Wellenius, G.A.; Eliot, M.N.; Bush, K.F;; Holt, D.; Lincoln, R.A.; Smith, A.E.; Gold, ]. Heat-related morbidity and mortality in New
England: Evidence for local policy. Environ. Res. 2017, 156, 845-853. [CrossRef]

Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat
wave characteristics in 43 U.S. communities. Environ. Health Perspect. 2011, 119, 210-218. [CrossRef]

Vaidyanathan, A.; Kegler, S.R.; Saha, S.S.; Mulholland, J.A. A Statistical Framework to Evaluate Extreme Weather Definitions from
A Health Perspective: A Demonstration Based on Extreme Heat Events. Bull. Am. Meteorol. Soc. 2016, 97, 1817-1830. [CrossRef]
Vaidyanathan, A.; Saha, S.; Vicedo-Cabrera, A.M.; Gasparrini, A.; Abdurehman, N.; Jordan, R.; Hawkins, M.; Hess, J.; Elixhauser,
A. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc. Natl. Acad. Sci. USA 2019, 116,
5420-5427. [CrossRef] [PubMed]

Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A
systematic review and meta-analysis. Environ. Int. 2016, 89-90, 193-203. [CrossRef] [PubMed]

Song, X.; Wang, S.; Hu, Y.; Yue, M.; Zhang, T.; Liu, Y,; Tian, J.; Shang, K. Impact of ambient temperature on morbidity and
mortality: An overview of reviews. Sci. Total Environ. 2017, 586, 241-254. [CrossRef] [PubMed]

Reid, C.E.; O’'Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, ]. Mapping community determinants
of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730-1736. [CrossRef] [PubMed]

Fechter-Leggett, E.D.; Vaidyanathan, A.; Choudhary, E. Heat Stress Illness Emergency Department Visits in National Environ-
mental Public Health Tracking States, 2005-2010. J. Community Health 2016, 41, 57—-69. [CrossRef] [PubMed]

McElroy, S.; Schwarz, L.; Green, H.; Corcos, I.; Guirguis, K.; Gershunov, A.; Benmarhnia, T. Defining heat waves and extreme heat
events using sub-regional meteorological data to maximize benefits of early warning systems to population health. Sci. Total
Environ. 2020, 721, 137678. [CrossRef] [PubMed]

NCEI (National Centers for Environmental Information). Global Historical Climatology Network Daily (GHCNd). Available
online: https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily (accessed on
12 April 2019).

PRISM (Parameter-Elevation Regression on Independent Slopes Model). Available online: https://prism.oregonstate.edu/
explorer/ (accessed on 3 September 2019).

Anderson, B.; Peng, R.; Ferreri, ]. Weathermetrics: Functions to Convert Between Weather Metrics, 1.2.2; CRAN: 2016. Available
online: https://cran.r-project.org/web/packages/weathermetrics /index.html (accessed on 4 November 2019).

Smith, T.T.; Zaitchik, B.F.; Gohlke, ]. M. Heat waves in the United States: Definitions, patterns and trends. Clim. Chang. 2013, 118,
811-825. [CrossRef]

Kent, S.T.; McClure, L.A.; Zaitchik, B.F.; Smith, T.T.; Gohlke, ].M. Heat waves and health outcomes in Alabama (USA): The
importance of heat wave definition. Environ. Health Perspect. 2014, 122, 151-158. [CrossRef]

IEM (Iowa Environmental Mesonet). Archived NWS Watch, Warnings, Advisories. Available online: https://mesonet.agron.
iastate.edu/vtec/search.php (accessed on 13 October 2020).

NWS-WFO (National Weather Services—Weather Forecast Offices). Available online: https:/ /www.weather.gov/srh/nwsoffices
(accessed on 28 March 2022).

Hawkins, M.D.; Brown, V.; Ferrell, ]. Assessment of NOAA National Weather Service Methods to Warn for Extreme Heat Events.
Weather Clim. Soc. 2017, 9, 5-13. [CrossRef]

NC-DPS (North Carolina Department of Public Safety). Extreme Heat. Available online: https://www.readync.gov/stay-
informed /north-carolina-hazards/extreme-heat (accessed on 5 October 2021).

NC-DETECT (North Carolina Disease Event Tracking and Epidemiologic Collection Tool). Available online: https:/ /ncdetect.org
(accessed on 26 February 2019).

Harduar Morano, L.; Waller, A.E. Evaluation of the Components of the North Carolina Syndromic Surveillance System Heat
Syndrome Case Definition. Public Health Rep. 2017, 132 (Suppl. S1), 40S-47S. [CrossRef]

Hibble, M.]. Poisson Regression. In Modeling Count Data; Cambridge University Press: New York, NY, USA, 2014; pp. 35-73.


http://doi.org/10.1175/JAMC-D-19-0076.1
http://doi.org/10.1175/BAMS-85-8-1067
https://www1.udel.edu/SynClim/phl.html
http://doi.org/10.1016/j.envint.2018.03.028
https://ephtracking.cdc.gov
https://publichealth.nc.gov/chronicdiseaseandinjury/heat.htm
https://publichealth.nc.gov/chronicdiseaseandinjury/heat.htm
http://doi.org/10.1016/j.envres.2017.02.005
http://doi.org/10.1289/ehp.1002313
http://doi.org/10.1175/BAMS-D-15-00181.1
http://doi.org/10.1073/pnas.1806393116
http://www.ncbi.nlm.nih.gov/pubmed/30833395
http://doi.org/10.1016/j.envint.2016.02.007
http://www.ncbi.nlm.nih.gov/pubmed/26878285
http://doi.org/10.1016/j.scitotenv.2017.01.212
http://www.ncbi.nlm.nih.gov/pubmed/28187945
http://doi.org/10.1289/ehp.0900683
http://www.ncbi.nlm.nih.gov/pubmed/20049125
http://doi.org/10.1007/s10900-015-0064-7
http://www.ncbi.nlm.nih.gov/pubmed/26205070
http://doi.org/10.1016/j.scitotenv.2020.137678
http://www.ncbi.nlm.nih.gov/pubmed/32197289
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://prism.oregonstate.edu/explorer/
https://prism.oregonstate.edu/explorer/
https://cran.r-project.org/web/packages/weathermetrics/index.html
http://doi.org/10.1007/s10584-012-0659-2
http://doi.org/10.1289/ehp.1307262
https://mesonet.agron.iastate.edu/vtec/search.php
https://mesonet.agron.iastate.edu/vtec/search.php
https://www.weather.gov/srh/nwsoffices
http://doi.org/10.1175/WCAS-D-15-0037.1
https://www.readync.gov/stay-informed/north-carolina-hazards/extreme-heat
https://www.readync.gov/stay-informed/north-carolina-hazards/extreme-heat
https://ncdetect.org
http://doi.org/10.1177/0033354917710946

Int. |. Environ. Res. Public Health 2022, 19, 10108 13 of 13

34.
35.
36.
37.
38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Peng, D.R.; Dominici, F. Statistical models. In Statistical Methods for Environmental Epidemiology with R: A Case Study in Air Pollution
and Health; Gentleman, R., Hornik, K., Parmigiani, G., Eds.; Springer: New York, NY, USA, 2008; pp. 69-95.

Kamo, K.I; Yanagihara, H.; Satoh, K. Bias-corrected AIC for selecting variables in poisson regression models. Commun. Stat.
Theory Methods 2013, 42, 1911-1921. [CrossRef]

Dunn, K.P,; Smyth, K.G. Generalized Linear Models with Examples in R; Springer: New York, NY, USA, 2018.

USCB (United States Census Bureau). Available online: https://data.census.gov/cedsci/ (accessed on 13 April 2019).

Walker, G. Common Statistical Methods for Clinical Research with SAS Examples, 3rd ed.; Shostak, J., Ed.; SAS Institute: Cary, NC,
USA, 2010.

Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. Package ‘mass’. Cran. R 2013, 538, 113-120.
Abasilim, C.; Friedman, L.S. Comparison of health outcomes from heat-related injuries by National Weather Service reported
heat wave days and non-heat wave days—Illinois, 2013-2019. Int. ]. Biometeorol. 2022, 66, 641-645. [CrossRef] [PubMed]

Danzl, D.F. Heat-Related Illnesses. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J.L., Fauci, A.S., Kasper, D.L.,
Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw-Hill Education: New York, NY, USA, 2018.

Sorensen, C.J.; Cook-Shimanek, M.; Newman, L.S. Climate Change and Worker Health: Implications for Clinical Practice. In
CURRENT Diagnosis & Treatment: Occupational & Environmental Medicine, 6th ed.; LaDou, J., Harrison, R.J., Eds.; McGraw Hill:
New York, NY, USA, 2021.

Jung, J.; Uejio, C.K,; Kintziger, K.W.; Duclos, C.; Reid, K.; Jordan, M.; Spector, ].T. Heat illness data strengthens vulnerability maps.
BMC Public Health 2021, 21, 1999. [CrossRef] [PubMed]

Jalalzadeh Fard, B.; Mahmood, R.; Hayes, M.; Rowe, C.; Abadi, A.M.; Shulski, M.; Medcalf, S.; Lookadoo, R.; Bell, ].E. Mapping
Heat Vulnerability Index Based on Different Urbanization Levels in Nebraska, USA. Geohealth 2021, 5, e2021GH000478. [CrossRef]
Niu, Y;; Li, Z;; Gao, Y.; Liu, X,; Xu, L.; Vardoulakis, S.; Yue, Y.; Wang, J.; Liu, Q. A Systematic Review of the Development and
Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Curr. Clim. Chang. Rep. 2021, 7, 87-97.
[CrossRef]

Gronlund, C.J. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: A review. Curr. Epidemiol.
Rep. 2014, 1, 165-173. [CrossRef]

Guirguis, K.; Basu, R.; Al-Delaimy, W.K.; Benmarhnia, T.; Clemesha, R.E.S.; Corcos, I.; Guzman-Morales, J.; Hailey, B.; Small, L;
Tardy, A.; et al. Heat, Disparities, and Health Outcomes in San Diego County’s Diverse Climate Zones. Geohealth 2018, 2, 212-223.
[CrossRef]

Toloo, G.S.; Fitzgerald, G.; Aitken, P.; Verrall, K.; Tong, S. Are heat warning systems effective? Environ. Health 2013, 12, 27.
[CrossRef]

Kalkstein, A.J.; Sheridan, S.C. The social impacts of the heat-health watch/warning system in Phoenix, Arizona: Assessing the
perceived risk and response of the public. Int. |. Biometeorol. 2007, 52, 43-55. [CrossRef]

Beckmann, S.K.; Hiete, M. Predictors Associated with Health-Related Heat Risk Perception of Urban Citizens in Germany. Int. J.
Environ. Res. Public Health 2020, 17, 874. [CrossRef] [PubMed]


http://doi.org/10.1080/03610926.2011.600504
https://data.census.gov/cedsci/
http://doi.org/10.1007/s00484-021-02218-6
http://www.ncbi.nlm.nih.gov/pubmed/34782920
http://doi.org/10.1186/s12889-021-12097-6
http://www.ncbi.nlm.nih.gov/pubmed/34732187
http://doi.org/10.1029/2021GH000478
http://doi.org/10.1007/s40641-021-00173-3
http://doi.org/10.1007/s40471-014-0014-4
http://doi.org/10.1029/2017GH000127
http://doi.org/10.1186/1476-069X-12-27
http://doi.org/10.1007/s00484-006-0073-4
http://doi.org/10.3390/ijerph17030874
http://www.ncbi.nlm.nih.gov/pubmed/32019249

	Introduction 
	Materials and Methods 
	Data 
	Heat Metrics 
	Heat Wave Definitions 
	National Weather Service—Heat Products 
	Heat-Related Illness 

	Statistical Analysis 

	Results 
	Heat Wave Definition—Sensitivity 
	Comparing Epidemiologic-Based Heat Wave Definition and NWS Heat Products 

	Discussion 
	Conclusions 
	References

