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ABSTRACT: As Earth’s largest collection of freshwater, the Laurentian Great Lakes have enormous ecological and so-
cioeconomic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening
its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their
performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to
address complex limnological processes and lake—atmosphere interactions. In response to this need, the current paper
focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration
(NASA)-Unified Weather Research and Forecasting (NU-WRF) simulations for the 2014/15 cold season. The study aims to
identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics
parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key
biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is
amplified by coupling to a 1D lake model but diminished by applying the Community Atmosphere Model radiation scheme
and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and
subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior
and Huron. The research team is currently addressing these key limitations by coupling NU-WREF to a 3D lake model in
support of the next generation of regional climate models for the critical Great Lakes Basin.

SIGNIFICANCE STATEMENT: Climate change poses a serious threat to the vital natural resources of the Laurentian
Great Lakes region. Complex lake—atmosphere interactions and limnological processes are a challenge for regional
climate models. To address the threat of climate change, there is a clear need to further evaluate and develop modeling
tools for the Great Lakes Basin. Here, we evaluate the regional performance of the National Aeronautics and Space
Administration’s regional climate model at high spatial resolution in support of ongoing efforts to develop the next
generation modeling tool for the Great Lakes region.
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1. Introduction The Great Lakes exert a prominent effect on regional cli-
mate due to their large thermal inertia, variability as a moisture
source to the atmosphere, and contrasts in moisture, heat,
friction, and radiation compared to adjacent land (Changnon
and Jones 1972; Scott and Huff 1997; Chuang and Sousounis
2003; Notaro et al. 2013a). Heat and moisture fluxes destabilize
and moisten the boundary layer during autumn-winter (Bates
etal. 1993; Blanken et al. 2011). The lakes’ relative warmth and
resulting enhanced low-level convergence make the basin a
preferred region of wintertime cyclogenesis (Petterssen and
Calabrese 1959; Colucci 1976; Eichenlaub 1979). Lake-induced
precipitation peaks during September—-March when cloud cover
and precipitation are enhanced downwind of the lakes (Niziol
et al. 1995; Scott and Huff 1996; Kristovich and Laird 1998).
Overlake turbulent fluxes and lake-effect precipitation are
dampened by mid- to late winter (February-March) as ice cover
becomes extensive (Niziol et al. 1995; Brown and Duguay 2010).

The Great Lakes region has experienced dramatic climatic
Corresponding author: Yafang Zhong, yafangzhong@wisc.edu and limnologic changes (Kling et al. 2003; Wuebbles and

The Laurentian Great Lakes are the Earth’s largest collec-
tion of freshwater and an invaluable resource to society and
wildlife (Botts and Krushelnicki 1988). The Great Lakes
megaregion is home to over 55 million people (Todorovich
2009). The lakes critically support the United States’ and
Canadian economies through impacts on shipping, drinking
water, power production, manufacturing, fishing, and recrea-
tion (Vaccaro and Read 2011). The basin contains a rich di-
versity of fish, animals, and plants (Crossman and Cudmore
1998) and ecologically valuable wetlands.
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Hayhoe 2004; Wuebbles et al. 2010; Sharma et al. 2018),
including a regime shift in lake-surface temperature (LST) and
ice cover (Van Cleave et al. 2014). During 1900-2010, annual
air temperatures rose by 0.88°C in the Midwest United States
(Kunkel et al. 2013; Schoof 2013; Pryor et al. 2014; Zobel et al.
2017, 2018). Due to mutual surface—atmosphere warming
(Manabe and Wetherald 1967) and resulting earlier lake
stratification, Lake Superior’s surface water temperatures in-
creased by 2.5°C during July-September of 1979-2006, ex-
ceeding the regional atmospheric warming rate (Austin and
Colman 2007; Zhong et al. 2016; Ye et al. 2019). The lakes’ ice
cover declined by 71% during 1973-2010 due to the afore-
mentioned mutual surface-atmosphere warming (Wang et al.
2012; Mason et al. 2016). Rising lake temperatures, ice cover
reductions, and increased frequency of intense cyclones
supported a long-term positive trend in lake-effect snowfall
(Burnett et al. 2003; Ellis and Johnson 2004; Kunkel et al.
2009), which locally reversed over portions of the Great Lakes
Basin in recent decades (Bard and Kristovich 2012; Hartnett
et al. 2014; Suriano and Leathers 2017; Clark et al. 2020).
Heavy precipitation events have become more frequent
(Kunkel et al. 2003, 2012; Easterling et al. 2000; Winkler et al.
2012), with an invigorated hydrologic cycle generating extreme
lake level variations (Gronewold et al. 2013).

Given the importance of lake—atmosphere interactions and
pronounced climate change in the Great Lakes Basin, thereis a
need to generate, evaluate, and improve climate modeling for
the region. Large lakes and their regional climate influence are
poorly resolved in coarse global climate models (Mallard et al.
2014,2015; Briley et al. 2017). The Great Lakes’ representation
across the Coupled Model Intercomparison Project global
climate models varies broadly among land, wet soil, ocean, or
inland lake grid cells, with the most advanced representation in
the Coupled Model Intercomparison Project global climate
models based on 1D lake models (none are coupled to 3D lake
models) with inappropriate assumptions for deep lakes
(Roeckner et al. 2003; Briley et al. 2017). One rudimentary
regional climate modeling approach consists of extracting sea
surface temperatures from the initial and lateral boundary
conditions datasets over the Atlantic Ocean, Pacific Ocean, or
Hudson Bay and applying those oceanic sea surface tempera-
ture values as LST boundary conditions for the Great Lakes
(Mallard et al. 2015; Spero et al. 2016; Sharma et al. 2018). Such
erroneous LSTs, retrieved from oceans rather than lakes, can
negatively impact simulated pressure and air temperature re-
gionwide (Spero et al. 2016). Alternatively, regional climate
models that apply historical, remotely sensed or reanalysis-
based LSTs, rather than a coupled lake model, neglect hy-
drodynamic feedbacks and are impractical tools for developing
climate projections (Sharma et al. 2018).

Regional climate models have been employed in an array of
Great Lakes studies. Zhong et al. (2012) demonstrated the
ability of select regional climate models to capture the lakes’
impacts on regional climate and outperform global climate
models. The Regional Climate Model version 4, coupled to a
1D lake model, was applied to examine the lakes’ influence on
atmospheric circulation, stability, moisture, and temperature;
highlight model skill in capturing variability and trends in air
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temperature, ice cover, and snowfall; elucidate the mechanisms
behind recent lake warming; and formulate winter severity
projections (Notaro et al. 2013a,b, 2014, 2015, 2016; Zhong et al.
2016). Applying the “Providing Regional Climates for Impacts
Studies” regional climate model, Zhang et al. (2020) projected
that wintertime precipitation in the Great Lakes Basin would
increase during this century. The Weather Research and
Forecasting (WRF; Skamarock et al. 2008) Model is a com-
monly used regional climate model for the Great Lakes Basin.
According to Shi et al. (2010), the nested WRF Model with
1-km grid spacing accurately simulated snowfall and cloud
patterns from Canadian snowstorms. Wright et al. (2013)
revealed a close association between Great Lakes’ ice cover
distribution and resulting snowfall pattern in WRF and con-
cluded that coarse models cannot capture local water—ice—
atmosphere interactions that regulate snowband intensity and
distribution. Insua-Costa and Miguez-Macho (2018) estimated
that, during lake-effect snowstorms in November 2014, 30%—
50% of WRF-simulated precipitation downwind of the lakes
originated from lake evaporation, similar to those estimated
from observed water and ice fluxes (e.g., Kristovich and
Braham 1998) Applying nested WRF with 3-km grid spacing,
Shi and Xue (2019) determined that resolving LST spatial
variations enhances surface wind convergence, vertical mo-
tion, and lake-effect snowfall on the lee sides of the Great
Lakes. The WRF-based findings of Sharma et al. (2019) in-
cluded enhanced skill due to spectral nudging (Rockel et al.
2008; Wang and Kotamarthi 2013), better performance during
winter than summer, and successfully simulated lake-effect
precipitation at both 12- and 4-km grid spacing. Complex lake—
atmosphere interactions and lake-effect snowfall morphology
require high-resolution modeling (Notaro et al. 2013a,b,
2015; Wright et al. 2013; Briley et al. 2017; Xiao et al. 2018; Shi
and Xue 2019). Future climate projections for the Great Lakes
Basin were developed by Gula and Peltier (2012) and Peltier
et al. (2018) using WREF either uncoupled or coupled to the
Freshwater Lake Model (Mironov 2008). Peltier et al. (2018)
identified a wintertime cold bias in WRF coupled to the
Freshwater Lake Model across the Great Lakes Basin.

More advanced regional climate models typically represent
the Great Lakes using 1D lake models, which incorporate
coupled lake—atmosphere interactions and can generally cap-
ture the broad spatiotemporal patterns of LSTs and ice cover
(Gula and Peltier 2012; Notaro et al. 2013b), but are charac-
terized by serious limitations. These shortcomings for large
lakes include the lack of dynamic lake circulation, explicit
horizontal mixing, or ice motion; an oversimplified stratifica-
tion process; assumed instantaneous mixing of instabilities; and
deficient treatment of eddy diffusivity (Martynov et al. 2010;
Stepanenko et al. 2010; Bennington et al. 2014; Mallard et al.
2014, 2015; Gu et al. 2015; Sharma et al. 2018). Such regional
climate models, coupled to a 1D lake model, generate exces-
sive ice cover due to the absence of horizontal mixing and ice
movement (Bennington et al. 2010; Notaro et al. 2013b; Xiao
et al. 2016). One-dimensional lake models commonly produce
an anomalously early stratification and positive bias in sum-
mertime LST (Bennington et al. 2014). Charusombat et al.
(2018) revealed that WRF coupled to a 1D lake model,
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adapted from the Community Land Model version 4.5 (Subin
et al. 2012; Oleson et al. 2013), produces excessive sensible and
latent heat fluxes, compared to Great Lakes Evaporation
Network measurements, that can be largely resolved by mod-
ifying the roughness length scales. One common approach to
reduce vertical temperature profile errors in 1D lake models is
to artificially enhance the vertical eddy diffusivity of deep lakes
to imitate the neglected dynamic circulation and vertical mix-
ing processes (Subin et al. 2012; Bennington et al. 2014;
Lofgren 2014; Gu et al. 2015; Mallard et al. 2015). Nonetheless,
1D lake models remain incapable of representing key dynamic
and thermodynamic processes of deep lakes (Xiao et al. 2016;
Xue et al. 2017). Continued progress is needed to interactively
couple high-resolution regional climate models to 3D lake
models in order to resolve shear instabilities, mixing episodes,
Ekman suction, upwelling, downwelling, coastal currents and
jets, seiches, and ice motion (Martynov et al. 2010; Bennington
et al. 2010, 2014; Beletsky et al. 2012; Fujisaki et al. 2013), and
minimize LST and ice cover biases (Notaro et al. 2013b; Xue
et al. 2015, 2017; Sharma et al. 2018; Ye et al. 2019).

The authors developed an advanced Great Lakes Basin
modeling tool, consisting of the NASA-Unified Weather
Research and Forecasting (NU-WRF; Peters-Lidard et al.
2015) model, nested to 3-km grid spacing, interactively coupled
to the Finite Volume Community Ocean Model (Chen et al.
2003) to represent 3D lake hydrodynamics. This tool will
benefit subsequent assessments of historical and future climatic
and limnological changes, representing variability and change
in lake temperature, ice cover, and lake circulation, along with
providing a high-resolution, convection-permitting depiction
of precipitation extremes. In support of this development
process, the current paper explores the cold season perfor-
mance of the current NU-WREF version across the Great Lakes
Basin, including the identification of regionally optimal
schemes and the impacts of 1D lake model coupling, spectral
nudging, and the choice of cumulus parameterization, micro-
physics, longwave and shortwave radiation, and planetary
boundary layer and surface layer schemes. The authors present
data and methods in section 2, results in section 3, and dis-
cussion and conclusions in section 4.

2. Data and methodology
a. Model description and experimental design

NU-WREF is a state-of-the-art observation-driven integrated
modeling system that represents aerosol, cloud, precipitation,
and land processes at satellite-resolved, convection-permitting
scales. It was developed based on the National Center for
Atmospheric Research Advanced Research WRF Model
coupled with chemistry (WRF-Chem; Grell et al. 2005;
Skamarock et al. 2008), with enhanced physics coupling and
optimal use of NASA’s satellite products. The WRF dynamical
core is coupled to the Goddard Space Flight Center Land
Information System (Kumar et al. 2006; Peters-Lidard et al.
2007, 2015) and Goddard Chemistry Aerosol Radiation and
Transport model (Chin et al. 2000), while incorporating mul-
tiple NASA-based microphysics and radiation packages (Wu
et al. 2016). NU-WREF simulations here apply the Noah Land

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/24 03:47 PM UTC

NOTARO ET AL.

2425

Surface Model, which prognostically computes soil moisture
and temperature, permits fractional snow cover, and incorpo-
rates freeze—thaw soil physics (Mitchell 2001).

The current NU-WREF version permits two crude treatments
of large lakes. Either LSTs can be provided by skin surface
temperatures from the boundary condition dataset, without
including a lake model or two-way lake—atmosphere interac-
tions, or the atmosphere can be two-way coupled to the 1D
Lake, Ice, Snow, and Sediment Simulator (Subin et al. 2012)
from the Community Land Model version 4.5 (Oleson et al.
2013) with modifications by Gu et al. (2015). This 1D mass and
energy balance scheme applies 0-5 snow layers on top of lake
ice, 10 water layers (5-cm depth for top layer), and 10 soil layers
at the lake’s bottom. This lake model initially generated rea-
sonable LSTs for shallow Lake Erie but vast biases for deep
Lake Superior due to an underestimated vertical heat transfer.
However, by amplifying the eddy diffusion parameter, Gu et al.
(2015) reduced these LST biases in an artificial manner that does
not directly address the key 3D processes in deep lakes.

The performance of NU-WRF and optimal model configu-
ration are explored for the Great Lakes region during a select
cold season with active lake-effect snowfall. Twenty simula-
tions (Table 1) are generated, including eight primary runs
(““Nud”: with spectral nudging and temporally invariant
November LSTs; “NoNud’’: without nudging and with tem-
porally invariant LSTs that are fixed at the initial warm
November state; ‘“NudVary”: with nudging and temporally
varying LSTs; “NoNudVary”: without nudging and with tem-
porally varying LSTs; “Nud1D”: with 1D lake model and
uniform lake depths; “Nud1Ddep”’: with 1D lake model and
spatially varying lake depths; “MorrNoL”: without 1D lake
model and with Morrison combination; “MorrL”’: with 1D lake
model and Morrison combination) for November 2014—March
2015 and 12 supplemental runs for only February 2015 (when
temperature biases are most pronounced) to limit computa-
tional costs. The vertical resolution is assigned to 61 levels. The
one-way nested configuration consists of an outer domain with
15-km grid spacing and inner domain with 3-km grid spacing
(Fig. 1). Initial and lateral boundary conditions are provided by
either the Global Data Assimilation System 0-h analysis or
European Centre for Medium-Range Weather Forecasts in-
terim reanalysis. Lake treatment includes LSTs provided as
boundary conditions based on Global Data Assimilation
System skin surface temperatures; or generated by application
of a 1D lake model either with uniform (50m for all lakes)
or spatially varying lake depths, the latter based on the
Kourzeneva (2010) dataset. Some simulations include spectral
nudging to the large-scale atmospheric fields (wind compo-
nents, air temperature, and geopotential height above the
planetary boundary layer and specific humidity at all levels) to
an approximate 600-km wavelength, which is the wavelength
specified in numerous prior studies (Ferraro et al. 2017; Iguchi
et al. 2017; Lee et al. 2017; Loikith et al. 2018).

Applied cumulus parameterization options for the outer
domain include the Kain—Fritsch (Kain and Fritsch 1990; Kain
2004) and modified Tiedtke (Tiedtke 1989; Zhang et al. 2011)
schemes, with resolved, unparameterized convection in the
inner domain. The thermal roughness length in the bulk
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FIG. 1. Elevation maps (m) for the (a) outer domain with 15-km
grid spacing and (b) inner domain with 3-km grid spacing.

transfer equations is either assigned to its default value or
determined through a vegetation-dependent scheme (Chen
and Zhang 2009; Weston et al. 2019). Applied microphysics
options include the Goddard three-class ice scheme (Tao et al.
1989) and a couple of six-class, double-moment schemes,
namely, the Thompson et al. (2008) graupel scheme and
Morrison et al. (2009) scheme. Utilized longwave radiation
schemes include the Rapid Radiative Transfer Model (RRTM,;
Mlawer et al. 1997), Rapid Radiative Transfer Model for
General Circulation Models (RRTMG; Barker et al. 2007;
Pincus et al. 2003), and Goddard scheme (Chou and Suarez
1999; Chou et al. 2001). The applied shortwave radiation
schemes include the RRTMG (Iacono et al. 2008), Goddard
(Chou and Suarez 1999; Chou et al. 2001), and Community
Atmosphere Model (CAM; Collins et al. 2004) schemes.
Applied planetary boundary layer schemes include the Yonsei
University (Hong et al. 2006, 2010), Mellor—-Yamada—
Nakanishi-Niino Level 2.5 (MYNN2.5; Nakanishi and Niino
2006, 2009), and Mellor-Yamada—Janji¢ (MYJ; Mellor and
Yamada 1982; Janji¢ 1990, 1994, 2001) schemes, and applied
surface layer schemes include the Mesoscale Model Version
Five (MM5) (Zhang and Anthes 1982), Mellor-Yamada—
Nakanishi-Niino (MYNN; Nakanish 2001), Nakanishi and
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Niino, Monin—Obukhov-Janji¢, and revised MMS5 Monin—
Obukhov (Jiménez et al. 2012) schemes. The UA_PHYS run
activates improved physics of snowpack—vegetation canopy in-
teractions, which increases sensible heat fluxes and decreases
momentum roughness length over snowpack (Wang et al. 2010).
“Morrison combination” refers to the set of schemes applied
in MorrL (with the 1D lake model) and MorrNoL (without the
lake model), including Morrison microphysics, RRTM long-
wave radiation physics, CAM shortwave radiation physics,
MYNN2.5 planetary boundary layer physics, and MYNN
surface layer schemes. The improved simulations of air tem-
perature and surface insolation due to the Morrison combi-
nation are primarily due to the Community Atmosphere
Model’s shortwave radiation scheme. The selection of the
Community Atmosphere Model’s shortwave radiation scheme
is based on six test runs for December 2016-February 2017
varying, one by one, the microphysics scheme, shortwave ra-
diation scheme, and boundary layer scheme (not shown). The
Morrison combination is essentially the WRF configuration
determined by Mooney et al. (2013) to produce the best sim-
ulated wintertime temperature simulation over Europe, who
found that winter air temperatures are highly sensitive to the
choice of radiation physics. Comparison of experiments re-
veals the regional impacts of spectral nudging, seasonally
variant LSTs, 1D lake model coupling, spatially varying ba-
thymetry, and Morrison combination. The effects of spectral
nudging are isolated by [(Nud — NoNud) + (Nud_Vary —
NoNud_Vary)]/2, of seasonally variant LSTs by [(Nud_Vary —
Nud) + (NoNud_Vary — NoNud)]/2, of lake model coupling
by [(Nud1D — Nud_Vary) + (NudlDdep — Nud_Vary) +
(MorrL — MorrNoL)]/3, of spatially varying bathymetry
by (Nud1Ddep — Nudl1D), and of Morrison combination by
[(MorrNoL — Nud_Vary) + (MorrL — Nud1Ddep)]/2.

b. Datasets

Three daily gridded observational datasets are used to
evaluate model performance. First, the 1/8° North American
Land Data Assimilation System version 2 (NLDAS-2) dataset
(Xia et al. 2012) provides precipitation, surface pressure, 2-m
specific humidity, 2-m air temperature, and 10-m zonal and
meridional wind as primary forcings and surface albedo, sen-
sible and latent heat fluxes, surface incident shortwave radia-
tion, and liquid-equivalent snow depth as NLDAS-2 output
from three land surface models (averaged here across models).
The NLDAS-2 precipitation is derived through the temporal
disaggregation of the gauge-only Climate Prediction Center
analysis of daily precipitation (Higgins et al. 1996; Chen et al.
2008), performed on the NLDAS-2 grid with orographic adjust-
ment; over Canada, only reanalysis precipitation is used due to
poor gauge coverage, with the different data source applications
across the United States—Canada border negatively impacting
the performance of NLDAS-2 precipitation (Xu et al. 2019).
NLDAS-2 surface downward shortwave radiation is computed
by debiasing reanalysis with Geostationary Operational
Environmental Satellite-based fields (Pinker et al. 2003).

Second, both directly measured and inferred variables are
retrieved from the Oak Ridge National Laboratory’s 1-km
Daymet product (Thornton et al. 1997, 2014). These include
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precipitation and 2-m air temperature, as directly measured
variables, and liquid-equivalent snow depth (based on a
snow model) and 2-m vapor pressure (based on minimum
temperature-dewpoint temperature relationships), as inferred
variables. The relatively basic geographically weighted re-
gression approach applied by Daymet, for interpolation from
station observations to a gridded product, only accounts for
elevation (Oyler et al. 2014).

Third, the 1-km National Weather Service’s National
Operational Hydrologic Remote Sensing Center Snow Data
Assimilation System (SNODAS) dataset (Barrett 2003; Clow
et al. 2012), which integrates data from satellite, airborne
platforms, ground stations, and a snow model (Carroll et al.
2001), contains physical snow depth, liquid-equivalent snow-
fall, and liquid-equivalent snow depth. Several past studies
(Hay et al. 2006; Azar et al. 2008; Clow et al. 2012) argued that
SNODAS gridded snow water equivalent data had not been
sufficiently evaluated, as SNODAS assimilates nearly all
available ground-based and airborne observations of snow
water equivalent, leaving insufficient independent data for
evaluation.

While gridded observational datasets are valuable for
model evaluation, they can exhibit intrinsic regional biases.
Behnke et al. (2016) assessed multiple gridded observational
datasets, compared to United States’ station observations,
and concluded that Daymet has the smallest temperature bias,
NLDAS-2 has a warm bias and the greatest temperature
bias, and Daymet has a wet bias and the greatest precipitation
bias. These results justify the choice of Daymet for air tem-
perature and NLDAS-2 for precipitation in the current paper’s
figures. King et al. (2020) identified a 50% positive bias in
SNODAS snow water equivalent across Ontario compared to
in situ observations, consistent with Zahmatkesh et al. (2019).
Based on our comparison of snow water equivalent data from
Daymet, NLDAS2, and SNODAS against these in situ observa-
tions, the current paper’s figures focus on evaluating NU-WRF’s
snowpack against the more consistent NLDAS?2 dataset.

Lakewide daily mean LST, derived from Advanced Very
High Resolution Radiometer composite imagery (during
cloud-free periods) but without inclusion of any buoy obser-
vations, is retrieved from the CoastWatch’s Great Lakes
Surface Environmental Analysis LST Dataset version 2, de-
veloped by NOAA’s Great Lakes Environmental Research
Laboratory (Schwab et al. 1992). Li et al. (2001) evaluated this
CoastWatch LST satellite product against Great Lakes’ buoy
observations during May, July, and September of 1997 and
concluded that mean differences were 0.26°C during the day
and 1.52°C during the night. A year-round assessment by
Schwab et al. (1999) found that the CoastWatch LSTs and buoy
LSTs exhibited a mean difference of less than 0.5°C for all
buoys and a root-mean-square difference (RMSD) ranging
from 1.10° to 1.76°C. Persistent periods of cloud cover during
the autumn-winter can restrict radiometer inputs to the Great
Lakes Surface Environmental Analysis LST Dataset, degrad-
ing its reliability (Niziol 2003). New temperature imagery is not
available over portions of the Great Lakes during the winter to
early spring for as long as 30-50 days due to persistent cloud
cover (Schwab et al. 1999). The lack of thermal imagery during
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spring and autumn is often most concerning, as lake temper-
atures often change rapidly during those seasons. As shown in
Table S1, a comparison of the Great Lakes Surface Environmental
Analysis Dataset with LST data at nine Great Lakes’ buoys
from the National Data Buoy Center during November 2014—
March 2015 indicates the CoastWatch product has a mean bias
of +0.93°C and RMSD of 1.63°C. The comparison is only based
on an average of 37 days of data during the 2014/15 cold season
as buoys are not deployed during much of the icy winter con-
ditions. These findings are consistent with Niziol (2003), who
concluded that during autumn, when lake temperatures are
typically declining, the inability to update satellite-derived
data due to persistent cloud cover can lead to a warm bias in
the CoastWatch product.

Based on ice products from the United States National Ice
Center and Canadian Ice Service, the Great Lakes Environmental
Research Laboratory—Great Lakes Ice Cover Dataset contains
lakewide daily mean ice cover (Assel et al. 2002, 2013; Assel
2005; Wang et al. 2012), although with the noted limitation
that the dataset’s spatial resolution, projection, and sampling
frequency changed over time (Yang et al. 2020). Overlake
measurements of air temperature, wind speed, downward
shortwave radiation, sensible heat flux, and latent heat flux are
obtained through the Great Lakes Evaporation Network
(Blanken et al. 2011; Spence et al. 2011, 2013, 2019; Lenters
et al. 2013) at Granite Island and Stannard Rock on Lake
Superior, Spectacle Reef on Lake Huron, White Shoal on Lake
Michigan, and Long Point on Lake Erie. The network’s level 1
eddy covariance data have only undergone basic corrections,
including removing sensible and latent heat spikes and a visual
level of quality control. Moukomla and Blanken (2017) gen-
erated an independent dataset of Great Lakes’ turbulent fluxes
using the bulk aerodynamic approach, based on remote sens-
ing, direct measurements, and reanalysis, and compared these
modeled fluxes against GLEN observations, with the conclu-
sion that they were in ‘“‘good statistical agreement.” The
RMSD between the datasets at White Shoal, Stannard Rock,
and Spectacle Reef lighthouses was 5.68, 6.93, and 4.67 W m ™2,
respectively, for latent heat fluxes and 6.97, 4.39, and
490 Wm 2, respectively, for sensible heat fluxes.

3. Results
a. February 2015 performance among 20 simulations

To summarize NU-WRF’s performance and identify the
most successful model configuration for the Great Lakes re-
gion, four statistics are computed across the inner domain,
namely, mean bias, RMSD, temporal correlation, and spatial
correlation, based on daily 2-m air temperature, precipitation,
snow water equivalent in the snowpack, surface incident
shortwave radiation, and 2-m specific humidity for February
2015 among 20 simulations (Figs. 2 and 3).

1) AIR TEMPERATURE

A persistent atmospheric cold bias is evident in 18 runs and
only absent in simulations with artificially constant November
LSTs (Nud and NoNud, which do not permit the model to
evolve beyond the initial warm November LST state) as
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combination dampening the regional cold bias, and greatest in

(—=2.09°C) and MorrL (—2.97°C),
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FIG. 2. (left) Bias and (right) root-mean-square difference in (a),(b) 2-m air temperature (°C), (c),(d) precipitation
(mm day 1), (e),(f) snowpack snow water equivalent (mm), (g),(h) downward surface shortwave radiation (W m™?), and

(@),(j) 2-m specific humidity (gkg ') across the Great Lakes region

February 2015, compared to Daymet in (a) and (b) and NLDAS
in magnitude, as all of the runs have a positive bias in solar radiation, which explains most of the RMSD.

influence on cold season climate. Among those 18 runs, the2-m RAGODD (—5.68°C), highlighting regional limitations of

air temperature bias during February 2015 is least in MorrNoLL  Goddard’s radiation physics schemes. Lake model activation,

unnaturally warm lakes maintain higher surrounding air tem-
peratures (Fig. 2a). This is evidence of the lakes’ basinwide
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FI1G. 3. (left) Temporal and (right) spatial correlations in (a),(b) 2-m air temperature, (c),(d) precipitation, (e),(f)
snowpack snow water equivalent, (g),(h) downward surface shortwave radiation, and (i),(j) 2-m specific humidity
across the Great Lakes region, over land, among 20 NUWREF simulations for February 2015, compared to Daymet
in (a) and (b) and NLDAS-2 in (c)-(j). Correlation coefficients are saved to the hundredth decimal point, explaining
why some runs appear to share the same exact correlation values.

while critical for representing lake—atmosphere interactions, en-  MorrNoL (2.38°C), and MorrL (3.29°C) (Fig. 2b). The seemingly
hances the cold bias (e.g., by 0.88°C from MorrNoL to MorrL).  good performance of Nud is deceiving, as unrealistically imposed
Based on RMSD, February air temperatures are best capturedby ~ November LSTs counter the intrinsic regional cold bias found in
Nud (1.60°C) and runs using the Morrison combination, namely,  most of the simulations.
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The effects of individual model configuration choices on
area-averaged 2-m air temperature over land in the inner do-
main during February 2015 are presented in Fig. S1 in the
online supplemental material. For example, in order to isolate
the typical magnitude of the effect of choice in microphysics
scheme on simulated air temperatures, the NudlDdep,
MP3ICE, and MP_MORR runs, which apply the Thompson,
Goddard, and Morrison schemes, respectively, are compared
against each other. Simulated February air temperatures in the
inner domain are most sensitive to 1D lake model activation,
spectral nudging, and choice of radiation and microphysics
schemes. This further supports the conclusion that the benefits
of the Morrison combination to air temperatures are primarily
linked to the choice of radiation physics.

2) PRECIPITATION AND SNOWPACK

NU-WREF generates excessive overland precipitation during
February 2015 among all simulations. This bias is vast for runs
forced with November LSTs (e.g., Nud: +0.95mm day '), as
erroneously warm lakes support excessive lake-effect precipi-
tation. The bias is moderate for runs with temporally varying
LSTs, ranging from +0.21 mmday ! in ERAINT (using the
European Centre for Medium-Range Weather Forecasts in-
terim reanalysis for boundary conditions) and +0.35 mm day "
in MorrNoL (Fig. 2¢c). The precipitation RMSD ranges from
0.67 mm day_1 for ERAINT, SFC_MYNN, and XUE_2DOM
to 1.48 mm day ' for Nud (Fig. 2d). Compared to NLDAS2, all
of the simulations produce excessive snow water equivalent in
the snowpack, with the best results in MorrNoL (+12.3 mm) and
MorrL (+13.0 mm) (Figs. 2e,f). Based on air temperature and
precipitation statistics of bias, temporal correlation, spatial
correlation, and RMSD among the lake model-enabled simu-
lations (by tallying the frequency of a given run outperforming
the remaining runs), the best performing runs during February
2015 are MorrL and XUE_2DOM, both applying the Morrison
microphysics scheme, and worst are RAGODD and MP3ICE,
which apply Goddard’s radiation and ice microphysics schemes,
respectively (Figs. 2 and 3).

The effects of individual configuration choices on area-
averaged overland precipitation in the inner domain during
February 2015 are shown in Fig. S2. Simulated February precip-
itation is most sensitive to the choice of lateral boundary condi-
tions’ dataset, spectral nudging, and 1D lake model activation.

3) SOLAR RADIATION

All of the runs generate excessive surface insolation in
February 2015 (Fig. 2g), suggestive of insufficient cloud cover
and atmospheric moisture, perhaps related to deficient lake
evaporation or the atmospheric cold bias. As evidence, simu-
lated mean precipitable water across the land within the inner
domain is compared against the North American Regional
Reanalysis (Mesinger et al. 2006) for February 2015, revealing
negative biases of 5%-7% for the primary simulations of
NudVary, NoNudVary, Nud1D, Nud1Ddep, MorrNoL, and
MorrL (not shown). Insufficient atmospheric moisture sup-
ports exaggerated nighttime radiational cooling, leading, for
example, in February to a 2-m daily minimum temperature bias
of —4.5°C over land across the inner domain in Nud1Ddep,
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exceeding the cold bias of —2.8°C in 2-m daily maximum
temperature. During the cold season, the mechanism of radi-
ation cooling due to clear skies dominates over the warming
effect of enhanced solar radiation during the season with short
sunshine length. This finding is consistent with the study by Dai
et al. (1999), which concluded for the study region that the
greenhouse warming effect of clouds exceeds the solar cooling
effect of clouds in winter. The Morrison combination supports
smaller biases in surface insolation of +27.6 Wm ™2 in MorrNoL
and +287Wm 2 in MorrL compared to the worst bias,
+59.1 Wm™?in RAGODD, thereby explaining the higher, more
realistic air temperatures simulated with the Morrison combina-
tion. The model-versus-observed RMSD is lowest at 26.9 Wm >
for Nud, with artificially high LSTs enhancing evaporation, at-
mospheric moisture, and cloud cover; moderate when applying
the Morrison combination (MorrNoL: 28.6 Wm ™2, MorrL:
29.7W m™?); and highest for RAGODD at 60.5 W m ™2 (Fig. 2h).

The effects of individual configuration choices on area-
averaged overland incoming surface shortwave radiation in
the inner domain during February 2015 are shown in Fig. S3.
Simulated February insolation is most sensitive to the choice of
radiation and microphysics scheme.

4) ATMOSPHERIC MOISTURE

Insufficient atmospheric moisture contributes to excessive
incident solar radiation, as all of the runs, except for those
forced by time-invariant November LSTs, exhibit negative
biases in 2-m specific humidity during February 2015, ranging
from —0.27 gkg ™! in MorrNoL to —0.52gkg ™! in RAGODD
(Fig. 2i). The Morrison combination reduces the humidity dry
bias, with a relatively low RMSD of 0.30gkg ! in MorrNoL
and 0.37 gkg ™' in MorrL. The bias and RMSD in 2-m specific
humidity are lower in MorrNoL, without the lake model, than
in MorrL, with the lake model. Activation of the 1D lake
model leads to lower LSTs and excessive ice cover, which re-
duces lake evaporation in February across the deep lakes,
Superior, Michigan, and Huron, leading to a regional decline in
2-m specific humidity and precipitable water. Goddard’s radi-
ation physics schemes in RAGODD generate lower model-
versus-observed temporal correlations for specific humidity
and shortwave radiation.

b. November 2014—March 2015 performance among
eight simulations

Among the 20 simulations of February 2015, only eight are
extended across November 2014-March 2015, namely, Nud,
NoNud, Nud_Vary, NoNud_Vary, NudlD, NudlDdep,
MorrL, and MorrNoL. Analysis of these 5-month simulations
permits a robust assessment of model performance and the
impacts of spectral nudging, seasonally variant LSTs, 1D lake
model coupling, spatially varying bathymetry, and Morrison
combination. This Great Lakes regional assessment applies
four statistical measures per month, namely, bias, temporal
correlation, spatial correlation, and RMSD, between model
output and overland observations (Tables S2-S5), focusing on
2-m air temperature, precipitation, snow water equivalent of
the snowpack, surface incident shortwave radiation, and 2-m
specific humidity (Fig. 4). The effects of spectral nudging are
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FIG. 4. (first column) Bias, (second column) temporal correlation, (third column) spatial correlation, and (fourth column) root-mean-
square difference during November 2014-March 2015 in (a)-(d) 2-m air temperature (°C), (e)-(h) precipitation (mmday '), (i)-(1)
snowpack snow water equivalent (mm), (m)—(p) surface downward shortwave radiation (W m™2), and (q)—(t) 2-m specific humidity
(gkg™ ") between observations [Daymet for (a)-(d) and NLDAS-2 for (e)—(t)] and eight NU-WRF simulations over land in the Great
Lakes region.
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isolated by [(Nud — NoNud) + (Nud_Vary — NoNud_Vary)]/2,
of seasonally variant LSTs by [(Nud_Vary — Nud) +
(NoNud_Vary — NoNud)]/2, of lake model coupling by
[(Nud1D — Nud_Vary) + (NudlDdep — Nud_Vary) +
(MorrL — MorrNoL)]/3, of spatially varying bathymetry by
(Nud1Ddep — NudlD), and of Morrison combination by
[(MorrNoL — Nud_Vary) + (MorrL — Nud1Ddep)]/2.

1) AIR TEMPERATURE

All of the runs, except for Nud and NoNud with time-
invariant November LSTs, exhibit an atmospheric cold bias,
most notably in February 2015 when the RMSD peaks
(Figs. 4a,d). It is hypothesized that the extensive negative bias
in daily minimum temperature during February is associated
with excessive nighttime radiational cooling (given insufficient
atmospheric moisture and clouds) and exaggerated inversion
strength in the presence of the most extensive snowpack of the
cold season. The Morrison combination substantially reduces
this cold bias and associated air temperature RMSD
(Figs. 4a,d). The November—March mean bias in 2-m air tem-
perature, compared to Daymet, is reduced in magnitude
from —2.55°C in NudlDdep to —1.18°C in MorrL, when
comparing lake model-enabled runs, and from —1.87°C in
NudVar to —0.64°C in MorrNoL, when comparing runs with-
out the lake model, due to the use of the Morrison combi-
nation. The near-surface warming effect of the Morrison
combination is most distinct over the Canadian portion of the
inner domain and more pronounced at nighttime than daytime.
Specifically, averaged across January—March 2015, the MorrL
configuration compared to Nud1Ddep yields a mean increase
in minimum 2-m air temperature of +2.1°C and in maximum
2-m air temperature of +0.9°C, thereby reducing the diurnal
temperature range (not shown). By coupling NU-WREF to the
1D lake model, the atmospheric cold bias and air temperature
RMSD increase due to poorly simulated LSTs and ice cover,
and the temporal correlation between simulated and observed
daily air temperatures declines (Figs. 4a—d). The November—
March mean cold bias is amplified by 0.54°C between
MorrNoL and MorrL, with the most notable cooling effect of
the lake model close to the lakes and a comparable cooling
impact on maximum and minimum 2-m air temperatures (not
shown). Allowing LSTs to seasonally vary improves the
temporal correlations for daily 2-m air temperature and is
important for capturing daily variability in air temperature,
precipitation, and insolation (Figs. 4b.f,j,n,r).

2) PRECIPITATION AND SNOWPACK

Simulated cold season precipitation is particularly sensitive
to seasonally varying LSTs and nudging and less so to micro-
physics scheme and lake model coupling. Despite improved air
temperatures, the Morrison combination modestly reduces the
temporal correlations for precipitation (Fig. 4f) and physical
snow depth (Table S3). Precipitation RMSD is mostly insen-
sitive to lake model activation (Fig. 4h, e.g., MorrL versus
MorrNoL). The constant LST simulations, Nud and NoNud,
exhibit excessive January—March lake-effect precipitation and
high precipitation RMSD (Figs. 4e,h), while time-variant LSTs
in other simulations substantially improve these biases. Due to
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seasonally variant LSTs, the January—March wet precipitation
bias, compared to NLDAS-2, is reduced from +0.64 mm day Lin
Nud to +0.33mm day~! in NudVary and from +0.70 mm day "
in NoNud to +0.40 mm day ' in NoNudVary (Fig. 4e). Nudging
increases the spatial and temporal correlations and reduces
precipitation RMSD, with increased temporal correlations for
all analyzed fields, especially precipitation and physical snow
depth (Fig. 4, Table S3). The mean temporal correlation across
November-March for precipitation, compared to NLDAS-2,
increases from 0.66 in NoNud to 0.77 in Nud and from 0.69 in
NoNud_Vary to 0.81 in Nud_Vary, attributed to nudging
(Fig. 4f). Based on temporal correlations, simulated daily
precipitation exhibits greater consistency with the more accu-
rate NLDAS-2 product (Fig. 4f) than Daymet (Table S3).

Compared to NLDAS-2, as the climatological snowpack
becomes more extensive in mid- to late winter across the inner
domain, simulated snow water equivalent exhibits a peak
positive bias in February (Fig. 4i) and a peak RMSD in March
(Fig. 41). In fact, the mean error, defined as the absolute value
of the bias, peaks in March, largely explained by the growing
negative bias in snowpack water content across southern
Canada that partly offsets the positive bias across much of the
United States’ portion of the inner domain. The low temporal
correlation between observed and simulated daily snowpack
snow water equivalent in February 2015 (Fig. 4j) is attributed
to a regional mismatch over Wisconsin, Michigan, and south-
eastern Ontario, with an erroneous continued accumulation of
snowpack in the model, given the simulated cold bias, when
observations reveal that the snowpack was instead seasonally
melting and retreating.

Several findings regarding simulated snow patterns are
consistent across simulations, including model-versus-observed
temporal correlations for daily liquid-equivalent snowfall,
physical snow depth, and liquid-equivalent snow depth and
spatial correlations for physical snow depth and liquid-
equivalent snow depth compared to NLDAS-2 and SNODAS
(Figs. 4j,k, Tables S3-S4), suggesting relatively lower sensi-
tivity of these snow variables to experimental design. For
example, the spatial correlation between simulated and
SNODAS-observed daily physical snow depth ranges across
experiments from 0.89 to 0.92 in November, from 0.82 to 0.89 in
December, from 0.83 to 0.91 in January, from 0.82 to 0.88 in
February, and from 0.83 to 0.89 in March (Table S4). The
RMSD in physical snow depth and snow water equivalent of
snowpack is comparable across the runs, as these variables are
rather insensitive to model configuration (Table S5). Time-
variant LSTs greatly reduce the snowfall RMSD (Table S5)
and improve the temporal correlation for snow water equivalent
downwind of Lake Superior. Nudging improves the spatial dis-
tribution of liquid-equivalent snowfall and snow depth and re-
duces snowfall RMSD (Tables S4 and S5). The model evaluation
is limited by inconsistencies across observational datasets, es-
pecially for liquid-equivalent snow depth (Tables S2-S5).

3) SOLAR RADIATION AND ATMOSPHERIC MOISTURE

The most notable deficiencies in simulated surface insola-
tion are a relatively high RMSD in February and low spatial
correlation with observations in March (Figs. 40,p). While the
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Morrison combination reduces the excess solar radiation
bias and RMSD in January-March from +20.8 Wm™2 in
Nud1Ddep to +8.9 W m™?2 in MorrL and reduces the specific
humidity RMSD, it also weakens the temporal and spatial
correlations in solar radiation (Figs. 4m—p,t). Temporal cor-
relations for solar radiation and specific humidity are improved
by seasonally varying LSTs (Figs. 4n,r).

To elucidate the cause of the atmospheric warming and re-
duced cold bias due to the application of the Morrison com-
bination (specifically associated with the change in radiation
physics packages), the surface energy budget components are
computed, averaged over land across the inner domain, for the
November-March simulations of Nud1Ddep and MorrL (not
shown). The most pronounced mean seasonal changes due to
the Morrison combination are an increase in surface downward
longwave radiation of +16.7Wm 2 (MorrL: 246.8Wm 2,
Nud1Ddep: 230.1 Wm™?) and decrease in surface downward
shortwave radiation of —10.5Wm™2 (MorrL: 97.5Wm 2
Nud1Ddep: 108.0 W m2). This finding is consistent with an
enhancement in atmospheric moisture and cloud cover with
the Morrison combination.

4) OVERALL PERFORMANCE

Monthly statistics of bias, temporal correlation, spatial cor-
relation, and RMSD are computed for an expanded set of 18
variables based on the eight runs for November 2014-March
2015 (Tables S2-S5). Technically, 14 variables (surface albedo,
sensible heat flux, latent heat flux, precipitation, surface pres-
sure, physical snow depth, liquid-equivalent snowfall, 2-m
specific humidity, surface incident shortwave radiation,
liquid-equivalent snow depth, 2-m air temperature, 10-m zonal
wind, 10-m meridional wind, and 2-m vapor pressure) are as-
sessed, although precipitation, liquid-equivalent snow depth,
and 2-m air temperature are compared against 2-3 observa-
tional datasets each, leading to 18 total comparisons. For each
simulation, 360 statistical values are computed, given four key
statistics, 18 variables, and 5 months, and used to rank the
models from 1 to 8. Based on the mean ranking, the best per-
forming simulations are NudVary (with nudging and season-
ally varying LSTs) and MorrNoL (with Morrison combination
and nudging but no lake model) and worst are NoNud (without
nudging, lake model, or seasonally varying LSTs) and
NoNudVary (with seasonally varying LSTs but without nudg-
ing or lake model). It is striking that MorrNoL yields one of the
best performances, while MorrL, with the conceptual advan-
tage of including a simple lake model, only produces a mod-
erate performance overall. When restricted to air temperature
alone versus Daymet, the best performing runs are Nud,
NudVary, and MorrNoL (all without the lake model) and
worst are NoNud, Nud1D, and Nud1Ddep. When restricted
to precipitation alone versus NLDAS-2, the best runs are
Nud1Ddep, NudVary, and Nud1D and worst are NoNud, Nud,
and NoNudVary.

Often, the simulated inner domain-averaged mean climate is
not highly sensitive to modifications in the model configura-
tion, as evident by comparing differences in biases between
the better performing MorrNoL run and worse performing
MorrL run in Tables S2-S5. More pronounced area-averaged
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differences between MorrNoL and MorrL due to lake model
coupling, during November—March, include an 84% amplifi-
cation in 2-m air temperature bias (versus Daymet) from
—0.64°C in MorrNoL to —1.18°C in MorrL and a 69% ampli-
fication in 2-m specific humidity bias (versus NLDAS-2)
from —0.10gkg™" in MorrNoL to —0.17gkg™! in MorrL.
The RMSD in 2-m air temperature increases by 27% from
1.42°C in MorrNoL to 1.81°C in MorrL and in 2-m specific
humidity increases by 12% from 0.24 gkg™' in MorrNoL to
0.27 gkg ™! in MorrL. The most pronounced differences among
simulations are noted when the analysis focuses on specific
months and areas within the inner domain. For example, dur-
ing January 2015, activation of the 1D lake model from
MorrNoL to MorrL leads to 3°-6°C lower daily minimum
temperatures across the Upper Peninsula of Michigan, reduc-
tions in precipitation of 20%—40% downwind of Lake Superior
and 10%-30% downwind of Lake Huron, 50% increases in
precipitation downwind of Lake Ontario, and 5%-20% en-
hancement in surface insulation across the state of Michigan
(not shown).

Nudging improves spatial and temporal correlations and
reduces the RMSD for many fields, such as by decreasing a
simulated low-pressure bias over Canada and improving the
temporal correlation for daily air pressure. NoNud generates
poor temporal correlations given the lack of large-scale nudging.
Often the highest temporal correlations are achieved by applying
both nudging and Global Data Assimilation System-provided
LSTs instead of the lake model. The Morrison combination im-
proves the bias and RMSD of many fields, particularly by
dampening the cold bias, but at the expense of weaker temporal
correlations for multiple fields (Tables S2-S5). When activating
the Morrison combination, performance statistics are generally
improved for wind and air temperature (less drift from lateral
boundary condition fields) but deteriorated for precipitation and
physical snow depth (variables not present in the lateral boundary
conditions).

5) DAILY CLIMATE VARIABILITY

The probability density functions of daily November—-March
2-m air temperature and precipitation, averaged over land in
the inner domain, are contrasted between the eight simulations
and Daymet for temperature and NLDAS-2 for precipitation
(Fig. 5). For the runs with seasonally varying LSTs (either with
or without lake model coupling), the model generates too
many very cold days with daily means below —20°C, especially
in January-March (Figs. 5a,c); the biases are most pronounced
on the cold side of the probability density function. Lake model
coupling leads to too frequent very cold days below —20°C, as
excessive ice cover restricts the lakes’ wintertime warming
influence on the atmosphere. The probability density function
of daily mean air temperature is sensitive to the Morrison
combination, which reduces the cold day frequency and in-
creases the warm day frequency, and to temporally varying
LSTs, which impose the opposite effect (Figs. 5a,c).

The model produces too few dry days and too many heavy
precipitation days (Fig. 5Sb). The probability density function of
daily precipitation is sensitive to the Morrison combination,
which further deviates the probability density function from
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FIG. 5. Distribution of daily (a) 2-m air temperature (°C) and (b) precipitation (mm) in space and time across
overland portions of the Great Lakes region inner domain, during November 2014-March 2015, according to bin
values on the x axis. Data sources include NLDAS-2, Daymet, and eight NU-WRF simulations. Percentage change
in the frequency of different bins of (c) air temperature and (d) precipitation values due to nudging, varying LST,
1D lake model implementation, spatially varying bathymetry, and Morrison combination.

observations by reducing the dry day frequency and increasing
the days with drizzle, and to seasonally varying LSTs, which
shift the probability density function closer to observations by
increasing the dry day frequency and decreasing the number of
days with drizzle (Figs. 5b,d). Nudging decreases the frequency
of very wet days, more like observations (Figs. 5b,d).

c. Spatial assessment of model performance and
configuration impacts

1) AIR TEMPERATURE

The discussion now shifts from an area-averaged assessment
of model performance and the impacts of model configuration
to a spatial assessment of simulated 2-m air temperature versus
Daymet and simulated precipitation, liquid-equivalent snow-
pack, surface incident shortwave radiation, and 2-m specific
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humidity versus NLDAS-2 (Figs. 6-10). The model exhibits a
regional cold bias during the cold season that is present as long
as LSTs seasonally evolve beyond the relatively mild initial
November state (Fig. 6). The air temperature bias is sensitive
to time-variant LSTs, the Morrison combination, and lake
model coupling and largely insensitive to spatially varying
bathymetry and nudging (Figs. 6k—o0). The Morrison com-
bination substantially reduces the cold bias, holding it to
below —2°C at most locations, although lake model activation
somewhat dampens these benefits (Figs. 6i,j). The atmospheric
cooling induced by the 1D lake model, and its LST and ice
cover biases, is mostly confined to the basin (Fig. 6m), on the
order of 0.5°-1.5°C, and coincides with atmospheric drying,
enhanced pressure, and higher stability. The remaining areas
of notable cold bias in excess of 2°C in MorrL (Fig. 6j) are
downwind and in close proximity to the lakes and result from
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FIG. 6. Mean 2-m air temperature (°C) in (a) Daymet and the (b) MorrL run for November 2014-March 2015. Mean bias
in 2-m air temperature (°C) during the same time period for the (c) Nud, (d) NoNud, (¢) NudVary, (f) NoNudVary,
(g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on 2-m air temperature (°C) during November
2014-March 2015 from (k) nudging, (1) varying LST, (m) 1D lake model implementation, (n) spatially varying bathymetry,
and (o) Morrison combination.
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FIG. 7. Mean precipitation (mm day ') in (a) NLDAS2 and the (b) MorrL run for November 2014-March 2015. Mean
bias in precipitation (mm day ') during the same time period for the (c) Nud, (d) NoNud, (¢) NudVary, (f) NoNudVary,
(g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on precipitation (mm day ') during November
2014-March 2015 from (k) nudging, (1) varying LST, (m) 1D lake model implementation, (n) spatially varying bathymetry,
and (o) Morrison combination.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/24 03:47 PM UTC



2438 JOURNAL OF HYDROMETEOROLOGY

MEAN

VOLUME 22

EFFECT

(e) NudVary-NLDAS2
r@ e
2" 3 - L . ‘hl‘

¢ ool

(n) Effect of Bathymetry

I o =3

FIG. 8. Mean liquid-equivalent snowpack (mm) in (a) NLDAS-2 and the (b) MorrL run for November 2014-March 2015.
Mean bias in liquid-equivalent snowpack (mm) during the same time period for the (c) Nud, (d) NoNud, (¢) NudVary,
(f) NoNudVary, (g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs, Mean effect on liquid-equivalent snowpack

(mm) during November 2014-March 2015 from (k) nudging, (1) varying LST, (m) 1D lake model implementation,
(n) spatially varying bathymetry, and (o) Morrison combination.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/29/24 03:47 PM UTC



SEPTEMBER 2021 NOTARO ET AL. 2439

MEAN

EFFECT

(k) Effect of Nudging

(m) Effect of Lake Model

4 9

(n) Effect of Bathymetry

(o) Effect of Morrison

FIG. 9. Mean surface downward shortwave radiation (W m™?) in (a) NLDAS2 and the (b) MorrL run for November 2014—
March 2015. Mean bias in surface downward shortwave radiation (W m ™) during the same time period for the (c) Nud,
(d) NoNud, (e) NudVary, (f) NoNudVary, (g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on
surface downward shortwave radiation (W m ™) during November 2014-March 2015 from (k) nudging, (1) varying LST,
(m) 1D lake model implementation, (n) spatially varying bathymetry, and (o) Morrison combination.
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FIG. 10. Mean 2-m specific humidity (gkg™") in (a) NLDAS2 and the (b) MorrL run for November 2014-March 2015.
Mean bias in 2-m specific humidity (gkg™") during the same time period for the (c) Nud, (d) NoNud, (e) NudVary,
(f) NoNudVary, (g) NudlD, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on 2-m specific humidity
(gkg™ ") during November 2014-March 2015 from (k) nudging, (1) varying LST, (m) 1D lake model implementation,
(n) spatially varying bathymetry, and (o) Morrison combination.
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excessive ice cover and diminished heat fluxes from the lakes to
the overlying atmosphere.

2) PRECIPITATION AND SNOWPACK

During November 2014-March 2015, the observed and
simulated precipitation was lowest across Minnesota, lowa,
and Wisconsin and highest across Maryland, Virginia, West
Virginia, and also central Ontario (Figs. 7a,b). Despite the
consistency in the simulated versus observed spatial patterns of
precipitation, all of the simulations produce excessive precip-
itation across the United States’ portion of the inner domain,
especially during January—-March (Figs. 7c—j). The percent bias
in MorrL precipitation is greatest over southeastern Ontario
and Wisconsin. The fixed, artificially elevated LSTs (held fixed
at the November values throughout the entire cold season
simulation) in Nud and NoNud support excessive lake-effect
precipitation (Figs. 7¢,d,1). The Morrison combination slightly
exaggerates the cold season wet bias (Fig. 70). Nudging, lake
model use, and heterogeneous bathymetry minimally impact
the mean precipitation patterns (Figs. 7k,m,n). The near-
shoreline features in Figs. 7 and 8 are not likely due to
NLDAS-2’s relatively coarse resolution as they are largely
present in the higher resolution Daymet data.

Compared to NLDAS-2, the model generates excessive
liquid-equivalent snow depth across much of the United States’
portion of the inner domain but too little over central-southern
Ontario (Figs. 8c—j), consistent with its precipitation biases
(Figs. 7c—j). As evidence of this consistency, the spatial corre-
lation between November—March mean biases in liquid-
equivalent snow depth and precipitation across the inner
domain in MorrL is 0.70 (N = 186 880 grid cells). The wet bias
in precipitation is identified across 71% of the inner domain
and in liquid-equivalent snow depth is identified across 76 % of
the inner domain, further supporting consistency between the
variables’ biases. The Morrison combination generally reduces
the snow water equivalent, which improves the United States’
biases but worsens biases over Ontario (Fig. 80). We surmise
systematic differences in lake-effect snowstorms between the
Upper and Lower Great Lakes, with widespread broad cov-
erage events dominating the former region versus single-band
long lake axis parallel bands frequent in the latter region
(Kristovich and Steve 1995; Rodriguez et al. 2007). Despite the
lakes’ pivotal role in regulating snowfall, lake model activation
minimally impacts the spatial pattern and biases in liquid-
equivalent snowpack (Fig. 8m). Seasonally varying LSTs per-
mit more reasonable snowpack downwind of the lakes by
reducing the excess bias in Nud and NoNud but favor excessive
liquid-equivalent snow depth across much of the remaining
inner domain (Fig. 81). Nudging dramatically impacts liquid-
equivalent snow depth across southern Canada, the Upper
Midwest, and the Northeast, especially by reducing its negative
bias across Ontario (Fig. 8k).

3) SOLAR RADIATION AND ATMOSPHERIC MOISTURE

Both NU-WRF and NLDAS-2 exhibit a northwest-to-
southeast gradient in surface incident shortwave radiation
during November 2014-March 2015 (Figs. 9a,b). Most of the
simulations produce excessive solar radiation, although the
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Morrison combination substantially reduces this bias, espe-
cially across the United States’ portion of the inner domain
(Figs. 9i,j,0). Spatially varying bathymetry, lake model cou-
pling, and nudging minimally impact this insolation bias
(Figs. 9k,m,n). Temporally varying LSTs, beyond November’s
initial state, favor reduced cloud cover and atmospheric
moisture and greater surface insolation (Fig. 91).

Inconsistent with the positive precipitation bias, all of the
runs with seasonally varying LSTs, whether applying a lake
model or not, exhibit a cold-season dry bias in 2-m specific
humidity (Figs. 10a—j), suggesting that the lakes are insufficient
simulated sources of atmospheric moisture. The Morrison
combination reduces the specific humidity dry bias (Fig. 100).
When applying persistent November LSTs, the artificially
warm lakes in Nud and NoNud generate excessive evaporation
and specific humidity (Fig. 101). While the area-averaged
November-March positive precipitation bias may seem in-
consistent with the negative specific humidity bias and positive
surface insolation bias (Fig. 4), spatial maps (Figs. 7, 9, and 10)
reveal that the excessive precipitation, for example in MorrL, is
mostly confined over the United States’ portion of the inner
domain while the deficient humidity and excessive solar radi-
ation are mostly confined over southern Canada.

Simulated biases in precipitable water and surface insolation
are broadly consistent during January—March, as evident by a
spatial correlation of —0.69 across the inner domain in MorrL (not
shown). Across the vast majority of the inner domain, especially
downwind of the Great Lakes, insufficient precipitable water (at
least partly linked to insufficient lake evaporation from overly icy
lakes) leads to excessive surface insolation, with the exception
isolated to the southwestern inner domain over Wisconsin,
Minnesota, Iowa, and Illinois, where biases are positive for pre-
cipitable water and negative for solar insolation (now shown).

4) TEMPORAL CORRELATIONS

The model-versus-observed temporal correlation is com-
puted by month during November 2014-March 2015, averaged
across months, and plotted (Fig. 11) from MorrL for the fol-
lowing daily, overland variables: surface pressure, 10-m me-
ridional wind, 10-m zonal wind, 2-m specific humidity, 2-m air
temperature, snowpack water equivalent, snow depth, surface
albedo, precipitation, surface incident shortwave radiation,
sensible heat flux, and latent heat flux. These variables are
generally listed in order of strongest to weakest correlations
across the inner domain. For fields related to pressure, wind,
specific humidity, and air temperature, which are among the
variables provided through the lateral boundary conditions,
temporal correlations exceed 0.8 for nearly the entire inner
domain (Figs. 11a—e). In contrast, the model is less successful in
reproducing the observed variability in surface insolation and
turbulent fluxes (Figs. 11j-1). The precipitation temporal cor-
relation is notably lower downwind of Lake Huron (Fig. 11i),
although observational uncertainty is higher there due to lim-
ited station observations.

d. Model assessment of LST and ice cover

The LST time series during November 2014-March 2015 is
assessed for the three extended runs that include a coupled 1D
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FIG. 11. Mean temporal correlation between MorrL-simulated and observed daily values of (a) surface pressure, (b) 10-m meridional
wind component, (¢) 10-m zonal wind component, (d) 2-m specific humidity, (¢) 2-m air temperature, (f) snowpack snow water equivalent,
(g) physical snow depth, (h) surface albedo, (i) precipitation, (j) surface downward shortwave radiation, (k) sensible heat flux, and
(1) latent heat flux. One correlation is performed per calendar month during November 2014-March 2015, and then the average of the five
correlations is plotted. The observational datasets include NLDAS?2 for (a)—(d), (f), and (h)—(1), Daymet for (e), and SNODAS for (g).

Plots are generally ordered by variable with the strongest to weakest correlations.

lake model, namely, Nud1D, Nud1Ddep, and MorrL, com-
pared with the Great Lakes Surface Environmental Analysis
(Fig. 12). All three runs produce cold LST biases across the five
lakes, ranging from —0.8°C for Erie to —1.6°C for Michigan in
Nudl1D, from —1.4°C for Superior to —1.7°C for Michigan in
Nud1Ddep, and from —1.2°C for Superior to —1.6°C for
Michigan in MorrL (Fig. 12). LST biases for Superior are least
in MorrL and for Erie are least in Nud1D. The simulated ini-
tiation of fall turnover (when LST drops to 4°C) occurs too
early. The observed date ranges from 27 November for
Superior to 6 January for Ontario, while the simulated date in
MorrL occurs in November for all five lakes (Fig. 12). Some of
this apparent simulated cold lake bias is explained by the in-
herent warm bias of the Great Lakes Surface Environmental
Analysis product due to insufficient satellite retrievals during
prolonged cloudy periods in the autumn-winter. The temporal
correlation between observed and simulated LSTs is lowest for
Superior, ranging from 0.80 in Nud1D to 0.91 in MorrL, and
highest for Ontario, ranging from 0.97 in Nud1D to 0.98 to
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MorrL. The LST RMSD is generally lowest for Ontario,
ranging from 1.62°C in MorrL to 1.71°C in Nud1Ddep, and
highest for Erie, ranging from 1.45°C in Nud1D to 2.35°C in
Nud1Ddep. Spatially varying bathymetry reduces the RMSD
for Superior’s LST by about 10% but increases it for Erie by
roughly 60% (Figs. 12a.,e), as evidence of the difficulty of
tuning a simple 1D lake model to perform well for both deep
and shallow lakes.

NU-WREF coupled to the 1D lake model generates excessive
ice cover compared to the Great Lakes Environmental Research
Laboratory—Great Lakes Ice Cover Database (Fig. 13). This
5-month mean bias in lake-average ice cover is modest for
Erie, ranging from —1.7% in Nud1D to +7.4% in Nud1Ddep,
and pronounced for Superior, ranging from +27.5% in MorrLL
to +39.9% in Nudl1D. The model-versus-observed temporal
correlation in daily ice cover is lowest for Superior, ranging
from 0.63 in Nud1D to 0.80 in MorrL, and highest for Erie,
ranging from 0.91 in Nud1Ddep to 0.97 in Nud1D (Fig. 13).
The ice cover RMSD is relatively modest for Erie, ranging
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FIG. 12. Time series of daily lake surface temperature (°C) for Lakes (a) Superior, (b) Huron, (c) Ontario, (d) Michigan, and (e) Erie
during November 2014-March 2015 from the Great Lakes Surface Environmental Analysis (GLSEA, black), MorrL (red), Nud1Ddep

(blue), and Nud1D (purple).

from 11.1% in Nud1D to 20.3% in Nud1Ddep, and vast for
Superior, ranging from 35.6% in MorrL to 50.8% in Nud1D.
MorrL displays the lowest biases and RMSD and highest
temporal correlations in ice cover, with the Morrison combi-
nation supporting higher, more realistic air and water tem-
peratures. Lake Erie rapidly transitioned from a nearly ice-free
state to almost full ice cover during January 2015, which was
captured by the model in terms of rate, magnitude, and ap-
proximate timing (Fig. 13e). Lake Ontario underwent pro-
nounced daily ice cover fluctuations, with an average observed
day-to-day variation of 3.2%, while the model produces an
overly smoothed time series with insufficient daily varia-
tions of 1.1% in Nud1D and 2.0% in MorrL (Fig. 13c); the
model’s excessively extensive and thick ice cover is inade-
quately sensitive to air temperature and wind speed varia-
tions. In NU-WREF, Superior ices up about 1-2 months too
early and unrealistically remains mostly ice covered for
much of the cold season (Fig. 13a). The results reinforce the
limitations of using 1D lake models to simulate deep lakes’
conditions.

e. Model assessment of overlake conditions

The time series of five overlake variables, namely, 2-m air
temperature, surface incident downward solar radiation,
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10-m wind speed, sensible heat flux, and latent heat flux, is
contrasted between eight simulations (NoNud_Vary, Nud_
Vary, NoNud, Nud, Nud1D, Nud1Ddep, MorrNoL, and
MorrL) and Great Lakes Evaporation Network measure-
ments for November 2014-March 2015 (Figs. 14 and 15).
The analysis focuses on Stannard Rock (45.83°N, 85.15°W),
Spectacle Reef (45.77°N, 84.15°W), Granite Island (46.72°N,
87.40°W), Long Point (42.57°N, 80.05°W), and White Shoal
(45.83°N, 85.15°W), with results for Stannard Rock graphi-
cally presented (Fig. 14) for focused discussion. Model
performance is best for MorrNoL and worst for Nud1D
when considering all five overlake variables, five Great
Lakes Evaporation Network sites, five months, and eight
simulations.

An overlake atmospheric cold bias is simulated at all sites
when averaged across the 5-month period, but most notably in
January-March (Figs. 14a,d,g,j,m). Nudging and seasonally
varying LSTs reduce this bias, yet lake model activation greatly
amplifies it. While coupling NU-WREF to the 1D lake model
permits inclusion of key lake—atmosphere interactions, it re-
sults in worse air temperature simulations than using Global
Data Assimilation System skin temperatures as lake surface
boundary conditions. Averaged among the Great Lakes
Evaporation Network sites, the Morrison combination reduces
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FIG. 13. Time series of daily percent ice cover for Lakes (a) Superior, (b) Huron, (c) Ontario, (d) Michigan, and (e) Erie during
November 2014-March 2015 from the GLERL Great Lakes Ice Cover Database (black), MorrL (red), Nud1Ddep (blue), and Nud1D

(purple).

the atmospheric cold bias by roughly 1/4th when the lake
model is active. Regarding Stannard Rock’s overlake air
temperature simulation, the bias ranges from —7.0°C in
Nud1D to —1.7°C in MorrNoL, temporal correlation ranges
from 0.87 in MorrL to 0.97 in NudVary, and RMSD ranges
from 2.4°C in MorrNoL to 8.4°C in Nud1D, indicating better
performance without the lake model (Figs. 14a,d,g,j,m). The
MorrL-simulated overlake conditions are more consistent with
the Great Lakes Evaporation Network observations, in terms
of bias, temporal correlation, and RMSD at Long Point
(bias = —3.6°C) on Lake Erie and White Shoal (—3.5°C) on
Lake Michigan and least consistent at Stannard Rock (—4.4°C)
on Lake Superior.

Likely related to insufficient lake-effect-induced atmo-
spheric moisture and cloud cover, NU-WRF produces ex-
cessive overlake shortwave radiation (Figs. 14b,e,h.k,n). At
Stannard Rock, the bias ranges from —0.3 W m 2 in NoNud
to +37.2W m™? in Nud1D, temporal correlation ranges from
0.46 in NoNud to 0.76 in MorrNoL, and RMSD ranges from
31.3Wm 2 in Nud to 46.3 Wm™? in Nud1D. The Morrison
combination reduces the excessive overlake shortwave bias
by 40% when the lake model is active. The simulated over-
lake wind speeds are too weak compared to the Great Lakes
Evaporation Network observations. Stannard Rock’s bias
in 10-m wind speed ranges from —3.6ms”' in NudlD to
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—1.5ms ! in Nud and temporal correlation ranges from 0.76 in
NoNudVary to 0.82 in NudVary.

The Great Lakes Evaporation Network dataset provides
valuable insights into overlake turbulent fluxes, applied here to
evaluate NU-WRF’s credibility. NU-WRF produces insuffi-
cient turbulent fluxes over Lakes Superior (Granite Island and
Stannard Rock) and Huron (Spectacle Reef), coinciding with
the greatest underestimation of near-surface wind speeds, and
excessive turbulent fluxes over shallow Lake Erie (Long Point)
(Figs. 14 and 15). Compared to observed sensible heat fluxes at
Stannard Rock, the model bias varies from —70.9Wm™ 2 in
Nud1D to —15.4 W m™? in NoNudVary, temporal correlation
varies from 0.19 in Nud1Ddep to 0.75 in MorrNoL, and RMSD
varies from 49.9Wm 2 in MorrNoL to 109.4Wm 2 in
Nud1Ddep (Figs. 15a,c,e,g,i). Temporally varying LSTs reduce
the sensible heat flux bias from Nud and NoNud. Lake model
coupling leads to sensible heat fluxes that are insufficient
over Superior and excessive over Erie. Compared to observed
latent heat fluxes at Stannard Rock, the bias ranges from
—90.5Wm 2 in Nud1D to +12.3 W m™? in NoNud, temporal
correlation ranges from 0.21 in Nud1Ddep to 0.68 in Nud, and
RMSD ranges from 84.8Wm™2 in Nud to 119.0Wm 2 in
Nud1D (Figs. 15b,d,t,h.j). Simulated LH fluxes (Fig. 15) are
insufficient over Superior and Huron given excessive ice
cover (Fig. 13).
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FIG. 14. Time series of daily (left) 2-m air temperature (°C), (center) downward surface shortwave radiation (W m~2), and (right) 10-m
wind speed for (a)-(c) November 2014, (d)-(f) December 2014, (g)—(i) January 2015, (j)—(1) February 2015, and (m)-(0) March 2015 at
Stannard Rock based on Great Lakes Evaporation Network (GLEN) observations and eight NU-WRF model simulations.

4. Discussion and conclusions selection, while noting the limitation of the study by focusing

The 3-km NU-WRF ensemble for the Great Lakes Basin for on a single cold season.

November 2014—March 2015 yields the following conclusions e Consistent with studies by Bonan (1995), Lofgren (1997),
regarding model performance and impacts of parameterization and Notaro et al. (2013a), the Great Lakes impose a
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pronounced influence on cold season climate across the sur-
rounding states. Accurate lake representation is critical to
correctly simulate the Midwest and Northeast United States’
climatology.

NU-WREF has an intrinsic atmospheric cold bias across the
Great Lakes Basin during the cold season, as also noted in
WREF by Mallard et al. (2014) and D’Orgeville et al. (2014).
As noted here and by Mallard et al. (2014), coupling WRF
to a 1D lake model amplifies the cold atmospheric bias due to
LST and ice cover biases. The Morrison combination helps
alleviate the atmospheric cold bias (likely by enhancing
cloud cover and downward longwave radiation), consistent
with Mooney et al. (2013) and D’Orgeville et al. (2014) who
conclude that the RRTM longwave radiation scheme,
MYNN boundary layer scheme, and Morrison’s microphys-
ics scheme improve winter air temperature simulations.
NU-WRF generates excessive cold season precipitation,
with too few dry days and too many heavy precipitation
days. Mallard et al. (2014) likewise identified a WRF wet bias
in this region, extending across the entire annual cycle.
Furthermore, the region’s cold season wet bias emerged in
WREF experiments by D’Orgeville et al. (2014) and Sharma
et al. (2019); the latter study determined that WREF failed to
produce enough cold-season dry days, as also seen here. The
simulated wintertime excessive precipitation bias in the
Great Lakes region is not restricted to WRF, as Basile et al.
(2017) identified the same persistent bias in all 12 examined
Coupled Model Intercomparison Project Phase Five models
and all 10 examined North American Regional Climate
Change Assessment Program regional climate models. The
cause of this regional bias across models remains uncertain,
although Basile et al. (2017) hypothesized that observed
wintertime precipitation measurements in this region might
suffer significantly from gauge error associated with solid
phase precipitation and wind-induced undercatch (Legates
and Willmott 1990) due to very high snow-to-liquid precip-
itation ratios (light-weighted snow particles that more easily
blow around gauges) especially in common lake-effect lo-
cations (Baxter et al. 2005). In fact, based on data presented
by Adam and Lettenmaier (2003), the mean precipitation
catch ratio for the Great Lakes region for November—March
is only 76%, such that correcting the NLDAS-2 precipita-
tion with this catch ratio would greatly amplify the actual
observed precipitation rates and eliminate the apparent
NU-WRF-simulated wet bias. NU-WRF-simulated surface
insolation is excessive in the region, and despite the positive
precipitation bias, low-level specific humidity is insufficient;
the Morrison combination helps reduce the solar radiation
biases. This finding is consistent with WRF studies by
Martinez-Castro et al. (2019), which found that the Morrison
scheme better resolved convective cloud features, and Orr
et al. (2017), which found that the Morrison scheme im-
proved cloud cover and reduced excessive surface incident
shortwave radiation. Here, the Morrison combination im-
proves most performance statistics related to wind and air
temperature yet degrades the simulated precipitation.
NU-WRF’s cold season precipitation across the Great Lakes
Basin is sensitive to seasonally varying LSTs and nudging
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and mostly insensitive to microphysics scheme and 1D lake
model coupling. Likewise, Nicholls et al. (2017) and Lim
et al. (2020) found that the choice of cloud microphysics
scheme did not substantially impact precipitation distribu-
tion and intensity for United States nor’easters or Korean
snowstorms, respectively. While Conrick et al. (2015)
found a large sensitivity of WRF-simulated precipitation to
boundary layer scheme during a single lake-effect snow-
storm, this sensitivity is minimal when averaged in space and
time across the Great Lakes Basin for the current paper’s
month-long simulations (e.g., comparing Nud1Ddep with the
Yonsei University boundary layer scheme, PBLMYJ with
the Mellow—Yamada—Janji¢ boundary layer scheme, and
SFC_MYNN with the Mellor-Yamada—Nakanishi-Niino
boundary layer scheme).

The present study demonstrates the benefits of spectral
nudging, which increases the model-versus-observed tem-
poral correlations for all analyzed fields, particularly pre-
cipitation and physical snow depth. Prior WRF studies have
produced a spectrum of detrimental to beneficial impacts
from spectral nudging, including degraded United States
precipitation simulations by Bowden et al. (2012,2013), Otte
et al. (2012), and Spero et al. (2014); relative insensitivity of
simulated United States’ precipitation amounts to spectral
nudging strength by Bullock et al. (2014); and reduced East
Asian temperature and precipitation biases by Ma et al.
(2016) and Tang et al. (2017). Here, nudging improves
the spatial patterns of snowfall and snow depth, including
reducing Ontario’s negative bias in liquid-equivalent
snow depth.

Alexandru et al. (2009) and Glisan et al. (2013) expressed
concern that strong nudging can reduce or filter out extreme
meteorological events by pushing a regional climate model
toward a smoother large-scale atmospheric state. Here,
spectral nudging reduces the cold-season frequency of heavy
precipitation days, although this modification of the proba-
bility density function of daily precipitation increases the
consistency with observations.

Model-versus-observed temporal correlations during the
cold season are typically highest for pressure, wind, specific
humidity, and air temperature, likely due to these variables’
inclusion in the lateral boundary conditions and spectral
nudging, and lowest for surface incident shortwave radiation
and overland turbulent fluxes. These findings are consistent
with WREF studies by Mooney et al. (2013) and Boulard et al.
(2016), which identified higher temporal correlations with
observations for air temperature, precipitation, and wind
speed and lower correlations for humidity and shortwave
radiation.

Fall turnover initiates too early in the model, leading to a
wintertime cold LST bias, as also noted by Mallard et al.
(2014) using WREF coupled to a 1D lake model. The model-
versus-observed temporal correlation in LST is highest for
Ontario and lowest for Superior and in percent ice cover is
highest for Erie and lowest for Superior. Lake Superior’s ice
season initiates 1-2 months too early in NU-WREF coupled to
the 1D lake model. Prior studies have concluded that 1D lake
models perform best for shallow lakes (Martynov et al. 2010;
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Samuelsson et al. 2010; Bennington et al. 2014; Mallard et al.
2014), with inferior results for deep Superior. Mallard et al.
(2014) determined that the LST and ice cover performance
of WRF coupled to the Freshwater Lake Model was best for
Erie and worst for Superior, with excessive Superior ice
cover. Here, the inferior performance of the 1D lake model
in NU-WREF over deep Lake Superior generally leads to the
greatest biases in LST, ice cover, overlake air temperature,
and lake evaporation among the Great Lakes.

e The Morrison combination improves ice cover biases,
RMSD, and temporal correlations by dampening the
atmospheric model’s regional cold bias and supporting
more realistic cold season LSTs.

e NU-WRF coupled to the 1D lake model underpredicts cold
season evaporation over Lakes Superior and Huron, related
to excessive ice cover, cooler-than-observed water temper-
atures, and insufficient wind speeds.

e Based on comparison of NU-WRF simulations coupled to
the 1D lake model with either fixed 50-m uniform lake depths
(Nud1D) or spatially variable lake depths (Nud1Ddep), use of a
constant 50-m lake depth for all lake grid cells, as commonly
done in earlier generations of lake models, leads to substantial
impacts over, and in close proximity to, the lakes, but not much
impact when averaged across the inner domain. Uniform lake
depth results in 1-2.5°C higher LSTs on shallow Lake Erie
(actual mean depth = 19 m) in mid-November to early January
and over 0.5°C lower LSTs on deep Lake Superior (actual mean
depth = 147m) in late November to mid-December.
Furthermore, uniform lake depth leads to 20%-90% less ice
cover on Lake Erie during early to mid-January, with a de-
layed onset of the ice season, and 10%-30% greater ice cover
on Lake Superior. In response to these LST and ice cover
responses to uniform 50-m lake depths, overlake turbulent
fluxes are greatly enhanced over Lake Erie, with November—
March mean sensible and latent heat fluxes at Long Point (on
Lake Erie) increased by 20.6 and 14.6 W m ™2, respectively,
but only modestly impacted over Lake Superior. The en-
hanced turbulent fluxes over Lake Erie support 30%-60%
greater precipitation over and downwind of the lake during
January 2015. These findings regarding the impacts of
uniform versus spatially varying lake bathymetry on LST
and ice cover are highly consistent with the results of Qiu
et al. (2020).

While NU-WRF’s coupling to a 1D lake model is a critical
achievement for representing lake—atmosphere interactions
and their role in climate change, the 1D lake model degrades
many aspects of the simulated regional climate. However, the
authors do not recommend that climate modelers proceed
without inclusion of a representation of lake physics in their
models. Rather, further efforts are needed to incorporate 3D
lake models into high-resolution regional climate models to
improve spatiotemporal patterns of LST, ice cover, and lake—
atmosphere interactions. As a result of this modeling need,
the authors developed an advanced modeling tool for large
lake basins, consisting of NU-WRF, with nested domains
down to 3 km, interactively coupled to the Finite Volume
Community Ocean Model [this ocean model, run offline by
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Fujisaki-Manome et al. (2017), successfully simulates over-
lake turbulent fluxes] to represent 3D lake hydrodynamics.
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