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Abstract. Coastal areas have a significant role in human life worldwide, where world economic 

activities are concentrated in coastal areas. One of which is the activity of loading and unloading 

import-export goods through ports. Ports management must use a nautical chart to ensure the 

safety of shipping activities. The nautical chart contains graphical information from the sea and 

coastal areas, namely: seabed topography, natural and artificial seabed features, coastlines, 

navigation hazards, both natural and artificial navigation aids, tides, currents, human-made 

structures such as ports, buildings, and bridges. Seabed sediment is also essential information 

that must be available in the Nautical Chart. Several techniques and methods are used to make 

a seabed sediment map, namely mechanical grab (lead line, grab sampler, coring) and acoustic 

(side-scan sonar, singlebeam, and multibeam echosounder). This paper reviews seabed sediment 

mapping techniques and proposes techniques and methods in the future. 

 

Keywords: nautical chart, seabed sediment, mechanical, acoustic, grab sampler, multibeam 

echo sounder 

 

1. Introduction 

Coastal areas (coastline, coastal environments, and seashore) have been known as a human attraction 

for thousands of years and are continuing today. Many human activities are concentrated in this coastal 

area. Besides, many major cities in the world are developing in this region. One of the coastal areas' 

economic activities is loading and unloading ships at the port, which requires a nautical chart to support 

economic activity. A nautical chart plays an essential role in sea navigation, which depicts seafloor and 

shoreline configuration. It contains graphical information from the sea and coastal areas [1]: bathymetry, 

both natural and artificial seabed features, coastlines, navigation hazards, both natural and artificial 

navigation aids, tides, and currents, human-made structures such as ports, buildings, and bridges. Also, 

information that is also important that must be in the nautical chart is seabed sediments characteristics. 

Characteristics of seabed sediments are essential for ship safety [2], especially when the ship wants 

to stop while in the middle of the sea by throwing anchors. Seabed sediment characteristics are also 

essential for construction (installing gas and oil pipelines, laying cables of electricity, optics and 

telecommunications, and platform structure) and the environment (benthic habitat impacts, transport 

sediment, dredging material, and disposal offshore waste). Furthermore, the intensifying human 

exploitation of the oceans has led to an increased demand for accurate seafloor information maps—the 

information required for both the seafloor topography and the distribution of the seafloor composition. 

The problem is the unavailability of nautical charts, which contain necessary and complete seabed 

sediment information, or seabed sediment maps that are complete and accurate. 
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The need for very accurate seabed sediment maps near the coastal waters is increasing. It will take 

more than one century before mapping based on modern means [2]. The solution proposed here is to 

start from a rough knowledge established with the past and gradually supplement it with the more recent 

technology to make a seabed sediment map. Seabed sediment mapping methods have developed rapidly 

from year to year and from mechanical to acoustic methods. This paper explains the evolution of seabed 

sediment mapping technology and future development to accelerate the availability of complete and 

accurate seabed sediment maps. 
 

2. Sediment Mapping Method 

2.1 Sediment and Sedimentation 
Sediment is solid particles such as sand produced by the natural process of erosion and weathering, 

transported to other locations by the actions of wind, water, ice, and mass wasting, all operating under 

gravity [3]. Eventually, sediment settles out and accumulates after transport; this process is known as a 

deposition. Sedimentation is a general term for the processes of erosion, transport, and deposition. There 

are three basic types of sediment: rock fragments (clastic sediments), mineral deposits (chemical 

sediments), and organic matter (biological sediments) [4]. This paper will focus on clastic sediment, 

which has three primary grain sizes: gravel, sand, and mud. Gravel refers to grains greater than 2 mm in 

size, sand refers to grains less than 2 mm but greater than 63 µm in size, and mud refers to grains less 

than 63 µm in size. These three significant classes can be subdivided further using the Udden-Wentworth 

grain size scale [5]. 
 

Table 1. Sediment Grain Sizes [5] 
 

Class terms (x) Particle Type Size (mm) 

Boulders  

 
Gravel 

>256 

Cobbles 256 ≤ x < 64 

Pebble) 64 ≤ x < 4 

Granules 4 ≤ x < 2 

Very coarse sand grain  

 
 

Sand 

2 ≤ x < 1 

Coarse sand 1 ≤ x < ½ 

Medium sand grain ½ ≤ x < ¼ 

Fine sand grain) ¼ ≤ x < 1/8 

Very fine sand grain) 1/8 ≤ x < 1/16 

Silt Silt 1/16 ≤ x < 1/256 

Clay) Clay x ≤ 256 

 

2.2 Sediment Sampling 

2.2.1 Grab Sediment Sampler 
Several tools can be used to collect seabed sediments depending on the contaminants and the information 

required. One of the tools used to collect sediment on the seabed is a grab sediment sampler. The grab 

sediment sampler is very easy to operate and can provide seabed samples suitable for grain analysis in 

the laboratory. It is also easy to deploy even from small vessels and in rougher sea conditions. There are 

several types of grab sediment samplers available on the market, and the most commonly used are 

Shipek, Van Veen (Figure 1), Petersen, and SmithMclntyre types. Grab sediment samplers [6] [7] are 

https://science.jrank.org/pages/2568/Erosion.html
https://science.jrank.org/pages/4183/Matter.html
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better for collecting fine-grained cohesive sediments, such as mud and clay, than non-cohesive sediment 

such as sand, cone shells, and gravel. These are usually easy to deploy (even from small vessels and in 

rougher sea conditions) and can give a very large sample. 
 

Figure 1. Van Veen Grab Sampler 
 

There are several drawbacks to seabed sediment sampling using a grab sampler. The first weakness 

is the limitation of this tool in taking the bottom sediment only for shallow waters. The deeper the waters, 

the more difficult it is to collect bottom sediment because the more in-depth the pressure is, the difficulty 

in taking sediment samples, incredibly hard sediments such as sand, rock, and gravel. The second is that 

this tool has difficulty extracting sediment samples that are too soft, such as silt and clay, so that the 

sediment is more comfortable releasing (loss of fine sediments). Another disadvantage is the low 

accuracy of determining the seabed sediment position. At the time of sampling, the ship's position had 

shifted to another location due to currents, waves, or something else. Besides, this tool cannot provide 

information on seafloor conditions, and samples only give information about the seabed surface. 

Furthermore, a larger sampler will require a winch for deployment. It needs a time-consuming and 

costly process to analyze these samples in a laboratory [7] [8] [9]. The drawback of seabed sediment 

retrieval with the grab sampler is that it is static data retrieval, requiring a considerable time to create a 

seabed sediment map with many samples. The higher spatial resolution of seabed sediment it needs 

many sampling points (Figure 2). The more sample points cause the length of the observation time and, 

consequently, the more expensive. [10] shows the spatial distribution of the sediment textural data in 

Tauranga Harbour derived from grab samples (Figure 2). The color-coded clusters group similar 

sampling sites and does not mean representing the actual sediment class boundaries of the area. 
 

Figure 2. Seabed sediment map from grab samples [10] 
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2.2.2 Sediment Cores 
Unlike the grab sediment sampler, core sediments can take sediment on the seabed surface and capture 

the stratigraphic layers with depth. Several types of sediment cores: gravity corers, multiple gravity 

corers, hydraulically damped corers, box corers, piston corers, freeze corers, Vibro corers, and drilling. 

Their application depends on environmental conditions and desired research [7]. Gravity core (Figure 

3) is the type most often used to collect seabed sediments. It can quickly and continuously pick up 

bottom sediments to several thousand meters from the seafloor [8]. It can also be operated with various 

types of vehicles. The gravity core application is for dredging, offshore oil and gas engineering, pipeline 

and cable routes, and is very useful for controlling soil types in geophysical surveys. 

Like the sediment grab sampler, this gravity core also has the same disadvantage if used for necessary 

seabed sediment mapping. It cannot produce continuous primary sediment data so that the more samples 

needed, the more time is required, and ultimately the costs incurred are also more significant. Gravity 

corers are only really suitable for collecting very soft to hard clays because penetration in hard clays or 

sand is usually limited [7]. Furthermore, the samples obtained are generally of average to moderate 

quality. Core samples are not easy to acquire as grab samples. These techniques can be expensive since 

they require dedicated ships and equipment, lengthy measurements, and a labor-intensive analysis 

afterward. Not only is the acquisition more expensive, so the core analysis and storage [8] [9]. Another 

essential drawback is that these techniques provide information on point positions only. As in the grab 

sampler (Figure 2), the seabed sediment distribution map from the gravity core has a low spatial 

resolution. The denser the sample points will produce a high resolution and vice versa. However, the 

closer the sample points are, it will take a long time and be expensive. 

 

Figure 3. Gravity Core 
 

2.3 Acoustic System Techniques 

Remote sensing techniques based on acoustic waves such as single beam echosounder, side-scan sonar, 

and multibeam echosounder have provided technological solutions for seabed mapping such as mapping 

ocean depths and seabed features. Underwater acoustics is applied as one of the most efficient and 

accurate applications to understand the seabed characteristics and locate and identify marine objects in 

an accurate way [11]. One of the studies that have developed over time is the mapping or classification 

of seabed sediments in various areas with various spatial scale variations that aim to support marine 

areas' management. The sound scattering theory from the ocean floor emphasizes the different 

theoretical models currently in use and ongoing evolution [12]. 
 

2.3.1 Single Beam Echo Sounder 
The principle of single beam echo sounder (SBES) generates an acoustic pulse that travels through the 

water column, is reflected off the seabed, and is received back on board the vessel by a transducer 
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(Figure 4) [13]. SBES can measure only one point per acoustic echo wave emitted. The specifications 

of SBES are defined by beam angle and frequency of the transmitted acoustic wave from the transducer. 

The sounder generates an acoustic pulse that travels through the water column. It is reflected off the 

seabed and received back on board the vessel by the transducer. 

 
Figure 4. Acoustic Depth Measurement Principle [13] 

 

The SBES systems offer relatively low acquisition costs, easy to use, ready availability and wide use, 

data processing efficiency, relative ease of understanding and operations, water-column backscatter 

availability, and use of multiple frequencies during a single survey [14] [15]. SBES data acquisition is 

only acquired directly underneath the transducer (Figure 4). SBES operations generally conduct 

systematic grid surveys and sometimes incorporate an adaptive star-like cruise track in selected shoal 

regions (Figure 5) [11]. Survey lines are run perpendicular to the coastlines, and the line spacing between 

the survey lines is dependent on the scale of the final product and resolution required (Figure 5). The 

shorter the distance between the survey lines from one another, the greater the resolution, but it takes 

longer. Furthermore, the features and possible hazards that lie between the survey lines will be omitted 

from the final product, and the resolution is of far lower quality [16] [17]. Besides, a single beam data 

resolution depends on the vessel's speed because the measurement directly under the vessel is obtained. 

Therefore, it is rather time-consuming to generate a region's 2D grid using a single-beam echo sounder. 

This instrument tends to be more suited to obtaining multiple 1D transects [18]. 
 

Figure 5. SBES Grid Survey Lines [11] 
 

Generally, the main objective of a single beam echosounder survey is for seabed mapping 

(bathymetry). It can also detect empirically the type of bottom sediment used to predict coral sediments 

[16]. The single-beam echo sounder generates a seabed acoustic response to classify seabed sediments. 

The acoustic energy redirected to the transducer is called backscatter and affected by the seabed and 

sub-seabed. The backscatter strength (BS) quantifies the amount of acoustic intensity scattered back to 

the sonar receiver following a complex interaction of the transmitted signal with the seafloor. It results 

from an intricate combination of several physical factors: frequency, impedance contrast, roughness, the 
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sediment volume, and incidence angle [19]. Due to the various scattering properties of different seafloor 

substrates, backscatter can help determine the bottom type [20] [21] and possibly to infer some of its 

physical characteristics. The seabed characteristics, the sea surface's physical properties, or sea 

subsurface material influence the signal's shape [11]. An acoustic signal intensifies sediment seabed 

classification with SBES systems. Some factors will influence the reflected signal, such as hardness, 

roughness, and angle of acoustic incidence, which is affected by the seafloor's slope. 

Figure 6 [11][22] shows that seabed sediment responds to SBES Signal. The length and intensity of 

the tail of the first echo (E1) and the intensity of the second echo (E2) can often be used to differentiate 

soft, hard, and rough habitats. These indices have often been related to seabed roughness and hardness, 

respectively. The first echo (E1) and the second echo (E2) intensity can often differentiate soft, hard, 

and rough habitats. These indices relate to seabed roughness and hardness, respectively. The first echo 

corresponds with grain size, topography, and seabed surface attenuation, such as large grain size or 

rough bottom, reflecting a narrow E1 envelope of higher amplitude. The E2 varies when the sound wave 

penetrates the seabed surface and is reflected by a substrate layer of different density. The attenuation 

of sound increases a higher density medium, such as when sound propagates from water to the seabed. 

The resulting backscatter intensity from a seabed made up of rock is significantly greater than that from 

a sandy substrate. 
 

Figure 6. Roughness dan Hardness Responses of Seabed Sediment [22] 
 

Another factor of influence reflected signal is the seabed angular response, which can vary within 

the acoustical footprint, and higher reflectivity is expected at nadir. Hence, the width of the footprint, 

angle of incidence, and the angular response from the seabed enhances the ability to discriminate the 

categories of seabed grain size (sand, gravel, and cobble). The optimal angular responses of SBES signal 

for classifying seabed made up of sand, gravel, and cobble occur at grazing angles ranging about 7–20° 

depending on the source level, frequency, pulse length, and operational range of the system [22]. Figure 

7 [23] shows a seabed sediment map derived from a single beam echo sounder. 



Geomatics International Conference 2020
IOP Conf. Series: Earth and Environmental Science 731 (2021) 012039

IOP Publishing
doi:10.1088/1755-1315/731/1/012039

7

 

 
 

 

Figure 7. Seabed Sediment Map using Backscatter SBES [23] 
 

2.3.2 Side Scan Sonar 

Side-scan sonar (SSS) is one of the most potent types of equipment for underwater observation because 

it can efficiently measure a large area and produce a detailed image (high-resolution image) of anything 

on the seafloor. This equipment can conduct seabed mappings such as nautical charts, detection, and 

identification of underwater objects. It can also detect debris and other obstructions on the seabed that 

may be hazardous to shipping or seafloor installations for subsea field development [24] [25] [26] [27]. 

The SSS is examined as the most relevant acoustic device able to produce seafloor imagery by pulse 

emission of acoustic energy. The system amplifies and records the backscatter intensity of the seabed, 

generating the sonograph. It may be considered analogous to a continuous aerial photograph [25]. The 

SSS is most likely to provide the best high-resolution maps, particularly over vast areas. They provide 

information on sediment texture and bedform structure and allow dynamic processes (e.g., sediment 

transport) to be deduced [24]. Side-Scan Sonars are widely used in seafloor imagery, should remain 

short and also its ease of deployment: in some cases, they have a tow-fish structure, so there is no need 

for elaborate mountings on Autonomous Underwater Vehicles (AUV), Remotely Operated Vehicles 

(ROV) or ships [26]. 

Several factors affect the precision and accuracy of SSS images. For instance, the horizontal extent 

of the image is affected by the frequency and grazing angle, determined by the transducer's altitude 

above the seabed. Another factor is seabed conditions and altitude above the bed, a range of 300 m can 

be obtained at a frequency of 117 kHz and typically 150 m at a frequency of 234 kHz. Accuracy 

increases with decrease range. For example, 0.1 m accuracy is typically obtained at a range of 50 m 

(100 m swath), while only 0.3 m accuracy is received at 150 m [24] [28]. The disadvantage of side-scan 

sonar is its horizontal positioning of the tow-fish side-scan sonar. Although its position has used GNSS 

RTK, the position of tow fish that is moving or unstable causes, the resulting position is less accurate 

(Figure 8) [29]. Another disadvantage is, the more in-depth the ocean, the longer the cable needs to get 

clear and accurate objects in the sea bottom [28]. Side-scan sonar does not usually produce bathymetric 

data, so it must be combined with a single beam echo sounder (SBES) to get accurate depth [17]. 

Disadvantages associated with swath systems are their high costs and the need to have skilled 

interpretation. The output often requires considerable post-processing time and expense to obtain 

appropriate classifications [24]. 
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Figure 8. Tow-fish Side Scan Sonar [29] 
 

The side-scan sonar scanning and combination with a certain amount of sediment sampling are the 

primary means of a survey. By analyzing the backscattered return signals of side-scan sonar and 

sediment sampling using grab sampler or sediment core, fine particles (clay and silt), coarse particles 

(sand soil), bedrock, and distinguish other types of sediment. For example, a seafloor sediment 

distribution map can be seen in Figure 9 [30]. 
 

Figure 9. Seabed sediment map of the Outer Thames Estuary REC area [30] 

 

2.3.3 Multibeam Echosounder 
Multibeam Echosounder (MBES) is an acoustic instrument that can measure the seabed depth in more 

than one location with one beam (ping) [31]. The MBES systems measure the depth in a line extending 

outwards from the sonar transducer. The methods acquire data in a swath at right angles to the direction 

of the transducer head's motion, and the head moves forward, these profiles sweep out a ribbon-shaped 

surface of depth measurement known as a swath (Figure 10) [32] [18]. Therefore the MBES can map 

the seabed by a fan of narrow acoustic beams, thus providing 100% coverage of the bottom search to 

comply with special order by the International Hydrographic Organization's performance standards, S- 

44 edition 5. The MBES produce seabed maps are more detailed than those obtained using SBES, and 

the image data similar to a side-scan sonar image. Besides, the MBES dataset is useful for characterizing 

the seabed material properties and sometimes can detect small objects not visible in the sounding data 

because the MBES' ability to co-register high-density echo time, geometrical features, and intensity over 

large seabed swaths, providing depth and intensity data [24]. 
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Figure 10. Sounder sonar system swathe [32] 
 

The cost of survey equipment using MBES is far more expensive than the SBES survey because the 

MBES survey equipment is far more complex and complete than SBES. However, conducting much 

faster surveys compensate for these expensive costs, saving the ship's reduced operating time. The 

spatial resolution of the data produced is also much denser compared to SBES. Another weakness of 

this MBES is the large data volume and requires complex calibration (pitch, yaw, roll, and sound speed 

profile) [18]. 

Initially, the multibeam echo sounder still focuses on the bathymetry mapping to fulfill the 

acquisition and accuracy of depth measurements IHO standard [33]. There is three main attraction of 

the MBES as the wide-area seabed coverage offered by the swath system. The first is a single trajectory 

of the survey platform, providing superior navigational data compared to SBES, which ultimately 

reduces the risk to surveyors at sea Figure 11 (a). In addition to the need for bathymetric mapping by 

sweeping the entire mapped area (full coverage), MBES can also be used for seafloor sediment mapping 

using backscatter (Figure 11 (b)) the acoustic signal it emits. The MBES backscatter is similar to the 

backscatter side-scan sonar [34]. It can be used to classify the seabed in the form of hardness and 

roughness characteristics and are precious measurements when studying the seabed sea surface's 

geology. Besides, acoustic wave returns can also be detected from objects in the water column such as 

fish, gas bubbles, sediments, etc. (Figure 11 (c)). 
 

Figure 11. MBES application (a) bathimetri, (b) backscatter (c) water coloumn (Colbo, 2014) 

 
Recently, MBES' backscatter intensity from the seafloor has attracted interest due to its ability to 

map the water-sediment-interface constituency. MBES can also be used for mapping seabed sediments 

by utilizing backscatter acoustic signals that emit. The acoustic wave backflow is an acoustic wave 

emitted by a transducer (transmitter-receiver) into the seabed sediments. It produces a portion of the 

reflected signal (backscattering) that is taken back by the transducer. The return signal's amplitude 

obtains the seabed reflectivity where high reflectivity indicates hard bottom sediments such as sand and 

gravel, and low reflectivity indicates soft seabed sediments such as mud and clay. MBES can 

characterize seabed sediments using geo-acoustic properties such as grain size, roughness, sound 

velocity, and porosity [35]. Indirect backscatter measurements and their comparison with theoretical 

models can determine the sediment character [36]. This backscatter is usually higher in rigid substrates, 

such as rock, and weaker in soft sediments such as mud [37]. MBES data supported by seabed sediment 

sample data taken with grab sampler or gravity core can produce a map of continuous base sediment 

distribution and has a better resolution compared to other data currently available (Figure 12) [10]. 
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Figure 12. Seafloor Sediment Mao Using Backscatter MBES [10] 
 

2.4 Future trend of seabed sediment mapping and the opportunity application in the tropical coastal 

waters 

Seafloor sediment mapping, as explained in the previous section, can be determined by mechanical 

methods such as grab sampler and gravity core, and also acoustic methods such as side-scan sonar (SSS), 

single-beam echo sounder (SBES), and multibeam echosounder (MBES). Each of these methods has 

advantages and disadvantages that complement each other. More acoustic methods are currently used 

with field data validation results from grab samplers and gravity cores analyzed in the laboratory. The 

acoustic method used in SSS, SBES, and MBES utilizes a backscatter or reflected wave from the seabed 

to the transducer (receiver). [38] use a reflective wave called reflectivity-based estimator for seafloor 

segmentation (BRESS). BRESS offers a new approach to quantitative analysis of seafloor sediment 

mapping data automatically, free of scale, reliable, and with efficient computing to segment the seabed 

(Figure 13). 
 

Figure 13. BRESS method for seafloor sediment segmentation [38]. 

Often the seabed sediment mapping that depends on environmental variables uses single scale data. 

[39] evaluated seafloor sediment mapping's potential using various scales (multiscale). The results of 

his study indicate that the data resolution of each terrain variable is not necessarily at the right scale to 

explain the grain size distribution of seabed sediments (Figure 14). A broader scale backscatter is the 

essential variable for distinguishing gravel from the sand. Based on the scale-dependent variables in this 

study, [39] concluded that the consideration of spatial scale is at least as important as selecting variables 

in the mapping of seafloor sediments. 
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Figure 14. Seafloor Sediment Map using multiscale Backscatter [39] 

 

Like the processing of signals on remote sensing imagery satellites using electromagnetic waves, 

MBES backscatter data processing to obtain classification results with high-resolution images, 

researchers generally use Pixel Based (PB) and Object-Based (OB) methods. [40] try to classify high- 

resolution MBES data by combining PB and OB. The results show that classification with PB and OB 

combinations produces a significantly more accurate base sediment map than PB classification alone or 

OB alone (Figure 15). 
 

Figure 15. Seafloor sediment classification PB (left), OB (center) and PB and OB combination (right) 

[40] 
 

In 2016, R2Sonic LLC produced a new variant of the MBES R2Sonic 2026, which allows more than 

one frequency (100 kHz, 200 kHz, and 400 kHz) to be modified on a ping-by-ping basis. This MBES 

product is the first product that can simultaneously (Figure 16) to collect data simultaneously from 

several frequencies at once in one data collection from the MBES system [41] [42]. 

  

Figure 16. MBES Multi Frequency based on ping by ping [41] 

The MBES multi-frequency survey results of each processed frequency can be combined (mosaic) 

with each other [41] [42]. Figure 17a shows the different backscatter intensity profiles of different 

frequencies at the same location. [41]and [42] evaluated the use of multi-frequency MBES (100 kHz, 

200 kHz, and 400 kHz) to produce multispectral backscatter in a single survey measurement (Figure 

17b). The basic idea of using multi-frequency is like a remote sensing satellite using multiple 

wavelengths (multispectral). The use of multispectral aims to improve seafloor sediment mapping 

results using MBES. The advantages of using MBES multispectral backscatter compared to single- 

frequency backscatter [43] is to provide more detailed information about seabed sediments, can be used 
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for wider acoustic wave differences, and can be used for optimal frequency selection that depends on 

the environment the bottom of the sea. 

 
(a) 

 
(b) 

Figure 17. Seafloor Sediment Map (a) Single Frequency (b) Multispectral Backscatter [41] 
 

Ping-based multi-frequency MBES is currently the latest technology that still has many study 

opportunities, especially regarding shallow waters in tropical coastal waters such as Surabaya waters. 

Different frequencies with relatively simultaneous times (the difference of a few seconds from one 

frequency to another) will produce a different response to water depth and bottom sediment. Future 

research will examine how far the depth differs from one frequency to another to determine the 

sediment's thickness. Finally, MBES multispectral backscatter combined with sub-bottom profiler data 

can make 3D seabed sediment map in tropical coastal waters. Hopefully, the results can provide seabed 

sediment distribution as an appropriate input for seabed sediment modeling. 

 

3. Conclusion 
Mapping of seabed sediment distribution can be done using mechanical methods (grab sampler and 

gravity core) and acoustic methods (single beam echo sounder, side-scan sonar, and multibeam echo 

sounder). Each method has advantages and disadvantages. Mapping of seabed sediments using 

mechanical methods will result in very low resolution. The higher the resolution required, it will take a 

long time and cost a lot. The acoustic method has a higher resolution than the mechanical one. The 

MBES seabed sediment mapping has a higher resolution than the SBES and SSS. Recently, the 

development of multi-frequency (multispectral) MBES technology has resulted in better seabed 

sediment mapping results than a single frequency, providing more detailed information. The opportunity 

for the multispectral MBES is still quite large, especially the mapping of seabed sediments. One of the 

options to be studied is combining MBES and sub-bottom profiler data to make the 3D mapping of 

seabed sediments in tropical coastal waters. 
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