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ABSTRACT

Gap-free global chlorophyll-a (Chl-a) concentration images derived from the Visible Infrared Imaging Radiom-
eter Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20 are now avail-
able online in near-real-time for the ocean color community. With the data fusion of Chl-a from the two satellite
sources, missing pixels caused by cloud, sun glint contamination, high satellite viewing angles, and other un-
favorable conditions are completely filled using the Data Interpolating Empirical Orthogonal Function (DINEOF)
method. Our further studies show that adding more data from additional satellite sensors can remarkably
improve the spatial coverage of the merged ocean color products, provide more ocean features over coastal and
inland waters, and enhance the accuracy of the gap-free data. Since the launch of the Sentinel-3A and Sentinel-3B
satellites, the onboard Ocean and Land Colour Instrument (OLCI) sensors have been providing global ocean color
product data. In this work, we recruit the OLCI-Sentinel-3A to join the two VIIRS sensors to produce a three-
sensor merged ocean color dataset, and further derive global gap-free images using the DINEOF method. It is
found that adding OLCI data as the input source significantly enhances the spatial features of high Chl-a by
~10-20% in productive coastal regions and inland lakes. Additionally, the first-ever dataset of global gap-free
suspended particulate matter (SPM) and water diffuse attenuation coefficient at 490 nm (K4(490)) is also
generated using the three-sensor merged data. Results show that K3(490) and SPM have similar spatial patterns
as that of Chl-a in the major ocean basins, and that SPM can provide more details of the spatial variations than
those of K3(490) in the center of the ocean basin and coastal oceans. Global gap-free Chl-a, K;(490), and SPM
products provide important and useful water quality information particularly over global productive ocean/
water regions.

1. Introduction

are frequently used to monitor ocean and inland water environments,
e.g., ocean/water biological productivity (Behrenfeld and Falkowski,

Satellite ocean color data provide important measurements of optical
properties of global oceans and inland waters from space, and have been
used to further derive environmental parameters for ocean ecosystem
monitoring and ecological/biological oceanography research. The sat-
ellite ocean color dataset contains normalized water-leaving radiance
nL,,(4) spectra (or remote sensing reflectance R,s(1) spectra) (Gordon and
Wang, 1994), chlorophyll-a (Chl-a) concentration (Hu et al., 2012;
O’Reilly et al., 1998; Wang and Son, 2016), diffuse attenuation co-
efficients K4(490) (i.e., at 490 nm) and K4(PAR) (i.e., at the photosyn-
thetically available radiation (PAR)) (Son and Wang, 2015; Wang et al.,
2009), etc. Chl-a data provide global temporal/spatial distribution and
variations of the ocean phytoplankton (or biomass) concentration, and
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1997; Platt and Sathyendranath, 1988), harmful algal blooms (HABs)
monitoring (Stumpf et al., 2003; Tomlinson et al., 2004; Wang et al.,
2021), etc. K4(490) and K4(PAR) data have been used for monitoring
and studying ocean processes such as phytoplankton photosynthesis and
thermal dynamics (Morel and Antoine, 1994; Sathyendranath et al.,
1991). Recently, a new satellite algorithm has been developed to
routinely derive the suspended particulate matter (SPM) concentration
in global waters (Wei et al., 2021; Yu et al., 2019). In fact, SPM data
provide primary quantification of water quality and clarity of the world
ocean, and have been used for ocean current tracing (Yang et al., 2014),
sediment transportation modeling and data assimilation (Ouillon et al.,
2004; Stroud et al., 2009), and research on global carbon cycle and
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land-ocean flux (Milliman and Farnsworth, 2013). Currently, nL,,(1),
Chl-a, K4(490), K4(PAR), and SPM data are being routinely produced
from various satellite missions, including the Visible Infrared Imaging
Radiometer Suite (VIIRS) (Goldberg et al., 2013) onboard the Suomi
National Polar-orbiting Partnership (SNPP) and NOAA-20, and the
Ocean and Land Colour Instrument (OLCI) (Donlon et al., 2012) on the
Sentinel-3A and Sentinel-3B satellites. In addition, the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) (Esaias et al., 1998), Korean
Geostationary Ocean Color Imager (GOCI) (Choi et al., 2012; Wang
et al., 2013), and other satellite missions have also provided good
quality product data.

However, ocean color daily images from MODIS, VIIRS, OLCI, and
other satellite sensors contain a significant amount of invalid pixels
because of cloud cover, sun glint contamination, large sensor viewing
angle, and other unfavorable conditions (Mikelsons and Wang, 2019).
For example, ~70% of missing data exist in global daily images derived
from a single VIIRS sensor (Liu and Wang, 2018). Merging images from
different satellite missions is an effective way to reduce data gaps in the
ocean color images. Overall, a two-sensor merged global daily image
contains ~38% more valid pixels than that from a single VIIRS (Liu and
Wang, 2019). To completely fill the data gaps in the ocean color images,
interpolation methods are needed. Data Interpolating Empirical
Orthogonal Functions (DINEOF) is one method that derives a missing
value using the spatial and temporal data coherency, and has been
effectively used in various satellite ocean remote sensing studies
(Alvera-Azcarate et al., 2005; Beckers and Rixen, 2003). In fact, the
DINEOF method was compared to other data gap-fill approaches based
on the Optimum Interpolation (OI) (Liston and Elder, 2006), Kriging
method (Gunes et al., 2006), and Least-Squares-Fit (Stahl et al., 2006),
and it was concluded that the DINEOF approach was the most robust
technique for satellite remote sensing applications (Henn et al., 2013).
The Kriging and Least-Squares-Fit methods are considered to be spatial
interpolations, while the DINEOF approach makes use of coherence in
temporal and spatial information to infer the missing values. In partic-
ular, Henn et al. (2013) found that the DINEOF method was the most
accurate and effective method for filling the data gap with long-time
durations. Some locations could have cloud cover for several days and
even weeks, which causes missing long-time data. For example, there is
often persistent cloud cover in the Arabian Sea and Bay of Bengal during
the Indian summer monsoon season from May to September. Therefore,
we use the DINEOF method to fill the gaps of missing pixels in the daily
ocean color image. Indeed, the DINEOF method has been used to
routinely generate global gap-free Chl-a data based on merged images
derived from two sensors, namely, VIIRS on the SNPP and NOAA-20
satellites (Liu and Wang, 2018, 2019).

Liu and Wang (2019) showed that adding more data from additional
satellite sensors to the merged images not only significantly increase the
number of valid pixels, but also improves the quality of the derived
global gap-free images. Since the launch of the Sentinel-3A/3B satellites
in 2016 and 2018, ocean color images from the OLCI sensors have
become available. OLCI is a medium-spatial resolution instrument with
21 spectral bands covering wavelengths from the short blue, near-
infrared (NIR), and shortwave infrared (SWIR) (Donlon et al., 2012).
OLCI has a narrower swath width (1270 km) and higher spatial reso-
lution (300 m) than VIIRS (750 m). Due to differences in sensor spectral
response function (SRF), center wavelength, bandwidth, and other
sensor characteristics, ocean color data derived from OLCI cannot be
directly merged with VIIRS. Wang et al. (2020a) developed a method to
obtain ocean color products consistently from multiple satellite sensors.
Using this method, the required coefficients for OLCI biological and
biogeochemical algorithms can be recalibrated with the in situ hyper-
spectral radiance measurements from the Marine Optical Buoy (MOBY)
in the water off Hawaii (Clark et al., 1997), thereby the OLCI-derived
ocean/water property products are consistent with those from VIIRS
in open oceans. Therefore, OLCI-measured Chl-a, K4(490), and SPM can
be merged with those from the two VIIRS instruments (Wang et al.,
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2020a).

In this work, we use ocean color products from three satellites, i.e.,
two VIIRS sensors and OLCI-Sentinel-3A, to generate a merged Level-3
ocean color dataset, and DINEOF is used to produce Level-4 gap-free
Chl-a, K4(490), and SPM products over global waters. To merge OLCI
ocean color data with those from VIIRS, we need to recalibrate the OLCI
sensor and reprocess the Level-2 ocean color data using the NOAA ocean
color data processing system. It is noted that we are also starting to work
on producing OLCI-Sentinel-3B ocean color products using the
EUMETSAT reprocessed mission-long Level-1B data. The OLCI-Sentinel-
3B ocean color data will be evaluated and added into the multi-sensor
merged data stream. The gap-free data reconstructed from three sen-
sors are compared with those from the two VIIRS sensors, as well as from
original three-sensor merged data for validation. The remaining content
of this paper is constructed as follows: In Section 2, the satellite ocean
color data from the three sensors are described, including some details
about the data merging and DINEOF methods. Furthermore, the global
merged and gap-free Chl-a, K4(490), and SPM results, their comparisons
with two-sensor derived data, and the result of validation against the
original data are also documented in Section 3. Finally, we provide the
discussions and conclusion in Section 4.

2. Data and methods
2.1. Satellite ocean color data

The Multi-Sensor Level-1 to Level-2 (MSL12) is the NOAA official
enterprise VIIRS ocean color data processing system, including VIIRS on
all the future Joint Polar Satellite System (JPSS) missions. MSL12 can
also be used for processing satellite data for OLCI on Sentinel-3A and
Sentinel-3B. As it was initially designed, MSL12 has the capability to
produce ocean color products consistently for various sensors (Wang
et al., 2002). Using the Level-1B data as input, MSL12 generates ocean
color Level-2 product data, including nL,(1), Chl-a, K3(490), K4(PAR),
and SPM, etc. In addition, MSL12 provides options for using various
atmospheric correction algorithms, including the NIR-, SWIR-, and NIR-
SWIR-based algorithms (Gordon and Wang, 1994; Jiang and Wang,
2014; Wang, 2007; Wang and Shi, 2007). The SWIR-based algorithm
was developed to make accurate ocean color measurements in global
highly turbid waters. Indeed, it has been shown in several previous
studies that the NIR-SWIR-based ocean color products are of a better
quality over global open oceans and turbid coastal/inland waters (Shi
and Wang, 2012, 2014; Shi et al., 2011). It is noted that there have been
significant efforts to evaluate and validate satellite-derived ocean color
products using in situ data and other approaches (e.g., statistical anal-
ysis) (Barnes et al., 2019; Hlaing et al., 2013; Hu et al., 2020; Mikelsons
et al.,, 2020; Wang et al., 2020b). In particular, VIIRS ocean color
products are being well evaluated by the NOAA ocean color team and
NOAA VIIRS ocean color calibration/validation (Cal/Val) team,
including annual dedicated ocean color Cal/Val cruises since 2014,
which are documented in the NOAA five cruise reports, e.g., one most
recent report (Ondrusek et al., 2021).

In this work, we use the MSL12-derived Chl-a, K4(490), and SPM data
(derived from nL,,(4) spectra) from VIIRS and OLCI. The Chl-a algorithm
uses the ocean color index (OCI) method, which has been proven to be
more stable and accurate for clear (low Chl-a) oceans (Wang and Son,
2016). The K4(490) algorithm is a hybrid of the clear ocean (standard)
model (Mueller, 2000) and the turbid water model, so that K3(490) data
for both clear and productive oceans/waters can be accurately retrieved
(Wang et al., 2009). The SPM algorithm utilizes input from satellite-
measured R,(1) spectra at the NIR, red, green, and blue (NIR-RGB),
and also combines algorithms for both turbid and clear waters for global
ocean data retrievals (Wei et al., 2021; Yu et al., 2019). Satellite-
retrieved SPM data directly measure the amount of both organic and
inorganic suspended particles in the upper water layers. In fact, over the
coastal and inland waters, SPM are mainly sediments from shoreline
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erosion, river discharge, and bottom resuspension (Wei et al., 2021; Yu
et al.,, 2019). On the other hand, suspended biogenic particles are
dominant in the upper layers over open oceans (Wei et al., 2021).

The Level-2 data are spatially and temporally binned to generate the
global Level-3 ocean color products of Chl-a, K3(490), and SPM
(Campbell et al., 1996). The Level-3 files employ the equal-area sinu-
soidal projection, which has significantly fewer grids in the high-latitude
regions than regular projections, such as a cylindrical or Mercator pro-
jection. This advantage significantly benefits the process of generating
global gap-free ocean color products with a better computation perfor-
mance in near-real-time settings. To ensure high quality Level-3 data,
prior to the binning process, some important MSL12-generated Level-2
data quality masks and flags, e.g., masks for land and cloud, flags for
cloud shadow and straylight, high sun glint, large solar and satellite
viewing angles, etc., are applied to remove substandard quality data in
Level-2 files (Jiang and Wang, 2013; Mikelsons et al., 2020; Mikelsons
et al., 2021).

It is noted that VIIRS data on SNPP and NOAA-20 have been avail-
able from December 2011 and November 2017, respectively, and OLCI
data on Sentinel-3A and Sentinel-3B have been available from February
2016 and April 2018, respectively. Both VIIRS sensors are on orbit with
equatorial crossing at around 1:30 p.m. (ascending node), while the two
OLCI sensors are at descending node with equatorial crossing at around
10:00 a.m. VIIRS has a swath width of about 3040 km with 750 m spatial
resolution at nadir, while an OLCI has a narrower swath (1270 km) with
a higher spatial resolution (300 m). Due to cloud, high sun-glint
contamination, high solar- and/or sensor-zenith angles, etc., a daily
global VIIRS image has ~ 70% missing pixels, while a daily global OLCI
image has ~ 80% missing pixels. The higher amount of daily missing
data for OLCI is mainly due to a narrower OLCI data swath width as
compared to that from VIIRS.

2.2. Merging ocean color satellite data from three sensors

We include ocean color data derived from OLCI-Sentinel-3A with the
two VIIRS sensors to produce a three-sensor merged global ocean color
dataset. As mentioned previously, the SRF effects on the satellite prod-
ucts (e.g., Chl-a, K4(490), and SPM) derived from the three sensors are
specifically accounted for over open oceans using the Wang et al.
(2020a) approach. There are differences in sensor spectral characteris-
tics from different satellite sensors even for the same satellite series that
is designed to have the same sensor spectral characteristics (Wang et al.,
2020a). To account for the SRF effects on the satellite-derived biological
and biogeochemical products, e.g., Chl-a, K4(490), SPM, etc., these al-
gorithms are modified based on the specific SRF for providing consistent
ocean color products using in situ hyperspectral MOBY nL,,(1) mea-
surements applicable for global open oceans (Wang et al., 2020a).
Therefore, Chl-a, K;(490), and SPM derived from the three sensors are
generally consistent over open oceans and can be merged seamlessly
without further adjustment for generating three-sensor merged prod-
ucts. Over turbid coastal and inland waters, however, the spectral nL,,(1)
relationships with water biological and biogeochemical properties are
usually location dependent (Shi and Wang, 2014). In addition, un-
certainties from satellite biological and biogeochemical algorithms are
generally much larger than those from the effect of SRF differences.
Therefore, no algorithm adjustments are made for the three sensors over
turbid coastal and inland waters (Wang et al., 2020a). As described in
the methodology of merging two VIIRS-measured ocean color data (Liu
and Wang, 2019), the weighted averages of the Level-3 bins for the
three-sensor ocean color data are calculated as merged products, and the
number of valid data in each bin is used as the weight (Campbell et al.,
1996).

2.3. The DINEOF method

The DINEOF approach for filling data gaps is essentially based on the
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Empirical Orthogonal Function (EOF) method, and it uses the dominant
spatial patterns (EOF modes) extracted from a data time series to
reconstruct the missing data (Alvera-Azcarate et al., 2005; Beckers and
Rixen, 2003). A simplified description of the DINEOF procedure can also
be found in Liu and Wang (2018). We use the DINEOF method to
recalculate and fill the missing data gaps from the three-sensor merged
Chl-a, K4(490), and SPM data. Specifically, we apply the DINEOF
method directly to the three-sensor merged global Level-3 files, rather
than mapped files. In addition, the global Level-3 (three-sensor merged)
dataset is partitioned into sixteen zonal sections (each with 10°-zone)
from 80°S-80°N, thereby the sixteen-zonal data sections can be pro-
cessed simultaneously to further improve the computation performance.

In our experiment, we use global daily Level-3 data from the previous
29 days to fill the data gaps in the image of a specific date. Therefore, for
each DINEOF process, a 30-day time series of daily data is used as input,
and the output is the gap-free data of the last day. In an operational
setting, this procedure can be applied to a rolling 30-day time series to
gap-fill the most recent daily image in near-real-time. We briefly
describe the DINEOF procedure to reconstruct missing pixels as follows:

(1) Store the original dataset in a two-dimensional spatio-temporal
matrix (the first dimension is the number of grids in the spatial
domain, and the second dimension is the number of time steps in
the time series).

(2) Remove the temporal and spatial mean from the data, and set
zeroes to all missing values.

(3) Calculate the first EOF mode, and replace the missing values with
the initial guess using only the first EOF mode.

(4) Iteratively recalculate the first EOF mode using the previous best
guess as the initial value of the missing data for the subsequent
iteration until the process converges (threshold = 107%).

(5) Subsequently, repeat steps 3 and 4 for the second, third, fourth,
EOF mode, and use a cross-validation technique (Beckers and
Rixen, 2003) to determine the optimal number of EOF modes.

(6) Finally, reconstruct missing pixels using the optimal number of
EOF modes.

It should be noted that not all EOF modes are used in the final data
reconstruction, and the noise, as well as small scale and transient fea-
tures in the high order EOF modes, are removed from the reconstructed
data. The process to determine the optimum number of EOF modes in
the final reconstruction is fully automatic. However, in the parameter
file, we need set the maximum number of EOF modes to the temporal
size (=30 for this study), so that it calculates enough number of EOF
modes before the optimum number of EOF modes is reached. To quan-
titatively evaluate the accuracy of the DINEOF data reconstruction
method, a set of valid pixels are intentionally treated as “missing pixels,”
so that DINEOF-reconstructed data can be compared with the original
data. Specifically, before the DINEOF process, 5% of the valid (non-
missing) pixels are purposely removed from the original global data. The
locations of these validation pixels are randomly selected using the
random number generator. After the DINEOF process, these data are
reconstructed and compared with those from the original data set.

3. Results

Since the two-sensor gap-free Chl-a data are routinely produced, we
focused on comparing the three-sensor gap-free Chl-a data with those
from the two-sensor. For K4(490) and SPM data, it is the first time that
we produce the gap-free data, and there are no two-sensor gap-free data
for comparison. For these two parameters, we followed the validation
procedure described in Section 2.3 to validate the products with those
from the original data sets.



X. Liu and M. Wang International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102714

Chl-a (mg m-3)

[ Land
0.1 1 10

Fig. 1. Three-sensor merged Chl-a concentration from VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A on (a) January 15, (b) April 15, (c¢) July 15, and (d)
October 15, 2020.
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Fig. 2. Global Chl-a®5*) /Chl-a®5¢™ ratio image on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a®5¢™ are merged Chl-a from three
sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a?5™ are merged Chl-a from the two VIIRS sensors.
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Fig. 3. Global gap-free Chl-a concentration reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) on (a) January 15, (b) April 15,
(c) July 15, and (d) October 15, 2020.
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Fig. 4. Global gap-free Chl-a®5®™)/Chl-a®5®™ ratio image on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a®5°" are gap-free Chl-a
reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a?5°™) are gap-free Chl-a from the two VIIRS sensors.
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Fig. 5. Density scatter plots of gap-free Chl-a®5®™ versus Chl-a®5*™ on (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2020. Chl-a®5°" are gap-free
Chl-a reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) and Chl-a?5¢" are gap-free Chl-a from the two VIIRS sensors. Note that

Chl-a unit is mg m~>.,

Table 1
Statistics of ratio (Chl-a®®*¢"/Chl-a®5¢") and difference (Diff.), i.e., (Chl-a®5¢™ —Chl-a®5™), for the months of January, April, July, and October in 2020 over
various global ocean/water regions derived from global monthly (daily) data.

Month (in 2020) January April July October
Ratio Diff.' Ratio Diff.' Ratio Diff.! Ratio Diff.'
Global Waters Mean 1.017 0.013 0.998 —0.003 1.001 0.031 1.014 0.019
Median 1.006 0.001 0.995 0.000 0.996 0.000 1.009 0.001
STD 0.145 0.418 0.117 0.590 0.127 0.861 0.114 0.562
Deep Waters Mean 1.018 0.003 0.998 —0.005 0.995 0.006 1.012 0.005
Median 1.007 0.001 0.995 0.000 0.994 0.000 1.008 0.001
STD 0.133 0.155 0.101 0.202 0.099 0.428 0.102 0.290
Oligotrophic Waters Mean 0.999 —0.003 0.985 —0.013 0.990 0.011 1.007 0.007
Median 0.992 0.000 0.986 0.000 0.990 0.000 1.001 0.000
STD 0.097 0.187 0.097 0.321 0.107 0.661 0.087 0.506
Coastal/Inland Waters Mean 1.015 0.092 0.991 —0.002 1.026 0.155 1.054 0.156
Median 1.005 0.003 0.991 —0.001 1.022 0.012 1.038 0.015
STD 0.193 1.246 0.228 1.588 0.230 1.931 0.198 1.645

f Unit of mg m 3.

3.1. Three-sensor Chl-a data 3.1.1. Three-sensor merged daily global Chl-a data
Fig. 1 provides examples of the global Chl-a®%¢® merged images on
For convenience in description and discussion below, we define Chl- January 15, April 15, July 15, and October 15 in 2020, covering four
a®5e1) a5 Chl-a data derived from the three sensors, and similarly Chl- days in four seasons. Although the swath of OLCI is much narrower than
a®5en) a5 for Chl-a derived from two VIIRS sensors. VIIRS, adding OLCI ocean color data to the Chl-a®5¢™ merged images

significantly reduced the number of missing pixels because of cloud,
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Fig. 6. Gap-free Chl-a reconstructed from three sensors (VIIRS-SNPP, VIIRS-NOAA-20, and OLCI-Sentinel-3A) in the coastal region of (a) La Plata River Estuary on
January 15, 2020, (b) Brazil Coast on July 15, 2020, (c) Southwest Africa Coast on July 15, 2020, and (d) Gulf of Mexico on July 15, 2020. The corresponding Chl-a®
Sens) /Chl-a®5°™) ratio images for cases (a)—(d) are shown in panels (e)—(h), respectively.

Table 2

Statistics of ratio (Chl-a®®*®™ /Chl-a?5°™) and difference (Chl-a®*5™ —Chl-a?*
Sens)y for the four months of January, April, July, and October in 2020 over the
six coastal regions of the Gulf of Mexico, U.S. East Coast, U.S. West Coast, Brazil
Coast, Bay of Bangel, and China East Coast.

Region Ratio Difference (mg m~>)
Mean Median STD Mean Median STD

Gulf of Mexico 1.019 1.005 0.126 0.104 0.001 0.995
U.S. East Coast 1.008 0.999 0.149 0.104 0.000 1.137
U.S. West Coast 0.981 0.978 0.111 0.043 —0.003 0.689
Brazil Coast 1.022 1.011 0.120 0.046 0.001 0.801
Bay of Bangel 1.018 1.010 0.115 0.016 0.002 0.631
China East Coast 1.056 1.042 0.173 0.234 0.054 1.288

large sensor (viewing) angles, and high sun glint contamination. On
average, a global daily Chl-a®5¢™ image from the three-sensor has
~11% more valid pixels than that from the two-sensor Chl-a?5¢™
image. Specifically, on January 15 (Fig. 1a), the data gaps from the large
satellite viewing angle and high sun-glint were mainly located in the
South Pacific, South Atlantic, and South Indian Oceans, and OLCI data
can partially or completely fill the data gaps. On July 15 (Fig. 1c),
similar data gaps were also reduced in the North Pacific and North
Atlantic Oceans. On April 15 and October 15 (Fig. 1b and d), the large
satellite viewing angle and high sun-glint data gaps were located in the
tropical oceans near the equator, and they were partially filled with
OLCI data. In addition, the Sentinel-3A orbit has equator crossing
around 10:00 local time (descending), while the SNPP/NOAA-20 orbit
around 13:30 local time (ascending). The difference in cloud coverage at
different times of the satellite passing in the region also reduces the
number of missing pixels from the three-sensor merged data.

To compare the three-sensor merged data with those from the two-
sensor, Fig. 2 shows the image of Chl-a®%®™/Chl-a?5®™) ratio on the

same four days as in Fig. 1. For most of the areas in the open ocean,
ratios of Chl-a®5)/Chl-a?5®) are close to 1.0 (green color), which
indicates that the three-sensor merged Chl-a®5¢"™ data are close to those
from the two-sensor Chl-a?5*™). However, in some high latitude areas
and over turbid coastal/inland waters, ratios of Chl-a®®5¢") /Chl-a?-5ens)
are different from the unity, which are mostly attributed to the differ-
ence in coverage between the VIIRS and OLCI measurements. For
example, even at the 50°N latitude ocean regions, during the winter to
spring season, the solar-zenith angle could reach to ~60°-70°, which is
close to the limitation of 70° for ocean color data processing.

3.1.2. Global gap-free Chl-a data

Fig. 3 provides examples of the global daily gap-free Chl-a
images on January 15, April 15, July 15, and October 15 in 2020.
Similar to daily gap-free Chl-a®5¢™ images reconstructed from two
VIIRS sensors (Liu and Wang, 2019), the low Chl-a (<0.1 mg m~3) are
mainly found in the five subtropical ocean gyres, i.e., the north and
south Pacific, north and south Atlantic, and south Indian Oceans. For
these global oligotrophic waters, Chl-a have two peaks annually, both in
the winter season (boreal and Australian winters) (Wang et al., 2021),
due primarily to the winter strong vertical mixing (Signorini et al.,
2015). In the equatorial Pacific and Atlantic, the easterly trade winds
blow along the equator and waters are transported away from the
equator on both its north and south side (Gill, 1982). The divergence of
the surface flow induces an upwelling of the cold and nutrient-rich
waters and creates a productive phytoplankton bloom zone, so that
Chl-a (ranging ~0.1-1.0 mg m°>) are higher than those in the sub-
tropical gyres. Over the high latitude ocean region, surface water is cold
with less vertical density gradient, and the vertical mixing of water can
reach to depths much greater than euphotic zone (Siegel et al., 2002). As
a result, with sufficient nutrient supply due to vertical mixing, high Chl-
a(>1.0mg m~3) are present in the high-latitude oceans of the Northern
Atlantic, Northern Pacific, and the Southern Ocean. We also found a

(3-Sens)
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seasonal trend of Chl-a variation in the high-latitude ocean regions: the
Southern Ocean has a maximum Chl-a in January, while Chl-a in the
Northern Atlantic and Northern Pacific have a maximum in July (Boss
and Behrenfeld, 2010). In coastal oceans, nutrient sources from land,
resuspension from sea floor, and coastal upwelling support high bio-
logical productivity (Shi and Wang, 2012). Indeed, there are signifi-
cantly high Chl-a (> 1.0 mg m™~>) on the West Africa Coast, South
America coast, Arabian Sea and Bay of Bangle, and China East Coast.

Since the global gap-free Chl-a?5™ data have already been vali-
dated (Liu and Wang, 2019), we compare the gap-free Chl-a®5® and
Chl-a?5¢™ images for evaluations. The images of the gap-free Chl-a®*
Sens) /Chl-a@5¢™) ratio on the same four days as in Fig. 3 are provided in
Fig. 4. Results show that ratios in Chl-a®®5¢" /Chl-a®5* are close to 1.0
in most pixels (green color). However, there is significant noise in the
Southern Ocean and equatorial ocean in the image on January 15
(Fig. 4a), and in the northern Atlantic and Pacific Oceans on July 15
(Fig. 4c). In comparison, there is less noise in images of April 15 and
October 15 (Fig. 4b and d). For quantitative evaluations, Fig. 5 provides
the density-scatter plot of Chl-a®5¢™ (three-sensor) versus Chl-a@5¢™
(two-sensor) gap-free images on the same four days as in Fig. 3. We can
see that the density-scatter plots are closer to 1:1 line in all images for
the four-daily data, while there are slightly more scatters (noise) for the
cases of January 15 and July 15. Quantitatively, the standard deviation
(STD) values of the Chl-a®5¢™/Chl-a?5°" ratio are 0.122, 0.095,
0.128, and 0.113 for the cases of January 15, April 15, July 15, and
October 15, respectively, reflecting high noise data for both January 15
and July 15 cases as shown in Fig. 4.

For accurately characterizing the seasonal effect, Table 1 provides
the statistics of the monthly averaged ratio (Chl-a®5¢™/Chl-a>5¢"9)
and difference (Chl-a®5 — Chl-a?%™) in January, April, July, and
October 2020 for global waters, global deep waters (depth > 1 km),
global oligotrophic waters (Chl-a < ~0.1 mg m~3), and global coastal/
inland waters (i.e., depth < 1 km). Note that the monthly statistics data

were derived from the entire month (daily) data for these four months.
Results in Table 1 show that Chl-a®5¢™ are very close to Chl-a?%®™ in
global oligotrophic waters for the four months with a Chl-a®5%)/Chl-
a@5¢m) ratio that varies from 0.985 to 1 .007, and a difference that varies
from —0.013 to 0.011 mg m . However, over global coastal and inland
waters, the three-sensor Chl-a®5¢™ are usually slightly higher than the
two-sensor Chl-a?5™) with additionally larger STD values, i.e., Chl-a
ratios vary from 0.991 to 1.054, and Chl-a differences are quite signif-
icant from —0.002 to 0.156 mg m°. This is mainly attributed to the
difference between Chl-a data derived from VIIRS and OLCI in coastal
and inland waters. Chl-a derived from three sensors are usually different
over turbid coastal and inland waters due to the Chl-a algorithm per-
formance issue, as well as differences with the SRF effect on the Chl-a
algorithm. However, the gap-free Chl-a spatial features derived from
the three-sensor merged data are quite useful over coastal and inland
water. Overall, over global waters, Chl-a®®5¢™) are more or less consis-
tent with Chl-a®?%¢™ | i.e., the mean ratio varies from 0.998 to 1.017, and
the median ratio from 0.995 to 1.009.

The monthly means of the Chl-a®5¢™/Chl-a®5¢™ ratio also show
seasonal variations. In global oceans, Chl-a®%) data are very close to
Chl-a®5¢™) in April and July, while Chl-a®5¢"™ data are ~1.5% higher
than the Chl-a?5°™ data in January and October. Over global oligo-
trophic waters, Chl-a®®5™ data are smaller than Chl-a?%™ in April
and July (mean Chl-a®5¢™/Chl-a%5¢™ ratios are 0.985 and 0.990),
while they are very close in January and October.

3.1.3. Gap-free Chl-a in coastal oceans

Fig. 6 provides examples of Chl-a®-5¢" images in the coastal regions
near the La Plata River Estuary (Fig. 6a), Amazon River Estuary
(Fig. 6b), West Africa Coast (Fig. 6¢), and Gulf of Mexico (Fig. 6d). The
La Plata River Estuary and its vicinity is one of the most extremely turbid
coastal oceans, and Chl-a are high due to the nutrient input from river
discharge (Shi and Wang, 2020). Fig. 6a shows the gap-free Chl-a®-5¢"
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image on January 15, 2020, near the La Plata River Estuary. The high
Chl-a features (> ~10 mg m~2) were found inside the estuary and in
coastal eddies. Fig. 6e shows the image of the Chl-a®5¢™ /Chl-a-5¢™)
ratio, and the variation of the ratio was quite significant across the re-
gion. In the areas of significantly large Chl-a (> ~10 mg m~3), Chl-a®
Sens) yalues were ~10-20% higher than Chl-a?5°™ values, indicating
that these spatial features of high Chl-a were significantly enhanced by
adding the OLCI data as an input source.

Similarly, we also found high Chl-a features in the Chl-a image
near the Amazon River Estuary and North Brazil Current (NBC) on July
15, 2020 (Fig. 6b). Chl-a in the Amazon River Estuary were quite high
(~10 mg m~>) due to nutrients in river runoff. As a western boundary
current, the NBC flows northward along the coast of Brazil (Johns et al.,
1990). High nutrient water exported from the Amazon River signifi-
cantly enhances the biological activities in the NBC. The NBC separates
from the Brazil Coast near 7°N and sometimes curves back to pinch off
large warm-core rings (Fratantoni and Glickson, 2002). Chl-a®%® in
NBC and its associated ring were ~1.0 mg m™° (Fig. 6b). Results in
Fig. 6f show that the spatial features of high Chl-a in the Amazon River
Estuary and the NBC ring were significantly enhanced using the three-
sensor Chl-a®%¢) data.

Fig. 6¢ shows Chl-a®5¢™ along the southwest coast of Africa on July
15, 2020. The southwest coast of Africa is known for its upwelling
including the Benguela Current upwelling system, driven by the Ekman-
pumping related to the alongshore wind-stress (Kampf and Chapman,
2016). In addition, the Congo River also brings significant nutrient

(3-Sens)

supply into the coastal waters and stimulates phytoplankton blooms
(Hardman-Mountford et al., 2003). Chl-a data in the southwest coast of
Africa are generally > ~1.0 mg m 3. From Fig. 6, it can be seen that in
the areas of coastal upwelling, Chl-a®5%/Chl-a®5®" ratios are
~1.1-1.2, indicating the upwelling-induced Chl-a bloom is captured and
enhanced in the gap-free Chl-a®5°™ image.

Fig. 6d shows Chl-a®5¢™ of July 15, 2020, in the Gulf of Mexico,
where Chl-a features were mainly dominated by the Loop Current (LC)
and its associated eddies (Hamilton, 1990). The anticyclonic circulation
inside of the LC and its associated eddy was convergent, and thus formed
a downwelling warm-core eddy. Within a warm-core eddy, the nutrient
supply was poor, and Chl-a were very low (Leterme and Pingree, 2008).
In Fig. 6d, there were two warm-core eddies with quite low Chl-a (<
~0.1 mg m~3), which were shredded from the LC. The northern part of
the Gulf of Mexico featured a high Chl-a (> ~1.0 mg rn’3) associated
with the Mississippi River Estuary. In fact, in the region around the
Mississippi River Delta, Chl-a are usually quite high (~10 mg m~>). In
addition, there are frequent algae blooms on the West Florida Shelf and
some of them are harmful. Fig. 6h shows that spatial feature of a high
Chl-a (~10 mg m~>) near the Mississippi River Delta and on the West
Florida Shelf was further enhanced in the Chl-a®*>¢™ image, compared
with those from the Chl-a®5¢"™ image.

To quantitatively compare the Chl-a®®5¢™ and Chl-a®?5* images in
coastal oceans, six coastal regions, i.e., the Gulf of Mexico, U.S. East
Coast, U.S. West Coast, Brazil Coast, Bay of Bangel, and China East
Coast, were selected, and the statistics of ratio and difference between
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Chl-a®5¢™) and Chl-a®5°™ were computed from the four months of
January, April, July, and October in 2020. The statistics results are
shown in Table 2. Table 2 shows that the China East Coast has the largest
Chl-a®5) /Chl-a?5e") mean ratio (1.056), while mean ratios for the
Gulf of Mexico, U.S. West Coast, Brazil Coast, and Bay of Bangel are
ranging from ~ 0.981-1.02 (within about 2%). The smallest Chl-a®*
Sens) /Chl-a@5¢™) ratio is for the U.S. East Coast with mean and median
values of 1.008 and 0.999, respectively.

3.2. Gap-free K4(490) data

Fig. 7 provides examples of the global gap-free K3(490) images for
January 15, April 15, July 15, and October 15 in 2020. Very clear waters
with K43(490) < ~0.05 m~! were found in the five major ocean basins,
i.e., the North and South Pacific, North and South Atlantic, and South
Indian Oceans. In the Southern Ocean and high-latitude North Atlantic
and Pacific Oceans, ocean waters were moderately turbid (Kg(490)
~0.1 m™ 1) mainly due to active biological process. The Southern Ocean
had the maximum turbidity (K4(490) ~0.1 m_l) on January 15, 2020
(Fig. 7a), while the high-latitude North Atlantic and Pacific Oceans
reached their maximum on July 15, 2020 (Fig. 7c). In addition, some
coastal oceans also showed moderate turbidity (e.g., Ki(490) ~0.1 m™1)
in different months. For example, waters were turbid along the north-
west coast of Africa on January 15 (Fig. 7a), and southwest coast of
Africa on July 15 (Fig. 7c). There was also strong turbidity in the Somali
Coast on July 15 owing to the monsoon-induced upwelling (Fig. 7c). The
East China Sea and Bohai Sea were turbid all year round. The extremely
turbid (K4(490) > ~2.0 m™1) were mainly found in the China East Coast,
La Plata River Estuary, Amazon River Estuary, and Southwest Africa
Coast.

To quantitively evaluate the global gap-free K4(490) product, we
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adopted the same validation procedure that was used to evaluate the
global gap-free Chl-a product (Liu and Wang, 2018). Specifically, we
randomly selected 5% of the non-missing/valid pixels from the merged
data, and purposely set them as “missing pixels,” i.e., removed these
selected pixels. These pixels were reconstructed by the DINEOF process
and validated against the original data. Fig. 8 shows the K4(490) com-
parison of the reconstructed data with those from the original in the
density scatter plots for the same four days as in Fig. 7. The majority of
the data in Fig. 8 are at around 1:1 line in the global ocean with mod-
erate scatter in all four months. Quantitatively, as noted in Fig. 8, the
mean ratios of the reconstructed over original data are 1.029, 1.005,
1.030, and 1.002 for the cases of January 15, April 15, July 15, and
October 15 in 2020, respectively, with the corresponding STD values of
0.169, 0.142, 0.167, and 0.153, respectively.

It should be noted that the gap-free data are generally smoother than
the original ones. This is due to the fact that not all EOF modes are used
in the final data reconstruction in the DINEOF procedure, and the
original data noise, as well as small scale and transient features in the
high order EOF modes, may be removed from the reconstructed data.

3.3. Gap-free SPM data

Fig. 9 provides examples of global gap-free SPM images for January
15, April 15, July 15, and October 15 in 2020. The SPM concentration is
closely related to the water turbidity, i.e., high SPM corresponds to a
large K4(490) value, and vice versa. Therefore, the general pattern of the
global SPM feature is similar to that of K4(490). In the Southern Ocean
and high latitude Northern Pacific Ocean and Northern Atlantic Ocean,
SPM are ~1.0 mg L™}, while SPM are low in the major ocean basins and
high in the coastal regions. However, SPM data provide more details of
ocean/water spatial variation than that from K4(490) in the world major
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Table 3

Statistics of ratio in (reconstructed/original) and difference (Diff.) in (reconstructed — original) for the months of January, April, July, and October in 2020 for pa-
rameters of K4(490), SPM, and Chl-a. Note that the monthly statistics were calculated from global monthly (daily) data for the specific parameter.

Month (in 2020) January April July October
Ratio Diff. Ratio Diff. Ratio Diff. Ratio Diff.
K4(490) Mean 1.013 —0.006 1.010 —0.006 1.019 —0.011 1.009 —0.007
Median 1.007 0.000 1.006 0.000 1.013 0.000 1.005 0.000
STD 0.159 0.126 0.144 0.140 0.159 0.227 0.153 0.168
SPM Mean 1.022 —0.018 1.019 —0.016 1.025 —0.018 1.015 —0.017
Median 1.004 0.001 1.005 0.000 1.011 0.001 0.999 0.000
STD 0.216 0.400 0.198 0.444 0.204 0.617 0.203 0.478
Chl-a Mean 1.015 —0.018 1.014 —0.013 1.020 —-0.011 1.013 —0.010
Median 0.994 0.000 0.996 0.000 1.001 0.001 0.994 0.000
STD 0.240 0.447 0.210 0.499 0.219 0.720 0.217 0.507

¥ Units for K4(490), SPM, and Chl-a are m %, mg L7}, and mg m3, respectively.

ocean basins. For example, there is a clear area of low SPM (~0.1 mg
L~ 1) in the center of the South Pacific Gyre (Fig. 9a, ¢, and d), which may
not be obviously shown in the gap-free K3(490) images. In the coastal
regions, there is also a broad SPM variation ranging from 0.01 to over
500.0 mg L™}, which provides more details of spatial SPM features from
turbid coastal oceans to extremely turbid estuaries (five orders of
magnitude in SPM). Fig. 10 shows the comparison of the reconstructed
SPM with those from the original in density scatter plots for the same
four days as in Fig. 9. Results in Fig. 10 show that the majority of the
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data are around the 1:1 line in the global oceans with moderate scatter in
all the four daily cases (representing four seasons). Quantitatively, as
noted in Fig. 10, the mean SPM ratios in the reconstructed/original are
1.039, 1.023, 1.038, and 1.006 for the cases of January 15, April 15, July
15, and October 15 in 2020, respectively, with the corresponding STD
values of 0.219, 0.197, 0.208, and 0.209, respectively. In fact, the me-
dian ratios are better than the mean ratios with the corresponding values
of 1.024, 1.010, 1.022, and 0.989 for these four daily cases (Fig. 10).
In summary, from the daily evaluations (Figs. 8 and 10), the gap-free
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global K4(490) and SPM products, derived from the three-sensor merged
data, have a similar performance for the reconstructed pixels. To provide
more solid evaluations of the three-sensor-derived gap-free Chl-a,
K4(490), and SPM, we have calculated statistics of the ratio between
reconstructed and original (i.e., reconstructed/original) and the differ-
ence between reconstructed and original (i.e., reconstructed — original)
for these three parameters using the entire monthly data of January,
April, July, and October in 2020. Table 3 provides these monthly sta-
tistics for the three parameters. In fact, for the three products, their
performances are quite consistent with the monthly mean ratio varying
from 1.009 to 1.025, median ratio from 0.994 to 1.011, and STD from
0.144 to 0.240. Results in Figs. 8, 10, and Table 3 show that global gap-
free K4(490) and SPM products are accurate and reliable, and these data
are applicable for various research and applications, particularly over
global coastal and inland waters.

4. Discussions and conclusion

Ocean color data from the OLCI-Sentinel-3A are included into the
two VIIRS sensors to generate three-sensor merged global Level-3 daily
Chl-a, K4(490), and SPM data, and Level-4 global gap-free daily images
are also produced using the DINEOF method. Results show that, by
adding the OLCI data, a three-sensor merged daily image has ~11%
more valid pixels than a two-sensor merged image. In the global open
ocean, the gap-free Chl-a data from three sensors are close to those from
two sensors. However, over coastal and inland lake regions, the three-
sensor-derived gap-free Chl-a images report noticeably different Chl-a
values. Further investigation of some coastal regions (e.g., the La Plata
River Estuary, Amazon River Estuary, West Africa Coast, etc.) shows that
in the areas of high Chl-a (> ~10 mg m’?’) these spatial features are
significantly enhanced using the three-sensor-derived Chl-a images. It is
found that the three-sensor reconstructed Chl-a values are ~10-20%
higher than those from the two sensors for the pixels of high Chl-a. This
is attributed to the new OLCI data as an additional input source. It is
emphasized that we are focusing on the enhanced Chl-a spatial features
from the three-sensor data. Although excessive nutrient supply from
river runoff often stimulates phytoplankton blooms in the estuaries, the
sediments and colored dissolved organic matter in the turbid coastal
oceans could significantly affect the optical property of the water, and
compromises Chl-a accuracy measured from different satellites. There-
fore, further validation of the gap-free Chl-a data with in situ data in
turbid coastal oceans and estuaries is recommended.

It is also found that the difference between the three-sensor and two-
sensor reconstructed gap-free data have seasonal variations. In oligo-
trophic waters, the three-sensor reconstructed Chl-a data are smaller
than those from the two-sensor in April and July, and they are very close
in January and October. In global oceans, the three-sensor Chl-a data are
generally very close to two-sensor in April and July, while the three-
sensor Chl-a data are ~1.5% higher than those from the two-sensor in
January and October. The seasonal Chl-a differences between three-
sensor and two-sensor reconstructed gap-free data are mainly due to
the differences between two-sensor- and three-sensor-merged Chl-a
data. Generally, three-sensor merged Chl-a data provide more complete
spatial coverage, leading to the improved input data source with the
DINEOF method. Therefore, more accurate and reliable gap-filled Chl-a
data can be derived with the three-sensor-merged data.

Global gap-free K4(490) and SPM data are also produced from the
three-sensor merged daily Level-3 images. K4(490) measures the water
turbidity/clarity related to light attenuation in the upper water column,
while the SPM directly measures the amount of organic and inorganic
suspended particles. Since the suspended biogenic particles are domi-
nant in the upper layers of the open ocean, the spatial pattern in K4(490)
and SPM is similar to that of Chl-a over the major ocean basins with low
K4(490) and SPM values. In coastal/inland waters and estuaries, the
suspended particles are often from river and land sources, and sediment
resuspension. Turbid waters are found in coastal oceans like the East
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China Sea, West Africa Coast, Somali Coast, while extremely turbid
waters (K3(490) ~ 2.0 m~! and larger) are mainly in the Amazon River
Estuary, China East Coast, La Plata River Estuary, and Southwest Africa
Coast. Although the spatial pattern of SPM is similar to that of K4(490) in
coastal oceans, SPM data provide a broader range from ~0.01 to 1000
mg L™}, providing more details of SPM spatial features from moderately
turbid to extremely turbid coastal and inland lake regions. We compared
the reconstructed K3(490) and SPM data with the original data for
validation. It is found that the performance of the gap-free K4(490) and
SPM data is similar to Chl-a. In fact, the mean values of the monthly
median ratios in reconstructed/original for Chl-a, K4(490), and SPM
(Table 3) are 0.996, 1.008, and 1.005, respectively, showing high ac-
curacy for the reconstructed gap-free data with the DINEOF method.

Using the three-sensor-merged data, global daily gap-free Chl-a,
K4(490), and SPM products are now being routinely produced. These
global water property data will be useful in ocean color science and user
communities for various research and applications.
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