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ABSTRACT
Data collection is an integral part of any citizen science project.
Given the wide variety of projects, some level of expertise or,
alternatively, some guidance for novice participants can greatly
improve the quality of the collected data. A significant portion of
citizen science projects depends on visual data, where photos or
videos of different subjects are needed. Often these visual data are
collected from all over the world, including remote locations. In
this article, we introduce an authoring platform for easily creating
mobile apps for citizen science projects that are empowered with
client-side machine learning (ML) guidance. The apps created with
our platform can help participants recognize the correct data and
increase the efficiency of the data collection process. We
demonstrate the application of our proposed platform with two
use cases: a rip current detection app for a planned pilot study and
a detection app for biodiversity-related projects.
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1 INTRODUCTION AND BACKGROUND
Crowdsourcing is a distributed task assignment model where large
groups of paid or unpaid participants submit their works, typically
some form of data, using the internet, social media, and
smartphone apps. Citizen science is a special type of
crowdsourcing, where the participants contribute to or collect data
for scientific research projects. Citizen science benefits both the
researchers and the people engaged in it. Researchers can collect
data that they otherwise would not be able to while the
participants learn about the subject they are engaged with. For
example, when using iNaturalist, an app that anyone can
download on their phone, people collect data and learn about plant
or animal species [14]. Increasingly, citizen science platforms are
going mobile with emerging technologies and shifting paradigms
[17]. To effectively engage in citizen science projects, the
participants often need to develop skills for detecting, identifying,
and annotating phenomena or entities from visual inputs. At
present, it is expected that the participants already have these skill
sets, or they can quickly develop these by following a set of
instructions or tutorials [19]. However, for novice participants, it is
often not as easy to understand some new phenomena or entities
in real life just by following a set of instructions or tutorials. In
this article, we use the conventional term "researchers" to describe
the group that runs the research projects and need to collect data,
and "participants" to describe the group that collects the data and
contribute to the project using a citizen science platform or app
[10].

To illustrate the challenges faced by potential participants in
collecting research quality data, we describe the rip current
detection problem [18]. Rip currents are safety hazards that can
claim human lives. To answer questions like: "Are there rip
currents at this beach?" the researcher needs to gather data that an
army of participants can conveniently collect. However, spotting
rip currents can be challenging for novice participants unless they
are familiar with this subject matter [4]. Recent works
demonstrated that rip currents can be detected using ML
approaches [7, 16]. Providing real-time ML-based guidance using
bounding boxes around rip currents in the live camera feed of the
mobile app enables the participants to learn to spot rip currents
and collect data more effectively. This facilitates the effective
engagement of people who may have less familiarity with rip
currents. The ML-based guidance can work as an educational tool
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Figure 1: Overview of the components of our open-source citizen science platform architecture.

for the participants as well, alerting them of potential danger.
While this example focuses on rip currents, it can be replaced with
a wide variety of fields and natural phenomena on which
researchers are interested in collecting data, such as biological
sciences, aquaculture, geomorphology, drought, and flooding
indicators, to name a few. In all these cases, mobile apps with
real-time ML-based guidance systems enable the participants to
recognize and collect the correct data.

Indeed, there are similar infrastructures that allow one to create
people-powered apps like those provided by Zooniverse,
SPOTTERON, Anecdata, etc. [15]. However, these general-purpose
citizen science app builders are limited to providing standardized
purpose-specific tools and features, such as task assignment and
data uploading for crowdsourced research projects. Also, the data
collection processes entirely rely on human skills as there is no
integrated ML support in the client apps. Some apps like
iNaturalist have server-side ML capabilities [14]. However, to use
server-side ML in real-time, continuous high-speed connectivity is
required, which can be expensive, and internet connectivity is not
available in many remote places where some projects might need
to collect data. While considering building ML capabilities on top
of the architectures of existing open-source systems (iNaturalist,
Zooniverse, etc.), our analysis showed that they are not designed
to integrate with client-side ML. It is possible to develop a new
citizen science app from scratch with ML support for each project.
However, developing and deploying each of these individual apps
would take months, if not years. For example, an app with
client-side ML capabilities to classify plant and animal species is
Seek by iNaturalist [14]. While iNaturalist already has a
well-developed app with server-side ML, they had to create Seek
from scratch to add client app-side ML support. While the topics of
different citizen science projects may seem far afield from each

other, common needs for collecting visual data tie these domain
problems together. So, ML-powered apps created using a
general-purpose citizen science platform can help participants
recognize the correct visual data and increase the efficiency of the
data collection process in a wide variety of research domains.

This article introduces an open-source software platform that
allows a domain researcher to quickly create citizen science apps
with integrated ML models to collect visual data, even if they don’t
have a computer science background. Existing ML-powered citizen
science apps often involve development stages that take months or
years to deploy. Our proposed platform reduces many of those
stages by providing a common feature set under a single
framework shared by all apps. This will enable rapid prototyping
and faster deployments allowing researchers without a large
budget or projects that are more investigative than long-term in
nature to engage in productive work.

2 RELATEDWORKS
We studied the most popular citizen science app creation platforms
that allow one to create people-powered mobile apps. Zooniverse
is a free citizen science web portal that allows creating projects
for different domains [3]. A sample project from Zooniverse is
OceanEyes, where volunteers are sought to help count and label
the fishes in the images that the researchers’ cameras have collected.
It illustrates how having anMLmodel to identify the fish species can
be highly beneficial. Anecdata is another free online citizen science
platform that has similar features as Zooniverse [8]. Another fully
mobile app-based citizen science platform is SPOTTERON [15]. All
the citizen science apps using this framework have the same look
and have an easy-to-customize GUI for various projects. Powered
by SPOTTERON, another citizen science app is CoastSnap, which
uses uploaded beach photos to understand how coastlines might
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Figure 2: Left: app created by our citizen science platform in field work. Right: (top) detection bounding box with confidence
score and (bottom) graphical user interface showing sensor information, data uploading and other options.

change in the coming decades [13]. App Movement is another
authoring platform for community-created mobile apps, which
provides automatic development and deployment of the app by
customizing a common template [11]. However, the client-side ML
component is not available on any of these platforms.

3 SYSTEM COMPONENTS OF AUTHORING
PLATFORM

The main components of our proposed citizen science platform are
the mobile app (middle), the ML models in the app (left), and the
server-side components (right) shown in Fig. 1. The app contains the
ML model and provides the primary interface for the participants.
It provides standardized purpose-specific tools and features for
crowdsourced research projects. Built-in tools include instructions,
tutorials, data saving, uploading, etc. Since we aim to facilitate
visual data collection, the app includes a camera tool with a live
view that doubles as the visualizer for the ML model (e.g., bounding
boxes around the detected objects). New projects initially start with
a blank template with these built-in features, functionalities, and
default look-and-feel that can be customized later.

For each project, the MLmodel needs to be trained with an initial
dataset. We assume that the researcher has this. If a project has no
data at all, the researcher’s team will need to collect some limited
initial training data to create a rudimentary model that can be
improved via continual learning as more data is collected [21]. We
also assume the researchers themselves and other domain experts
will use the app as "expert participants" who can collect higher
quality data and provide labels that correct the misclassifications or

false positive detections from the rudimentary model. Thus, there is
an opportunity to engage the "expert participants" more intimately
by being part of the process to improve the ML model through
confirmation or refutation. If a "perfect" training dataset exists for a
project, the researcher can directly use that for training the model
and quickly start large-scale deployment for data collection.

The trained model is integrated with the app before building
and deploying the app. When the participants use the app for data
collection, the ML model runs with the app and guides with
classifications or annotations (e.g., bounding boxes) to help them
recognize the object for data collection. The models are fully
compatible with mobile device architectures and run locally
without internet connectivity and back-end server support. The
back-end primarily works as the repositories for collecting the
data that the participants upload. Other optional features included
on the server-side are a companion website, user account, data
management, data explorer, analysis and visualization, server-side
ML apps with ML models requiring more computational power
than mobile devices, etc. There is a primary server for managing
all the apps for each citizen science project in our architecture.
However, each project has its own data storage server (physical or
cloud) for storing the collected datasets.

4 IMPLEMENTATION
The architecture of our citizen science platform is a standard client-
server system (Fig. 1). The app and the integrated ML model run on
the client devices, e.g., smartphones. The phone camera provides
real-time visual inputs for the ML model to process (Fig. 2). We use
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Figure 3: Some examples from our test cases of real-time rip current detection and data collection using our mobile app are
illustrated here. The location of the rip currents is visualized using the blue bounding box with the label and the confidence
score of detection.

ML models based on TensorFlow Lite [1]. These models are small
and optimized to run on limited computational resources on mobile
devices. The same trained model runs on both Android and iOS
versions of the app. At present, single-shot detector (SSD) models
are supported by TensorFlow Lite. For our test cases, we used SSD
MobileNetV2 [20] and EfficientDet [22], and trained the models
using transfer learning [2].

Our platform simplifies the authoring process using a set of
internal and external web-based tools. The fully guided app creation
project starts on the website of our authoring platform. The website
has the instructions and tools for the project creators to train a
model using their custom dataset to bootstrap their project. Then,
we provide another web-based tool to integrate the trained model
and compile the app. Once the app is ready, it can be uploaded to
the app distribution services for mobile devices to make it available
for the participants to download and use.

Based on the guidance and feedback from the ML model running
in the app, the participants can decide which data they want to
capture. As the ML model integrated into the app runs locally
on mobile devices, no server support or internet connectivity is
required. The data is captured and initially stored in the local storage
of the smartphone. The participants can later select the data they
want to upload to the server. A larger ML model on the server-side
can be used to analyze further and verify the collected data utilizing
more powerful computational resources.

5 RESULTS AND DISCUSSION
We did some initial testing of this architecture on two separate
citizen science projects. The results from the two use cases are
presented below.

5.1 Use Case 1: Rip Current Detection for
Beach Safety

Our first use case is a citizen science app to collect data on rip
current events for use in rip forecast model verification and creating
a database for rip current research [9]. The ML models for rip
current detection such as the one reported in [7] are too large and
computational resource-intensive for mobile deployment. Using the
authoring platform described above, we created a mobile app that
would contribute to beach safety by alerting people to the presence

and location of rip currents, if any (Fig. 3). Themobile-optimizedML
model in the app helps the participants with no previous experience
to spot rip currents and collect data for the citizen science project.
We bootstrapped the training process by using the data from [7].
Also, the labels of data provided by "expert participants" who are
more familiar with rip currents (e.g., lifeguards, local surfers, etc.)
can improve data quality. This app is currently being prepared for
an upcoming pilot study this summer to be conducted at various
locations in the US. This pilot study will allow us to improve the
app further before it goes "live".

5.2 Use Case 2: Biodiversity Analysis
Biodiversity analysis is important for many research groups, such
as those with a focus on biological science, aquaculture, marine
biology, etc. Researchers may need to collect data about some
endangered species; other times, they need data to analyze the
biodiversity in some specific area [23, 24]. In this use case, we
trained a model with images of sea lions and seals to demonstrate
our app’s usability for these types of research projects. Many sea
lion species are considered as endangered [6], and collecting data
about them are needed for marine biology research and
conservation groups [5]. However, it can be difficult for novice
participants to differentiate between seals and sea lions [24]. Using
our ML-powered app, the participants can detect and differentiate
these two species (Fig. 4). With further training data and continual
learning, this app can be modified to detect and differentiate
among various sub-species [12].

6 CONCLUSION AND FUTUREWORKS
This article presents an overview of an open-source platform for
creating client-side ML-powered citizen science apps to improve
data collection quality and efficiency. We demonstrate the use of the
authoring platform with two real-world examples. As we continue
working on the citizen science platform, we plan to optimize the
overall process, including an enhanced user interface for mobile
apps, support for a wider variety of ML models, and more server-
side services.
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Figure 4: Some examples from our test cases of real-time detection and differentiation between sea lions and seals using our
mobile app are illustrated here. The three images on the top row show one or more sea lions detected and visualized using
separate bounding boxes with labels and confidence scores. Similarly, the three images on the bottom row show detected seals
in different environments.
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