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A B S T R A C T   

Gap-free global chlorophyll-a (Chl-a) concentration images derived from the Visible Infrared Imaging Radiom
eter Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20 are now avail
able online in near-real-time for the ocean color community. With the data fusion of Chl-a from the two satellite 
sources, missing pixels caused by cloud, sun glint contamination, high satellite viewing angles, and other un
favorable conditions are completely filled using the Data Interpolating Empirical Orthogonal Function (DINEOF) 
method. Our further studies show that adding more data from additional satellite sensors can remarkably 
improve the spatial coverage of the merged ocean color products, provide more ocean features over coastal and 
inland waters, and enhance the accuracy of the gap-free data. Since the launch of the Sentinel-3A and Sentinel-3B 
satellites, the onboard Ocean and Land Colour Instrument (OLCI) sensors have been providing global ocean color 
product data. In this work, we recruit the OLCI-Sentinel-3A to join the two VIIRS sensors to produce a three- 
sensor merged ocean color dataset, and further derive global gap-free images using the DINEOF method. It is 
found that adding OLCI data as the input source significantly enhances the spatial features of high Chl-a by 
~10–20% in productive coastal regions and inland lakes. Additionally, the first-ever dataset of global gap-free 
suspended particulate matter (SPM) and water diffuse attenuation coefficient at 490 nm (Kd(490)) is also 
generated using the three-sensor merged data. Results show that Kd(490) and SPM have similar spatial patterns 
as that of Chl-a in the major ocean basins, and that SPM can provide more details of the spatial variations than 
those of Kd(490) in the center of the ocean basin and coastal oceans. Global gap-free Chl-a, Kd(490), and SPM 
products provide important and useful water quality information particularly over global productive ocean/ 
water regions.   

1. Introduction 

Satellite ocean color data provide important measurements of optical 
properties of global oceans and inland waters from space, and have been 
used to further derive environmental parameters for ocean ecosystem 
monitoring and ecological/biological oceanography research. The sat
ellite ocean color dataset contains normalized water-leaving radiance 
nLw(λ) spectra (or remote sensing reflectance Rrs(λ) spectra) (Gordon and 
Wang, 1994), chlorophyll-a (Chl-a) concentration (Hu et al., 2012; 
O’Reilly et al., 1998; Wang and Son, 2016), diffuse attenuation co
efficients Kd(490) (i.e., at 490 nm) and Kd(PAR) (i.e., at the photosyn
thetically available radiation (PAR)) (Son and Wang, 2015; Wang et al., 
2009), etc. Chl-a data provide global temporal/spatial distribution and 
variations of the ocean phytoplankton (or biomass) concentration, and 

are frequently used to monitor ocean and inland water environments, 
e.g., ocean/water biological productivity (Behrenfeld and Falkowski, 
1997; Platt and Sathyendranath, 1988), harmful algal blooms (HABs) 
monitoring (Stumpf et al., 2003; Tomlinson et al., 2004; Wang et al., 
2021), etc. Kd(490) and Kd(PAR) data have been used for monitoring 
and studying ocean processes such as phytoplankton photosynthesis and 
thermal dynamics (Morel and Antoine, 1994; Sathyendranath et al., 
1991). Recently, a new satellite algorithm has been developed to 
routinely derive the suspended particulate matter (SPM) concentration 
in global waters (Wei et al., 2021; Yu et al., 2019). In fact, SPM data 
provide primary quantification of water quality and clarity of the world 
ocean, and have been used for ocean current tracing (Yang et al., 2014), 
sediment transportation modeling and data assimilation (Ouillon et al., 
2004; Stroud et al., 2009), and research on global carbon cycle and 
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land–ocean flux (Milliman and Farnsworth, 2013). Currently, nLw(λ), 
Chl-a, Kd(490), Kd(PAR), and SPM data are being routinely produced 
from various satellite missions, including the Visible Infrared Imaging 
Radiometer Suite (VIIRS) (Goldberg et al., 2013) onboard the Suomi 
National Polar-orbiting Partnership (SNPP) and NOAA-20, and the 
Ocean and Land Colour Instrument (OLCI) (Donlon et al., 2012) on the 
Sentinel-3A and Sentinel-3B satellites. In addition, the Moderate Reso
lution Imaging Spectroradiometer (MODIS) (Esaias et al., 1998), Korean 
Geostationary Ocean Color Imager (GOCI) (Choi et al., 2012; Wang 
et al., 2013), and other satellite missions have also provided good 
quality product data. 

However, ocean color daily images from MODIS, VIIRS, OLCI, and 
other satellite sensors contain a significant amount of invalid pixels 
because of cloud cover, sun glint contamination, large sensor viewing 
angle, and other unfavorable conditions (Mikelsons and Wang, 2019). 
For example, ~70% of missing data exist in global daily images derived 
from a single VIIRS sensor (Liu and Wang, 2018). Merging images from 
different satellite missions is an effective way to reduce data gaps in the 
ocean color images. Overall, a two-sensor merged global daily image 
contains ~38% more valid pixels than that from a single VIIRS (Liu and 
Wang, 2019). To completely fill the data gaps in the ocean color images, 
interpolation methods are needed. Data Interpolating Empirical 
Orthogonal Functions (DINEOF) is one method that derives a missing 
value using the spatial and temporal data coherency, and has been 
effectively used in various satellite ocean remote sensing studies 
(Alvera-Azcarate et al., 2005; Beckers and Rixen, 2003). In fact, the 
DINEOF method was compared to other data gap-fill approaches based 
on the Optimum Interpolation (OI) (Liston and Elder, 2006), Kriging 
method (Gunes et al., 2006), and Least-Squares-Fit (Stahl et al., 2006), 
and it was concluded that the DINEOF approach was the most robust 
technique for satellite remote sensing applications (Henn et al., 2013). 
The Kriging and Least-Squares-Fit methods are considered to be spatial 
interpolations, while the DINEOF approach makes use of coherence in 
temporal and spatial information to infer the missing values. In partic
ular, Henn et al. (2013) found that the DINEOF method was the most 
accurate and effective method for filling the data gap with long-time 
durations. Some locations could have cloud cover for several days and 
even weeks, which causes missing long-time data. For example, there is 
often persistent cloud cover in the Arabian Sea and Bay of Bengal during 
the Indian summer monsoon season from May to September. Therefore, 
we use the DINEOF method to fill the gaps of missing pixels in the daily 
ocean color image. Indeed, the DINEOF method has been used to 
routinely generate global gap-free Chl-a data based on merged images 
derived from two sensors, namely, VIIRS on the SNPP and NOAA-20 
satellites (Liu and Wang, 2018, 2019). 

Liu and Wang (2019) showed that adding more data from additional 
satellite sensors to the merged images not only significantly increase the 
number of valid pixels, but also improves the quality of the derived 
global gap-free images. Since the launch of the Sentinel-3A/3B satellites 
in 2016 and 2018, ocean color images from the OLCI sensors have 
become available. OLCI is a medium-spatial resolution instrument with 
21 spectral bands covering wavelengths from the short blue, near- 
infrared (NIR), and shortwave infrared (SWIR) (Donlon et al., 2012). 
OLCI has a narrower swath width (1270 km) and higher spatial reso
lution (300 m) than VIIRS (750 m). Due to differences in sensor spectral 
response function (SRF), center wavelength, bandwidth, and other 
sensor characteristics, ocean color data derived from OLCI cannot be 
directly merged with VIIRS. Wang et al. (2020a) developed a method to 
obtain ocean color products consistently from multiple satellite sensors. 
Using this method, the required coefficients for OLCI biological and 
biogeochemical algorithms can be recalibrated with the in situ hyper
spectral radiance measurements from the Marine Optical Buoy (MOBY) 
in the water off Hawaii (Clark et al., 1997), thereby the OLCI-derived 
ocean/water property products are consistent with those from VIIRS 
in open oceans. Therefore, OLCI-measured Chl-a, Kd(490), and SPM can 
be merged with those from the two VIIRS instruments (Wang et al., 

2020a). 
In this work, we use ocean color products from three satellites, i.e., 

two VIIRS sensors and OLCI-Sentinel-3A, to generate a merged Level-3 
ocean color dataset, and DINEOF is used to produce Level-4 gap-free 
Chl-a, Kd(490), and SPM products over global waters. To merge OLCI 
ocean color data with those from VIIRS, we need to recalibrate the OLCI 
sensor and reprocess the Level-2 ocean color data using the NOAA ocean 
color data processing system. It is noted that we are also starting to work 
on producing OLCI-Sentinel-3B ocean color products using the 
EUMETSAT reprocessed mission-long Level-1B data. The OLCI-Sentinel- 
3B ocean color data will be evaluated and added into the multi-sensor 
merged data stream. The gap-free data reconstructed from three sen
sors are compared with those from the two VIIRS sensors, as well as from 
original three-sensor merged data for validation. The remaining content 
of this paper is constructed as follows: In Section 2, the satellite ocean 
color data from the three sensors are described, including some details 
about the data merging and DINEOF methods. Furthermore, the global 
merged and gap-free Chl-a, Kd(490), and SPM results, their comparisons 
with two-sensor derived data, and the result of validation against the 
original data are also documented in Section 3. Finally, we provide the 
discussions and conclusion in Section 4. 

2. Data and methods 

2.1. Satellite ocean color data 

The Multi-Sensor Level-1 to Level-2 (MSL12) is the NOAA official 
enterprise VIIRS ocean color data processing system, including VIIRS on 
all the future Joint Polar Satellite System (JPSS) missions. MSL12 can 
also be used for processing satellite data for OLCI on Sentinel-3A and 
Sentinel-3B. As it was initially designed, MSL12 has the capability to 
produce ocean color products consistently for various sensors (Wang 
et al., 2002). Using the Level-1B data as input, MSL12 generates ocean 
color Level-2 product data, including nLw(λ), Chl-a, Kd(490), Kd(PAR), 
and SPM, etc. In addition, MSL12 provides options for using various 
atmospheric correction algorithms, including the NIR-, SWIR-, and NIR- 
SWIR-based algorithms (Gordon and Wang, 1994; Jiang and Wang, 
2014; Wang, 2007; Wang and Shi, 2007). The SWIR-based algorithm 
was developed to make accurate ocean color measurements in global 
highly turbid waters. Indeed, it has been shown in several previous 
studies that the NIR-SWIR-based ocean color products are of a better 
quality over global open oceans and turbid coastal/inland waters (Shi 
and Wang, 2012, 2014; Shi et al., 2011). It is noted that there have been 
significant efforts to evaluate and validate satellite-derived ocean color 
products using in situ data and other approaches (e.g., statistical anal
ysis) (Barnes et al., 2019; Hlaing et al., 2013; Hu et al., 2020; Mikelsons 
et al., 2020; Wang et al., 2020b). In particular, VIIRS ocean color 
products are being well evaluated by the NOAA ocean color team and 
NOAA VIIRS ocean color calibration/validation (Cal/Val) team, 
including annual dedicated ocean color Cal/Val cruises since 2014, 
which are documented in the NOAA five cruise reports, e.g., one most 
recent report (Ondrusek et al., 2021). 

In this work, we use the MSL12-derived Chl-a, Kd(490), and SPM data 
(derived from nLw(λ) spectra) from VIIRS and OLCI. The Chl-a algorithm 
uses the ocean color index (OCI) method, which has been proven to be 
more stable and accurate for clear (low Chl-a) oceans (Wang and Son, 
2016). The Kd(490) algorithm is a hybrid of the clear ocean (standard) 
model (Mueller, 2000) and the turbid water model, so that Kd(490) data 
for both clear and productive oceans/waters can be accurately retrieved 
(Wang et al., 2009). The SPM algorithm utilizes input from satellite- 
measured Rrs(λ) spectra at the NIR, red, green, and blue (NIR-RGB), 
and also combines algorithms for both turbid and clear waters for global 
ocean data retrievals (Wei et al., 2021; Yu et al., 2019). Satellite- 
retrieved SPM data directly measure the amount of both organic and 
inorganic suspended particles in the upper water layers. In fact, over the 
coastal and inland waters, SPM are mainly sediments from shoreline 
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erosion, river discharge, and bottom resuspension (Wei et al., 2021; Yu 
et al., 2019). On the other hand, suspended biogenic particles are 
dominant in the upper layers over open oceans (Wei et al., 2021). 

The Level-2 data are spatially and temporally binned to generate the 
global Level-3 ocean color products of Chl-a, Kd(490), and SPM 
(Campbell et al., 1996). The Level-3 files employ the equal-area sinu
soidal projection, which has significantly fewer grids in the high-latitude 
regions than regular projections, such as a cylindrical or Mercator pro
jection. This advantage significantly benefits the process of generating 
global gap-free ocean color products with a better computation perfor
mance in near-real-time settings. To ensure high quality Level-3 data, 
prior to the binning process, some important MSL12-generated Level-2 
data quality masks and flags, e.g., masks for land and cloud, flags for 
cloud shadow and straylight, high sun glint, large solar and satellite 
viewing angles, etc., are applied to remove substandard quality data in 
Level-2 files (Jiang and Wang, 2013; Mikelsons et al., 2020; Mikelsons 
et al., 2021). 

It is noted that VIIRS data on SNPP and NOAA-20 have been avail
able from December 2011 and November 2017, respectively, and OLCI 
data on Sentinel-3A and Sentinel-3B have been available from February 
2016 and April 2018, respectively. Both VIIRS sensors are on orbit with 
equatorial crossing at around 1:30 p.m. (ascending node), while the two 
OLCI sensors are at descending node with equatorial crossing at around 
10:00 a.m. VIIRS has a swath width of about 3040 km with 750 m spatial 
resolution at nadir, while an OLCI has a narrower swath (1270 km) with 
a higher spatial resolution (300 m). Due to cloud, high sun-glint 
contamination, high solar- and/or sensor-zenith angles, etc., a daily 
global VIIRS image has ~ 70% missing pixels, while a daily global OLCI 
image has ~ 80% missing pixels. The higher amount of daily missing 
data for OLCI is mainly due to a narrower OLCI data swath width as 
compared to that from VIIRS. 

2.2. Merging ocean color satellite data from three sensors 

We include ocean color data derived from OLCI-Sentinel-3A with the 
two VIIRS sensors to produce a three-sensor merged global ocean color 
dataset. As mentioned previously, the SRF effects on the satellite prod
ucts (e.g., Chl-a, Kd(490), and SPM) derived from the three sensors are 
specifically accounted for over open oceans using the Wang et al. 
(2020a) approach. There are differences in sensor spectral characteris
tics from different satellite sensors even for the same satellite series that 
is designed to have the same sensor spectral characteristics (Wang et al., 
2020a). To account for the SRF effects on the satellite-derived biological 
and biogeochemical products, e.g., Chl-a, Kd(490), SPM, etc., these al
gorithms are modified based on the specific SRF for providing consistent 
ocean color products using in situ hyperspectral MOBY nLw(λ) mea
surements applicable for global open oceans (Wang et al., 2020a). 
Therefore, Chl-a, Kd(490), and SPM derived from the three sensors are 
generally consistent over open oceans and can be merged seamlessly 
without further adjustment for generating three-sensor merged prod
ucts. Over turbid coastal and inland waters, however, the spectral nLw(λ) 
relationships with water biological and biogeochemical properties are 
usually location dependent (Shi and Wang, 2014). In addition, un
certainties from satellite biological and biogeochemical algorithms are 
generally much larger than those from the effect of SRF differences. 
Therefore, no algorithm adjustments are made for the three sensors over 
turbid coastal and inland waters (Wang et al., 2020a). As described in 
the methodology of merging two VIIRS-measured ocean color data (Liu 
and Wang, 2019), the weighted averages of the Level-3 bins for the 
three-sensor ocean color data are calculated as merged products, and the 
number of valid data in each bin is used as the weight (Campbell et al., 
1996). 

2.3. The DINEOF method 

The DINEOF approach for filling data gaps is essentially based on the 

Empirical Orthogonal Function (EOF) method, and it uses the dominant 
spatial patterns (EOF modes) extracted from a data time series to 
reconstruct the missing data (Alvera-Azcarate et al., 2005; Beckers and 
Rixen, 2003). A simplified description of the DINEOF procedure can also 
be found in Liu and Wang (2018). We use the DINEOF method to 
recalculate and fill the missing data gaps from the three-sensor merged 
Chl-a, Kd(490), and SPM data. Specifically, we apply the DINEOF 
method directly to the three-sensor merged global Level-3 files, rather 
than mapped files. In addition, the global Level-3 (three-sensor merged) 
dataset is partitioned into sixteen zonal sections (each with 10◦-zone) 
from 80◦S–80◦N, thereby the sixteen-zonal data sections can be pro
cessed simultaneously to further improve the computation performance. 

In our experiment, we use global daily Level-3 data from the previous 
29 days to fill the data gaps in the image of a specific date. Therefore, for 
each DINEOF process, a 30-day time series of daily data is used as input, 
and the output is the gap-free data of the last day. In an operational 
setting, this procedure can be applied to a rolling 30-day time series to 
gap-fill the most recent daily image in near-real-time. We briefly 
describe the DINEOF procedure to reconstruct missing pixels as follows:  

(1) Store the original dataset in a two-dimensional spatio-temporal 
matrix (the first dimension is the number of grids in the spatial 
domain, and the second dimension is the number of time steps in 
the time series).  

(2) Remove the temporal and spatial mean from the data, and set 
zeroes to all missing values.  

(3) Calculate the first EOF mode, and replace the missing values with 
the initial guess using only the first EOF mode.  

(4) Iteratively recalculate the first EOF mode using the previous best 
guess as the initial value of the missing data for the subsequent 
iteration until the process converges (threshold = 10− 8).  

(5) Subsequently, repeat steps 3 and 4 for the second, third, fourth, 
EOF mode, and use a cross-validation technique (Beckers and 
Rixen, 2003) to determine the optimal number of EOF modes.  

(6) Finally, reconstruct missing pixels using the optimal number of 
EOF modes. 

It should be noted that not all EOF modes are used in the final data 
reconstruction, and the noise, as well as small scale and transient fea
tures in the high order EOF modes, are removed from the reconstructed 
data. The process to determine the optimum number of EOF modes in 
the final reconstruction is fully automatic. However, in the parameter 
file, we need set the maximum number of EOF modes to the temporal 
size (=30 for this study), so that it calculates enough number of EOF 
modes before the optimum number of EOF modes is reached. To quan
titatively evaluate the accuracy of the DINEOF data reconstruction 
method, a set of valid pixels are intentionally treated as “missing pixels,” 
so that DINEOF-reconstructed data can be compared with the original 
data. Specifically, before the DINEOF process, 5% of the valid (non- 
missing) pixels are purposely removed from the original global data. The 
locations of these validation pixels are randomly selected using the 
random number generator. After the DINEOF process, these data are 
reconstructed and compared with those from the original data set. 

3. Results 

Since the two-sensor gap-free Chl-a data are routinely produced, we 
focused on comparing the three-sensor gap-free Chl-a data with those 
from the two-sensor. For Kd(490) and SPM data, it is the first time that 
we produce the gap-free data, and there are no two-sensor gap-free data 
for comparison. For these two parameters, we followed the validation 
procedure described in Section 2.3 to validate the products with those 
from the original data sets. 
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Fig. 1. Three-sensor merged Chl-a concentration from VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A on (a) January 15, (b) April 15, (c) July 15, and (d) 
October 15, 2020. 

Fig. 2. Global Chl-a(3-Sens)/Chl-a(2-Sens) ratio image on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a(3-Sens) are merged Chl-a from three 
sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a(2-Sens) are merged Chl-a from the two VIIRS sensors. 
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Fig. 3. Global gap-free Chl-a concentration reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) on (a) January 15, (b) April 15, 
(c) July 15, and (d) October 15, 2020. 

Fig. 4. Global gap-free Chl-a(3-Sens)/Chl-a(2-Sens) ratio image on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a(3-Sens) are gap-free Chl-a 
reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a(2-Sens) are gap-free Chl-a from the two VIIRS sensors. 
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3.1. Three-sensor Chl-a data 

For convenience in description and discussion below, we define Chl- 
a(3-Sens) as Chl-a data derived from the three sensors, and similarly Chl- 
a(2-Sens) as for Chl-a derived from two VIIRS sensors. 

3.1.1. Three-sensor merged daily global Chl-a data 
Fig. 1 provides examples of the global Chl-a(3-Sens) merged images on 

January 15, April 15, July 15, and October 15 in 2020, covering four 
days in four seasons. Although the swath of OLCI is much narrower than 
VIIRS, adding OLCI ocean color data to the Chl-a(2-Sens) merged images 
significantly reduced the number of missing pixels because of cloud, 

Fig. 5. Density scatter plots of gap-free Chl-a(3-Sens) versus Chl-a(2-Sens) on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a(3-Sens) are gap-free 
Chl-a reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a(2-Sens) are gap-free Chl-a from the two VIIRS sensors. Note that 
Chl-a unit is mg m− 3. 

Table 1 
Statistics of ratio (Chl-a(3-Sens)/Chl-a(2-Sens)) and difference (Diff.), i.e., (Chl-a(3-Sens)

− Chl-a(2-Sens)), for the months of January, April, July, and October in 2020 over 
various global ocean/water regions derived from global monthly (daily) data.  

Month (in 2020) January April July October 

Ratio Diff.† Ratio Diff.† Ratio Diff.† Ratio Diff.†

Global Waters Mean  1.017  0.013  0.998  − 0.003  1.001  0.031  1.014  0.019 
Median  1.006  0.001  0.995  0.000  0.996  0.000  1.009  0.001 
STD  0.145  0.418  0.117  0.590  0.127  0.861  0.114  0.562 

Deep Waters Mean  1.018  0.003  0.998  − 0.005  0.995  0.006  1.012  0.005 
Median  1.007  0.001  0.995  0.000  0.994  0.000  1.008  0.001 
STD  0.133  0.155  0.101  0.202  0.099  0.428  0.102  0.290 

Oligotrophic Waters Mean  0.999  − 0.003  0.985  − 0.013  0.990  0.011  1.007  0.007 
Median  0.992  0.000  0.986  0.000  0.990  0.000  1.001  0.000 
STD  0.097  0.187  0.097  0.321  0.107  0.661  0.087  0.506 

Coastal/Inland Waters Mean  1.015  0.092  0.991  − 0.002  1.026  0.155  1.054  0.156 
Median  1.005  0.003  0.991  − 0.001  1.022  0.012  1.038  0.015 
STD  0.193  1.246  0.228  1.588  0.230  1.931  0.198  1.645  

† Unit of mg m− 3. 
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large sensor (viewing) angles, and high sun glint contamination. On 
average, a global daily Chl-a(3-Sens) image from the three-sensor has 
~11% more valid pixels than that from the two-sensor Chl-a(2-Sens) 

image. Specifically, on January 15 (Fig. 1a), the data gaps from the large 
satellite viewing angle and high sun-glint were mainly located in the 
South Pacific, South Atlantic, and South Indian Oceans, and OLCI data 
can partially or completely fill the data gaps. On July 15 (Fig. 1c), 
similar data gaps were also reduced in the North Pacific and North 
Atlantic Oceans. On April 15 and October 15 (Fig. 1b and d), the large 
satellite viewing angle and high sun-glint data gaps were located in the 
tropical oceans near the equator, and they were partially filled with 
OLCI data. In addition, the Sentinel-3A orbit has equator crossing 
around 10:00 local time (descending), while the SNPP/NOAA-20 orbit 
around 13:30 local time (ascending). The difference in cloud coverage at 
different times of the satellite passing in the region also reduces the 
number of missing pixels from the three-sensor merged data. 

To compare the three-sensor merged data with those from the two- 
sensor, Fig. 2 shows the image of Chl-a(3-Sens)/Chl-a(2-Sens) ratio on the 

same four days as in Fig. 1. For most of the areas in the open ocean, 
ratios of Chl-a(3-Sens)/Chl-a(2-Sens) are close to 1.0 (green color), which 
indicates that the three-sensor merged Chl-a(3-Sens) data are close to those 
from the two-sensor Chl-a(2-Sens). However, in some high latitude areas 
and over turbid coastal/inland waters, ratios of Chl-a(3-Sens)/Chl-a(2-Sens) 

are different from the unity, which are mostly attributed to the differ
ence in coverage between the VIIRS and OLCI measurements. For 
example, even at the 50◦N latitude ocean regions, during the winter to 
spring season, the solar-zenith angle could reach to ~60◦–70◦, which is 
close to the limitation of 70◦ for ocean color data processing. 

3.1.2. Global gap-free Chl-a data 
Fig. 3 provides examples of the global daily gap-free Chl-a(3-Sens) 

images on January 15, April 15, July 15, and October 15 in 2020. 
Similar to daily gap-free Chl-a(2-Sens) images reconstructed from two 
VIIRS sensors (Liu and Wang, 2019), the low Chl-a (<0.1 mg m− 3) are 
mainly found in the five subtropical ocean gyres, i.e., the north and 
south Pacific, north and south Atlantic, and south Indian Oceans. For 
these global oligotrophic waters, Chl-a have two peaks annually, both in 
the winter season (boreal and Australian winters) (Wang et al., 2021), 
due primarily to the winter strong vertical mixing (Signorini et al., 
2015). In the equatorial Pacific and Atlantic, the easterly trade winds 
blow along the equator and waters are transported away from the 
equator on both its north and south side (Gill, 1982). The divergence of 
the surface flow induces an upwelling of the cold and nutrient-rich 
waters and creates a productive phytoplankton bloom zone, so that 
Chl-a (ranging ~0.1–1.0 mg m− 3) are higher than those in the sub
tropical gyres. Over the high latitude ocean region, surface water is cold 
with less vertical density gradient, and the vertical mixing of water can 
reach to depths much greater than euphotic zone (Siegel et al., 2002). As 
a result, with sufficient nutrient supply due to vertical mixing, high Chl- 
a (> 1.0 mg m− 3) are present in the high-latitude oceans of the Northern 
Atlantic, Northern Pacific, and the Southern Ocean. We also found a 

Fig. 6. Gap-free Chl-a reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) in the coastal region of (a) La Plata River Estuary on 
January 15, 2020, (b) Brazil Coast on July 15, 2020, (c) Southwest Africa Coast on July 15, 2020, and (d) Gulf of Mexico on July 15, 2020. The corresponding Chl-a(3- 

Sens)/Chl-a(2-Sens) ratio images for cases (a)–(d) are shown in panels (e)–(h), respectively. 

Table 2 
Statistics of ratio (Chl-a(3-Sens)/Chl-a(2-Sens)) and difference (Chl-a(3-Sens)− Chl-a(2- 

Sens)) for the four months of January, April, July, and October in 2020 over the 
six coastal regions of the Gulf of Mexico, U.S. East Coast, U.S. West Coast, Brazil 
Coast, Bay of Bangel, and China East Coast.  

Region Ratio Difference (mg m− 3) 

Mean Median STD Mean Median STD 

Gulf of Mexico  1.019  1.005  0.126  0.104  0.001  0.995 
U.S. East Coast  1.008  0.999  0.149  0.104  0.000  1.137 
U.S. West Coast  0.981  0.978  0.111  0.043  − 0.003  0.689 
Brazil Coast  1.022  1.011  0.120  0.046  0.001  0.801 
Bay of Bangel  1.018  1.010  0.115  0.016  0.002  0.631 
China East Coast  1.056  1.042  0.173  0.234  0.054  1.288  
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seasonal trend of Chl-a variation in the high-latitude ocean regions: the 
Southern Ocean has a maximum Chl-a in January, while Chl-a in the 
Northern Atlantic and Northern Pacific have a maximum in July (Boss 
and Behrenfeld, 2010). In coastal oceans, nutrient sources from land, 
resuspension from sea floor, and coastal upwelling support high bio
logical productivity (Shi and Wang, 2012). Indeed, there are signifi
cantly high Chl-a (> 1.0 mg m− 3) on the West Africa Coast, South 
America coast, Arabian Sea and Bay of Bangle, and China East Coast. 

Since the global gap-free Chl-a(2-Sens) data have already been vali
dated (Liu and Wang, 2019), we compare the gap-free Chl-a(3-Sens) and 
Chl-a(2-Sens) images for evaluations. The images of the gap-free Chl-a(3- 

Sens)/Chl-a(2-Sens) ratio on the same four days as in Fig. 3 are provided in 
Fig. 4. Results show that ratios in Chl-a(3-Sens)/Chl-a(2-Sens) are close to 1.0 
in most pixels (green color). However, there is significant noise in the 
Southern Ocean and equatorial ocean in the image on January 15 
(Fig. 4a), and in the northern Atlantic and Pacific Oceans on July 15 
(Fig. 4c). In comparison, there is less noise in images of April 15 and 
October 15 (Fig. 4b and d). For quantitative evaluations, Fig. 5 provides 
the density-scatter plot of Chl-a(3-Sens) (three-sensor) versus Chl-a(2-Sens) 

(two-sensor) gap-free images on the same four days as in Fig. 3. We can 
see that the density-scatter plots are closer to 1:1 line in all images for 
the four-daily data, while there are slightly more scatters (noise) for the 
cases of January 15 and July 15. Quantitatively, the standard deviation 
(STD) values of the Chl-a(3-Sens)/Chl-a(2-Sens) ratio are 0.122, 0.095, 
0.128, and 0.113 for the cases of January 15, April 15, July 15, and 
October 15, respectively, reflecting high noise data for both January 15 
and July 15 cases as shown in Fig. 4. 

For accurately characterizing the seasonal effect, Table 1 provides 
the statistics of the monthly averaged ratio (Chl-a(3-Sens)/Chl-a(2-Sens)) 
and difference (Chl-a(3-Sens) − Chl-a(2-Sens)) in January, April, July, and 
October 2020 for global waters, global deep waters (depth > 1 km), 
global oligotrophic waters (Chl-a ≤ ~0.1 mg m− 3), and global coastal/ 
inland waters (i.e., depth ≤ 1 km). Note that the monthly statistics data 

were derived from the entire month (daily) data for these four months. 
Results in Table 1 show that Chl-a(3-Sens) are very close to Chl-a(2-Sens) in 
global oligotrophic waters for the four months with a Chl-a(3-Sens)/Chl- 
a(2-Sens) ratio that varies from 0.985 to 1.007, and a difference that varies 
from − 0.013 to 0.011 mg m− 3. However, over global coastal and inland 
waters, the three-sensor Chl-a(3-Sens) are usually slightly higher than the 
two-sensor Chl-a(2-Sens) with additionally larger STD values, i.e., Chl-a 
ratios vary from 0.991 to 1.054, and Chl-a differences are quite signif
icant from − 0.002 to 0.156 mg m− 3. This is mainly attributed to the 
difference between Chl-a data derived from VIIRS and OLCI in coastal 
and inland waters. Chl-a derived from three sensors are usually different 
over turbid coastal and inland waters due to the Chl-a algorithm per
formance issue, as well as differences with the SRF effect on the Chl-a 
algorithm. However, the gap-free Chl-a spatial features derived from 
the three-sensor merged data are quite useful over coastal and inland 
water. Overall, over global waters, Chl-a(3-Sens) are more or less consis
tent with Chl-a(2-Sens), i.e., the mean ratio varies from 0.998 to 1.017, and 
the median ratio from 0.995 to 1.009. 

The monthly means of the Chl-a(3-Sens)/Chl-a(2-Sens) ratio also show 
seasonal variations. In global oceans, Chl-a(3-Sens) data are very close to 
Chl-a(2-Sens) in April and July, while Chl-a(3-Sens) data are ~1.5% higher 
than the Chl-a(2-Sens) data in January and October. Over global oligo
trophic waters, Chl-a(3-Sens) data are smaller than Chl-a(2-Sens) in April 
and July (mean Chl-a(3-Sens)/Chl-a(2-Sens) ratios are 0.985 and 0.990), 
while they are very close in January and October. 

3.1.3. Gap-free Chl-a in coastal oceans 
Fig. 6 provides examples of Chl-a(3-Sens) images in the coastal regions 

near the La Plata River Estuary (Fig. 6a), Amazon River Estuary 
(Fig. 6b), West Africa Coast (Fig. 6c), and Gulf of Mexico (Fig. 6d). The 
La Plata River Estuary and its vicinity is one of the most extremely turbid 
coastal oceans, and Chl-a are high due to the nutrient input from river 
discharge (Shi and Wang, 2020). Fig. 6a shows the gap-free Chl-a(3-Sens) 

Fig. 7. Global gap-free Kd(490) reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) on (a) January 15, (b) April 15, (c) July 15, 
and (d) October 15, 2020. 
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image on January 15, 2020, near the La Plata River Estuary. The high 
Chl-a features (> ~10 mg m− 3) were found inside the estuary and in 
coastal eddies. Fig. 6e shows the image of the Chl-a(3-Sens)/Chl-a(2-Sens) 

ratio, and the variation of the ratio was quite significant across the re
gion. In the areas of significantly large Chl-a (> ~10 mg m− 3), Chl-a(3- 

Sens) values were ~10–20% higher than Chl-a(2-Sens) values, indicating 
that these spatial features of high Chl-a were significantly enhanced by 
adding the OLCI data as an input source. 

Similarly, we also found high Chl-a features in the Chl-a(3-Sens) image 
near the Amazon River Estuary and North Brazil Current (NBC) on July 
15, 2020 (Fig. 6b). Chl-a in the Amazon River Estuary were quite high 
(~10 mg m− 3) due to nutrients in river runoff. As a western boundary 
current, the NBC flows northward along the coast of Brazil (Johns et al., 
1990). High nutrient water exported from the Amazon River signifi
cantly enhances the biological activities in the NBC. The NBC separates 
from the Brazil Coast near 7◦N and sometimes curves back to pinch off 
large warm-core rings (Fratantoni and Glickson, 2002). Chl-a(3-Sens) in 
NBC and its associated ring were ~1.0 mg m− 3 (Fig. 6b). Results in 
Fig. 6f show that the spatial features of high Chl-a in the Amazon River 
Estuary and the NBC ring were significantly enhanced using the three- 
sensor Chl-a(3-Sens) data. 

Fig. 6c shows Chl-a(3-Sens) along the southwest coast of Africa on July 
15, 2020. The southwest coast of Africa is known for its upwelling 
including the Benguela Current upwelling system, driven by the Ekman- 
pumping related to the alongshore wind-stress (Kämpf and Chapman, 
2016). In addition, the Congo River also brings significant nutrient 

supply into the coastal waters and stimulates phytoplankton blooms 
(Hardman-Mountford et al., 2003). Chl-a data in the southwest coast of 
Africa are generally > ~1.0 mg m− 3. From Fig. 6g, it can be seen that in 
the areas of coastal upwelling, Chl-a(3-Sens)/Chl-a(2-Sens) ratios are 
~1.1–1.2, indicating the upwelling-induced Chl-a bloom is captured and 
enhanced in the gap-free Chl-a(3-Sens) image. 

Fig. 6d shows Chl-a(3-Sens) of July 15, 2020, in the Gulf of Mexico, 
where Chl-a features were mainly dominated by the Loop Current (LC) 
and its associated eddies (Hamilton, 1990). The anticyclonic circulation 
inside of the LC and its associated eddy was convergent, and thus formed 
a downwelling warm-core eddy. Within a warm-core eddy, the nutrient 
supply was poor, and Chl-a were very low (Leterme and Pingree, 2008). 
In Fig. 6d, there were two warm-core eddies with quite low Chl-a (<
~0.1 mg m− 3), which were shredded from the LC. The northern part of 
the Gulf of Mexico featured a high Chl-a (> ~1.0 mg m− 3) associated 
with the Mississippi River Estuary. In fact, in the region around the 
Mississippi River Delta, Chl-a are usually quite high (~10 mg m− 3). In 
addition, there are frequent algae blooms on the West Florida Shelf and 
some of them are harmful. Fig. 6h shows that spatial feature of a high 
Chl-a (~10 mg m− 3) near the Mississippi River Delta and on the West 
Florida Shelf was further enhanced in the Chl-a(3-Sens) image, compared 
with those from the Chl-a(2-Sens) image. 

To quantitatively compare the Chl-a(3-Sens) and Chl-a(2-Sens) images in 
coastal oceans, six coastal regions, i.e., the Gulf of Mexico, U.S. East 
Coast, U.S. West Coast, Brazil Coast, Bay of Bangel, and China East 
Coast, were selected, and the statistics of ratio and difference between 

Fig. 8. Density scatter plots of gap-free Kd(490) versus original Kd(490) on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Note that Kd(490) unit 
is m− 1. 
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Chl-a(3-Sens) and Chl-a(2-Sens) were computed from the four months of 
January, April, July, and October in 2020. The statistics results are 
shown in Table 2. Table 2 shows that the China East Coast has the largest 
Chl-a(3-Sens)/Chl-a(2-Sens) mean ratio (1.056), while mean ratios for the 
Gulf of Mexico, U.S. West Coast, Brazil Coast, and Bay of Bangel are 
ranging from ~ 0.981–1.02 (within about 2%). The smallest Chl-a(3- 

Sens)/Chl-a(2-Sens) ratio is for the U.S. East Coast with mean and median 
values of 1.008 and 0.999, respectively. 

3.2. Gap-free Kd(490) data 

Fig. 7 provides examples of the global gap-free Kd(490) images for 
January 15, April 15, July 15, and October 15 in 2020. Very clear waters 
with Kd(490) < ~0.05 m− 1 were found in the five major ocean basins, 
i.e., the North and South Pacific, North and South Atlantic, and South 
Indian Oceans. In the Southern Ocean and high-latitude North Atlantic 
and Pacific Oceans, ocean waters were moderately turbid (Kd(490) 
~0.1 m− 1) mainly due to active biological process. The Southern Ocean 
had the maximum turbidity (Kd(490) ~0.1 m− 1) on January 15, 2020 
(Fig. 7a), while the high-latitude North Atlantic and Pacific Oceans 
reached their maximum on July 15, 2020 (Fig. 7c). In addition, some 
coastal oceans also showed moderate turbidity (e.g., Kd(490) ~0.1 m− 1) 
in different months. For example, waters were turbid along the north
west coast of Africa on January 15 (Fig. 7a), and southwest coast of 
Africa on July 15 (Fig. 7c). There was also strong turbidity in the Somali 
Coast on July 15 owing to the monsoon-induced upwelling (Fig. 7c). The 
East China Sea and Bohai Sea were turbid all year round. The extremely 
turbid (Kd(490) > ~2.0 m− 1) were mainly found in the China East Coast, 
La Plata River Estuary, Amazon River Estuary, and Southwest Africa 
Coast. 

To quantitively evaluate the global gap-free Kd(490) product, we 

adopted the same validation procedure that was used to evaluate the 
global gap-free Chl-a product (Liu and Wang, 2018). Specifically, we 
randomly selected 5% of the non-missing/valid pixels from the merged 
data, and purposely set them as “missing pixels,” i.e., removed these 
selected pixels. These pixels were reconstructed by the DINEOF process 
and validated against the original data. Fig. 8 shows the Kd(490) com
parison of the reconstructed data with those from the original in the 
density scatter plots for the same four days as in Fig. 7. The majority of 
the data in Fig. 8 are at around 1:1 line in the global ocean with mod
erate scatter in all four months. Quantitatively, as noted in Fig. 8, the 
mean ratios of the reconstructed over original data are 1.029, 1.005, 
1.030, and 1.002 for the cases of January 15, April 15, July 15, and 
October 15 in 2020, respectively, with the corresponding STD values of 
0.169, 0.142, 0.167, and 0.153, respectively. 

It should be noted that the gap-free data are generally smoother than 
the original ones. This is due to the fact that not all EOF modes are used 
in the final data reconstruction in the DINEOF procedure, and the 
original data noise, as well as small scale and transient features in the 
high order EOF modes, may be removed from the reconstructed data. 

3.3. Gap-free SPM data 

Fig. 9 provides examples of global gap-free SPM images for January 
15, April 15, July 15, and October 15 in 2020. The SPM concentration is 
closely related to the water turbidity, i.e., high SPM corresponds to a 
large Kd(490) value, and vice versa. Therefore, the general pattern of the 
global SPM feature is similar to that of Kd(490). In the Southern Ocean 
and high latitude Northern Pacific Ocean and Northern Atlantic Ocean, 
SPM are ~1.0 mg L− 1, while SPM are low in the major ocean basins and 
high in the coastal regions. However, SPM data provide more details of 
ocean/water spatial variation than that from Kd(490) in the world major 

Fig. 9. Global gap-free SPM reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) on (a) January 15, (b) April 15, (c) July 15, and 
(d) October 15, 2020. 
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ocean basins. For example, there is a clear area of low SPM (~0.1 mg 
L− 1) in the center of the South Pacific Gyre (Fig. 9a, c, and d), which may 
not be obviously shown in the gap-free Kd(490) images. In the coastal 
regions, there is also a broad SPM variation ranging from 0.01 to over 
500.0 mg L− 1, which provides more details of spatial SPM features from 
turbid coastal oceans to extremely turbid estuaries (five orders of 
magnitude in SPM). Fig. 10 shows the comparison of the reconstructed 
SPM with those from the original in density scatter plots for the same 
four days as in Fig. 9. Results in Fig. 10 show that the majority of the 

data are around the 1:1 line in the global oceans with moderate scatter in 
all the four daily cases (representing four seasons). Quantitatively, as 
noted in Fig. 10, the mean SPM ratios in the reconstructed/original are 
1.039, 1.023, 1.038, and 1.006 for the cases of January 15, April 15, July 
15, and October 15 in 2020, respectively, with the corresponding STD 
values of 0.219, 0.197, 0.208, and 0.209, respectively. In fact, the me
dian ratios are better than the mean ratios with the corresponding values 
of 1.024, 1.010, 1.022, and 0.989 for these four daily cases (Fig. 10). 

In summary, from the daily evaluations (Figs. 8 and 10), the gap-free 

Fig. 10. Density scatter plots of gap-free SPM versus original SPM on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Note that SPM unit is mg L-1.  

Table 3 
Statistics of ratio in (reconstructed/original) and difference (Diff.) in (reconstructed − original) for the months of January, April, July, and October in 2020 for pa
rameters of Kd(490), SPM, and Chl-a. Note that the monthly statistics were calculated from global monthly (daily) data for the specific parameter.  

Month (in 2020) January April July October 

Ratio Diff.‡ Ratio Diff.‡ Ratio Diff.‡ Ratio Diff.‡

Kd(490) Mean  1.013  − 0.006  1.010  − 0.006  1.019  − 0.011  1.009  − 0.007 
Median  1.007  0.000  1.006  0.000  1.013  0.000  1.005  0.000 
STD  0.159  0.126  0.144  0.140  0.159  0.227  0.153  0.168 

SPM Mean  1.022  − 0.018  1.019  − 0.016  1.025  − 0.018  1.015  − 0.017 
Median  1.004  0.001  1.005  0.000  1.011  0.001  0.999  0.000 
STD  0.216  0.400  0.198  0.444  0.204  0.617  0.203  0.478 

Chl-a Mean  1.015  − 0.018  1.014  − 0.013  1.020  − 0.011  1.013  − 0.010 
Median  0.994  0.000  0.996  0.000  1.001  0.001  0.994  0.000 
STD  0.240  0.447  0.210  0.499  0.219  0.720  0.217  0.507  

‡ Units for Kd(490), SPM, and Chl-a are m− 1, mg L− 1, and mg m− 3, respectively. 
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global Kd(490) and SPM products, derived from the three-sensor merged 
data, have a similar performance for the reconstructed pixels. To provide 
more solid evaluations of the three-sensor-derived gap-free Chl-a, 
Kd(490), and SPM, we have calculated statistics of the ratio between 
reconstructed and original (i.e., reconstructed/original) and the differ
ence between reconstructed and original (i.e., reconstructed − original) 
for these three parameters using the entire monthly data of January, 
April, July, and October in 2020. Table 3 provides these monthly sta
tistics for the three parameters. In fact, for the three products, their 
performances are quite consistent with the monthly mean ratio varying 
from 1.009 to 1.025, median ratio from 0.994 to 1.011, and STD from 
0.144 to 0.240. Results in Figs. 8, 10, and Table 3 show that global gap- 
free Kd(490) and SPM products are accurate and reliable, and these data 
are applicable for various research and applications, particularly over 
global coastal and inland waters. 

4. Discussions and conclusion 

Ocean color data from the OLCI-Sentinel-3A are included into the 
two VIIRS sensors to generate three-sensor merged global Level-3 daily 
Chl-a, Kd(490), and SPM data, and Level-4 global gap-free daily images 
are also produced using the DINEOF method. Results show that, by 
adding the OLCI data, a three-sensor merged daily image has ~11% 
more valid pixels than a two-sensor merged image. In the global open 
ocean, the gap-free Chl-a data from three sensors are close to those from 
two sensors. However, over coastal and inland lake regions, the three- 
sensor-derived gap-free Chl-a images report noticeably different Chl-a 
values. Further investigation of some coastal regions (e.g., the La Plata 
River Estuary, Amazon River Estuary, West Africa Coast, etc.) shows that 
in the areas of high Chl-a (> ~10 mg m− 3) these spatial features are 
significantly enhanced using the three-sensor-derived Chl-a images. It is 
found that the three-sensor reconstructed Chl-a values are ~10–20% 
higher than those from the two sensors for the pixels of high Chl-a. This 
is attributed to the new OLCI data as an additional input source. It is 
emphasized that we are focusing on the enhanced Chl-a spatial features 
from the three-sensor data. Although excessive nutrient supply from 
river runoff often stimulates phytoplankton blooms in the estuaries, the 
sediments and colored dissolved organic matter in the turbid coastal 
oceans could significantly affect the optical property of the water, and 
compromises Chl-a accuracy measured from different satellites. There
fore, further validation of the gap-free Chl-a data with in situ data in 
turbid coastal oceans and estuaries is recommended. 

It is also found that the difference between the three-sensor and two- 
sensor reconstructed gap-free data have seasonal variations. In oligo
trophic waters, the three-sensor reconstructed Chl-a data are smaller 
than those from the two-sensor in April and July, and they are very close 
in January and October. In global oceans, the three-sensor Chl-a data are 
generally very close to two-sensor in April and July, while the three- 
sensor Chl-a data are ~1.5% higher than those from the two-sensor in 
January and October. The seasonal Chl-a differences between three- 
sensor and two-sensor reconstructed gap-free data are mainly due to 
the differences between two-sensor- and three-sensor-merged Chl-a 
data. Generally, three-sensor merged Chl-a data provide more complete 
spatial coverage, leading to the improved input data source with the 
DINEOF method. Therefore, more accurate and reliable gap-filled Chl-a 
data can be derived with the three-sensor-merged data. 

Global gap-free Kd(490) and SPM data are also produced from the 
three-sensor merged daily Level-3 images. Kd(490) measures the water 
turbidity/clarity related to light attenuation in the upper water column, 
while the SPM directly measures the amount of organic and inorganic 
suspended particles. Since the suspended biogenic particles are domi
nant in the upper layers of the open ocean, the spatial pattern in Kd(490) 
and SPM is similar to that of Chl-a over the major ocean basins with low 
Kd(490) and SPM values. In coastal/inland waters and estuaries, the 
suspended particles are often from river and land sources, and sediment 
resuspension. Turbid waters are found in coastal oceans like the East 

China Sea, West Africa Coast, Somali Coast, while extremely turbid 
waters (Kd(490) ~ 2.0 m− 1 and larger) are mainly in the Amazon River 
Estuary, China East Coast, La Plata River Estuary, and Southwest Africa 
Coast. Although the spatial pattern of SPM is similar to that of Kd(490) in 
coastal oceans, SPM data provide a broader range from ~0.01 to 1000 
mg L− 1, providing more details of SPM spatial features from moderately 
turbid to extremely turbid coastal and inland lake regions. We compared 
the reconstructed Kd(490) and SPM data with the original data for 
validation. It is found that the performance of the gap-free Kd(490) and 
SPM data is similar to Chl-a. In fact, the mean values of the monthly 
median ratios in reconstructed/original for Chl-a, Kd(490), and SPM 
(Table 3) are 0.996, 1.008, and 1.005, respectively, showing high ac
curacy for the reconstructed gap-free data with the DINEOF method. 

Using the three-sensor-merged data, global daily gap-free Chl-a, 
Kd(490), and SPM products are now being routinely produced. These 
global water property data will be useful in ocean color science and user 
communities for various research and applications. 
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